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Abstract

In this paper, we analyze the structure of maximal sets of k-dimensional spaces
in PG(n, q) pairwise intersecting in at least a (k — 2)-dimensional space, for 3 < k <
n—2. We give an overview of the largest examples of these sets with size more than
f(k,q) = max{3¢* + 6¢> + 5¢°> + ¢+ 1,0p11 + ¢* + 2¢> + 3¢*}.

Mathematics Subject Classifications: 05B25, 05E20, 51E20

1 Introduction and preliminaries

One of the classical problems in extremal set theory is to determine the size of the largest
sets of pairwise non-trivially intersecting subsets. In 1961, it was solved by Erdds, Ko
and Rado [11], and their result was improved by Wilson in 1984.
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Theorem 1. [17] Let n,k and t be positive integers and suppose that k >t > 1 and
n>(t+1)(k—t+1). If S is a family of subsets of size k in a set Q with |Q] = n, such
that the elements of S pairwise intersect in at least t elements, then |S| < (Z:;)
Moreover, if n > (t+ 1)(k — t + 1) + 1, then |S| = (}_;) holds if and only if S is the set
of all the subsets of size k through a fized subset of ) of size t.

Note that if ¢ = 1, then § is a collection of subsets of size k of an arbitrary set,
which are pairwise not disjoint. In the literature, a family of subsets that are pairwise
not disjoint, is called an Erdds-Ko-Rado set and the classification of the largest Erdds-
Ko-Rado sets is called the Erdds-Ko-Rado problem, in short EKR problem. Hilton and
Milner [13] described the largest Erdés-Ko-Rado sets & with the property that there is
no point contained in all elements of S.

This set-theoretical problem can be generalized in a natural way to many other struc-
tures such as designs [16], permutation groups [6] and projective geometries. In this
article, we work in the projective setting (for an overview, see [7]); where this problem is
known as the g-analogue of the Erddés-Ko-Rado problem. More precisely, let ¢ be a prime
power and let PG(n, q) be the projective geometry of the subspaces of the vector space
IE‘Z“ over the finite field F,. Clearly, results on families of vector spaces pairwise intersect-
ing in at least a vector space with fixed dimension can be interpreted in projective spaces,
and vice versa. Here, in the projective setting, a projective m-dimensional subspace of
PG(n, q) will be called m-space. In PG(n, ¢), we can consider families of k-spaces pairwise
intersecting in at least a t-dimensional subspace for 0 < t < k— 1. In particular for ¢t = 0,
these sets are the Erdés-Ko-Rado sets of PG(n, q)

Before stating the g-analogue of Theorem 1, we briefly recall the definition of the
Gaussian binomial coefficient.

Definition 2. Let ¢ be a prime power, let n, k be non-negative integers with £ < n. The
Gaussian binomial coefficient of n and k is defined by

("=1)-(g"~*H1-1) :
{n} _ d (qkfl)?--(qfl) ifk>0
k q 1 otherwise

We will write m, if the field size q is clear from the context. The number of k-spaces

in PG(n, q) is [Ziﬂ and the number of k-spaces through a fixed t-space in PG(n, ¢), with

0<t<k,is [Z:ﬂ Moreover, we will denote the number [”Jlrl] by the symbol 6,,.

Theorem 3. [12, Theorem 1] Let t and k be integers, with 0 <t < k. Let S be a set
of k-spaces in PG(n, q), pairwise intersecting in at least a t-space.

(i) If n > 2k + 1, then |S| < [Z:ﬂ Equality holds if and only if S is the set of all the
k-spaces, containing a fized t-space of PG(n,q), orn =2k + 1 and S is the set of
all the k-spaces in a fized (2k — t)-space.

(i1) If 2k —t < n < 2k, then |S| < [Zk]:jl} Equality holds if and only if S is the set of

all the k-spaces in a fized (2k — t)-space.
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Corollary 4. Let S be an Erdds-Ko-Rado set of k-spaces in PG(n,q). If n > 2k+1, then
|S| < m Equality holds if and only if S is the set of all the k-spaces, containing a fized
point of PG(n,q), orn =2k+1 and S is the set of all the k-spaces in a fized hyperplane.

Note that in Theorem 3 the condition n > 2k — ¢ is not a restriction, since any two
k-dimensional subspaces in PG(n, q), with n < 2k — t, meet in at least a t-dimensional
subspace. Furthermore, as new families of any size can be found by deleting elements, the
research is focused on maximal families: these are sets of k-spaces pairwise intersecting in
at least a t-space, not extendable to a larger family of k-spaces with the same property.
Related to this question, we report the g-analogue of the Hilton-Milner result on the
second-largest maximal Erdés-Ko-Rado sets of subspaces in a finite projective space, due
to Blokhuis et al. In the context of projective spaces, the set of all subspaces through
a fixed t-space will be called a t-pencil, and, in particular, a point-pencil if t = 0 and a
line-pencil if t = 1.

Theorem 5. [2, Theorem 1.3, Proposition 3.4] Let S be a mazximal set of pairwise
intersecting k-spaces in PG(n, q), withn > 2k+2, k> 2 and q > 3 (orn > 2k+4, k> 2
and q =2). If S is not a point-pencil, then

— k-1
S| < [Z} _qk(k+1) {n . ] +qk+1_

Moreover, if equality holds, then

(i) either S consists of all the k-spaces through a fixed point P, meeting a fized (k+1)-
space T, with P € T, in a j-space, j = 1, and all the k-spaces in T;

(ii) or else k =2 and S 1is the set of all the planes meeting a fized plane w in at least a
line.

The Erdés-Ko-Rado problem for k = 1 has been solved completely. Indeed, in PG(n, q)
with n > 3, a maximal Erdds-Ko-Rado set of lines is either the set of all the lines through
a fixed point or the set of all the lines contained in a fixed plane. It is possible to generalize
this result for a maximal family S of k-spaces, pairwise intersecting in a (k — 1)-space, in
a projective space PG(n,q), n > k + 2.

Theorem 6. [4, Section 9.3] Let S be a set of projective k-spaces, pairwise intersecting
in a (k—1)-space in PG(n,q), n = k + 2, then all the k-spaces of S go through a fized
(k — 1)-space or they are contained in a fized (k + 1)-space.

The Erdos-Ko-Rado problem for sets of projective planes is trivial if n < 4. For n = 5,
Blokhuis, Brouwer and Szényi classified the six largest examples [3, Section 6].
De Boeck investigated the maximal Erdds-Ko-Rado sets of planes in PG(n, ¢) with n > 5,
see [8]. He characterized those sets with sufficiently large size and showed that they be-
long to one of the 11 known examples, explicitly described in his work.
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In [1, 9], a classification of the largest examples of sets of k-spaces in PG(n, ¢) pairwise
intersecting in precisely a (k — 2)-space is given. In [5], Brouwer and Hemmeter investi-
gated sets of generators, pairwise intersecting in at least a space with codimension 2, in
quadrics and symplectic polar spaces. In this paper, we will study the projective analogue
of this question. Let f(k,q) = max{3¢*+6¢> +5¢> + ¢+ 1,011 + ¢* + 2¢> + 3¢*}, with ¢
a prime power, and so
F(hq) = 3¢ +6¢° +5¢> +q+1 ifk=3,g=>20ork=4,qg=2 )

4 Ori1+ ¢t +2¢3 +3¢*>  otherwise.

We analyze the sets of k-spaces in PG(n, ¢) pairwise intersecting in at least a (k— 2)-space
and with more than f(k, q) elements. We will suppose that these sets S of subspaces are
maximal. During the discussion, we will give bounds on the size of the largest examples
and we will indicate the order of such families of k-spaces in PG(n, q), using the big O
notation.

In [10], families of subspaces pairwise intersecting in at least a t-space were investi-
gated. More specifically, the author investigates the largest non-trivial example of a set
of k-spaces, pairwise intersecting in at least a t-space in PG(n, ¢). The main theorem of
this article is consistent with Theorem 1 from [10].

Theorem 7. [10, Theorem 1] Let F be a set of k-spaces pairwise intersecting in at
least a t-space in PG(n,q), n > 2k + 5+ @, of mazimum size, with F not a t-pencil,

then F is one of the following examples:
i) the set of k-spaces, meeting a fized (t + 2)-space in at least a (t + 1)-space,

i) the set of k-spaces in a fived (k+1)-space Y together with the set of k-spaces through
a t-space m C Y, that have at least a (t + 1)-space in common with Y .

Note that the two examples in the previous theorem correspond to Example 9(ii) and
(i17) for t = k — 2 respectively. While, in [10], David Ellis classifies the largest non-trivial
example for all values of ¢, here we specify this problem classifying the ten largest examples
when t = k — 2. More precisely, we will show the following theorem.

Main Theorem 8. Let S be a maximal set of k-spaces pairwise intersecting in at least a
(k — 2)-space in PG(n,q), n > 2k, k > 3. Let f(k,q) be defined as in (1).
If |S| > f(k,q), then § is one of the families described in Example 9.

To prove this result, the possible configurations of a maximal family & of k-spaces
meeting in at least a (k — 2)-space will be analyzed. Firstly, in Section 2, we will suppose
there is no point contained in all elements of S and the family contains three k-spaces
A, B,C with dim(AN BN C) =k — 4. Later, we will distinguish the possibilities for S
depending on the dimension of the subspace « = (DN (A, B) | D € §'), where 8’ = {D €
S|D ¢ (A, B)}. Accordingly, it will follow that if |S| > f(k, q), then S belongs to one of
the ten examples listed below.
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In Section 3, we will suppose there is no point contained in all elements of & and every
three elements of S meet in at least a (k — 3)-space. Again we will conclude that S is one
of the families listed below, see Theorem 34.

Finally, in Section 4, we will investigate a maximal family S admitting the existence of at
least a point contained in all k-spaces of S. Let v be the maximal subspace contained in all
k-spaces of S, with dimy = g. By working in the quotient projective space PG(n, q)/vy =
PG(n — g —1,q), we will obtain that the only examples of maximal families of this type
are possible when g = k£ — 3 and they are still listed in Example 9.

