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Abstract

We characterize the topological configurations of points and lines that may arise
when placing n points on a circle and drawing the n perpendicular bisectors of
the sides of the corresponding convex cyclic n-gon. We also provide exact and
asymptotic formulas describing a random realizable configuration, obtained either
by sampling the points uniformly at random on the circle or by sampling a realizable
configuration uniformly at random.
Mathematics Subject Classifications: 05A99, 60C05

1 Introduction

Let n > 3 and let P1, . . . , Pn be n distinct points on the unit circle, arranged in positive
cyclic order. For all i between 1 and n, denote by Li the perpendicular bisector of the
segment [Pi, Pi+1], with indices taken modulo n. These n lines all go through the center of
the circle. We assume that the points are in generic position, which implies in particular
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that these lines are all distinct and that no point lies on a line. Hence, the n lines divide
the plane into 2n regions. What are the circular arrangements of points in the 2n regions
that can be realized?

Our interest for this question comes from our work [6] on the flip property for s-
embeddings, a geometric integrable system. We were led to consider configurations of
three hyperbola branches B1, B2, B3 and three points P1, P2, P3 such that the foci of Bi

are Pi−1 and Pi+1, with 1 6 i 6 3 and indices taken modulo 3. In the limit when the
hyperbola branches degenerate to the perpendicular bisectors of their foci, we recover the
problem described in the previous paragraph with n = 3.

The rest of this introduction consists in the presentation of our results and is orga-
nized as follows. In Subsection 1.1 we answer the question from the first paragraph by
characterizing the topological configurations of points and lines arising from the n per-
pendicular bisectors of a convex cyclic n-gon. We also enumerate such configurations. A
natural question to ask is what a typical realizable configuration looks like. We tackle this
question under two angles: configurations coming from n uniform random points on the
circle (Subsection 1.2) or configurations chosen uniformly at random among all realizable
configurations (Subsection 1.3). In Subsection 1.4 we compare these two approaches and
we state some open questions.

1.1 Deterministic results

We first characterize the realizable configurations. We number in counterclockwise order
the 2n regions defined by the perpendicular bisectors, the first one being the region that
contains 1. For every 1 6 i 6 2n, we set vi to be the number of points inside the ith region.
It is not hard to see that each region contains at most one point, since two consecutive
points are separated by the perpendicular bisector of the segment connecting them. The
word v = (v1, . . . , v2n) ∈ {0, 1}2n is called the occupancy word of the collection of points
P1, . . . , Pn. In order to characterize the occupancy words that may arise as one lets the
positions of the points vary, we introduce the notion of signature of a word in {0, 1}2n. If
v = (v1, . . . , v2n) ∈ {0, 1}2n is an arbitrary word, its signature σ = (σ1, . . . , σn) ∈ {0, 1, 2}n
is defined by σi = vi + vi+n for every 1 6 i 6 n. See an example in Figure 1.

We now introduce a notion of discrete circular interval. Let N > 1 be an integer and
let 1 6 i, j 6 N be two integers. We define

IN(i, j) =

{i+ 1, i+ 2, . . . , j − 1} if i < j

{1, 2, . . . , j − 1} ∪ {i+ 1, i+ 2, . . . , N} if i > j.

In particular when i = j we have IN(i, i) = {1, . . . , N} \ {i}.
A word s = (s1, . . . , sn) ∈ {0, 1, 2}n is called interlacing if it satisfies the following two

properties:

1. there exist two integers 1 6 i, j 6 n such that si = 0 and sj = 2 ;

2. for every pair of integers (i, j) with 1 6 i, j 6 n such that si = sj = 0 and sk 6= 0
for all k ∈ In(i, j), there exists a unique k0 ∈ In(i, j) such that sk0 = 2.
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Figure 1: An example with n = 9. The black dots correspond to the points
P1, . . . , P9 and the white dots correspond to the antipodes of the black dots. Here
v = (0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1) is the occupancy word (which counts the
number of black dots in each region) and its signature is σ = (1, 0, 1, 1, 2, 1, 1, 0, 2). The
signature counts the number of black and white dots in each region.

Note that an interlacing word takes the values 0 and 2 an equal number of times. We
can now characterize the words that may arise as the occupancy word of some collection
of points P1, . . . , Pn. We call such words realizable.

Theorem 1. A word u = (u1, . . . , u2n) ∈ {0, 1}2n is realizable if and only if its signature
is interlacing.

In order to get rid of the arbitrary choice of the position on the circle at which we start
reading the word, as well as the choice of an orientation of the circle, we will consider
bracelets, which are equivalence classes of words considered up to cyclic shifts and reversal
(see e.g. [3]). We denote by Bn (resp. Wn) the set of realizable bracelets (resp. words) of
length 2n.

Theorem 1 seems to be new even in the case n = 3. We can state a finer version of
this result in that case. If A and B are two points in the plane, we denote by |AB| the
Euclidean distance between A and B.

Proposition 2. Let A,B,C be three points in the plane with |AB| < |BC| < |CA|. Then
the three perpendicular bisectors of the triangle ABC divide the plane into six regions
satisfying the following properties:

• A and B lie in two consecutive regions;

• the regions containing B and C are separated by one empty region;
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Figure 2: For n = 3, there is only one realizable bracelet, shown on the left. The
topological configuration on the right is impossible to achieve with the lines being the
perpendicular bisectors of the segments.

• the regions containing C and A are separated by two empty regions.

In particular, the equivalence class of (0, 1, 0, 0, 1, 1) is the only realizable bracelet for
n = 3.

The proof is elementary and goes along the following lines: for each triple consisting
of two points and a line, determine whether the line separates the points by using the
inequalities |AB| < |BC| < |CA|. Note that there are only three bracelets composed of
three 0’s and three 1’s, namely the equivalence classes of (0, 1, 0, 0, 1, 1), (0, 1, 0, 1, 0, 1)
and (0, 0, 0, 1, 1, 1). The last bracelet is clearly not realizable, otherwise all three points
would lie on one side of one of the perpendicular bisectors. Proposition 2 implies that the
bracelet of (0, 1, 0, 1, 0, 1) (see Figure 2, right) is not realizable. Figure 2, left, depicts a
realization of (0, 1, 0, 0, 1, 1).

We now provide an enumerative result for realizable words and bracelets. It follows
from Theorem 1 and is to be compared with the total number of words of length 2n
containing n ones and n zeros, which is known to be

(
2n
n

)
= 4n(1+o(1)) by Stirling’s formula.

Corollary 3. The number of realizable words is

#Wn = 3n − 2n+1 + 1.

As a consequence, the exponential growth rate of the number of realizable bracelets is equal
to 3, that is, #Bn = 3n(1+o(1)).

The sequence (#Wn)n>1 is listed in the Online Encyclopedia of Integer Sequences [9]
(OEIS) under the number A028243 and corresponds to twice the Stirling numbers of
second kind.

