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Abstract

Let n, k and t be integers with 1 6 t < k 6 n. The generalized Kneser graph
K(n, k, t) is a graph whose vertices are the k-subsets of a fixed n-set, where two
k-subsets A and B are adjacent if |A ∩ B| < t. The graph K(n, k, 1) is the well-
known Kneser graph. In 2014, Harvey and Wood determined the exact treewidth
of the Kneser graphs for large n with respect to k. In this paper, we give the exact
treewidth of the generalized Kneser graphs for t > 2 and large n with respect to k
and t. In the special case when t = k − 1, the graph K(n, k, k − 1) usually denoted
by J(n, k) which is the complement of the Johnson graph J(n, k). We give a more
precise result for the exact value of the treewidth of J(n, k) for any n and k.

Mathematics Subject Classifications: 05C75, 05D05

1 Introduction

Throughout this paper graphs are finite and undirected with no loops or multiple edges.
The vertex and edge sets of a graph G are denoted by V (G) and E(G), respectively. The
numbers of vertices and edges of G are denoted by v(G) and e(G), respectively. The
degree of a vertex x ∈ V (G) in G is denoted by dG(x), and the edge joining vertices u
and w are denoted as an unordered pair {u,w}. Let ∆(G) and δ(G) be the maximum
and minimum degree of G, respectively. Especially, we call the vertices of the graph T
nodes when T is a tree. Let n and k be integers with 1 6 k 6 n. Write [n] = {1, 2, . . . , n}
and denote by

(
[n]
k

)
the family of all k-subsets of [n]. For any positive integer t, a family
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F ⊆
(
[n]
k

)
is said to be t-intersecting if |A ∩ B| > t for all A,B ∈ F . The complement G

of a graph G has the same vertex set as G, where two vertices are adjacent in G if they
are not adjacent in G. A set S ⊆ V (G) is called independent set if any pair of vertices in
S are non-adjacent in G. The independence number α(G) is the cardinality of maximum
independent sets in G.

Definition 1. A tree decomposition of a graph G is a pair (T, (Bt)t∈V (T )), where T is a
tree and (Bt)t∈V (T ) is a family of subsets of V (G) satisfying the following properties:

(i) For every v ∈ V (G), the subgraph of T induced by B−1(v) = {t ∈ V (T ) | v ∈ Bt} is
nonempty and connected.

(ii) For every edge {u,w} ∈ E(G), there is a t ∈ V (T ) such that u,w ∈ Bt.

The width of the decomposition (T, (Bt)t∈V (T )) is the number max{|Bt| | t ∈ V (T )}−1.
The treewidth of a graph G, denoted by tw(G), is the minimum width of the tree decom-
positions of G. By the definition, each graph G has a tree decomposition (T, (Bt)t∈V (T ))
where T contains only one node t with Bt = V (G). Notice that this kind of decomposi-
tion has width |V (G)| − 1 which is the maximum width of the graphs on |V (G)| vertices
and also the minimum width of the complete graph on |V (G)| vertices. Therefore, the
complete graph Kn has treewidth n− 1.

Treewidth is a well-studied parameter in modern graph theory that measures how
“tree-like” a graph is. It is of fundamental importance in structural graph theory. Robert-
son and Seymour used it in their famous series of papers proving the Graph Minor The-
orem, for example, we refer the reader to [24, 25, 26]. Besides, Treewidth is also of key
interest in the field of algorithm design. The problem of deciding whether a graph has tree
decomposition of treewidth at most k is NP-complete [1] and the treewidth is regarded as
a key parameter in fixed-parameter tractability. There are many NP-complete problems
are solvable in polynomial time on graphs of bounded treewidth [3, 4]. In the past few
decades, there has been significant research investigating the treewidth of certain graphs,
for example, [13, 14, 17, 20, 22, 27]. However, it is difficult to determine the treewidth
exactly in most situations, and there are only few papers obtained the exact value of
the treewidth of some certain graphs. In 2014, Harvey and Wood determined the exact
treewidth of the Kneser graphs which is

(
n
k

)
−
(
n−1
k−1

)
−1 for n > 4k2−4k+3 [13]. Motivated

by this result, we study the exact value of treewidth of the generalized Kneser graphs for
t > 2 in this paper.

Let n, k and t be integers with 1 6 t < k 6 n. The generalized Kneser graph K(n, k, t)
firstly introduced by Denley [9] is a graph whose vertices are the k-subsets of a fixed n-set,
where two k-subsets A and B are adjacent if |A ∩ B| < t. The graph K(n, k, 1) is the
well-known Kneser graph. Kneser graphs were first investigated by Kneser [18]. There is
a famous result of the chromatic number of K(n, k, 1) which was shown to be n−2k+2 by
Lovász [21], as Kneser originally conjectured. The generalized Kneser graphs as the main
generalization of the Kneser graphs are also widely studied. The famous Erdős-Ko-Rado
Theorem [10] has a well-known relationship to the independent number of the generalized
Kneser graphs, since an independent set in the generalized Kneser graph K(n, k, t) is a
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t-intersecting family of
(
[n]
k

)
. In the special case when t = k− 1, the graph K(n, k, k− 1),

usually denoted by J(n, k) is the complement of the Johnson graph J(n, k). The Johnson
graph J(n, k) is the graph whose vertices are the k-subsets of a fixed n-set as well, where
two vertices A and B are adjacent if |A ∩ B| = k − 1. Over the years several aspects
of Johnson graphs such as chromatic number, connectivity, eigenvalues, automorphisms,
regular embeddings and some other properties have been widely studied as one can find
in, for example, [2, 6, 7, 8, 15, 23]. These graphs are important because they enable us
to translate many combinatorial problems about finite sets into graph theory, such as the
context of coding theory and design theory. Also, we see that many interesting objects
from finite geometry occur encoded as cliques and independent sets in these graphs, and
this leads to interesting variants of the Erdős-Ko-Rado Theorem.

The main results in this paper are as follows.

Theorem 2. Let n, k and t be positive integers with n > 2(k − t)(t + 1)
(
k
t

)
+ k + t + 1.