Thus, we end this section listing some examples of maximal sets S of k-spaces in PG(n, q)
pairwise intersecting in at least a (k — 2)-space, n > k + 2 and k > 3 and we add a proof
of maximality:.

Example 9. (i) (k—2)-pencil: the set S is the set of all k-spaces that contain a fixed

(k — 2)-space. Then |S| = [""577].

Lemma 10. The set S from Example 9(i) is maximal for n > k + 3.

Proof. Suppose there is a k-space E ¢ S, meeting all elements of S in at least
a (k — 2)-space. Then dim(F Na) = k —t with ¢t > 3, where « is the center of
the pencil S. Clearly, n > dim(F,a) = k +t — 2. We will prove there exists an
element A € S such that dim(AN E) < k — 3 for all values of t > 3. If t = 3, since
n > k+t = k+3, there exists a line [ in PG(n, ¢) disjoint from (E, ). Then, let A be
the unique element of S containing [ and «, one gets indeed that dim(ANE) = k—3.
For t = 4, there is a line [ that meets (F,«) in at most a point. Let A be again
the k-space containing [ and «, then we have that dim(ANFE) <k —t+1=k—3.
Finally, if ¢ > 5, let | C E be a line disjoint to « and consider A the k-space
containing [ and «. Then dim(ANE) =k —t+2 <k — 3. So, all three cases give
a contradiction. This proves the lemma. O]

(13) Star: there is a k-space ( such that S contains all k-spaces that have at least a
(k — 1)-space in common with . Then |S| = ¢0x0,—r—1 + 1.

Lemma 11. The set S from Example 9(ii) is mazimal for n > k + 3.

Proof. Suppose that E ¢ S is a k-space that meets every element of S in at least
a (k — 2)-space. Since E ¢ S, we know that dim(EN({) = k —2. Let v be a
(k — 1)-space in ¢ such that dim(EN~v) = k — 3. Then F must meet all elements of
S through v in a subspace outside of (. Since n > k + 3, this is not possible. Hence,
S is maximal. m

(17) Generalized Hilton-Milner example: there is a (k + 1)-space v and a (k — 2)-space
7w C v such that S consists of all k-spaces in v (type 1), together with all k-spaces
of PG(n, q), not in v, through 7 that intersect v in a (k — 1)-space (type 2). Then
S| = Oki1 + (@* + g+ 1)0, g2

THE ELECTRONIC JOURNAL OF COMBINATORICS 29(1) (2022), #P1.58 5



Lemma 12. The set S from Example 9(iii) is mazximal for n > k + 3.

Proof. Suppose that E' ¢ S is a k-space that meets every element of S in at least a
(k —2)-space. If m C E, then, since E ¢ S, E meets v only in 7. Hence, there is an
element A of type 1 in S such that dim(AN7) = k— 3, and so, dim(ANFE) < k—2.
This gives a contradiction with the fact that £ meets all elements of S in at least
a (k — 2)-space. Hence, we may suppose that 7 € E. So, F meets 7 in a d-space
with d < k — 3. Note that dim(E Nv) = k — 1 since £ meets all k-spaces in v in
at least a (k — 2)-space and E ¢ v. So, dim(E N7) = k — 3. Let P be a point in
PG(n,q), not contained in (v, F) and let @) be a point in v\ E, not contained in 7.
Then the k-space B = (m, P, Q) is an element of S, which meets F in a subspace
with dimension at most k& — 3. This gives the contradiction. O]

(tv) There is a (k 4 2)-space p, a k-space a C p and a (k — 2)-space 7 C « so that S
contains all k-spaces in p that meet « in a (k — 1)-space not through 7 (type 1), all
k-spaces in p through 7 (type 2), and all k-spaces in PG(n, ¢), not in p, that contain
a (k—1)-space of  through 7 (type 3). Then |S| = (¢+1)0,_x+¢*(¢+1)0k_2+¢*—q.

This example will be discussed in Proposition 2.5.

Figure 1: Example (iv): The blue, red and green k-spaces correspond to the k-spaces of
type 1, 2 and 3, respectively.

Lemma 13. The set S from Example 9(iv) is mazimal.

Proof. Suppose there is a k-space £ ¢ S, meeting all elements of S in at least a
(k — 2)-space. We start with the case 7 ¢ E. If dim(EN7) < k — 2, then there is a
(k—1)-space p in o with dim((EN7)Np) < k— 3. The elements of type 3 through
1 meet E in a subspace of dimension at most k£ — 3, which gives a contradiction.
Hence, E contains a (k — 1)-space og C a. Let G be an element of S of type 2 such
that (G, a) = p, and so G N« = m. We have

dim(ENp) >dm((ENG,ENa)) > dim(ENa)+dim(ENG) —dim(ENGNa)
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>(k-1)+(k-2)—(k-3) >k

So, E C p, which implies that £ € S (type 1), a contradiction. Now, we suppose
that 7 C E. Let F; and F3 be two elements of S of type 1, with (F}, F5) = p and
dim(m N Fy N Fy) = k — 4. First we show that their existence is assured. Indeed,
let m; and 7y be two different (k — 3)-spaces in 7 and let «; be a (k — 1)-space in
« through 7;, i = 1,2. Let P; be a point in p \ « and let F; = (P}, ;). Finally,
consider P, be a point in p\ (o, F}) and let Fy = (P5, a3). Since E ¢ S and 7 C E,
we know that E cannot contain a (k — 1)-space of «, and so, £ Na = . Hence,
from Fy N F, C «, it follows that dim(E N Fy N Fy) = dim(7r N Fy N F,). Then

dim(E N p) = dim(E N (F1, Fy))
> dim(E N Fy) +dim(EN Fy) —dim(E N F; N Fy)
>(k—-2)+(k—-2)—(k—4) > k.
Hence, £ C p which implies that F € S, type 2, again a contradiction. O

(v) There is a (k + 2)-space p, and a (k — 1)-space @ C p such that S contains all
k-spaces in p that meet « in at least a (k — 2)-space (type 1), and all k-spaces in
PG(n,q), not in p, through « (type 2). Note that all k-spaces in PG(n, q) through
a are contained in S.

Then |S| =0, + ¢*(¢*> + q+ 1)0)_1.

This example will be discussed in Proposition 19.

Figure 2: Example(v): The blue and red k-spaces correspond to the k-spaces of type 1,
2, respectively.

Lemma 14. The set S from Example 9(v) is mazimal.

Proof. Suppose there is a k-space E ¢ S, meeting all elements of S in at least a
(k — 2)-space. Then E contains a (k — 2)-space op in «, since E meets all elements
of § of type 2. Note that £ cannot contain «, since then, E would be a k-space in
S. Let 071 and o9 be two distinct (k — 2)-spaces in @ with dim(oy Moy Nog) = k— 4.
Consider F) and F, two elements of § of type 1 through o, and o5, respectively,
with dim(F)} N Fy) = k — 2. Note that dim(E N Fy N Fy) = k — 4. Indeed,
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(a) Hdim(ENFINFy) =k—2 then ENFiNF,Na = FiNFyNa, a contradiction.
(b) If dim(E N Fy N Fy) = k — 3, there exists a point P € F; N Fy, N E not in «
and dim(F Np) > k—1. Since F ¢ S, then E ¢ p. The only possibility is
dim(ENp) = k—1, but then we can find a k-space F of type 1 such that ENF
is a (k — 3)-space, again a contradiction.
Hence, dim(ENFi N F,y) =k —4 and
dlm(E N p) = dlm(E N <F1,F2>) > dlm(E N Fl) + dlm(E N Fg) — dlm(E NE N FQ)
> (k=24 (k—2) — (k—4) > k.
And so, F C p, which implies that F € S, a contradiction. O

(vi) There are two (k+ 2)-spaces p1, po intersecting in a (k+ 1)-space a = p; N po. There

are two (k — 1)-spaces w4, mp C a with m4 N7p the (k — 2)-space A, there is a point
Pap € a\ (ma,mp), and let As, A\p C A be two different (k — 3)-spaces. Then S
contains

type 1. all k-spaces in a,

type 2. all k-spaces of PG(n, ¢) through (Pap, A), not in p; and not in ps.

type 3. all k-spaces in p1, not in «, through Psp and a (k — 2)-space in 74 through A4,

type 4. all k-spaces in p1, not in «, through Psp and a (k — 2)-space in 7 through

)\Bv

type 5. all k-spaces in py, not in «, through Psp and a (k — 2)-space in 74 through
>\Bv

type 6. all k-spaces in py, not in «, through Psp and a (k — 2)-space in mg through
AA.

Then [S| = 0, + ¢*0r_1 + 4¢>.

This example will be discussed in Proposition 22 for £ = 3 and in Proposition 25
for k > 3.

Lemma 15. The set S from Ezample 9(vi) is mazimal.