The sequence (#Bn)n>3 was absent of the OEIS before our work, so we added it under
the number A350280, computing the first few terms using a brute-force algorithm, see
Table 1. After this addition, OEIS editor A. Howroyd was able to compute many more
terms by finding an explicit formula for #Bn, which follows from Theorem 1, Corollary 3
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n 3 4 5 6 7 8 9 10 11 12
#Bn 1 5 9 30 69 203 519 1466 3933 11025

Table 1: First terms of the sequence (#Bn)n>3 counting the number of realizable bracelets.

and Burnside’s lemma. For completeness, we state this formula here without proof. Let
φ denote Euler’s totient function.

Corollary 4 ([9, Sequence A350280]). For n > 3, if n is odd,

#Bn = 1
4n

∑
d|n
φ
(
n

d

) (
3d − 2d+1 + 1

)
,

and if n is even,

#Bn = 3n
2−1 + 1

2 + 1
4n

∑
d|n,
n
d

odd

φ
(
n

d

) (
3d − 2d+1 − 1

)
.

Theorem 1 and Corollary 3 are proved in Section 2.

1.2 Uniformly random points on the circle

We now turn to the first of two natural models for sampling random realizable words or
bracelets. Let n > 3. Select n i.i.d. points uniformly at random on the circle and consider
the realizable word u obtained from it. For any bracelet b ∈ Bn, we denote by P(b) the
probability of achieving b via n i.i.d. uniform random points.

Proposition 5. For every n > 3 and b ∈ Bn, P(b) is a rational number.

The exact computation of P(b) for a fixed b is possible but the technique we use requires
to compute a number of integrals which is exponential in the number of occurrences of the
letter 2 in the signature of b. We provide such a computation in a special case. For every
n > 3, define the bracelet bn ∈ Bn to be the equivalence class of (1, 0, 1, . . . , 1, 0, . . . , 0),
which is the word composed of a 1, followed by a 0, then n− 1 1’s and finally n− 1 0’s.

Proposition 6. For every n > 3, we have

P(bn) = n

3 · 22n−6 .

Beyond the probability of individual bracelets, we provide simple exact formulas for
the expectations of some statistics. For every k ∈ {0, 1, 2}, a region in a configuration
is said to be of type k if the total number of points contained in the union of the region
with its antipodal region is k. In other words, a region of type k corresponds to a value
of k in the signature of the word describing the configuration.
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For every k ∈ {0, 1, 2} and n > 3, denote by Hk,n the random variable defined as the
number of regions of type k in a configuration associated with n i.i.d. uniform random
points. It follows from the interlacing condition of Theorem 1 that H0,n = H2,n. Since
there are 2n regions in total we also have that H1,n = 2n− 2H2,n. We prove the following
for the expectation of Hk,n, with k ∈ {0, 1, 2}:

Theorem 7. For every n > 3, we have

E[H0,n] = E[H2,n] = n

2

(
1 + 1

3n−2

)
,

E[H1,n] = n
(

1− 1
3n−2

)
.

We also provide a formula for the expected total lengths of the arcs corresponding to
regions of type k. Here we rescale the distances on the circle so that the total length of
the circle is 1.

For every k ∈ {0, 1, 2} and n > 3, denote by Lk,n the random variable defined as the
sum of the lengths of all the regions of type k.

Theorem 8. For every n > 3, we have

E[L0,n] = 3n−1 + 2n− 7
8 · 3n−1 ,

E[L1,n] = 3n−1 − n− 1
2 · 3n−1 ,

E[L2,n] = 3n + 2n+ 11
8 · 3n−1 .

Each region either contains a single point or is empty. For n points on the circle,
there are exactly n occupied regions and n empty regions. Denote by Le,n the sum of
the lengths of the empty regions. Since Le,n = L0,n + L1,n

2 , we deduce the following from
Theorem 8:

Corollary 9. For every n > 3, we have

E[Le,n] = 3
8 −

1
8 · 3n−3 .

The quantity E[Le,n] can be interpreted as the probability of landing in an empty region
when selecting a location uniformly at random on a circle with n uniformly random points.

From the formulas for fixed n, we immediately deduce the first order asymptotic
behavior as the number of points n goes to infinity.

Corollary 10. We have the following asymptotic results for n uniform i.i.d. points on
the circle in the limit when n tends to infinity:

1. the asymptotic fraction of the number of regions of type 0, 1 and 2 is respectively 1
4 ,

1
2 and 1

4 ;
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2. the asymptotic fraction of the length covered by regions of type 0, 1 and 2 is respec-
tively 1

8 , 1
2 and 3

8 ;

3. the asymptotic fraction of the length covered by empty regions is 3
8 .

For every k ∈ {0, 1, 2} we show in addition that, for the model of uniform random
points, the regions of type k are asymptotically equidistributed around the circle, when
we consider either their cardinality or their total length. Roughly speaking, the numbers
and total lengths of regions of each type in a given portion of the circle are asymptotically
proportional to the size of this portion. Specifically, for every k ∈ {0, 1, 2} and t ∈ [0, 1],
we define hk,n(t) and `k,n(t) to be respectively the number of regions of type k and the
sum of the lengths of regions of type k which are entirely contained in the arc from 1 to
e2iπt. Note that hk,n(1) = Hk,n and `k,n(1) = Lk,n.

Then, the following holds in the space D([0, 1],R3) of càdlàg functions from [0, 1] to
R3, endowed with the J1 topology (we refer to [4] for more background on that topology).

Theorem 11. The following convergences hold in distribution in the space D([0, 1],R3):

(i) (
h0,n(t)

2n ,
h1,n(t)

2n ,
h2,n(t)

2n

)
06t61

(d)−→
n→∞

(
t

4 ,
t

2 ,
t

4

)
06t61

(ii)

(`0,n(t), `1,n(t), `2,n(t))06t61
(d)−→

n→∞

(
t

8 ,
t

2 ,
3t
8

)
06t61

.

Propositions 5 and 6 as well as Theorems 7, 8 and 11 are proved in Section 3.

1.3 Uniformly random realizable configurations

Another way to study what a typical realizable configuration looks like is to sample a
word or bracelet uniformly at random among all realizable words or bracelets of a given
size.

We prove some asymptotic results for the shape of a realizable word or bracelet sampled
uniformly at random in Wn or Bn. Let w(n) be a random word taken uniformly in the set
of realizable words of length 2n. For x ∈ [0, n] a real number and k ∈ {0, 1, 2}, denote by
F k
x the random variable corresponding to the number of occurrences of the letter k in the

signature of w(n) between positions 0 and bxc. Then the following holds:

Theorem 12. (i) The following holds in probability:(
F 0
n

n
,
F 1
n

n
,
F 2
n

n

)
−→
n→∞

(1
6 ,

2
3 ,

1
6

)
.
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(ii) We have the following convergence in distribution :

2√
n

(
F 0
cn −

cn

6 , F
1
cn −

2cn
3 , F 2

cn −
cn

6

)
06c61

(d)−→
n→∞

(Wc,−2Wc,Wc)06c61

where W is a Brownian motion of variance 2/9.