Let K(n, k, t) be the generalized Kneser graph for k > t > 2. Then

tw(K(n, k, t)) =

(
n

k

)
−
(
n− t
k − t

)
− 1.

From the proof of Theorem 2, one can obtain that tw(K(n, k, 1)) =
(
n
k

)
−
(
n−1
k−1

)
− 1

for n > 4k2 − 3k + 2, which equals to the value of treewidth of Kneser graphs given by
Harvey and Wood [13]. However, the lower bound of n in our result is slightly bigger than
that of the result of Harvey and Wood (they let n > 4k2 − 4k + 3). Therefore, we only
consider the situation t > 2.

In the special case when t = k − 1, the graph K(n, k, k − 1) is the complement of the
Johnson graph J(n, k). We give a more precise result for the exact value of the treewidth
of J(n, k) for any n and k. Note that J(n, k) is an empty graph when n < k + 2. Thus
we only consider the case with n > k + 2.

Theorem 3. Let n and k be positive integers with n > k + 2 and k > 2. Let J(n, k) be
the complement of Johnson graph J(n, k). Then

tw(J(n, k)) =



1, if k = 2 and n = 4,

14, if k = 3 and n = 6,

4, if k = 3 and n = 5, or k = 2 and n = 5,(
n
k

)
− n+ k − 2, if k > 4 and n > 2k, or k ∈ {2, 3} and n > k + 4,(

n
k

)
− k − 2, if k > 4 and n < 2k.

The rest of this paper is organized as follows. In the next section we will prove some
important inequalities which are useful for the proof in Subsection 3.2. In Section 3, we
will give the exact treewidth of the generalized Kneser graphs for k > t > 2 and large
n with respect to k and t. After that, we will study the treewidth of the complement of
Johnson graphs for any possible n and k in Section 4.
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2 Preliminaries

In this section, we will prove a number of inequalities. In Subsection 3.2, we will use these
inequalities to prove a lower bound for the treewidth of the generalized Kneser graphs in
Theorem 2.

Lemma 4. Let n, k and t be positive integers with 1 6 t < k 6 n. If n > 2(k − t)(t +
1)
(
k
t

)
+ k + t+ 1, then

1

2
(
k
t

)(n− t
k − t

)
>

(
n− t
k − t

)
−
(
n− 2t− 1

k − t

)
.

Proof. Firstly, we prove a claim.
Claim 1. For any i ∈ {0, 1, . . . , k − t− 1}, let c := k−t

√
1 + 1

2(k
t)−1

, we have

n− t− i
n− 2t− 1− i

< c.

Proof of Claim 1 It is clear that n−t−i
n−2t−1−i is increasing as i ∈ {0, 1, . . . , k − t − 1}

increases. Therefore, it suffices to prove that n−k+1
n−k−t < c.

We have

t+ 1

c− 1
=

(t+ 1)(ck−t−1 + ck−t−2 + · · ·+ c+ 1)

ck−t − 1

<
(t+ 1)(k − t)ck−t

ck−t − 1

=2(t+ 1)(k − t)
(
k

t

)
.

If n > 2(k − t)(t+ 1)
(
k
t

)
+ k + t+ 1, then n− k − t > 2(k − t)(t+ 1)

(
k
t

)
> t+1

c−1 , which
implies that

(c− 1)n− (c− 1)k − (c− 1)t > t+ 1,

cn− ck − ct > n− k + 1.

This yields that n−k+1
n−k−t < c. We complete the proof of the claim.

By Claim 1, we have

(n− t)(n− t− 1) · · · (n− k + 1)

(n− 2t− 1)(n− 2t− 2) · · · (n− k − t)
< 1 +

1

2
(
k
t

)
− 1

.

Thus we get (
n−t
k−t

)(
n−2t−1
k−t

) < 1 +
1

2
(
k
t

)
− 1

,
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which implies that (
1

2
(
k
t

) − 1

)(
n− t
k − t

)
> −

(
n− 2t− 1

k − t

)
,

as required.

Lemma 5. Let n, k and t be positive integers with 1 6 t < k 6 n. Let p be a fixed
constant with 2

3
6 p < 1. If n > 1

1−p(k − t)(k + 1) + 2t, then

(1− p)
(
n− t
k − t

)
> (k + 1)

t−2∑
a=0

(
n− 2t− 1

n− k − t+ a

)
+ t(k + 1)

(
n− 2t− 1

n− k − 1

)
.

Proof. Since
(
n−t
k−t

)
=
∑t

i=0

(
t
i

)(
n−2t
k−t−i

)
, it suffices to prove that

(1− p)
t∑

i=0

(
t

i

)(
n− 2t

k − t− i

)
> (k + 1)

t−2∑
a=0

(
n− 2t− 1

k − t− 1− a

)
+ t(k + 1)

(
n− 2t− 1

k − 2t

)
.

If i 6= k − t, by
(
n−2t
k−t−i

)
= n−2t

k−t−i

(
n−2t−1
k−t−i−1

)
and n > 1

1−p(k − t)(k + 1) + 2t, we have

(1− p)
(
t

i

)(
n− 2t

k − t− i

)
> (k + 1)

(
n− 2t− 1

k − t− 1− i

)
for i ∈ {0, 1, . . . , t − 2}. If i = k − t, we can easily see that the above inequality is also
true. Furthermore, since n > 1

1−p(k− t)(k+ 1) + 2t > 1
1−p(k− 2t+ 1)(k+ 1) + 2t, we have

(1− p)
(
t

i

)(
n− 2t

k − t− i

)
> t(k + 1)

(
n− 2t− 1

k − 2t

)
for i = t− 1.

Therefore, the required result holds.

3 Treewidth of the generalized Kneser graphs

3.1 Upper bound for treewidth in Theorem 2

In this subsection, we will give an upper bound for the treewidth of the graph K(n, k, t)
with the help of the famous Erdős-Ko-Rado Theorem for finite sets.

Theorem 6. (Erdős-Ko-Rado Theorem [10, 28]) Let n, k and t be positive integers with
1 6 t < k 6 n. If n > (t+ 1)(k − t+ 1) and F ⊆

(
[n]
k

)
is a t-intersecting family, then

|F| 6
(
n− t
k − t

)
.