Proof. Suppose there is a k-space ' ¢ S, meeting all elements of S in at least a
(k — 2)-space. Suppose first that Pap ¢ E. As F contains at least a (k — 2)-space
of all elements of S, type 1 and 2, E contains a (k — 1)-space  in « such that (
contains a (k—2)-space of (Pap, A), not through Psp. Consider now the elements F
and G of S, type 3 and 4 respectively, with FNGNa = (Pag, AaNAg). If E ¢ p1,
then dim(ENFNG) < k—4 and

k—1=dim(ENa)=dm(ENp;) =dim(EN(FG))
> dim(EN F) + dim(EN Q) — dim(EN F N G)
> (=2 +(h—2)— (k=4 > k,
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Figure 3: Example(vi): The orange k-space is of type 1, the green one of type 2, the red
ones of type 3 and 6, and the blue ones of type 4 and 5.

a contradiction. Hence, E C p;. Analogously, we find that £ C po, using two
elements of S of type 5 and 6. And so, E C p; N po = «, which implies that
E € §, type 1, a contradiction. So now we can suppose that P,g € E. Then E
contains a (k — 1)-space of o that meets A in a (k — 3)-space. This follows since
E meets the elements of S of type 1 and 2 in at least a (k — 2)-space. Note that
the dimension of E N7y and EN7mpis k—2or k—3 as ENAis a (k— 3)-
space. Moreover, the latter spaces do not both have the same dimension. Indeed,
if dim(F Nmy) = dim(EN7p) = k — 2, then £ C «, type 1, a contradiction.
Moreover, since E contains Psp, and since dim(E N«) = k — 1, we know that
dim(EN(ma, 7)) =k — 2. If dim(E N7my) = dim(E N7wg) = k — 3, then w.lo.g.
we can suppose that £ N\ # A4s. Consider now an element X of type 3 such that
AZ X. Then dim(X N"ENa) =k —3, and so, ENX ¢ a. Hence, E and X
also share points (also a point) in p; \ a and so, E C p;. Similarly, E C ps and so
E C p1 N py = & which cannot occur.

By a similar argument, we find that the dimension of E N A4 and ENAg is k — 3
or k — 4, both not the same dimension. Then E contains a (k — 2)-space of 74 or
7, and E contains A4 or Ag. W.l.o.g. we can suppose that E contains A4 and a
(k — 2)-space of m4, and meets mp in \4.

Let H be an element of type 1 of S, and let G be an element of type 4 of S through
a (k—2)-space 0 # X in mp with H NG = 0. Then, since dim(ENGNH) = k — 4,

dim(ENp) =dim(EN(G,H)) > dim(ENG) +dim(EFNH) —dim(ENGN H)
> (k—=2)+(k—=2)—(k—4) >k,

and so F C p;. Hence, E € S, type 3, a contradiction. O
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1 o

Figure 4: Example(vii): The red, blue and green planes correspond to the k-spaces of
type 1, 2 and 3 in PG(n, q)/~, respectively.

(vid)

(viii)

There is a (k — 3)-space « contained in all k-spaces of S. In the quotient space
PG(n, q)/7, the set of planes corresponding to the elements of S is the set of planes
of example VIIT in [8]: Let ¥ be an (n — k + 2)-space, disjoint to v, in PG(n, q).
Consider two solids o1 and o5 in ¥, intersecting in a line [. Take the points P, and
P, onl. Then § is the set containing all k-spaces through (v,1) (type 1), all k-spaces
through (v, P;) that contain a line in oy and a line in o9 (type 2), and all k-spaces
through (v, P2) in (v,01) or in (v,09) (type 3). Then |S| = 6,1, + ¢* + 2¢> + 3¢*.
In Lemma 36, we prove that the set S is maximal.

There is a (k — 3)-space « contained in all k-spaces of S. In the quotient space
PG(n, q)/7, the set of planes corresponding to the elements of S is the set of planes
of example IX in [8]: Let ¥ be an (n — k + 2)-space, disjoint to ~, in PG(n,q),
and let [ be a line and o a solid skew to [, both in W. Denote (l,0) by p. Let P
and P, be two points on [ and let R; and Rs be a regulus and its opposite regulus
in 0. Then § is the set containing all k-spaces through (v, ) (type 1), all k-spaces
through (v, P) in the (k4 1)-space generated by =, [ and a fixed line of R; (type 2),
and all k-spaces through (v, P») in the (k + 1)-space generated by v, [ and a fixed
line of Ry (type 3). Then |S| = 0,,_x + 2¢°> + 24°.

In Lemma 37, we prove that the set S is maximal.

There is a (k — 3)-space « contained in all k-spaces of S. In the quotient space
PG(n, q)/~, the set of planes corresponding to the elements of S is the set of planes
of example VII in [8]: Let ¥ be an (n — k + 2)-space, disjoint to v in PG(n, ¢) and
let p be a 5-space in U. Consider a line [ and a 3-space o disjoint to [. Choose three
points P, P, P3 on [ and choose four non-coplanar points @1, @2, @3, @4 in o.
Denote I} = Q1Qq, l1 = Q3Q4, la = Q1Q3, la = Q2Q4, I3 = Q1Q4, and I3 = Q2Q)3.
Then S is the set containing all k-spaces through (v,[) (type 0) and all k-spaces
through (v, P;) in (v,1,1;) or in {v,1,1;), i = 1,2,3 (type 7). Then |S| = 6, + 6¢>.
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Figure 5: Example(viii): the red, green and blue planes correspond to the k-spaces of
type 1, 2, 3 in PG(n, q)/~, respectively.

In Lemma 35, we prove that the set § is maximal.

Figure 6: Example(iz): The red, blue, green and orange planes correspond to the k-spaces
of type 0,1,2 and 3 respectively.

(x) S is the set of all k-spaces contained in a fixed (k + 2)-space p. Then |S| = [k;’f}]

From now on, let S be a maximal set of k-spaces pairwise intersecting in at least a
(k — 2)-space in the projective space PG(n, q) with n > k + 2.

We will focus on the sets S such that |S| > f(k,q). In Section 2, we investigate the
sets S of k-spaces in PG(n, ¢) such that there is no point contained in all elements of S
and such that S contains a set of three k-spaces that meet in a (k — 4)-space. In Section
3, we assume again that there is no point contained in all elements of § and that for any
three k-spaces X,Y,Z in §, dim(X NY NZ) > k — 3. In Section 4, we investigate the
maximal sets S of k-spaces such that there is at least a point contained in all elements
of §. We end this article with the Main Theorem 38 that classifies all sets of k-spaces
pairwise intersecting in at least a (k — 2)-space with size larger than f(k,q).
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2 There are three elements of S that meet in a (k — 4)-space

Suppose there exist three k-spaces A, B, C' in § with dim(ANBNC) = k—4, and suppose
that there is no point contained in all elements of S. By the existence of Example 9(z),
we may assume that the elements of S span at least a (k + 3)-space. In this subsection,
we will use the following notation.

Notation 16. Let S be a maximal set of k-spaces in PG(n, q) pairwise intersecting in at
least a (k — 2)-space. Let A, B and C in § be three k-spaces with mapc = AN BNC
a (k —4)-space. Let map = ANB, mac = ANC and m1gc = BN C. Let & be the
set of k-spaces of S not contained in (A, B), and let o be the span of all subspaces
D':=Dn(A,B),DeS"

Note explicitly, by Grassmann’s dimension property, that w45, Tpc and 7 are (k—2)-
spaces and (A, B) = (B,C) = (A,C).

We first present a lemma that will be useful for the later classification results in this
section.

Lemma 17. [Using Notation 16] If there exist three k-spaces A, B and C' in S, with
dim(ANBNC) =k —4, then a k-space of 8’ meets (A, B) in a (k — 1)-space. More
specifically, it contains wapc and meets Tap, Tac and T, each in a (k—3)-space through
TABC -

Proof. Consider a k-space E of §’. Clearly,
k—2<dm(EN(A B)) <k-—1.

If dim(E N (A, B)) = k — 2, then this (k — 2)-space has to lie in A, B and C, and so in
the (k — 4)-space mapc, a contradiction. Hence, we know that dim(E N (A, B)) = k — 1.
By the symmetry of the k-spaces A, B and C, it suffices to prove that E contains mapc
and meets m4p in a (k — 3)-space through m4pc. Using Grassmann’s dimension property
we find that

dim(ENmap) > dim(ENA) +dim(ENB) —dim(E N (4, B)),
and so, dim(E Nmap)is k—2or k— 3. If dim(E N7map) =k — 2, then

dim(ENC) < dim(E N7ape) +dim(EN(C,map)) — dim(E N 7wap)
<(k—-4)+k-1)—(k—2)=k—3,

a contradiction since any two elements of S meet in at least a (k — 2)-space. Hence,
dim(E Nmap) =k — 3, and so

dlm(E N WABC) 2 dlm(E N C) + dlm(E N 7TAB) - dlm(E N <C, 7TAB>)
>(h—2)+ (k-3 —(k—1)=k—4.

This implies that the (k — 4)-space mapc is contained in E. O
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Therefore, let D be a k-space of §’. By Lemma 17, for the remaining part of this
section, we will denote by D’ the (k — 1)-space D N (A, B).

Corollary 18. [Using Notation 16] Suppose S contains three elements A, B and C', meet-
ing in a (k —4)-space, and o is a (k +1)-space. Up to a suitable labelling of A, B and C,
we have the following results.

a) Ifi = —1, then « = DN (A, B) for every D € §'.

b) If i =0, then a = (p1, p2, p3), with py a (k — 3)-space in Tap, ps a (k — 3)-space in
TBe, p3 = Tac and Tapc C pj,J = 1,2,3. In this case, all elements of S’ contain
the (k — 2)-space (p1, pa).

c) If i =1, then a = (p1, pa, p3), with p1 a (k — 3)-space in Tag, po = TBC, P3 = TAC
and mapc C pj,J =1,2,3. In this case, all elements of S" contain the (k — 3)-space

P1-
d) Ifi =2, then a = (A, B).

Proof. For i = —1 and ¢ = 2, the corollary follows immediately from Lemma 17. Hence
we start with the case that « is a k-space. Consider two elements of &', say D, D,
meeting (A, B) in two different (k — 1)-spaces D}, D). These two elements of S’ exist,
as otherwise dim(a) = k — 1. Since D] and D) span the k-space «, they meet in a
(k — 2)-space. By Lemma 17, this (k — 2)-space D} N D) contains m4p¢c, together with a
(k — 3)-space p; through mapc in mxy and a (k — 3)-space ps through mape in myz, with
{X,Y,Z} = {A,B,C}. By Lemma 17, every other element of &’ will meet (A, B) in a
(k — 1)-space through this (k — 2)-space D] N D} = (p1, p2), which proves the statement.