The first item of Theorem 12 is a law of large numbers while the second item is a
functional central limit theorem. Theorem 12 also holds if we replace a uniformly random
realizable word by a uniformly random realizable bracelet (see Remark 35). Theorem 12
is proved in Section 4. As stated, Theorem 12 describes the shape of the signature of
uniform random realizable word. In Section 4 we actually prove a more refined result,
Theorem 31, which describes the shape of the word itself.

1.4 Discussion of the results and open questions

To conclude this introduction we state a few remarks and open questions.

• We have provided computational evidence for most of the results of this introduc-
tion. It is contained in two supplementary data files. The first file is a code file,
written in SageMath (version 9.2) as a Jupyter notebook. The whole notebook takes
about one hour to be executed on a standard laptop. The second file is an HTML
page that cannot be executed but that allows one to directly visualize the output.
These are available at https://www.combinatorics.org/ojs/index.php/eljc/
article/view/v29i1p59.

• Comparing Corollary 3 with Proposition 6, it is clear that the probability distribu-
tion on realizable words or bracelets obtained by sampling n i.i.d. uniform points on
the circle differs from the uniform distribution whenever n is large enough. Using
the exact initial values of #Bn computed in [9, Sequence A350280] and some simple
inequalities, it is actually possible to show that these two probability distributions
differ for every n > 4.

• Note that for a large bracelet chosen uniformly at random, the asymptotic fraction
of regions of type 2 is 1

6 while for a large bracelet constructed from uniform random
points on the circle, that fraction is 1

4 .

• In the case of uniform random points on the circle, we did not manage to prove a
central limit theorem in the vein of Theorem 12 (ii), although we conjecture that
such a statement should hold.

• All the formulas of probabilities and expectations in the model of n uniform random
points for fixed n (namely those of Proposition 6, Theorems 7 and 8 and Corollary 9)
are very compact, yet their proofs involve quite lengthy computations. It would be
interesting to find shorter and more conceptual proofs of these formulas.
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• As a generalization of Theorem 1, it would be interesting to characterize the occu-
pancy words arising when we drop the requirement for the points Pi to be arranged
in cyclic order. As shown on Figure 3, in that case the occupancy word may have
letters greater than 1.

P1

P2 P3

P4

Figure 3: An example with n = 4 where the points Pi are not in cyclic order. Here the
occupancy word is (2, 0, 1, 0, 0, 0, 1, 0).

Organization of the paper

In Section 2 we prove Theorem 1 about the characterization of realizable words and Corol-
lary 3 about their enumeration. In Section 3 we study the model of uniform random points
on the circle and prove the results about this model presented in the introduction. Finally
in Section 4 we prove Theorem 12 describing a large realizable word chosen uniformly at
random.

2 Characterization and enumeration of realizable words

In Subsection 2.1, we prove one direction of Theorem 1: the interlacement condition is
necessary for a realizable word. The converse is proved in Subsection 2.2, using an explicit
procedure to construct points from a given word with interlacing signature. Finally in
Subsection 2.3 we prove Corollary 3 about exact and asymptotic enumeration results.

2.1 Necessary condition for a realizable word

The unit circle may be identified to the half-open interval (0, 1] via the inverse of the map
x 7→ e2iπx. Denote by p1, . . . , pn the n elements of (0, 1] corresponding to the n points
P1, . . . , Pn. For every 1 6 i 6 n define the midpoints

li =


pi+pi+1

2 if pi < pi+1
1+pi+pi+1

2 mod 1 if pi > pi+1

where the representative modulo 1 is taken to be in (0, 1] and the indices are considered
modulo n.
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Up to applying a rotation of the circle, one may assume that ln = 1. Then we have

0 < p1 < l1 < p2 < l2 < · · · < ln−1 < pn < ln = 1.

The inequalities are strict because of the genericity assumption.
Define also for every 1 6 i 6 n, p′i = pi + 1

2 mod 1 and l′i = li + 1
2 mod 1, the

representatives being taken in (0, 1]. Write P = {p1, . . . , pn}, P ′ = {p′1, . . . , p′n}, L =
{l1, . . . , ln} and L′ = {l′1, . . . , l′n}. Let (mi)16i62n be the reordering of the li and l′i, that is,

{mi}16i62n = L ∪ L′

and
0 < m1 < m2 < · · · < m2n−1 < m2n = 1.

Here again the inequalities are strict by the genericity assumption. We also set m0 = 0.
Similarly, let (qi)16i62n be the reordering of P ∪ P ′. For any 1 6 i 6 2n, we have

vi = #[mi−1,mi] ∩ P .

Thus for any 1 6 i 6 n, the signature σ of the occupancy word associated to P satisfies

σi = # ([mi−1,mi] ∪ [mi+n−1,mi+n]) ∩ P .

Note that for every 1 6 i 6 n,

σi = #[mi−1,mi] ∩ (P ∪ P ′) .

For any (a, b) ∈ (0, 1]2 define the circular distance

d(a, b) = min(|b− a|, 1− |b− a|)

to be the distance between a and b measured on the circle obtained by identifying the two
endpoints of the interval [0, 1]. We also introduce a notion of circular interval defined as
follows. Let a and b be two elements of (0, 1]2 and define the circular interval

I(a, b) =

(a, b) if a 6 b

(0, b) ∪ (a, 1] if a > b.

We similarly define I[a, b) to be the circular counterpart for the half-open interval [a, b).
In the remainder of this section, the indices of q (resp. σ) will be considered modulo

2n (resp. n) and the real numbers of the form q − 1
2 and q + 1

2 should be understood as
the representative in (0, 1] of an equivalence class modulo 1.

Let p ∈ P . We define C(p) to be the element x′ ∈ P ′ which minimizes d(p, x′). By
the genericity assumption, C(p) is uniquely defined. Similarly for any p′ ∈ P ′, we define
C(p′) to be the element x ∈ P which minimizes d(p′, x). For any q ∈ P ∪ P ′, when C(q)
belongs to I(q, q + 1

2) (resp. I(q − 1
2 , q)), we say that q looks to its right (resp. left) and

we write it D(q) = R (resp. D(q) = L).
Our aim in this subsection is to prove the following.
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L R L L R R R LRL

11 0 2 1 0 1 1 1 2

Figure 4: A configuration on a portion of (0, 1]. The black (resp. white) dots represent
elements of P (resp. P ′), and the vertical solid (resp. dashed) lines represent elements of
L (resp. L′). From each dot q, the arrow is directed towards C(q), and above it, the value
of D(q) is written. Below each region, the corresponding letter in σ is indicated.

Proposition 13. Let u be the occupancy word associated to a collection of points in cyclic
order. Then the signature σ of u is interlacing.

A key observation in this article is that the occurrences of 2 (resp. 0) in σ exactly
correspond to the occurrences of the pattern RL (resp. LR) in the successive values
of (D(qi))i=1,...,2n, observation which is made explicit in Lemmas 14 and 15 (resp. in
Lemma 16).

Lemma 14. Let 1 6 i 6 2n and assume that D(qi) = R and D(qi+1) = L. Then exactly
one of qi and qi+1 belongs to P, and we have C(qi) = qi+1 and C(qi+1) = qi.