Moreover, if n > (t+ 1)(k− t+ 1), equality holds if and only if F consists of all k-subsets
that contain a fixed t-subset of [n].
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The result of the Erdős-Ko-Rado Theorem for finite sets is clearly equivalent to the
independent number of the generalized Kneser graph K(n, k, t). That is,

α(K(n, k, t)) =

(
n− t
k − t

)
(1)

for n > (t+ 1)(k − t+ 1).

Proposition 7. ([13]) For any graph G, tw(G) 6 max{∆(G), |V (G)| − α(G)− 1}.

Lemma 8. If n, k and t are integers with k > t > 1 and n > 2(k− t)(t+1)
(
k
t

)
+k+ t+1,

then

tw(K(n, k, t)) 6

(
n

k

)
−
(
n− t
k − t

)
− 1. (2)

Proof. According to Proposition 7, to prove an upper bound of tw(K(n, k, t)) we only
need to compare the size of ∆(K(n, k, t)) and |V (K(n, k, t))| − α(K(n, k, t))− 1.

For any k-subset A ∈
(
[n]
k

)
, define N(A) to be the set of all the neighbors of A in

K(n, k, t). Thus,

N(A) =

{
F ∈

(
[n]

k

)
| |F ∩ A| < t

}
=

t−1⋃
i=0

{
F ∈

(
[n]

k

)
| |F ∩ A| = i

}
.

Since |{F ∈
(
[n]
k

)
| |F ∩ A| = i}| =

(
k
i

)(
n−k
k−i

)
, and K(n, k, t) is a regular graph, we have

∆(K(n, k, t)) = |N(A)| =
t−1∑
i=0

(
k

i

)(
n− k
k − i

)
.

Claim 2. (n−k−i)(k−i)
(n−t−i)(k−t−i) > 1 for any i ∈ {0, 1, . . . , k − t− 1}.

Proof of Claim 2 Firstly, we have

(n− k − i)(k − i)− (n− t− i)(k − t− i) = tn− t2 + tk − k2 + (k − 2t)i

for any i ∈ {0, 1, . . . , k − t− 1}. We divide the proof of this claim into the following two
cases.
Case 1. k > 2t.

In this case, since n > 2(k − t)(t+ 1)
(
k
t

)
+ k + t+ 1 and k > t+ 1, we have

(n− k − i)(k − i)− (n− t− i)(k − t− i)
>tn− t2 + tk − k2

>t(2(k − t)(t+ 1)k + t)− t2 − k(k − t)
>0.

Case 2. k < 2t.
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In this case, similarly, since n > 2(k − t)(t+ 1)
(
k
t

)
+ k + t+ 1, we have

(n− k − i)(k − i)− (n− t− i)(k − t− i)
>tn− t2 + tk − k2 + (k − 2t)(k − t− 1)

=tn+ t2 + 2t− 2kt− k
>0.

Therefore, we obtain (n − k − i)(k − i) − (n − t − i)(k − t − i) > 0 for any i ∈
{0, 1, . . . , k − t− 1}, and the result of this claim follows.

By Claim 2, we have

(n− k)(n− k − 1) · · · (n− 2k + t+ 1)k(k − 1) · · · (t+ 1)

(n− t)(n− t− 1) · · · (n− k + 1)(k − t)(k − t− 1) · · · 1
> 1,

which implies that
(
k
t

)(
n−k
k−t

)
−
(
n−t
k−t

)
> 0.

Furthermore, since
(
n
k

)
=
∑k

i=0

(
k
i

)(
n−k
k−i

)
, by (1) and k > t+ 1, we have

|V (K(n, k, t))| −∆(K(n, k, t))− α(K(n, k, t))− 1

=
k∑
i=t

(
k

i

)(
n− k
k − i

)
−
(
n− t
k − t

)
− 1

>

(
k

t

)(
n− k
k − t

)
+

(
k

t+ 1

)(
n− k

k − t− 1

)
−
(
n− t
k − t

)
− 1

>0.

Therefore, |V (K(n, k, t))| − α(K(n, k, t))− 1 > ∆(K(n, k, t)), yielding that

tw(K(n, k, t)) 6 |V (K(n, k, t))| − α(K(n, k, t))− 1 =

(
n

k

)
−
(
n− t
k − t

)
− 1,

as required.

3.2 Lower bound for treewidth in Theorem 2

In this subsection, we will study the lower bound for treewidth of the generalized Kneser
graphs.

Let F be a family of k-subsets of [n], the t-shadow of F is defined as

∂t(F) =

{
X ∈

(
[n]

t

)
| X ⊆ F for some F ∈ F

}
.

According to the definition, the t-shadow ∂t(F) of F contains all t-subsets that are
contained in one of the k-subsets of F . The complement of F ∈

(
[n]
k

)
is the (n −

k)-set F := [n] \ F . Define the complement of F ⊆
(
[n]
k

)
by F := {F ∈

(
[n]
n−k

)
|

F is the complement of some F ∈ F}. Given a t-subset X ∈
(
[n]
t

)
, denote FX the set
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of all k-subsets of F containing X, and let F−X := F \ FX . Assume that F−X 6=
∅, let F−X := {F ∈

(
[n]
n−k

)
| F = [n] \ F, where F ∈ F−X} and F−X

∗
:= {F ∗ ∈⋃

a∈{0,1,...,t−1}
(

[n]
n−k−t+a

)
| F ∗ = F \ X, where F ∈ F−X such that |X ∩ F | = t − a}.

Similarly, let F∗X := {F ∗ ∈
(
[n]
k−t

)
| F ∗ = F \X, where F ∈ FX}. Then |F∗X | = |FX |.

Define the colexicographic ordering, colex ordering for short, on the k-subsets of [n] as
follows: if F1, F2 ∈

(
[n]
k

)
are distinct, then F1 < F2 when max{F1 \ F2} < max{F2 \ F1}.

Thus this is a strict total order. Let F ⊆
(
[n]
k

)
, F is first if F consists of the first |F|

k-subsets of [n] in the colex ordering. If we let max{F1 \F2} = 0 when F1 \F2 = ∅, notice
that this is also a strict total order on F ⊆ 2[n].