Suppose now that « is a (k + 1)-space. Then, we consider two elements Ds, Dy of &’
meeting (A, B) in two (k — 1)-spaces Dj, D} such that dim(D5 N Dj) = k — 3. These
elements of &’ exist as otherwise all elements of S” correspond to (k — 1)-spaces pairwise
intersecting in a (k — 2)-space. But then, since these (k — 1)-spaces span a (k + 1)-space,
they form a (k — 2)-pencil (see Theorem 6). Using Lemma 17, and the proof above of the
case dim(«) = k or ¢ = 0, it follows that o would be a k-space. Now, again by Lemma
17, we see that Di N D) contains mapc and a (k — 3)-space p; through mapc in mxy, with
{X,Y,Z} = {A, B,C}. Using dimension properties and the fact that D N D) = p;, we

see that every other element of &’ will contain p;, which proves the statement. O]
We distinguish between several cases depending on the dimension of o = (D N
(A,B)|D e S§').

2.1 «is a (k— 1)-space

Proposition 19. [Using Notation 16] If S contains three k-spaces that meet in a (k—4)-
space and dim(a) = k — 1, then S is Example 9(v).
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Proof. From Corollary 18, we have that for all D € 8, DN (A, B) = «, so all the k-spaces
in &’ meet (A, B) in a. As a k-space of S in (A, B) needs to have at least a (k — 2)-space
in common with every D € &', we find that every k-space of S in (A, B) meets « in at
least a (k — 2)-space. Note that the condition that every two k-spaces of S in (A, B) meet
in at least a (k — 2)-space is fulfilled. Hence, S is Example 9(v) with p = (4, B). O

2.2 « is a k-space

Proposition 20. [Using Notation 16] If S contains three k-spaces that meet in a (k—4)-
space and dim(a) = k, then S is Example 9(iv).

Proof. 1f v is a k-space, we can suppose w.l.o.g., by Corollary 18, that & = (wap, Pac, Ppc)
with Psc and Ppe points in mac \ mape and mpe \ mape, respectively. We also know that
all the k-spaces D € &’ have a (k — 1)-space D’ in common with « and they contain the
(k—2)-space m = (mapc, PacPpc). So every pair of k-spaces in &’ meets in a (k—2)-space
inside (A, B). Consider a k-space E of S in (A, B), not having a (k — 1)-space in common
with «, and let Dy and Dy be k-spaces of &’ with D} N D} = m, and so (D}, D)) = «. If
FE does not contain 7, then

dim(EFNa) >2dm(END,ENDy) > k—2+k—2—dim(ENnm) > k—1.

This is a contradiction. Hence, every k-space of S\ &’ contains 7 or has a (k — 1)-space
in common with a. From the maximality of S, it follows that S is Example 9(iv) with
P = <A, B> and ™ = <7TAB6’7PACPBC>- O
2.3 «ais a (k+ 1)-space

To understand the structure of these sets of k-spaces, we will first investigate the case
k = 3 and then we will generalize our results to k > 3.

2.3.1 k =3 and «a is a 4-space

Note that for & = 3, the spaces map, e and w4y are pairwise disjoint lines and m4pc
is the empty space. By Corollary 18, we can suppose w.l.o.g. that & = (Pap, Tac, o),
with Psp a point in map \ mapc. Hence, each of the planes D' = DN (A,B), D € &',
contain P,p and the set of all these planes D’ span the 4-space a.

From now on, let £ be the set of lines DNC, D € §'.

Proposition 21. [Using Notation 16] If S contains three solids such that there is no point
contained in the three of them, and if dim(«) = 4, then a solid of S in (A, B) either

i) is contained in «, or

ii) contains Papg and a line r of C, intersecting all lines of L.
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Figure 7: There are three solids A, B,C in S, with AN BN C = () and dim(a) = 4

Proof. Recall that each of the intersection planes D N (A, B) contain P4p and that the
set of all these planes span the (k + 1)-space a. Hence, we can see that there exist solids
Dy, Dy € &', such that their intersection planes D] and D) with «, meet exactly in the
point Psp. Indeed, by Theorem 6, if all the planes D N (A, B), D € &', would pairwise
intersect in a line, then these planes lie in a fixed solid or contain a fixed line. Neither
possibility can occur since « is a 4-space, and Pjp is the only point contained in all
intersection planes.

Suppose first that E is a solid of S in (A, B), not containing Psp. As E needs to
contain at least a line of every plane D' = DN (A, B), D € &', E contains at least a line
Iy C D} C aand a line [y C D) C «a. Note that [; and [ are disjoint as they do not
contain the point Pap. Hence, E = (l1,ls) C a.

So now we can suppose that E contains the point P,p and meets « in precisely the
plane . The plane v is the span of P4p and the line r =~y NC. As EN D is at least a
line of the plane D' = DN (A, B) for every D € &', and since every two lines in the plane
~v meet each other, we have that r has to intersect all the lines of £. Hence, we find the
second possibility. O

In the previous proposition, we proved that there are two types of solids of S contained
in (A, B). One of them are the solids containing Psp and a line r C C, intersecting all
lines of £. The number of these solids depends on the number of lines r meeting all lines

of L.

Case 1. There is a line I € L that intersects all the lines of £

Note that there cannot be two lines in £ intersecting all the lines of £, since then all
lines of £ would lie in a plane or go through a fixed point in C. This gives a contradiction
as the lines of £ span C' and at least two points of both w45 and mgc are covered by the
lines of L.

Proposition 22. S is Example 9(vi) for k = 3.
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Proof. Let Py =1lN7ac, Pe =1N7pe, ma = (mac,l) and mg = (7wpc, ). Since every line
m # [ of L intersects the lines ms¢, mpc and [, it follows that m contains the point P4 and
is contained in mg, or m contains the point Pg and is contained in m4. Note that since
dim(«) = 4, there is at least one line m; # [ in £ through P4 and there is at least one
line mo # [ in £ through Pg. As a consequence of Proposition 21, we have that a solid of
S in (A, B), not contained in «, contains P4p and it meets C' in a line r that meets all
lines of £. Hence, r is a line of the plane 74 through P4 or in a line of mg through Pg.

Consider now the set F of solids of &', not through (Pag,l). We will prove that these
solids lie in a 5-space that meets (A, B) in a. Let E4, Ep € F be two solids through
my 2 P4 and my 5 Ppg respectively. Since the planes F4 Na and Eg N a meet in precisely
the point Papg, the solids E4 and Fg have precisely a line in common, and so, they span a
5-space py through a. Then every other solid F' € F is contained in p, as it meets EF4Na,
or Ep N a, precisely in one point, namely Psg, and so it must contain at least a point of
E 4, or Ep respectively, in py \ . This point, together with the plane F'Na, spans F' and
so F' C pg. Hence, S is Example 9(vi), with p; = (A, B), ma = (mac,l), 75 = (7pc, 1),
/\A:PA,)\B:PBand)\:l. ]

Case 2. For every line in £, there exists another line in £ disjoint to the given
line

Depending on the structure of the set of lines £, we discuss the set of the solids of §
in (A, B) not contained in a. We have different possibilities for a line r of C, meeting all
lines of £ (see Proposition 21):

i) Suppose there are three pairwise disjoint lines in £, then these three lines belong to
a unique regulus R.

a) If £ is contained in R, then |£| < ¢+ 1 and r is a line of the opposite regulus
R¢. Hence, there are ¢ + 1 possibilities for r.

b) If £ is not contained in R, then there are exactly two lines, intersecting all
the lines of £, namely mac and wpe. Let [ € £\ R. If there were a third line
r meeting all lines of £, then » € R¢. But then there would be three lines,
namely r, m4c and 7o, in R, all of them intersecting [. Hence, [ also has to
lie in R, a contradiction. In this case there are at most 2 possibilities for r and
L] < (g+1)%
Note that in this case, £ is not contained in any regulus. This follows since
the three pairwise disjoint lines in £ define a unique regulus.

i1) Suppose there are no three pairwise disjoint lines in £. In this case, we can prove
the following lemma.

Lemma 23. The set L is contained in the union of two point-pencils such that their
vertices are contained either in mac or in Tpe.
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Proof. We can suppose that £ contains at least two disjoint lines [y, [y, since the
lines of £ span the solid C. Let P, = mac Nl; and Q; = wpc N;, for t = 1,2. As
there are no three pairwise disjoint lines in £ we see that every line [ € £ contains
at least one of the points P; and );, with ¢ = 1,2, and so £ is contained in the
union of 4 point-pencils with vertices Py, Ps, Q1, Q2. If |£]| < 4, then it is easy to
see that £ is contained in the union of two point-pencils. Suppose now that |£| > 5
and that £ is not contained in the union of two of these point-pencils. Due to the
symmetry, we can suppose w.l.o.g. that £ contains a line [3 different from [; and
P ()5 that contains P, a line [, different from I, and P; ()2 that contains ()2 and a
line [5 not equal to [y or P>(); that contains P». Let Q3 = [sNmpe and Py = [4;Nmac.
Then [5 contains the point ()3 as otherwise I3,l4 and [5 would be pairwise disjoint.
So l5 = P>()3, but then we see that [;,[; and [5 are three pairwise disjoint lines, a
contradiction. Hence, £ is contained in the union of two point-pencils. O]

By using the notations in the lemma above, since £ contains no 3 pairwise disjoint
lines, we know that if |£| > 3, then every line Iy € £\ {l1,l2} contains at least one
of the points Py, P», @1, Q2. From Lemma 23, we find the following possibilities for
the set L.

a) If £ only contains two lines Iy, I, then [; and I, are disjoint and we find (g+1)?
possibilities for r, as every such line is defined by a point of /; and a point of
l5.

b) If £ contains at least 3 elements and is contained in the union of a line [,
and a point-pencil through a point P, then |£| < g+ 2. Let Py = lp N 7ac,
Qo = lpN7pc and suppose w.l.o.g. that P € mac. A line r that meets all lines
of L is a line that contains P and a point of [y or is a line that contains )y and
lies in the plane (P, mpc). Hence, there are at most 2¢ + 1 possibilities for the
line 7.

c) If £ contains at least 4 elements and is contained in the union of two point-
pencils through the points P and () respectively such that £ contains at least
two lines through P and at least two lines through @, then |£| < 2(¢+1). In
particular, if P and @) are on different lines, we note that |£| < 2¢, as the line
PQ is not contained in £. This follows since this line meets all other lines of
L, and so, this situation is discussed in Case 1. Therefore, in any case, a line
r that meets all lines of £ is the line m4¢, the line mp¢ or the line PQ if it is
distinct from 740 and mge. Hence, there are at most 3 possibilities for the line
T.