Proof. Up to performing a rotation of the circle, one may assume that qi < qi+1 (this is
needed to take into account the case i = 2n). Reason by contradiction and assume that
both qi and qi+1 are in P . Since qi+1 ∈ P , we cannot have C(qi) = qi+1, and it follows
from the fact that I(qi, qi+1) ∩ P ′ = ∅ that C(qi) ∈ I(qi+1, qi+1 + 1

2). The element of P ′
in I(qi+1, qi+1 + 1

2) which is closest to qi is also the closest to qi+1, hence C(qi+1) = C(qi),
so that C(qi+1) belongs to I(qi+1 − 1

2 , qi+1) ∩ I(qi+1, qi+1 + 1
2) = ∅, which leads to a

contradiction. Similarly, qi and qi+1 cannot both be in P ′. The last two statements of the
lemma follow from the fact that I(qi, qi+1) ∩ (P ∪ P ′) = ∅.

Lemma 15. Let p ∈ P and x′ ∈ P ′ be such that x′ = C(p) and p = C(x′). Let also
1 6 i 6 2n be such that p ∈ [mi−1,mi]. Then σi = 2. Conversely, let 1 6 i 6 2n be such
that σi = 2 and denote by p ∈ P and x′ ∈ P ′ the two elements of [mi−1,mi] ∩ (P ∪ P ′).
Then x′ = C(p) and p = C(x′).

Proof. Assume that x′ = C(p), p = C(x′) and take i such that p ∈ [mi−1,mi]. The point
p is the element of P closest to x′, hence no element of L separates x′ from p. Similarly,
since x′ is the element of P ′ closest to p, no element of L′ separates p from x′. Thus
x′ ∈ [mi−1,mi] and σi = 2.

Conversely, let 1 6 i 6 2n be such that σi = 2 and denote by p ∈ P and x′ ∈ P ′
the two elements of [mi−1,mi] ∩ (P ∪ P ′). If we had C(x′) 6= p, then the perpendicular
bisector of C(x′) and p would separate x′ from p, which is not the case. So C(x′) = p and
similarly C(p) = x′.
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Lemma 16. Let 1 6 i 6 2n be such that D(qi) = L and D(qi+1) = R. Then there exists
a unique 1 6 j 6 2n such that mj and mj+1 are both in I(qi, qi+1), and this j satisfies
σj+1 = 0. Conversely, assume that 1 6 j 6 2n is such that σj+1 = 0. Denote by qi the
largest element of P ∪ P ′ smaller than mj. Then D(qi) = L and D(qi+1) = R.

Proof. Let 1 6 i 6 2n be such that D(qi) = L and D(qi+1) = R. We distinguish three
cases.

The first case is when qi and qi+1 are of different types, that is, one belongs to P and
the other to P ′. By symmetry we may assume that qi ∈ P ′ and qi+1 ∈ P . An example
can be seen around the leftmost empty region in Figure 4. Since D(qi) = L, we have that
C(qi) and qi+1 are two consecutive elements in P . Hence M := C(qi)+qi+1

2 ∈ L. Since qi is
closer to C(qi) than to qi+1, we have that M ∈ I(qi, qi+1) and M is the only element of L
in I(qi, qi+1). A similar argument shows that M ′ := qi+C(qi+1)

2 is the only element of L′ in
I(qi, qi+1). Hence I(qi, qi+1) contains exactly two elements of L ∪ L′. Denoting them by
mj and mj+1, we conclude that σj+1 = 0.

The second case is when qi and qi+1 both belong to P (see for example the configuration
around the second 0 in Figure 4). Then qi+qi+1

2 is the only element of I(qi, qi+1) ∩ L.
Furthermore, C(qi) and C(qi+1) are consecutive elements in P ′, so M ′′ := C(qi)+C(qi+1)

2 ∈
L′. Since qi is closer to C(qi) than to C(qi+1), we have that M ′′ ∈ I(qi, qi + 1

2). Since qi+1
is closer to C(qi+1) than to C(qi), we have that M ′′ ∈ I(qi+1− 1

2 , qi+1). So M ′′ is the only
element of I(qi, qi+1) ∩ L′. The conclusion follows as in the first case.

The third case, when qi and qi+1 both belong to P ′, is treated like the second case.
Conversely, assume 1 6 j 6 2n is such that σj+1 = 0. Since two consecutive elements

of L (resp. of L′) must be separated by an element of P (resp. of P ′), we deduce that
among mj and mj+1, one belongs to L and the other to L′. Denote by qi the largest
element of P ∪ P ′ smaller than mj. Then qi+1 is bigger than mj+1. If qi ∈ P , consider
the unique element of L′ ∩ {mj,mj+1}. It is the bisector of two points of P ′ and these
points cannot be in I(qi, qi+1). Moreover, qi is to the left of the bisector. This implies that
D(qi) = L. This works also in the case qi ∈ P ′. Similarly, one shows that D(qi+1) = R.

Remark 17. In particular, Lemmas 14, 15 and 16 imply that the signature of a realizable
word uniquely determines the sequence D(qi)16i62n.

We now prove that at least one region of a realizable word is of type 2.

Lemma 18. There exists 1 6 i 6 n such that σi = 2.

Proof. Consider a pair (p, x′) achieving the minimum

min
q∈P
y′∈P ′

d(q, y′).

Let 1 6 i 6 2n be such that p ∈ [mi,mi+1]. Since C(p) = x′ and C(x′) = p, we deduce
from Lemma 15 that σi = 2.

The next lemma finally shows that, between two regions of type 0, there is always a
region of type 2.

the electronic journal of combinatorics 29(1) (2022), #P1.59 12



Lemma 19. Assume that σ1 = 0 and that there exists 2 6 i 6 n such that σi = 0. Then
there exists 2 6 j 6 i− 1 such that σj = 2.

Proof. Since σ1 = 0, we have q1 > m1 and by Lemma 16 we have that D(q1) = R.
Denote by qr the largest element of P ∪ P ′ smaller than mi−1. By Lemma 16 we have
that D(qr) = L. Denote by k the smallest integer such that D(qk) = L. We have that
2 6 k 6 r. Furthermore, D(qk−1) = R, hence by Lemma 14 we have that C(qk−1) = qk
and C(qk) = qk−1. Let j be such that qk ∈ [mj−1,mj]. Clearly 2 6 j 6 i − 1 and by
Lemma 15 we have that σj = 2.

We now have all the tools to prove Proposition 13:

Proof of Proposition 13. Let P1, . . . , Pn be n points in cyclic order on the circle and let
σ := (σ1, . . . , σn) ∈ {0, 1, 2}n be the signature of their occupancy word. Define s0, s1 and
s2 to be respectively the number of occurrences of the values 0, 1 and 2 in the signature.
Then n = s0 + s1 + s2 and since there are n points, we also have

n =
n∑
i=1

σi = s1 + 2s2.

Combining these two equations we obtain that s0 = s2. From Lemma 18 we get that
s2 > 1. Therefore s0 > 1. Assume that 1 6 i < j 6 n are such that σi = σj = 0 and
σk > 0 for all i < k < j. Up to applying a translation, one may assume that i = 1. By
Lemma 19 we deduce the existence of some k such that 1 < k < j and σk = 2. Given
that s0 = s2, such a k is necessarily unique. Hence we conclude that σ is interlacing.