Proposition 9. ([16, 19]) Let F ⊆
(
[n]
k

)
, and ∂t(F) be the t-shadow of F . If |F| is a fixed

constant, then |∂t(F)| is minimised when F is first.

For F ⊆
⋃
i

(
[n]
k+i

)
, in the following lemma we can prove a more general result than

Proposition 9, where i ∈ {0, 1, . . . , t− 1}.

Lemma 10. Let k, g be positive integers with g < k. Let A ⊆
⋃
i

(
[n]
k+i

)
and A = A0 ∪

A1 ∪ . . . ∪ At−1, where Ai ⊆
(
[n]
k+i

)
for any i ∈ {0, 1, . . . , t − 1}. Let Si = ∂g(Ai) be the

g-shadow of Ai and S = ∂g(A) be the g-shadow of A. If |Ai| is a fixed constant, then |S|
is minimised when Ai is first in the colex ordering for any i ∈ {0, 1, . . . , t− 1}.

Proof. Notice that S = ∂g(A) = S0∪S1∪ . . .∪St−1. According to Proposition 9, we have
|Si| is minimised when Ai is first in the colex ordering.

We assume that Ai is first for any i ∈ {0, 1, . . . , t − 1}, we prove that there exists
i ∈ {0, 1, . . . , t − 1} such that Si ⊇

⋃
j∈{0,1,...,t−1}\{i} Sj. Let α be the maximum element

in A0 ∪ A1 ∪ . . . ∪ An−k in the colex ordering. Let Ai be the one containing α and let
maxα be the maximum element in α. Therefore, it is sufficient to prove that Si ⊇ Sj for
any j ∈ {0, 1, . . . , t − 1} and i 6= j. Notice that maxα > k + i and max β 6 maxα for
any β ∈ Sj by the choice of α.

If β ⊆ α, then it is clear that β ∈ Si. Now suppose that β * α. Since β ∈ Sj, there
exists δ ∈ Aj ⊆ A such that β ⊆ δ. By the choice of α, we have that δ < α in the colex
ordering, implying that

max{β \ α} 6 max{δ \ α} < max{α \ δ} 6 max{α \ β}.

Let a = max{α \ β}, and γ be a (k + i)-subset of (α ∪ β) \ {a} with β ⊆ γ. Observe that
γ \α = β \α and max{γ \α} = max{β \α} < a. Since a ∈ α\γ, we have a 6 max{α\γ},
which implies that max{γ \α} < max{α \ γ}. Then γ ∈ Ai due to that Ai is first. Thus,
we have β ∈ Si.

Therefore, Si ⊇ Sj, as required. Thus we have |S| = |Si| when Ai is first in the colex
ordering for any i ∈ {0, 1, . . . , t−1}, where Si is the one containing

⋃
j∈{0,1,...,t−1}\{i} Sj.

Let X be a subset of V (G). The graph G−X is a subgraph of G induced by V (G)\X.
Let G[X] be the subgraph of G induced by X. Let p be a fixed constant with 2

3
6 p < 1.
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A p-separator of G is a subset X ⊂ V (G) such that there is no component in G−X that
contains more than p|V (G−X)| vertices. If |X| 6 c, we call X a p-separator of order c.
There is a well-known relationship between the treewidth and the p-separators of G.

Proposition 11. ((2.5) in [26]) Every graph G has a p-separator of order tw(G) + 1 for
each 2

3
6 p < 1.

With the help of these important results we give the following lemma.

Lemma 12. Let n, k, t and p be integers with k > t > 1, 2
3
6 p < 1 and n > max{2(k−

t)(t+ 1)
(
k
t

)
+ k + t+ 1, 1

1−p(k − t)(k + 1) + 2t}. If X is a p-separator of K(n, k, t), then

|X| >
(
n

k

)
−
(
n− t
k − t

)
.

Proof. Suppose to the contrary that |X| <
(
n
k

)
−
(
n−t
k−t

)
. Thus we have

|V (K(n, k, t)−X)| >
(
n− t
k − t

)
. (3)

Since X is a p-separator of K(n, k, t), we can partition the components of K(n, k, t)−X
into two parts such that the components in each part contain at most p|V (K(n, k, t)−X)|
vertices. Therefore, V (K(n, k, t) − X) can be partitioned into two parts A and B with
|A| 6 |B| such that there is no edge between A and B. This implies that |u ∩ v| > t for
any u ∈ A and v ∈ B. Furthermore, we have

(1− p)|V (K(n, k, t)−X)| 6|A| 6 1

2
|V (K(n, k, t)−X)|, (4)

1

2
|V (K(n, k, t)−X)| 6|B| 6 p|V (K(n, k, t)−X)|. (5)

Since A and B are both non-empty by (4) and (5), respectively, there is a vertex u ∈ A
such that |u∩v| > t for any vertex v ∈ B. Therefore, according to the Pigeonhole Principle,
there exists a t-subset Y of u such that it belongs to at least 1

(k
t)
|B| vertices in B. Thus, we

have |BY | > 1

(k
t)
|B|. According to (3) and (5), we have |B| > 1

2
|V (K(n, k, t)−X)| > 1

2

(
n−t
k−t

)
,

which implies that

|B∗Y | = |BY | >
1(
k
t

) |B| > 1

2
(
k
t

)(n− t
k − t

)
. (6)

Notice that A−Y
∗

is a family that every element of the family has n−k−t+a elements
of [n] for some a ∈ {0, 1, . . . , t−1}. Let A−Y

∗
= A0∪A1∪. . .∪At−1, where Aa ⊆

(
[n]

n−k−t+a

)
and a ∈ {0, 1, . . . , t− 1}. We have the following claim.