For every intersection plane D’ in «, there are at most m — m = ¢° ways to extend
the plane to a solid D € &', as this solid also has to meet several solids of S’ in a point
Q ¢ (A, B). And since the number of planes D’ equals the number of lines in £, there
are at most (¢+1)-¢% (¢+1)?-¢*2-¢* (¢+2)-¢*2(q+ 1) - ¢* solids outside of (4, B),
respectively, dependent on the five cases ia), i), iia), iib), iic) above.
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For the solids inside (A, B), there are [°] solids in o and (g + 1) - ¢*,2 - ¢% (¢ + 1)* -
¢, (2¢ + 1) - ¢*,3 - ¢* solids of the second type of Proposition 21, respectively. We find
these numbers by multiplying the number of possibilities for the line 7 and the number ¢?
of 3-spaces through a plane in (A, B), not contained in «. So, in total, we have at most

3] + (¢ +2q + 3) - ¢* = O(2¢*) solids, using case ib) or iia).

Remark 24. Note that the number of elements of S in this case is smaller than f(3,q) =
3¢* +6¢ + 5¢°> + ¢ + 1, and so we will not consider these maximal sets of solids in our
classification result (Main Theorem 38).

2.3.2 General case k > 3 and « is a (k 4+ 1)-space

By Corollary 18, we can suppose w.l.o.g., that « is spanned by 7a¢, Tpc and a point Pypg
of map outside of mapc, and that all (k — 1)-spaces D' = DN (A, B),D € &', contain

(PaB,TABC)-

Proposition 25. [Using Notation 16] If S contains three k-spaces that meet in a (k—4)-
space and dim(a) = k + 1, then a k-space of S in (A, B) is contained in a or contains
wapc. More specifically, if |S| > f(k,q), then S is Example 9(vi).

Proof. We suppose that E is a k-space of S in (A, B), not through mapc. As E contains
at least a (k—2)-space of all the (k—1)-spaces D', with D € &’ we find that E contains a
hyperplane 7 of Tapc, a (k—4)-space 1 of aNm4p, a (k—3)-space T3 of T4 and a (k—3)-
space 13 of mgc. As i N =71 N3 =T N T3 =Ty, and by the Grassmann dimension
property, we see that ¥ C «. For the k-spaces through m4pc, we can investigate the
solids E/mapc, E € S, in the quotient space PG(n, q)/mapc, and use the results in Case
1 and Case 2 of Subsection 2.3.1. These results imply that a k-space in (A, B) through
Tapc is contained in « or contains (Pap, mapc) and a line in C'\ m4pc that meets all the
(k — 2)-spaces DN C,D € §'. Then there are two cases:

- CASE 1. If there is a line | € C'\ mapc meeting the subspaces DN C for all D € &',
then there are 0,,_; + ¢* + 5¢° + ¢* k-spaces of S that contain m4pc.

- CASE 2. If there is no line | € C'\ m4pc meeting the subspaces DNC for all D € &',
then there are at most 2¢* + 3¢ + 4¢* + ¢ + 1 k-spaces of S that contain 74p¢.

It is clear that two elements of S in & meet in at least a (k — 1)-space. From the inves-
tigation of the quotient space PG(n,q)/mapc it follows that two elements of S through
TABC, DOt in v, meet in at least a (k — 2)-space. A k-space E; of S in « and a k-space
E, of S not in «, but through mapc, will also meet in a (k — 2)-space. This follows since
E, contains the (k — 3)-space (Pap,Tapc) C « and a line in C'\ mapc C a. Hence, Es
meets « in a (k — 1)-space. Since Ej is contained in «, it follows that F; and E; meet in
at least a (k — 2)-space. Now, as every element of S, not through m4pc, is contained in
«, there are 0,1 — 04 elements of S not through m4pc. Hence, in CASE 1, S is Example
9(vi) and [S]| = 0,1 + 011 +4¢> —q— 1. In CASE 2, |S| < 011 + ¢* + 2¢® + 3¢%, which
proves the proposition. O
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2.4 «is a (k + 2)-space

Here again, we first consider the case k = 3.

2.4.1 o« is a 5-space

We start with a lemma that will often be used in this subsection.

Lemma 26. [Using Notation 16] If S contains three solids A, B,C, with AN BNC = {,
then every two intersection planes D and D), with D} = D; N (A,B),D; € §';i = 1,2,
share a point on Tag, Tac O TRC.

Proof. Consider two solids D; and D, in &', with corresponding intersection planes D]
and D) in (A, B). Since D; and Dy meet in at least a line, D} and D) have to meet in
at least a point. If D} and D) do not meet in a point of m4p, Tac or Tpc, then these

planes define 6 different intersection points P, ..., Ps on the lines map, mac and wgc. As

D}, D)y = (Py,...,Ps) = (wap,mac, Tpc), we find that D} and D) span a 5-space, so
142 1 2 8P p

these planes are disjoint, a contradiction. O]

If o is a 5-space, we distinguish two cases, depending on the planes D’ = DN (A, B),
Des'.

Lemma 27. [Using Notation 16] If S contains three solids A, B,C, with AN BNC = (),
and if dim(a)) = 5, then we have one of the following possibilities for the planes D' =
DN(A,B),DeS'"

i) There are four possibilities for the planes D': (Py, Py, Pg), (P, Py, Ps), (P3, Py, Ps)
and <P27P37P5>, where P1P2 = WAB,P3P4 = TTBC and P5P6 = TTAC -

ii) There are three points P € map,Q € mpc and R € mac so that every plane D’
contains at least two of the three points of {P,Q, R}.

Proof. We prove the Lemma by construction and we start with a plane, we say D,
intersecting mp, Tpc and ma¢ in the points P, Q) and R’ respectively.

Case (a): There exists a plane D}y such that D} N D} is a point (w.l.o.g. P, see Lemma
26) and let Dy N 7wpe be Q' and Dy Nwac be R. In this case we know that there exists a
third plane D} intersecting m4p in a point P’ different from P (as dim(«) = 5). Then Dj
needs at least a point of D) and Dj. This implies that D} contains () and R or )’ and
R’ (wlo.g. @ and R) by Lemma 26. Now there are two possibilities:

i) There exists a plane D) = (P, @', R'), and then, by construction, we cannot add
another plane D). (In the formulation of the lemma P = P, P’ = P,,QQ = P;,
Q' =P, R=P;and R = I%.)

i1) There exists no plane D} = (P',Q’, R'), then, by construction, we see that all the
planes need to contain at least two of the three points P, (), R by Lemma 26.
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Case (b): all the planes D} intersect pairwise in a line. Then all these planes have to lie
in a solid (contradiction since they span a 5-space) or they go through a fixed line [. In
this last case, [ cannot be one of the lines m4p, Tac, Te and also, | cannot intersect one
of these lines, as otherwise all the planes D! would contain the intersection point of this
line and [ (which gives a contradiction since dim(a)) = 5). Consider now the disjoint lines
[ and m4p. Then all the planes D} would contain [ and a point of w45, but this implies
that dim(a) = 3 which also gives a contradiction. We conclude that this case cannot
happen. O

Case 1. There are four intersection planes D’

In this situation, using the notation from Lemma 27, there are four possibilities for the
planes D' =Dn <A,B>, D eSS <P1,P3,P6>7 <P1,P4,P5>,<P2,P4,P6> and <P2,P3,P5>,
where Py, P, € mag, P3, Py, € mpc and Ps, Py € mac. We show that the only solids of § in
(A, B) are A, B and C.

Figure 8: There are three elements A, B,C in S with AN BN C = and dim(«a) =5

Proposition 28. [Using Notation 16] If S contains three solids A, B,C, AN BNC =,
dim(a) = 5, and so that there are exactly four intersection planes D', see Lemma 27(i),

then the only solids of S in (A, B) are A, B and C.

Proof. Let Py, ..., Ps be the intersection points of D N (A, B), D € &', with the lines
TaB, Tac,Tac, and let F be a solid in (A, B) different from A, B, C. The solid E cannot
contain all the points Py, ..., Ps, by its dimension so we can suppose that P; ¢ E. We
will first show that F contains the point P». As F has a line in common with every
plane intersection D' = D N (A, B), with D € &', E has at least a point in common with
every line of these planes D’. This implies that E has at least a point in common with
Py Ps, PPy, P, Ps, and P, Ps or equivalently, a line [4 in common with (P, m4¢) and a line
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g in common with (P, mgc). Hence, E = (l4,lg) and so E C (P;,C). If P, ¢ E then
we find by symmetry that £ C (P, C), and so that £ C (P,,C) N (P,,C) and E=C, a
contradiction. Then P, € E; furthermore E cannot contain P, ..., Py, by the dimension,
and so we can suppose that Py ¢ E. Then, by the previous arguments and symmetry, we
know that P; lies in E. In A, the solid E needs an extra point P of P; Ps since E shares
a line with (P;, P3, Ps). This gives that E contains the plane v = (P, P, P5) of A. As E
also needs at least a point of each line P, P3, P, Py, E needs at least one extra line, disjoint
to . This gives the contradiction, again by the dimension, and so E cannot be different
from A, B, C. [

There are at most 4 - ([i’] — m) solids in &’. The first factor of this number follows
since every solid in &’ meets (A, B) in one of the four intersection planes. The second
factor follows as each of these intersection planes is contained in at most m — m solids
of &= any two solids, intersecting (A, B) in different intersection planes, have to intersect

in at least a point @) outside of (A, B). There are only 3 solids, A, B, C, in (A, B).
Case 2. Every intersection plane D’ contains at least two of the points P, Q, R

Note that in this situation we have at least the red, green and blue plane (see Figure 9)
as intersection planes D' = DN (A, B),D € §'. In the following proposition, we prove
how the solids in (A, B) lie with respect to the points P, Q, R.