2.2 Realizing a word with interlacing signature

In this subsection we construct an explicit configuration of points from a word whose
signature is interlacing.

Proposition 20. Let n > 3 and let v = (v1, . . . , v2n) ∈ {0, 1}2n be such that its signature
σ = (σ1, . . . , σn) ∈ {0, 1, 2}n is interlacing. Then there exists a configuration of points on
the circle having v as an occupancy word.

Proof. We fix n > 3 and such a word v. Up to applying a rotation one may assume that
σ1 = 0.

Denote by T (resp. Z) the subset of all 1 6 i 6 2n such that σi = 2 (resp. σi = 0). Here
again the indices of σ are considered modulo n. T and Z are respectively the locations of
twos and zeros. The set {1, . . . , 2n}\(T∪Z) is composed of several connected components,
which are the intervals of integers between two consecutive elements of T ∪ Z (note that
some of these intervals may be empty). We call such a connected component an ascending
component (resp. a descending component) if it is of the form I2n(i, j) with i ∈ Z and
j ∈ T (resp. i ∈ T and j ∈ Z). In particular, for all k ∈ I2n(i, j) we have σk = 1. Defining
s := #T = #Z, we let i1 < · · · < is be the ordering of T , and j1 < · · · < js be the
ordering of Z. In particular, j1 = 1.
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To each 1 6 i 6 2n, we associate a position ri in (0, 1], which in the end of the process
will be the position of a point (resp. the antipode of a point) if vi = 1 (resp. if vi = 0).
The idea is to guarantee that for every h in a descending component I2n(ik, jk+1) (resp. in
an ascending component I2n(jk, ik)), the position rh is closer to rik than to its closest
neighbor on the right (resp. left). Using the terminology of Subsection 2.1, we make sure
that every point or antipode of a point in a descending (resp. an ascending) component
looks to the left (resp. right). We will then check explicitly that the configuration of
points thus constructed has occupancy word v.

First, for all 1 6 k 6 s, we set

rik = k

s
,

rjk =
rik−1 + rik

2 = 2k − 1
2s .

In the definition of rj1 we used the notational convention ri0 = 0. Since s is even, the 2k
points constructed arise in antipodal pairs, but this absence of genericity will not be an
issue. In the last paragraph of the proof we will explain how one can perturb the positions
to make them generic without changing the occupancy word.

Let η > 0 be small enough (η < 1
s2n+2 will suffice for our purposes). For 1 6 k 6 s,

consider the kth descending component, that is, I2n(ik, jk+1). For every h ∈ I2n(ik, jk+1),
we set

rh = rik + η
(
2h−ik − 1

)
= k

s
+ η

(
2h−ik − 1

)
.

Similarly, for 1 6 k 6 s, consider the kth ascending component, that is, I2n(jk, ik). For
every h ∈ I2n(jk, ik), we set

rh = rik − η
(
2ik−h − 1

)
= k

s
− η

(
2ik−h − 1

)
.

rik−1 rikrjk

η2η 4η 2ηηη2η

1/s
Figure 5: Schematic construction of the values of rh, on a descending component
I2n(ik−1, jk) and an ascending component I2n(jk, ik). The multiples of η written below
are distances.

By the symmetry of the word, there cannot be more than n points in a component.
Therefore, in both of those cases,

d(rh, rik) < η(2n − 1) < 1
4s. (1)

Hence the constructed positions of ascending and descending components lie in disjoint
intervals.
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Now let P be the subset of positions {ri | 1 6 i 6 2n, vi = 1}. We claim that this
configuration of points has v as its occupancy word. As in the previous subsection, we set
P ′ = {p + 1

2 , p ∈ P}, and L (resp. L′) the positions of the bisectors of P (resp. P ′). We
also setM to be the collection of L∪L′, possibly with repetitions, since the configuration
constructed may not yet satisfy the genericity assumptions.

We now characterize the positions of these bisectors.
Lemma 21. For every h in a descending (resp. ascending) component, there is a unique
element of M in I(rh−1, rh) (resp. in I(rh, rh+1)). For every 1 6 k 6 s, there are exactly
two elements of M in the set I

(
2k−1

2s −
1
8s ,

2k−1
2s + 1

8s

)
. Moreover, these are all the 2n

elements of M.

Proof of Lemma 21. Let 1 6 k 6 s. Let h be in the descending component I2n(ik, jk+1).
We distinguish two cases, depending on the value of vh.

If vh = 1, then rh ∈ P . Moreover, vik = 1 since ik ∈ T , hence rik ∈ P . Therefore, the
rightmost element of P smaller than rh belongs to the set {rik , rik+1, . . . , rh−1}. Hence
the position mh of the bisector of this point and rh satisfies

rik + rh
2 6 mh 6

rh−1 + rh
2 < rh.

Now notice that the left-hand side is rik + η(2h−ik−1 − 1
2), which is strictly bigger than

rh−1. Hence mh ∈ I(rh−1, rh).
If vh = 0, then as σh = 1, we have vh+n = 1. Hence there is an element of P at position

rh+n, and by the invariance under translation of the word by n, we have rh+n = rh + 1
2 .

Therefore, rh ∈ P ′. Similarly, as σik = 2, we have vik+n = 1 so that rik+n ∈ P and
rik ∈ P ′. From there, we conclude as in the previous case.

For h in an ascending component, the proof is identical.
For the second point of the lemma, consider the index jk ∈ Z.
As both rik−1 and rik belong to P , the elements of P directly to the left and right of

rjk belong, respectively, to {rik−1 , . . . , rjk−1} and to {rjk+1, . . . , rik}. Hence the position
of their bisector mjk ∈ L satisfies

rik−1 + rjk+1

2 6 mjk 6
rjk−1 + rik

2 .

As jk − 1 belongs to the descending component I2n(ik−1, jk), by (1) we have rjk−1 <

rik−1 + 1
4s , hence the right-hand side is smaller than rik−1 +rik

2 + 1
8s , which is the expected

bound. The left-hand side is treated similarly. Then, an identical proof shows that there
is an element of L′ in the same interval.

Clearly the elements of M coming from ascending and descending components are
disjoint. Those coming from the second point are also disjoint among themselves, as even
if two may share the same position, only one of them will belong to L, and the other to
L′. The fact that these two families are disjoint is an easy consequence of (1). Hence we
have constructed two elements of M for each element of Z, and one for each element of
(T ∪ Z)c, which is in total 2(#Z) + 2n− (#T + #Z) = 2n.
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Let w be the occupancy word of P . We now have all the tools to prove that w = v.
For any 1 6 k 6 s, consider the interval I[rik−1 , rik). In that part, the positions and order
of the elements of M are given by Lemma 21: for every h in the descending component
I2n(ik−1, jk) there is one mh ∈ I(rh−1, rh) ∩M; then there are two distinct elements in
mjk ,m

′
jk
∈ I(rjk−1, rjk+1) ∩M; then for every h in the ascending component I2n(jk, ik)

there is one mh ∈ I(rh, rh+1). Thus the part of w corresponding to this interval can be
described as: first a 1 (for the region containing rik−1), then for every h ∈ I2n(ik−1, jk),
either a 1 or a 0 according to the value of vh (as by definition these are the positions
where a point of P has been put), then a 0 (for the region corresponding to mjk ,m

′
jk

),
then for every h ∈ I2n(jk, ik) either a 0 or a 1 according to the value of vh. This is clearly
the same as v at those indices. This being true for any k, by concatenation we get that
w = v.