Claim 3. |A−Y
∗| =

∑t−1
a=0 |Aa| <

∑t−1
a=0

(
n−2t−1
n−k−t+a

)
. Furthermore, we have |Aa| <

(
n−2t−1
n−k−t+a

)
for every a ∈ {0, 1, . . . , t− 1}.
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Proof of Claim 3 Clearly, we just need to consider the case A−Y 6= ∅. Then A−Y
is non-empty since |A−Y | = |A−Y |. Let w ∈ BY and z ∈ A−Y satisfying |Y ∩ z| = t− a,
where a ∈ {0, 1, . . . , t− 1} and z ∈ A−Y . Then wz /∈ E(K(n, k, t)). Let w∗ = w \ Y and
z∗ = z \ Y . If w∗ ⊆ z∗, then

|w ∩ z| = |(w∗ ∪ Y ) ∩ (z∗ ∪ (Y ∩ z))|
= |w∗ ∪ Y |+ |z∗ ∪ (Y ∩ z)| − |w∗ ∪ Y ∪ z∗ ∪ (Y ∩ z)|
= |w|+ |z∗|+ |Y ∩ z| − |z∗ ∩ (Y ∩ z)| − |Y ∪ z∗|
= k + (n− k − t+ a) + (t− a)− (n− k + a)

= k − a,

which implies that |w ∩ z| = k − (k − a) = a < t and that is wz ∈ E(K(n, k, t)), a
contradiction. Thus, we have w∗ * z∗ for any w∗ ∈ B∗Y and z∗ ∈ A−Y

∗
. Therefore, if we

let S := ∂k−t(A−Y
∗
) be the (k− t)-shadow of A−Y

∗
, then we have w∗ * s for any w∗ ∈ B∗Y

and s ∈ S, which implies that

|B∗Y | 6
(
n− t
k − t

)
− |S|. (7)

Hence can obtain an upper bound of |B∗Y | by taking |S| to be minimised.
Suppose to the contrary that

|A−Y
∗| >

t−1∑
a=0

(
n− 2t− 1

n− k − t+ a

)
.

First we prove that |S| >
(
n−2t−1
k−t

)
. Let S = ∂k−t(A−Y

∗
) = S0∪S1∪. . .∪St−1, where Sa

is the (k− t)-shadow of Aa. According to Lemma 10, we have |S| is minimised when Aa is
first in the colex ordering for any a ∈ {0, 1, . . . , t−1}. Therefore, to obtain a lower bound
of |S|, we assume thatAa is first for any a ∈ {0, 1, . . . , t−1}. As |A−Y

∗| >
∑t−1

a=0

(
n−2t−1
n−k−t+a

)
,

there exists at least one Aa such that |Aa| >
(

n−2t−1
n−k−t+a

)
, implying that Aa contains the

first
(

n−2t−1
n−k−t+a

)
(n− k− t+ a)-sets in the colex ordering. This implies that Aa contains all

(n− k− t+ a)-subsets of [n− 2t− 1]. Thus Sa contains all (k− t)-subsets of [n− 2t− 1],
which implies that |Sa| >

(
n−2t−1
k−t

)
. Therefore, we have |S| >

(
n−2t−1
k−t

)
, as required.

Next, by the lower bound of |S| and (7), we have the following upper bound for |B∗Y |.

|B∗Y | 6
(
n− t
k − t

)
−
(
n− 2t− 1

k − t

)
. (8)

However, combining with (6) and (8), by n > 2(k− t)(t+ 1)
(
k
t

)
+ k+ t+ 1 and Lemma 4,

we have a contradiction. Thus, we have the claim holds.

Claim 4. |A−Y | <
∑t−2

a=0

(
n−2t−1
n−k−t+a

)
+ t
(
n−2t−1
n−k−1

)
.

Proof of Claim 4 If |A−Y | = |A−Y
∗|, we have the conclusion. If |A−Y | 6= |A−Y

∗|,
there must be distinct v1, v2 ∈ A−Y such that v1

∗ = v2
∗, which means v1 \ Y = v2 \ Y .
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Let |v1 ∩ Y | = |v2 ∩ Y | = r, where r ∈ {1, 2, . . . , t− 1}. We say r = t− 1. Suppose to the
contrary that r 6 t− 2.

For any u ∈ BY , since u is not adjacent to v1, v2, we have |u∩ v1| > t and |u∩ v2| > t,
which implies |u ∩ (v1 \ Y )| > t − r. Therefore, according to the Pigeonhole Principle,
there exists a (t − r)-subset Z such that it belongs to at least 1

(k−r
t−r)
|BY | vertices in BY .

Thus we have

|BY ∪Z | >
1(

k−r
t−r

) |BY | >
1

2
(
k−r
t−r

)(
k
t

)(n− t
k − t

)
, (9)

by (6).
On the other hand, we know that each element of BY ∪Z contains 2t − r elements of

Y ∪ Z, thus

|BY ∪Z | 6
(
n− 2t+ r

k − 2t+ r

)
. (10)

Comparing with the lower bound and the upper bound of BY ∪Z in (9) and (10), we
have

1

2
(
k
t

)(n− t
k − t

)
6

(
k − r
t− r

)(
n− 2t+ r

k − 2t+ r

)
.

Let f(r) =
(
k−r
t−r

)(
n−2t+r
k−2t+r

)
for r ∈ {1, 2, . . . , t−2}. Since n > 2(k−t)(t+1)

(
k
t

)
+k+t+1,

we have
n− 2t+ r

k − 2t+ r
=

n− k
k − 2t+ r

+ 1 >
n− k
k − t

+ 1 > 2(t+ 1)

(
k

t

)
+ 1.

Then, for r ∈ {2, 3, . . . , t− 2},

f(r)− f(r − 1) =

(
k − r
t− r

)(
n− 2t+ r − 1

k − 2t+ r − 1

)(
n− 2t+ r

k − 2t+ r
− k − r + 1

t− r + 1

)
>

(
k − r
t− r

)(
n− 2t+ r − 1

k − 2t+ r − 1

)(
2(t+ 1)

(
k

t

)
+ 1− k − 1

)
> 0.