Figure 9: There are three elements A, B,C' in S with AN BN C = and dim(«) =5

Proposition 29. [Using Notation 16] If S contains three solids A, B,C, AN BNC =,
dim(a) = 5, and so that every intersection plane D' contains at least two of the points
P,Q, R, see Lemma 27(ii), then all the solids of S in (A, B), also contain at least two of
the points P,Q, R.
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Proof. Let E be a solid of S in (A, B), different from A, B and C. Suppose P ¢ E, then
we have to prove that E contains the points R and (). We find that FN A and EN B are
subspaces that meet the lines PR, PR, P'R and PQ, PQ)', P'Q), respectively, as E meets
every intersection plane D’ in at least a line. Hence, E meets A in a line [,z through R
and a point of PR, or E has a plane 4 in common with A. By symmetry, E meets B
in a line (gp through @ and a point of P()’, or E has a plane ypg in common with B.

a) If dim(A N FE) = dim(B N E) = 2, then the planes 74 and ypr meet in a point
of map as they cannot contain the line m4p since P ¢ E. Hence, E contains two
planes meeting in a point, which gives a contradiction since dim(E) = 3.

b) If dim(ANFE) =2 and dim(B N E) = 1, then yag N map = lgg N map. First note
that [ N7ap is not empty by the dimension of E. Now, if yag N7ap # lgp NTaR,
then map C E, which gives a contradiction as P ¢ E. Since lgp can only meet m4p
in the point P, we find a contradiction, again as P ¢ FE. Clearly, by symmetry, an
analogue argument holds also if dim(A N E)=1 and dim(B N E) = 2.

Hence we know that E contains a line [4p C A through R and a line g C B through
(), which proves the proposition. O

There are at most (3 - [3] —2)([}] — [?]) solids not in (A, B). This follows as two
solids Dy, Dy, intersecting (A, B) in the intersection planes D} and D) meeting in a point,
then D; and Dy have to intersect in at least a point not in (A, B). And there are at most
3- m — 2 intersection planes D’. There are at most m + 3q m solids in (A, B), namely
all the solids through the plane (P, @, R) and all solids through precisely two of the three

points P,Q, R in (A, B).

Remark 30. Note that if S contains three elements A, B, C, with AN BNC = (), and if
dim(a) = 5, then the number of elements of S is at most f(3,q) = 3¢* +6¢> +5¢* + g+ 1,
and so we will not consider these maximal sets of solids in our classification.

2.4.2 General case k > 3 and « is a (k 4+ 2)-space

In this case we prove that all the k-spaces of § contain mapc. This implies that we
can investigate this case by considering the quotient space of m4pc and use the previous
results for k£ = 3.

Proposition 31. [Using Notation 16] If S contains three k-spaces A, B, C', with
dim(ANBNC)=k—4, and if dim(a) = k + 2, then every k-space in S contains mapc.

Proof. By Lemma 17, we know that all the k-spaces of S outside of (A, B) contain mapc.
It is also clear that A, B and C contain mwapc.

Suppose that there is a k-space E in (A, B), not through mapc. As E has to meet all the
(k—1)-spaces D. in at least a (k — 2)-space, E has to meet mapc in a (k — 5)-space v and
TAB, TBC, Tac in three distinct (k — 3)-spaces such that they meet pairwise in . This
would imply that dim(E) = k 4 1, which gives a contradiction. O

THE ELECTRONIC JOURNAL OF COMBINATORICS 29(1) (2022), #P1.58 22



Clearly, the previous proposition implies that in order to have an estimate of the num-
ber of k-spaces in and outside of (A, B), we can use the results for £ = 3 in Section 2.4.1:
ST < 4- ([ — [)) + 3 or 18] < (3- [ = 2)([] ) + []3¢+ 1- In both cases.
S| < Ok1 + " +2¢° + 3¢ = f(k.q).

To conclude this section we give a theorem which summarizes the cases studied in this
section.

Proposition 32. [Using Notation 16] In the projective space PG(n, q), withn > k+2 and
k>3, let S be a mazimal set of k-spaces pairwise intersecting in at least a (k — 2)-space
such that S contains three k-spaces A, B, C, with dim(ANBNC) =k —4, and such that
|S| = f(k,q). Then we have one of the following possibilities:

i) there are no k-spaces of S outside of (A, B) and S is Example 9(x),
ii) dim(a) =k —1 and S is Example 9(v),
iii) dim(a) =k and S is Ezample 9(iv),

i) dim(a) =k + 1 and S is Example 9(vi).

3 Every three elements of S meet in at least a (k — 3)-space

Throughout this section we suppose that every three elements of S meet in at least a
(k — 3)-space. Moreover, to avoid trivial cases, we can suppose that there exist two k-
spaces in § intersecting in precisely a (k — 2)-space. We can find those two k-spaces as
otherwise all subspaces would pairwise intersect in a (k —1)-space and the classification in
this case is known: all the k-spaces go through a fixed (k — 1)-space or all the k-spaces lie
in a (k4 1)-dimensional space, see Theorem 6. We also suppose that S is not a (k—2)- or
a (k — 3)-pencil as in this case either S is Example 9(i) or we can investigate the quotient
space and use the known Erdés-Ko-Rado results [8]. We begin this section with a useful
lemma.

Lemma 33. Let S be a maximal set of k-spaces in PG(n,q) pairwise intersecting in at
least a (k — 2)-space such that for every X,Y,Z € &, dm(X NY NZ) > k — 3, and
such that there is no point contained in all elements of S. Then there exist three elements
A, B,C of S such that

a) m=ANBNC is a (k— 3)-space,

b) at least two of the three subspaces Tap = AN B,mgc = BNC,mac = ANC have
dimension k — 2, and at most one of them has dimension k — 1.

¢) ¢ ={map,TBC,Tac) has dimension k or k + 1.

Every k-space in S not through m meets the space ( = (Tap,Tpc,Tac) in at least a
(k — 1)-space.
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Proof. 1f every three k-spaces in S meet (at least) in a (k — 2)-space, then S is a (k — 2)-
pencil, and so there is a point contained in all the k-spaces of §. Therefore, there exist
three elements A, B, C' € S such that 1 = ANBNC is a (k— 3)-space. Let map = AN B,
mpc = BN C and mac = ANC, and let ( = (map, e, Tac). Note that at least two
of the three subspaces mag, o, Tac have dimension k — 2. Otherwise, if, for example,
dim(map) = dim(mac) = k — 1, then the k-space A contains two (k — 1)-spaces, m4p and
Tac, meeting in at most (k — 3)-space, a contradiction. W.l.o.g. we can suppose that
dim(map) = dim(mac) = k — 2 and dim(7wpe) € {k — 1,k — 2}. This also implies that the
dimension of ( is at most £+ 1. On the other hand, note that ¢ has at least dimension &.
Otherwise, if ( = (map, ™o, Tac) is a (k — 1)-space, then ¢ = (map, mac) and so ( C A.
By the same argument, ( C B, and ( C C. Hence, ( C AN BN C = 7, a contradiction.
CASE 1. Suppose that map, mac and wpe are (k — 2)-spaces. Then, ( is a k-space and
consider a k-space G in § not through w. This k-space exists since there is no point
contained in all elements of S, and hence not all elements of S contain 7. Then G meets
min a (k —4)-space mg and it contains at least a (k — 3)-space of map, Tpc and mac. This
follows since any three elements of S meet in at least a (k — 3)-space and 7 ¢ G. Since
the three subspaces G N 7wap, G N e and G N mae have dimension at least k — 3, since
they pairwise meet in the (k — 4)-space mg, and since map, Tac and Tpo span at least a
k-space, G contains the subspace (G N wap, G N, G N Tac), with at least dimension
k—1,in (.

CASE 2. Suppose that dim(7map) = dim(7mac) = k — 2 and dim(7pc) = k — 1. They meet
in the (k — 3)-space m. Now, ( is a (k+ 1)-space and consider a k-space G not through .
As before G meets 7 in a (k — 4)-space; the spaces GNmap and GN7mac are (k— 3)-spaces
otherwise G goes through 7 and finally dim(G N7ge) € {k — 3,k — 2}.

Case 2a. dim(G N7mpe) = k — 3. Then G N myae and G N wpe cannot be contained
in map otherwise dim(G N7w) = k — 3. Hence, G N mac, G Nwpc and G N myp are
linearly independent spaces (i.e. the span of two of them does not meet the other space)
(k — 3)-spaces pairwise intersecting in G N 7. Therefore

dim(ﬂ'ABﬂG,ﬂ'AcﬂG,ﬂ'BcﬁG> =k—1.

Case 2b. dim(G N7e) = k — 2. Note that G N e cannot meet w45 in a (k — 3)-space,
otherwise G goes through . Then, again G N7mxy with {X,Y} C {A, B,C} are linearly
independent spaces (k — 3)-spaces pairwise intersecting in G N7 and

dim<ﬁABﬂG,WACmG,WgcﬂG> =k.

Hence, the k-space G is inside of (.
So, in any case, we get that a k-space not through = meets ¢ in at least a (k — 1)-space.
O

Theorem 34. Let S be a maximal set of k-spaces pairwise intersecting in at least a (k—2)-
space in PG(n,q). If for every three elements X,Y,Z of S: dim(XNY NZ) > k—3, and

if there is no point contained in all elements of S, then S is one of the following examples:
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(i) Ezample 9(ii): Star.
(i1) Ezample 9(iii): Generalized Hilton-Milner example.