One issue that may arise is that the configuration constructed above is not generic,
in the sense that two lines may coincide, which occurs for example when a descending
component and the following ascending component are empty. In order to avoid such
issues, we slightly perturb the configuration by fixing ε > 0 and defining for every 1 6
k 6 2n, the position r̃k = rk + kε. For ε small enough (ε < η

2n suffices), the relative
position of the perturbed points and lines is the same as the unperturbed one, while two
lines can no longer coincide.

2.3 Enumerating realizable words and bracelets

We end this section by computing the cardinality of the set #Wn.

Proof of Corollary 3. To choose a realizable word v, one may first choose its interlacing
signature σ. This amounts to choosing an integer 1 6 ` 6 bn2 c such that σ will have 2`
letters 0 or 2 and choose whether the first one is a 0 or a 2. We have 2

(
n
2`

)
choices for

the positions of these letters and the value of the first one. Then for every 1 6 i 6 2n
such that σi = 1 (here the index i is considered modulo 2n), one has to choose if vi is 1
or 0, under the condition that vi+n 6= vi. This gives 2n−2` choices. Hence the number of
realizable words of size 2n is

#Wn = 2
bn2 c∑
`=1

(
n

2`

)
2n−2`

= 2
∑

26k6n
k even

(
n

k

)
2n−k.

Introducing

X = 2
∑

16k6n
k odd

(
n

k

)
2n−k,

one easily gets 2n+1 +#Wn+X = 2×3n and 2n+1 +#Wn−X = 2, and the result follows.
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Regarding realizable bracelets, we have

#Wn

4n 6 #Bn 6 #Wn,

which implies the announced result.

3 Bracelets for uniformly random points

In this section, we study the following model: fix n > 3 and draw at random n points
independently and uniformly distributed on the unit circle. Most of our proofs here rely
on a model of black and white dots with exponential spacings, which can be coupled
to our original model of uniform points on the circle. This new model is presented in
Subsection 3.1. We prove Proposition 5 and Proposition 6 concerning the probability
of individual bracelets to occur in Subsection 3.2, then Theorem 7 about the expected
number of regions of each type in Subsection 3.3, Theorem 8 about the expected total
length of regions of type k for every k ∈ {0, 1, 2} in Subsection 3.4 and finally Theorem 11
about the equidistribution of the regions of type k in Subsection 3.5.

3.1 Black and white dots with exponential spacing

In this section we identify the unit circle with the half-open interval [0, 1), by the inverse
of the map t 7→ e2iπt. Note that this differs from the convention of Section 2 where the
circle was identified to (0, 1]; this discrepancy is due to convenience of notation in both
cases.

Let p1, . . . , pn be n points in general position in [0, 1). We apply a global rotation to the
n points so that p1 = 0. Now the region with label 1 is defined to be the region containing
eiε for all ε > 0 small enough. Recall that p′i = pi + 1

2 mod 1 for every 1 6 i 6 n. Denote
by P (resp. P ′) the set of all pi (resp. of all p′i) and note that the interval [0, 1

2) contains
exactly n elements of P ∪ P ′. For every 0 6 i 6 n− 1, we define the variables Xi and Γi
such that the following two conditions are satisfied:

• 0 = X0 < X1 < · · · < Xn−1 <
1
2 is an ordering of the intersection of [0, 1

2) with the
set P ∪ P ′;

• for every 0 6 i 6 n− 1, Γi = 1{Xi∈P}.

Each Xi is called a black dot (resp. white dot) if Γi = 1 (resp. Γi = 0). It is clear
that from the position of the black and white dots we recover the set P up to a global
rotation. Furthermore, taking the pi to be i.i.d. uniform on [0, 1) induces the probability
distribution on dots described as follows:

• X0 = 0 is a black dot;

• (X1, . . . , Xn−1) are the ordering statistics of n − 1 i.i.d. uniform random variables
in [0, 1

2);
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• (Γ1, . . . ,Γn−1) are i.i.d. Bernoulli variables of parameter 1
2 , independent of the Xi.

We also adopt the convention that Xn = 1
2 and Γn = 0. The Γi’s are called colors.

For every 1 6 i 6 n we define Si = Xi−Xi−1 to be the spacing between two consecutive
dots. The main tool to understand the joint behaviour of the Si’s is the following lemma
(see e.g. [7, Section 4.1] for a proof), which allows us to get rid of the condition that the
sum of the variables Si should be equal to 1

2 .

Lemma 22 ([7]). Fix n > 1. If T1, . . . , Tn are i.i.d. exponential variables of parameter
1 and Yn := ∑n

i=1 Ti, then (T1/2Yn, . . . , Tn/2Yn) is independent of Yn and distributed as
(S1, . . . , Sn).

In the remainder of this section we will frequently use the exponential spacing model,
defined as follows. Let T1, . . . , Tn be n i.i.d. Exp(1) variables and, for every 0 6 k 6 n,
define the dot Yk = ∑k

i=1 Ti. Define also Γ1, . . . ,Γn−1 to be n− 1 i.i.d. Bernoulli variables
of parameter 1

2 independent of the Ti, and set in addition Γ0 = 1 and Γn = 0. It will also
be useful to extend the definition of the Yi and Γi to all −n 6 i 6 2n − 1 by setting for
every 0 6 i 6 n− 1

(Yi±n,Γi±n) := (Yi ± Yn, 1− Γi).
With this extension, every dot Xi with 0 6 i 6 n− 1 has at least one dot of the opposite
color to its left and to its right.

By Lemma 22, up to global scale, the variables Yi are distributed like the variables Xi.
Hence, replacing the Xi by the Yi does not change the probability of each bracelet to occur.
Thus, we can use the exponential spacing model to prove results about probabilities of
bracelets (Proposition 6 and Theorem 7). In order to prove Theorem 8 about expected
lengths of intervals, we need to overcome the problem that the global scale to go between
the Xi and the Yi is random: it is the total length of the interval Yn. This is done via
Lemma 23. If t = (t1, . . . , tn) ∈ Rn

+ and γ = (γ0, . . . , γn−1) ∈ {0, 1}n such that γ0 = 1,
we define for every k ∈ {0, 1, 2} Lk(t, γ) to be the sum of the lengths of the regions of
type k in a bracelet constructed from n points whose spacings (resp. colors) are given by
t (resp. γ).