Therefore,
(
k−r
t−r

)(
n−2t+r
k−2t+r

)
is increasing as r ∈ {1, 2, . . . , t− 2} increases, and we get

1

2
(
k
t

)(n− t
k − t

)
6

(
k − t+ 2

2

)(
n− t− 2

k − t− 2

)
,

a contradiction with n > 2(k − t)(t+ 1)
(
k
t

)
+ k + t+ 1. Then, we have r = t− 1. Recall

that A−Y
∗

= A0 ∪ A1 ∪ . . . ∪ At−1, where Aa ⊆
(

[n]
n−k−t+a

)
and a ∈ {0, 1, . . . , t − 1}.

Then we know for every v ∈ Ab, there exists exactly one w ∈ A−Y such that w∗ = v,
where b ∈ {0, 1, . . . , t − 2}. And for each v ∈ At−1, there exists at most

(
t

t−1

)
w ∈ A−Y

such that w∗ = v, which implies |A−Y | 6
∑t−2

a=0 |Aa| + t|At−1|. By Claim 3, we know
|At−1| <

(
n−2t−1
n−k−1

)
and |A−Y | <

∑t−2
a=0

(
n−2t−1
n−k−t+a

)
+ t
(
n−2t−1
n−k−1

)
.

Claim 5. |AY | > k
k+1
|A|.
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Proof of Claim 5 Assume for the sake of contradiction that |AY | < k
k+1
|A|. Then

we have |A| < (k + 1)|A−Y | since |A| = |AY | + |A−Y |. By Claim 4, we have |A| <
(k + 1)

∑t−2
a=0

(
n−2t−1
n−k−t+a

)
+ (k + 1)t

(
n−2t−1
n−k−1

)
. On the other hand, by (4), we have |A| >

(1− p)|K(n, k, t)−X|. Therefore, it follows that

(1− p)
(
n− t
k − t

)
< (k + 1)

t−2∑
a=0

(
n− 2t− 1

n− k − t+ a

)
+ (k + 1)t

(
n− 2t− 1

n− k − 1

)
.

However, by n > 1
1−p(k − t)(k + 1) + 2t and Lemma 5, we get a contradiction.

Claim 6. BY = B.

Proof of Claim 6 We suppose to the contrary that BY 6= B. Therefore, there exists
some v ∈ B such that Y * v. For any u ∈ AY , since u is not adjacent to v in K(n, k, t)−X,
we have |u ∩ v| > t. Let |Y ∩ v| = a, a ∈ {0, 1, . . . , t− 1}. Thus u contains at least t− a
elements of v \ Y as |u ∩ v| > t. It follows that

|AY | 6
(
k − a
t− a

)(
n− t− (t− a)

k − t− (t− a)

)
. (11)

On the other hand, combining the result in Claim 5 with (3) and (4), we get

|AY | >
k

k + 1
|A| > (1− p)k

k + 1

(
n− t
k − t

)
. (12)

Comparing the upper with the lower bound for |AY | in (11) and (12), we have

(1− p)k
k + 1

(
n− t
k − t

)
<

(
k − a
t− a

)(
n− 2t+ a

k − 2t+ a

)
.

Since
(
k−a
t−a

)(
n−2t+a
k−2t+a

)
is increasing as a ∈ {0, 1, . . . , t− 1} increases, we get

(1− p)k
k + 1

(
n− t
k − t

)
< (k − t+ 1)

(
n− t− 1

k − t− 1

)
.

By
(
n
k

)
= n

k

(
n−1
k−1

)
, we have n < k−t+1

(1−p)k (k−t)(k+1)+t < 1
1−p(k−t)(k+1)+t, a contradiction

with n > 1
1−p(k − t)(k + 1) + 2t. Thus, we obtain BY = B, as required.

Claim 7. AY = A.

Proof of Claim 7 This claim follows by essentially the same argument as Claim 6
above. We suppose to the contrary that AY 6= A. If A−Y = ∅, then we have the claim
holds. In the following, let A−Y 6= ∅. Therefore, there exists some w ∈ A such that Y * w,
and for any z ∈ BY , |w ∩ z| > t. By Claim 6, (3) and (5), we have |BY | = |B| > 1

2

(
n−t
k−t

)
.

On the other hand, let |Y ∩ w| = a, a ∈ {0, 1, . . . , t − 1}. Thus z contains at least t − a
elements of w \ Y since |w ∩ z| > t. It follows that |BY | 6

(
k−a
t−a

)(
n−t−(t−a)
k−t−(t−a)

)
, this equals to
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the upper bound of |AY | in the previous proof of Claim 6. Therefore, combining with the
upper bound and the lower bound of |BY |, we have

1

2

(
n− t
k − t

)
<

(
k − a
t− a

)(
n− 2t+ a

k − 2t+ a

)
.

Since
(
k−a
t−a

)(
n−2t+a
k−2t+a

)
is increasing as a ∈ {0, 1, . . . , t − 1} increases, we obtain n < 2k2 −

4kt+ 2t2 + 2k − t, a contradiction. Therefore, we get AY = A, as required.
From Claims 6 and 7, we have every vertex in A ∪ B = AY ∪ BY contains Y . Since

V (K(n, k, t)−X) can be partitioned into A and B, we get |K(n, k, t)−X| = |AY |+|BY | 6(
n−t
k−t

)
, which implies that |X| >

(
n
k

)
−
(
n−t
k−t

)
, a contradiction.

Proof of Theorem 2. By Lemma 12, if we let X be a 2
3
-separator of K(n, k, t), then

|X| >
(
n
k

)
−
(
n−t
k−t

)
. Since 2(k − t)(t + 1)

(
k
t

)
+ k + t + 1 > 1

1−pt(k − t)(k + 1) + t + 1 for

k > t > 2, we have tw(K(n, k, t)) >
(
n
k

)
−
(
n−t
k−t

)
− 1 for n > 2(k − t)(t+ 1)

(
k
t

)
+ k + t+ 1

by Proposition 11. Next, combining with the upper bound of tw(K(n, k, t)) in Lemma 8,
we obtain the result directly.

In the special case when t = 1, by Lemma 12, if we let X be a 2
3
-separator of K(n, k, 1),

then |X| >
(
n
k

)
−
(
n−1
k−1

)
for n > 4k2 − 3k + 2. Therefore, we have tw(K(n, k, 1)) =(

n
k

)
−
(
n−1
k−1

)
− 1 for n > 4k2 − 3k + 2 by Proposition 11 and Lemma 8.