Proof. From Lemma 33, it follows that we can suppose that there are three k-spaces
A, B,C with dim(ANBNC) =k — 3, dim(nap) = dim(rac) = k — 2 and dim(7pc) €
{k—1k—2}

CASE 1. dim(mpc) = k — 2. In this case we know, again from Lemma 33, that ( =
(Tap, Tac, Tec) has dimension k£ and that any element of S, not through = AN BNC,
meets € in at least a (k — 1)-space.

Case 1.1. Suppose that there exists a k-space D, not containing m, with dim(DNA) =
dim(DNB) =dim(DNC) =k —2. Let map, mpp and mcp be these (k — 2)-spaces. Note
that each of them contains the (k — 4)-space mp = D N« and that they are contained in
(. We prove that all elements of S meet ¢ in at least a (k — 1)-space. From Lemma 33,
it follows that we only have to check that all elements of S through 7 have this property.
Let E be a k-space in S through m. Then E contains a (k — 3)-space of map, mpp and
mop- At least two of these (k — 3)-spaces are different, since 7 is not contained in D, and
span together with 7 at least a (k — 1)-space contained in the k-space (. Hence, every
k-space of S meets ( in at least a (k — 1)-space. Then S is Example 9(ii).

Case 1.2. There exists no k-space D in S, not containing m, with dim(D N A) =
dim(DNB)=dim(DNC) =k —2.

In this case we will prove that if not every k-space of S meets ¢ in a (k — 1)-space,
that then S is the second example described in the theorem. Let D be a k-space of S
not containing 7 and meeting A, B or C' in a (k — 1)-space. W.l.o.g. we can suppose that
C N D is the (k — 1)-space mcp and that AN D and BN D are (k — 2)-spaces (m4p and
mpp respectively). Note that these subspaces map, mpp, Tcp contain the (k — 4)-space
mp = D Nx and that map, 7pp C (. This follows since D meets mapg, Tac, e in a
(k — 3)-space, and D N7ap and D N myc span map. The same argument holds for the
space B. Suppose that S is not a Star, then there exists no k-space v such that each of
S meets 7y in at least a (k — 1)-space. In particular there exists a k-space F' € S that
meets ¢ in (at most) a (k — 2)-space. As every k-space in S, not containing 7, meets ¢ in
a (k — 1)-space (Lemma 33), we see that F' contains 7. Now, since every three elements
of § meet in a (k — 3)-space, F' also contains a (k — 3)-space of the two (k — 2)-spaces
wap and wpp in ¢ (Tapr, Tepr respectively). As F has no (k — 1)-space in common with
¢, and since wap,mgp C (, Tcp Q ¢, we find that mapr = mgpr = map N D and that
mepr € ¢. Hence, FN(¢ =map and CNF = (mepp, 7). Let v = (¢,C). Then we prove
that every k-space in S is contained in v or contains m4p and meets v in a (k — 1)-space.
Every k-space in S containing 745 must contain at least a (k — 2)-space of C'. Hence, this
k-space meets v in at least a (k — 1)-space. Consider now a k-space E € S not through
map. From the arguments above it follows that, if 7 C E, then E C v. Indeed, if 7 € E,
then, by Lemma 33, F contains a (k — 1)-space in ¢ and a point in C'\ ¢ as otherwise we
have Case 1.1, and so S would be a Star, a contradiction. Hence, £ C v.

CASE 2. For every three k-spaces X,Y,Z € S, we have that dim(X NY NZ) > k—2
or two of these spaces meet in a (k — 1)-space. Since we suppose that there is no point
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contained in all elements of &, we see that not every three elements meet in a fixed
(k — 2)-space. Recall that AN B = map is a (k — 2)-space. Hence, every other element
of S contains m4p or meets A or B in a (k — 1)-space. Note that the elements of S, not
through 7ap, are contained in (A, B). By Example 9(z), we may suppose that not all
elements of S are contained in (A, B). Hence, let D € S be a k-space not contained in
(A, B).

If DNA = DnN B = map then, by symmetry, it follows that every element of S,
not through m4p, meets two of the three elements A, B, D in a (k — 1)-space. This is a
contradiction since a k-space cannot contain two (k—1)-spaces, meeting in a (k— 3)-space.
Hence, every k-space in S, not in (A, B), meets A or B in a (k — 1)-space through m4p.
W.lo.g. we suppose that BN D = wgp is a (k — 1)-space, and so AN D = 7ap = Tap.
Consider now an element E € S not through m45. Then, £ C (A, B), and since both
A, B and A, D meet in a (k — 2)-space, E contains a (k — 1)-space in A or F contains a
(k — 1)-space in both D and B. Note that £ cannot contain a (k — 1)-space of D, since
E C (A,B), but DN (A, B) is a (k — 1)-space through w45 2 E. Hence, E must contain
a (k — 1)-space of A and a (k — 2)-space of BN D and so every element of S, not through
TAB, is contained in v = (A, mpp).

To conclude this proof, we show that every element of S, through 745, meets v = (A, 15p)
in at least a (k — 1)-space, which proves that S is the Generalized Hilton-Milner example.
So, consider a k-space F' € S, map C F. Then F must contain a (k — 2)-space mgp of E.
Hence, F' contains the (k — 1)-space (rgr, map) C (A, D). O

4 There is at least a point contained in all k-spaces of S

To classify all maximal sets of k-spaces pairwise intersecting in at least a (k —2)-space, we
also have to investigate the families of k-spaces such that there is a subspace contained
in all its elements.

More precisely, in this section we will consider a set S of k-spaces of PG(n,q) such that
there is at least a point contained in all elements of §. So, let g, with 0 < g < k — 3, be
the dimension of the maximal subspace v contained in all elements of S. In the quotient
space of PG(n,q) with respect to ~, the set S of k-spaces corresponds to a set T of
(k—g—1)-spaces in PG(n—g—1, ¢) that pairwise intersect in at least a (k— g — 3)-space,
and so that there is no point contained in all elements of 7. Since we are interested in
sets S of k-spaces with |S| > f(k,q), this corresponds with sets 7 of (k — g — 1)-spaces
with [T > f(k,q).

Since f(k,q) > f(k—g—1,q),if k—g—1 > 2, we can use Theorem 32 and Theorem 34
for the sets T in PG(n — g — 1, ¢). For each example we show that it can be extended to
one of the examples discussed in the previous sections.

1. T is the set of k’-spaces of Theorem 32(i), so that 7 is Example 9(x) : There exists a
(k"4 2)-space p’ such that T is the set of all k’-spaces in p. Then § can be extended
to Example 9(x) in PG(n, q), with p = (o', 7).
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2. T is the set of k’-spaces of Theorem 32(ii), so that 7 is Example 9(v) : There are
a (k' + 2)-space p/, and a (k' — 1)-space o/ C p’ so that T contains all k’-spaces in
¢’ that meets o/ in at least a (k' — 2)-space, and all k’-spaces in PG(n — g — 1,¢q)
through /. Then S can be extended to Example 9(v) in PG(n, q), with p = (o', )
and a = (o, 7).

3. T is the set of k'-spaces of Theorem 32(iii), so that 7 is Example 9(iv) : There
are a (k' + 2)-space p/, a k’-space o C p’ and a (k' — 2)-space 7’ C o' so that T
contains all k’-spaces in p’ that meets o/ in at least a (k' — 1)-space, all k’-spaces in
p' through 7/, and all k’-spaces in PG(n—g— 1, q) that contain a (k' — 1)-space of o/
through 7’. Then S can be extended to Example 9(iv) in PG(n, ¢), with 7 = (7’,~),
p={p,7) and a = (a, 7).

4. T is the set of k’-spaces of Theorem 32(iv). Since we suppose that |S| = |[T| >
f(k,q), we know that 7 is Example 9(vi): There are two (k' + 2)-spaces pi, ph
intersecting in a (k4 1)-space o = piNp). There are two (k' —1)-spaces 7y, 75 C o/,
with 7y N7l the (k'—2)-space I, there is a point P’ € o/\(n'y, 7)), and let Py, Py, C I’
be two different (k" — 3)-spaces. Then 7 contains

o all k’-spaces in o/,

o all k’-spaces through (P’ l),

o all k’-spaces in p} through P’' and a (k' — 2)-space in 7/, through P,

o all k’-spaces in p} through P’ and a (k' — 2)-space in 7y through Py,

(K = 2)-

o all k'-spaces in pj through P’ and a (k' — 2)-space in 7z through P.

o all k’-spaces in pl, through P’ and a -space in 7', through Py,

Then S can be extended to Example 9(vi) in
I = <l > a = <O/77>7 p1 = <p/177> and

<Pé7 >7 TA = <7TAa’y>7 T™B = <7TBa >
p2 = (ph,7)-

5. T is the set of k’-spaces of Theorem 34(i): There exists a k’-space ' such that T is
the set of all k’-spaces that have a (k' — 1)-space in common with ¢’. Then S can
be extended to example (i) in Theorem 34 with ¢ = (¢’,7).

6. 7 is the set of k’-spaces of Theorem 34(ii): There exists a (k' + 1)-space v/ and a
(k' — 2)-space ' C v such that 7T consists of all k’-spaces in v/, together with all
k'-spaces through 7’ that intersect v/ in at least a (K — 1)-space. Then S can be
extended to example (i7) in Theorem 34 with v = (V/,v), 7 = (7', 7).