Lemma 23 (Transfer lemma for lengths). Let n > 3 and let T and Γ be the n-tuples of
spacings and colors in the exponential spacing model. Set also Yn = T1 + · · · + Tn. For
every k ∈ {0, 1, 2}, we have

E
[
Lk

( 1
2Yn

T ,Γ
)]

= E[Lk(T ,Γ)]
E[2Yn] . (2)

In particular,
E[Lk,n] = E[Lk(T ,Γ)]

2n . (3)

Note that in Equation (3), the expectation on the left-hand side refers to a model on a
circle of unit length while the expectation on the right-hand side refers to the exponential
spacing model.
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Proof of Lemma 23. The idea behind the proof is simply that the quantity E[Lk(T ,Γ)]
behaves linearly in Yn. More precisely, observe that

E [Lk(T ,Γ)|Yn] = 2Yn E
[
Lk

( 1
2Yn

T ,Γ
) ∣∣∣∣∣Yn

]
.

By Lemma 22, E[Lk( 1
2YnT ,Γ)|Yn] is a random variable independent of Yn. Taking the

expectation on both sides yields Equation (2). The second statement is a consequence of
Lemma 22 and the fact that E[Yn] = n.

In order to reconstruct the bracelet from the colored dots, we partition the configu-
ration space according to the oriented colored dot configuration realized by the colored
dots, which we define below.

Definition 24. Let 0 < x1 < · · · < xn−1 < xn and let (γ0, . . . , γn−1) ∈ {0, 1}n with
γ0 = 1. Extend the xi and γi to all −n 6 i 6 2n− 1 by setting for every 0 6 i 6 n− 1

(xi±n, γi±n) := (xi ± xn, 1− γi).

For every 0 6 i 6 n− 1, we set di = L (resp. di = R) if the dot of color 1− γi closest to
xi lies to the left (resp. right) of xi; in Section 2 this was termed as xi looks to the left
(resp. right). The oriented colored dot configuration (OCDC) associated with the xi and
γi is the n-tuple

(o0, . . . , on−1) ∈ {BL, BR,WL,WR}n

where oi = Bdi (resp. oi = Wdi) if γi = 1 (resp. γi = 0).

It follows from Lemmas 14, 15 and 16 that the OCDC determines the bracelet. How-
ever, each bracelet may be realized by several OCDCs.

A useful tool to shorten computations in the remainder of this section is the notion of
Erlang random variables (see e.g. [2, Chapter 1]).

Definition 25. Let λ > 0 be a real number and k > 1 be an integer. The real random
variable U is said to follow the Erlang distribution of parameters (k, λ) if its density with
respect to the Lebesgue measure on R is given by

f(x, k, λ) = λkxk−1e−λx

(k − 1)! 1{x>0}.

We write this as U ∼ Erlang(k, λ).

An Erlang(k, λ) variable is distributed like the sum of k i.i.d. Exp(λ) variables.
Remark 26. The rest of this section is very computational. We explain here our method to
perform the exact computations of probabilities and expectations. We first express them
using independent Erlang variables that should verify certain inequalities. This allows us
to write them as multiple integrals of the product of the densities of these Erlang variables
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on the domain defined by the inequalities. The computation of the multiple integrals is
then straightforward using that a primitive of f(x, k, λ) is given for x > 0 by:

F (x, k, λ) = −
k−1∑
j=0

(λx)je−λx
j! .

We computed all these integrals by hand. Each computation is elementary, but may take
a page or two when there is a sum of two or three terms in the integrand, as is the case
for example in Subsection 3.4.

3.2 Probabilities of individual bracelets

We first prove that the probability of each bracelet is a rational number. This proof does
not use the exponential spacing model.

Proof of Proposition 5. We denote by 0 = p1 < p2 < · · · < pn < 1 the positions of the n
points. For every 1 6 i 6 n recall the definitions of li = pi+pi+1

2 and l′i = li + 1
2 , where

we take the representative modulo 1 in [0, 1). Let b ∈ Bn be a bracelet. Writing that b is
achieved is a logical statement that can be written as a disjunction (using the operator
“or”) of disjoint clauses, where each clause corresponds to an ordering of the 3n elements

p1, . . . , pn, l1, . . . , ln, l
′
1, . . . , l

′
n.

Such an ordering can itself be expressed as a disjunction of disjoint literals, where each lit-
eral is a conjunction (using the operator “and”) of inequalities of the following form: some
linear combination with rational coefficients of the pi’s is greater than some rational num-
ber. Hence each literal defines a convex polytope contained inside [0, 1]n and whose faces
are hyperplanes defined by Cartesian equations involving only rational coefficients. Such
a polytope has vertices with rational coordinates, hence its volume is rational. Finally,
the probability of b can be written as the sum of the volumes of such convex polytopes,
hence is rational.

We now turn to the computation of the probability of the bracelet bn, which is the
equivalence class of (1, 0, 1, . . . , 1, 0, . . . , 0). The computation is much easier for this
bracelet than for other bracelets, since it can only be realized by a small number of
OCDCs.

Proof of Proposition 6. The bracelet bn has exactly two antipodal regions of type 2, one
with an element of P to the left of an element of P ′, the other with an element of P
to the right of an element of P ′. We rotate the circle so that the element of P which
is on the left in a region of type 2 lies at 0. Thus, by Lemmas 14 and 15, any OCDC
(o0, . . . , on−1) realizing bn must satisfy o0 = BR and o1 = WL. There are only four words
in the equivalence class of bn such that the first letter corresponds to a region of type 2,
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these are

w1 = (1, . . . , 1, 0, 1, 0, . . . , 0)
w2 = (1, 0, 1, . . . , 1, 0, . . . , 0)
w3 = (1, 0, . . . , 0, 1, . . . , 1, 0)
w4 = (1, 0, . . . , 0, 1, 0, 1, . . . , 1).

Here the number of missing 0’s and 1’s represented by the dots is entirely determined by
the fact that each word has n letters of each type. By Remark 17, the sequence (di)16i6n of
R’s and L’s associated to each of these words is entirely determined by their signatures.
For general realizable words, the only remaining ambiguity to entirely determine the
OCDC is to know the color of the dot on the left in each region of type 2. Here this
indeterminacy is lifted by the condition which we imposed, that we have a black dot at
position 0 which is the left dot in a region of type 2. The four OCDCs thus obtained from
the four wi can be computed explicitly, a case-by-case analysis shows that they all satisfy
o0 = BR, o1 = WL and o2 = · · · = on−1. We denote these four OCDCs by ΩBL , ΩBR ,
ΩWL

and ΩWR
, where the index of Ω corresponds to the value of o2. They correspond

respectively to w1, w2, w3 and w4.
We compute the probabilities of these OCDCs using the exponential spacing model

with spacings T1, . . . , Tn and colors Γ0, . . . ,Γn−1. There is a probability 1/2n−1 for the
variables Γ1, . . . ,Γn−1 to achieve the colors imposed by a given OCDC. We recall that in
the exponential spacing model Γ0 is always fixed to be black.