4 Treewidth of the complement of Johnson graphs

In this section, we study the treewidth of the complement of Johnson graphs, and give
the exact value of the treewidth of J(n, k) for n > k + 2. Note that J(n, k) is an empty
graph when n < k+ 2. Firstly, we can easily get the upper bound of tw(J(n, k)) as follow
according to Theorem 6 and Proposition 7.

Lemma 13. Let n and k be positive integers with k > 2 and n > 2k. Then

tw(J(n, k)) 6

(
n

k

)
− n+ k − 2.

Lemma 14. Let n and k be positive integers with k > 2 and n > max{k + 4, 2k}. Then

tw(J(n, k)) >

(
n

k

)
− n+ k − 2.

Proof. We suppose to the contrary that tw(J(n, k)) <
(
n
k

)
−n+k−2. By Proposition 11,

there exists a 2
3
-separator X such that |X| <

(
n
k

)
−n+k−1. Therefore, |V (J(n, k)−X)| >

n− k + 1. Furthermore, since n > max{k + 4, 2k} > k + 4, we have

|V (J(n, k)−X)| > 6.

the electronic journal of combinatorics 29(1) (2022), #P1.57 13



By the similar analysis of the proof of Lemma 12, it is easy to see that V (J(n, k)−X)
can be partitioned into two parts A and B such that there is no edge between A and B,
and the equations

1

3
|V (J(n, k)−X)| 6|A|, |B| 6 2

3
|V (J(n, k)−X)| (13)

holds. Thus, |A|, |B| > 2. By Theorem 6 and n > max{k + 4, 2k} > 2k, we have
α(J(n, k)) = n− k+ 1. Thus V (J(n, k)−X) is too large to be an independent set which
implies that there exists an edge in the subgraph induced by A or the subgraph induced
by B. Without loss of generality, assume that this edge is in A and let the two endpoints
of the edge are

v1 = {1, 2, . . . , x, a1, . . . , ak−x} and v2 = {1, 2, . . . , x, b1, . . . , bk−x},

where v1 ∩ v2 = {1, 2, . . . , x} and ai 6= bj for any 1 6 i, j 6 k − x and x 6 k − 2.
We claim that x = k − 2. Since for any vertex w ∈ B there is no vertex in A is

adjacent to w in J(n, k) − X, we have |w ∩ v1|, |w ∩ v2| > k − 1. This implies that
|w ∩ v1|, |w ∩ v2| = k − 1 and then |v1 ∩ v2| > k − 2, as w is a k-set. On the other hand,
x 6 k − 2 from above. Thus we have x = k − 2, as required.

Next, we prove that v1 ∩ v2 = {1, 2, . . . , k − 2} ⊆ w for any vertex w ∈ B. As
w ∩ v1 ∩ v2 ⊆ {1, 2, . . . , k − 2}, we only need to prove |w ∩ v1 ∩ v2| > k − 2. We have

|w ∩ v1 ∩ v2| = |w ∩ v1|+ |w ∩ v2| − |w ∩ (v1 ∪ v2)| > 2(k − 1)− k = k − 2,

as required.
Therefore, we obtain

A ⊇
{
v1 = {1, 2, . . . , k − 2, a1, a2}, v2 = {1, 2, . . . , k − 2, b1, b2}

}
,

B ⊆
{
{1, 2, . . . , k − 2, a1, b1}, {1, 2, . . . , k − 2, a1, b2},
{1, 2, . . . , k − 2, a2, b1}, {1, 2, . . . , k − 2, a2, b2}

}
.

We first have the following two claims. Let G = J(n, k)−X for short.

Claim 8. If G[B] contains an edge, then n = k + 4, |V (G)| = 6 and one of G[A] and
G[B] is connected.

Proof of Claim 8 According to the above analysis, in this situation

V (G) ⊆ {{1, 2, . . . , k − 2, i, j} | i, j ∈ {a1, a2, b1, b2}}.

Thus, |V (G)| 6 6. Since |V (G)| > n−k+ 2 > 6, we have |V (G)| = 6 and then n = k+ 4.
Therefore, there exists three edges in G in total. If there is one edge in G[A] (that is
(v1, v2)), and the other two edges in G[B], then G[A] is connected. Otherwise, G[B]
contains exactly one edge and it is connected.

Claim 9. If B is an independent set in G, then n = k + 4, |V (G)| = 6 and G[A] is
connected.
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{
{1, 2, 5}

}
∪ (X \

{
{2, 4, 5}

}
)

X

{
{1, 2, 3}

}
∪ (X \

{
{1, 3, 4}

}
)

{
{1, 2, 3}, {1, 4, 5}

}
∪ (X \

{
{1, 3, 4}, {2, 4, 5}

}
)

{
{1, 2, 4}

}
∪ (X \

{
{1, 3, 4}

}
)

{
{1, 2, 4}, {1, 3, 5}

}
∪ (X \

{
{1, 3, 4}, {2, 3, 5}

}
)

Figure 1: Tree decomposition

Proof of Claim 9 Without loss of generality, let

B =
{
{1, 2, . . . , k − 2, a1, b1}, {1, 2, . . . , k − 2, a1, b2}

}
.

Thus, we have

A ⊆{{1, 2, . . . , k − 2, a1, i} | i ∈ [n] \ {1, 2, . . . , k − 2, a1, b1, b2}}
∪ {{1, 2, . . . , k − 2, a1, b1, b2} − j | j ∈ {1, . . . , k − 2, a1}}, (14)

and |V (G)| = |A|+ |B| = |A|+ 2. On the other hand, since |A| 6 2
3
|V (G)| = 2

3
(|A|+ 2)

by (13), we have |A| 6 4 and |V (G)| 6 6. Therefore, |A| = 4, |V (G)| = 6 and n = k + 4
since |V (G)| > 6. As G[A] is connected for arbitrary 4 elements chosen from (14) when
n = k + 4, we have the claim holds.