We note that if 7 is one of the set of k’-spaces described in Section 2.4 then S can
be extended to a set S’ of k-spaces pairwise intersecting in a (k — 2)-space such that
S’ contains three k-spaces that meet in a (k — 4)-space with dim(a) = k + 2. Hence,
|S’| < f(k,q) and so these sets T do not lead to large examples of S.
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If k—g—1=2, the set T is a set of planes in PG(n — k + 2, ¢) pairwise intersecting
in at least a point, i.e. an Erdds-Ko-Rado set of planes. In [3, Section 6], Blokhuis
et al. classified the maximal Erdés-Ko-Rado sets 7 of planes in PG(5,¢q) with |T| >
3¢*+3¢*>+2¢*+q+1. In [8], M. De Boeck generalized these results and classified the largest
examples of sets of planes pairwise intersecting in at least a point in PG(n,q),n > 5.
Below we retrace the examples in [3] and [8] with size at least f(k,q) and such that there
is no point contained in all their elements. For each example, we show that it can be
extended to one of the examples discussed in the previous sections, or that it gives rise
to a new maximal example.

a)

T is the set of planes of Example IT in [8]: Consider a 3-space o and a point Py € o.
Let 7 be the set of all planes that either are contained in o or else intersect o in
a line through P,. Then S can be extended to example (i7) in Theorem 34, with
the (k + 1)-space spanned by ¢ and «, and map = (v, P).

T is the set of planes of Example I1] in [8]: Consider a plane m, then T is the set
of planes meeting 7 in at least a line. Then S can be extended to example (7) in
Theorem 34 with ¢ the k-space spanned by 7 and 7.

T is the set of planes of Example IV in [8]: Consider a 4-space 7, a plane § C T
and a point Py € 6. Then 7T is the set containing the planes in 7 intersecting ¢ in a
line, the planes intersecting ¢ in a line through P, and the planes in 7 through F,.
Then we can refer to Subsection 2.2 and so S can be extended to Example 9(iv),
with p = (7, 7), a = (7,0) and 7 = (v, ).

T is the set of planes of Example V' in [8]: Consider a 4-space 7, and a line [ C 7.
Then 7T is the set containing the planes through [ and all planes in 7 containing a
point of [. Then we can refer to Subsection 2.1 and S can be extended to Example
9(v), with p = (y,7) and a = (v, ).

T is the set of planes of Example VI in [8]: Let 7, and 7 be two 4-spaces such
that ¢ = 7 N 7y is a 3-space. Let m; and my be two planes in ¢ with intersection
line [y and let P; and P, be two different points on ly. Then 7 is the set of planes
through [y, the planes in o, the planes in 71 containing a line through P; in m; or a
line through P, in 7, and the planes in 75 containing a line through P; in m or a
line through P in m;. Then by using Section 2.3.1, Case 1, S can be extended to
Example 9(vi) with p; = (v, 7;), @ = (v,0), ma = {7, m), 15 = {7, m2), A = (7, o),
A = (v, P1), Ap = (7, P») and P4p a point in +.

T is the set of planes of Example VII in [8]: Let p be a 5-space. Consider a line
I C p and a 3-space o C p disjoint to [. Choose three points P, P, P; on [ and
choose four non-coplanar points Q1, Q2, Q3, Q4 in . Denote l; = Q1Q2, I1 = Q3Qq,
ly = Q1Q3, ls = Q2Q4, I3 = Q1Q4, and I3 = Q2Q3. Then T is the set containing
all planes through [ and all planes through P; in (I,1;) or in (,;), i = 1,2,3. Note
that this set S is the set described in Example 9(ix). We can prove the following
lemma.
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Lemma 35. The set S of k-spaces described in Example 9(iz) is a mazimal set of
k-spaces pairwise intersecting in at least a (k — 2)-space.

Proof. We have to prove that there exists no k-space E in PG(n, ¢), with v € E and
so that E meets all elements of S in at least a (k—2)-space. Suppose there exists such
a k-space FE. As S contains all k-spaces through the (k — 1)-space (v, 1), E contains
a (k — 2)-space mg of (7,1), not through 7. Hence, dim(ENvy) =g —1=%k —4. As
S contains all k-spaces through (v, P,) in the (k + 1)-space (v,1,1;) (or {7,1,1;)), E
contains a (k — 1)-space of each of those (k + 1)-spaces. Consider now the quotient
space PG(n,q)/v, and let £ = (y,E)/v, Q; = (Qi,7)/v, P/ = (P,7)/7, and
I"={(l,7)/7v. Then E'is a solid in PG(n, q) /v through {’ that contains a point of each
of the lines Q;Q%, 1 < i < j < 4, but this gives a contradiction as dim(E’) = 3. [

g) T is the set of planes of Example VIII in PG(n — k + 2,q) in [8]: Consider two
solids o1 and o9, intersecting in a line [. Take the points P; and P, on [. Then T
is the set containing all planes through [, all planes through P; that contain a line
in oy and a line in 09, and all planes through P, in o; of g5. Note that this set S is
the set described in Example9(viii). We can prove that the set S of k-spaces is not
extendable.

Lemma 36. The set S of k-spaces described in Example 9(vii) is a mazimal set of
k-spaces pairwise intersecting in at least a (k — 2)-space.

Proof. We have to prove that there exists no k-space E in PG(n,q), with v ¢ E
and so that F meets all elements of S in at least a (k — 2)-space. Suppose there
exists such a k-space E. As S contains all k-spaces through the (k — 1)-space (7, 1),
E contains a (k — 2)-space 7y of (v,1), not through . Hence, dim(yN E) = k — 4.
As S contains all k-spaces through (v, P,) in the (k + 1)-space (v, 01) (or (v, 02)),
E contains a (k — 1)-space of each of those (k + 1)-spaces. These two (k — 1)-
spaces, o and ao respectively, span F and meet in a (k — 2)-space my. Then we
show that there exists a k-space A € S, containing ~, that meets F in precisely
a (k — 3)-space. Consider the quotient space PG(n,q)/v, and let E' = (v, E)/~,
o; = (oi,)/7, P{ = (Bi,7)/v, A = (A,7)/y and I' = (l,7)/y = (m0,7)/7. Then
E’ is a solid in PG(n,q)/~ through [’ that contains planes o}, o in ¢} and o}
respectively. Note that of Na), =1". Let [; € o] and [ € o}, be two lines containing
P/ so that [y Na) = la Nab = P/, and let A" be the plane spanned by [; and 5.
Then E' N A’ is a point in PG(n,q)/y. Since v C A and v € E we find that
EnAisa (k—3)-space of (v, P1) in PG(n,q), and so these elements of S meet in
a (k — 3)-space, a contradiction. O

h) 7 is the set of planes of Example /X in PG(n —k+2,¢) in [8]: Let [ be a line and
o a solid skew to [. Denote (l,0) by p. Let P, and P, be two points on [ and let

R1 and R, be a regulus and its opposite regulus in o. Then 7T is the set containing
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all planes through [, all planes through P; in the solid generated by [ and a line of
R1, and all planes through P, in the solid generated by [ and a line of R,. Note
that this set S is the set described in Example 9(viii). We can prove the following
lemma.

Lemma 37. The set S of k-spaces described in Example 9(viii) is a mazimal set
of k-spaces pairwise intersecting in at least a (k — 2)-space.

Proof. We have to prove that there exists no k-space E in PG(n,q), with v € E,
and so that F meets all elements of S in at least a (k — 2)-space. Suppose there
exists such a k-space E. Let Ry = {li,ls,...,lg11} and Ry = {Iy, 1, ... ,l_q+1}.
As S contains all k-spaces through the (k — 1)-space (v,l), E contains a (k — 2)-
space my of (v,l), not through v. Hence, dim(y N E) = k — 4. As S contains
all k-spaces through (v, P;) in the (k + 1)-spaces (7,1,1;) (or (v,1,1;)), E contains
a (k — 1)-space of each of those (k + 1)-spaces. Consider now the quotient space
PG(”?Q)/% and let B’ = <77E>/77 l; = <l177>/77 ; = <l277>/77 F)i/ = <R77>/77 and
I'={(l,v)/v = (m,7)/v. Then E’ is a solid in PG(n, ¢q)/~ through [’ that contains
a point of each of the lines I} and I, 1 < i < ¢+ 1, but this gives a contradiction as

dim(E') = 3. 0

We see that example (f), (g) and (h) give rise to maximal examples of sets S of k-spaces
pairwise intersecting in at least a (k — 2)-space, described in Example 9(ix), (vii), (viii)
respectively. From [8], it follows that the number of elements in S equals 6, + 6¢,
On_r, +q* +2¢° + 3¢% and 0,,_;, + 2¢> + 2¢* respectively.

Finally, if K — g — 1 = 1, then g = k — 2 and so, there is a (k — 2)-space contained in
all solids of S. This case gives rise to Example 9(3).

5 Main Theorem

By collecting the results from Propositions 32, Theorem 34 and Section 4, we find the
following result.

Main Theorem 38. Let S be a maximal set of k-spaces pairwise intersecting in at least a
(k — 2)-space in PG(n,q), n > 2k, k > 3. Let

F(kq) = 3¢ +6° +5¢2 +q+1 ifk=3,g=>20rk=4,q=2
" ) O + P+ 263 + 342 otherwise.

If |S| > f(k,q), then S is one of the families described in Example 9. Note that for
n > 2k + 1, the examples (i) — (ix) are stated in decreasing order of the sizes.

Proof. - If there is no point contained in all elements of S and S contains three k-
spaces A, B, C' with dim(ANBNC) = k — 4, then we distinguished the possibilities
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for S depending on the dimension of « = (DN (A, B)| D € '), where 8’ = {D €
S| D ¢ (A, B)}, see Section 2. By Proposition 32, it follows that S is one of the
examples (iv), (v), (vi), (z) in Example 9.

If there is no point contained in all elements of & and if for every three elements
A, B,C in S, we have that dim(AN BN C) > k — 3, then the only possibilities for
S are described in Example 9 (47) and (4i7), see Theorem 34.

If there is at least a point contained in all k-spaces of S, then we refer to Section
4. Let v be the maximal subspace contained in all k-spaces of S, with dim(y) = g.
ThenT = {D/v| D € S} isaset of (k—g—1)-spaces of PG(n—g—1, q) ~ PG(n,q)/y
pairwise intersecting in at least a (k — g — 3)-space. The only examples of sets T
that give rise to maximal examples of sets of k-spaces are described in Section 4
in the examples (f), (g),(h) and when g = k — 3. They correspond to Example
9(i), (ix), (vii), (viii).
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