Let (T, (Bt)t∈V (T )) be a minimum width tree decomposition for J(n, k), such that if

t1t2 ∈ V (T ), then Bt1 * Bt2 . According to the assumption that tw(J(n, k)) <
(
n
k

)
−

n + k − 2, and n = k + 4 by Claims 8 and 9, we have |Bt| 6
(
n
k

)
− 6 for all t ∈ V (T ).

Since there is a fact that X ⊂ V (J(n, k)) is a subset of some bag Bt and |V (G)| = 6, by
Claims 8 and 9, it follows that |X| =

(
n
k

)
− 6 and X is a bag with maximum order, that

is X = Bt. By Claims 8 and 9, we have G[A] (resp. G[B]) is a component of G if G[A]
is connected (resp. if G[B] is connected). Then there is a subtree in T − t contains all
vertices of A (resp. B). Notice that every vertex in X has a neighbor in A (resp. B) if
G[A] is connected (resp. if G[B] is connected) since the vertices which are non-adjacent
with the vertices in A are all in B. Let t′ be the node of this subtree adjacent to t. Thus
we have Bt ⊆ Bt′ , a contradiction.

Proof of Theorem 3. We divide the proof of this theorem into the following two cases.

Case 1. k > 4.

In this case we have 2k > k+4. If n > 2k, by Lemmas 13 and 14, we have tw(J(n, k)) =(
n
k

)
−n+k−2. Note that J(n, k) ∼= J(n, n− k). If n < 2k then n > 2(n−k). By Lemmas

13 and 14, tw(J(n, k)) = tw(J(n, n− k)) =
(
n
k

)
− k − 2.
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Case 2. 1 < k < 4.

We have k + 4 > 2k in this case.

Subcase 1. k = 2.
If n > 6 = k+4, by Lemmas 13 and 14, we get tw(J(n, 2)) =

(
n
k

)
−n+k−2 =

(
n
2

)
−n.

If n = 4 or 5, then tw(J(4, 2)) = 1 and tw(J(5, 2)) = 4 [13], respectively.

Subcase 2. k = 3.
If n > 7 = k + 4, by Lemmas 13 and 14 again, we obtain tw(J(n, 2)) =

(
n
3

)
− n+ 1.

If n = 5, by J(5, 3) ' J(5, 2), we have tw(J(5, 3)) = tw(J(5, 2)) = 4 [13]. Notice that
J(5, 3) is the Peterson graph and it is easy to construct a minimal width tree decompo-
sition for it shown in Figure 1, where

X =
{
{1, 3, 4}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}

}
.

If n = 6, we can easily construct a tree decomposition for J(6, 3), and that also satisfies
the structure in Figure 1, where

X =

(
[6]

3

)
\
{
{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 5}, {1, 4, 5}

}
.

This implies that tw(J(6, 3)) 6 14.
Suppose to the contrary that tw(J(6, 3)) < 14. By Proposition 11, there exists a 2

3
-

separator X such that |X| < 15. Therefore, |V (J(6, 3) − X)| > 6 and V (J(6, 3) − X)
can be partitioned into two parts A and B such that there is no edge between A and B,
and the equation (13) holds. Thus, |A|, |B| > 2. Denote G = J(6, 3) −X for short. By
Theorem 6, α(J(6, 3)) = 4. Thus there exists an edge (v1, v2) in G[A] or G[B]. Without
loss of generality, assume that (v1, v2) is in G[A]. Since for any vertex w ∈ B there is
no vertex in A is adjacent to w in G, we have |w ∩ v1|, |w ∩ v2| > 2. This implies that
|w ∩ v1| = |w ∩ v2| = 2 and then |v1 ∩ v2| > 1, as w is a 3-set. Note that |v1 ∩ v2| 6 1.
Therefore, we have |v1 ∩ v2| = 1. Without loss of generality, let

v1 = {1, a1, a2} and v2 = {1, b1, b2},

where ai 6= bj for any 1 6 i, j 6 2.
Since for any vertex w ∈ B, |w ∩ v1 ∩ v2| = |w ∩ v1|+ |w ∩ v2| − |w ∩ (v1 ∪ v2)| > 1 and

w ∩ v1 ∩ v2 ⊆ {1}, we have v1 ∩ v2 = {1} ⊆ w. Therefore, we obtain

A ⊇
{
v1 = {1, a1, a2}, v2 = {1, b1, b2}

}
,

B ⊆
{
{1, a1, b1}, {1, a1, b2}, {1, a2, b1}, {1, a2, b2}

}
.

If G[B] contains an edge, then V (G) ⊆ {{1, i, j} | i, j ∈ {a1, a2, b1, b2}}. Thus,
|V (G)| 6 6. Since |V (G)| > 6, we have |V (G)| = 6. Therefore, there exists three
edges in G in total. Without loss of generality, assume that there is one edge in G[A]
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(that is (v1, v2)), and the other two edges are in G[B]. Then G[A] is connected. If B is
an independent set in G, without loss of generality, let

B =
{
{1, a1, b1}, {1, a1, b2}

}
.

Thus, we have

A ⊆ {{1, a1, i}|i ∈ [6] \ {1, a1, b1, b2}} ∪ {{1, b1, b2}, {a1, b1, b2}}.

Therefore, |V (G)| = |A|+ |B| 6 6. Since |V (G)| > 6, we have |V (G)| = 6. Therefore, A
is exactly that set above and G[A] is connected.

Let (T, (Bt)t∈V (T )) be a minimum width tree decomposition for J(6, 3), such that if

t1t2 ∈ V (T ), then Bt1 * Bt2 . Since tw(J(6, 3)) < 14, we have |Bt| 6 14 for all t ∈ V (T ).

Since there is a fact that X ⊂ V (J(6, 3)) is a subset of some bag Bt and |V (G)| = 6, it
follows that |X| = 14 and X is a bag with maximum order, that is X = Bt. Since G[A]
is a component of G, there is a subtree of T − t contains all vertices of A. Notice that
every vertex in X has a neighbor in A since the vertices which are non-adjacent with the
vertices in A are all in B. Let t′ be the node of this subtree adjacent to t. Thus we have
Bt ⊆ Bt′ , a contradiction.

Consequently, we complete the proof of this theorem.
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