We first explain the computation of P(ΩBL). The condition o1 = WL translates to
T1 < T2. The condition on−1 = BL translates to T2 + · · · + Tn−1 < Tn. The condition
o0 = BR translates to T1 < T2 + · · · + Tn which is implied by the earlier condition that
T1 < T2. Finally each condition oi = BL for 2 6 i 6 n−2 translates to T2 + · · ·+Ti < Tn,
which is implied by the earlier condition that T2 + · · · + Tn−1 < Tn. Hence the two
conditions T1 < T2 and T2 + · · · + Tn−1 < Tn together with the conditions on the colors
Γ1, . . . ,Γn−1 are equivalent to the realization of ΩBL . Since the Ti’s are independent of
the Γi’s, we obtain the following product of probabilities:

P(ΩBL) = 1
2n−1P(T1 < T2 and T2 + · · ·+ Tn−1 < Tn).

A similar case-by-case reasoning yields

P(ΩBR) = 1
2n−1P(T1 < Tn and T3 + · · ·+ Tn < T2)

P(ΩWL
) = 1

2n−1P(T2 + · · ·+ Tn−1 < Tn)

P(ΩWR
) = 1

2n−1P(T3 + · · ·+ Tn < T2).

Since the Ti are i.i.d. we have that P(ΩBL) = P(ΩBR) and P(ΩWL
) = P(ΩWR

).
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Set U = T3 + · · · + Tn−1, then U ∼ Erlang(n − 3, 1). Write also X = T1, Y = T2
and Z = Tn. By the independence of X, Y, Z and U and using the method outlined in
Remark 26, we have

2n−1P(ΩBL) = P(X < Y and Y + U < Z)

=
∫ ∞
u=0

un−4

(n− 4)!e
−u
∫ ∞
y=0

e−y
∫ ∞
z=y+u

e−z
∫ y

x=0
e−xdx dz dy du

= 1
3 · 2n−2 ,

thus P(ΩBL) = 1
3·22n−3 .

Set V = T2 + · · ·+Tn−1, then V ∼ Erlang(n−2, 1). Write also Z = Tn. Then we have

2n−1P(ΩWL
) = P(Z > V )

=
∫ ∞
z=0

e−z
∫ z

v=0

vn−3

(n− 3)!e
−vdv dz

= 1
2n−2 ,

thus P(ΩWL
) = 1

22n−3 .
Since there are n possible choices for the point to place in 0, we have

P(bn) = n (P(ΩBL) + P(ΩBR) + P(ΩWL
) + P(ΩWR

)) ,

which yields the desired quantity.

3.3 Expected number of regions of each type

In this subsection we prove Theorem 7 about the expected number of regions of each type.

Proof of Theorem 7. As described in the introduction, it suffices to study H2,n. Fix a
point p ∈ P . Denote by fn the probability that p lies in a region of type 2 and lies to the
left of the element of P ′ which is also in this region. Then we have E[H2,n] = 2nfn. To
compute fn, we use the exponential spacing model with the random variables Ti, Yi and
Γi constructed as above and denote by O = (O0, . . . , On−1) the random OCDC obtained
from these random variables. Denote by Q the event that O0 = BR and O1 = WL. Then
by Lemmas 14 and 15 we have P(Q) = fn.

For any OCDC o = (o0, o1, . . . , on−1), we define

α(o) = {1 6 i 6 n− 1|oi ∈ {BL, BR}} .

If α(o) 6= ∅ set α−(o) = min(α(o)) and α+(o) = max(α(o)). Define the events

A∅ = {α(O) = ∅}

and for every k, l > 1 such that k + l 6 n− 1,

Ak,l = {O0 = BR, O1 = WL, α
−(O) = k + 1 and α+(O) = n− l}.
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These events are illustrated in Figure 6.
Observing that α(O) = ∅ automatically implies that O0 = BR and O1 = WL, we have

the following partition for Q:

Q = A∅ t
⊔

k,l>1,
k+l6n−1

Ak,l. (4)

Clearly P(A∅) = 2−(n−1). If k, l > 1 such that k + l 6 n− 1, then

P(Ak,l) = 1
2min(1+k+l,n−1) pk,l,

where
pk,l = P (T1 < T2 + · · ·+ Tk+1 and T1 < Tn+1−l + · · ·+ Tn) .

Set X = T1, U = T2 + · · · + Tk+1 and V = Tn+1−l + · · · + Tn. Then U ∼ Erlang(k, 1)
and V ∼ Erlang(l, 1) and X,U and V are independent, thus

pk,l = P(X < U and X < V )

=
∫ ∞
x=0

e−x
∫ ∞
u=x

uk−1

(k − 1)!e
−u
∫ ∞
v=x

vl−1

(l − 1)!e
−vdv du dx

=
k−1∑
i=0

l−1∑
j=0

(
i+ j

j

)
1

3i+j+1 .

For every 0 < x < 1
2 we define

ϕ(x) :=
∑
k,l>1

k+l6n−1

∑
06i6k−1
06j6l−1

1
2min(1+k+l,n−1)

(
i+ j

j

)
xi+j+1. (5)

Then we have
fn = 1

2n−1 + ϕ
(1

3

)
Lemma 27 (stated and proved below) implies that

ϕ(1
3) = 1

4 −
1

2n−1 + 1
4·3n−2 (6)

thus fn = 1
4 + 1

4·3n−2 and finally

E[H2,n] = n

2

(
1 + 1

3n−2

)
.

Lemma 27. For every 0 < x < 1
2 we have

ϕ(x) = x

2
1− xn−2

1− x − x

2n−1
1− (2x)n−2

1− 2x .
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Proof. By summing first on (i, j) in formula (5), we get

ϕ(x) =
∑
i,j>0

i+j6n−3

(
i+ j

j

)
xi+j+1

 ∑
i+16k, j+16l,
k+l6n−1

1
2min(1+k+l,n−1)

 .
The inner sum can be computed by changing one variable to s = k+l. For any s satisfying
i+ j + 2 6 s 6 n− 1, there are s− (i+ j + 1) terms (k, l) contributing, hence the inner
sum is (treating the case s = n− 1 apart):

n− 1− (i+ j + 1)
2n−1 +

n−2∑
s=i+j+2

s− (i+ j + 1)
21+s .

This computation is standard, and the result is 1
2i+j+1 − 1

2n−1 . Thus

ϕ(x) =
∑
i,j>0

i+j6n−3

(
i+ j

j

)(
x

2

)i+j+1
− 1

2n−1

∑
i,j>0

i+j6n−3

(
i+ j

j

)
xi+j+1.

Summing instead on the variables u = i+ j and j, this becomes

ϕ(x) =
n−3∑
u=0

(
x

2

)u+1 u∑
j=0

(
u

j

)
− 1

2n−1

n−3∑
u=0

xu+1
u∑
j=0

(
u

j

)
,

from which the desired formula quickly follows.

3.4 Expected total length of regions of type k

Since E[L0,n] + E[L1,n] + E[L2,n] = 1, to prove Theorem 8 it suffices to compute E[L2,n]
and E[L1,n], which is done respectively in Subsections 3.4.1 and 3.4.2.

3.4.1 Expected total length of regions of type 2

Proposition 28. For every n > 3, we have

E[L2,n] = 3n + 2n+ 11
8 · 3n−1 .

Proof. We use the exponential spacing model again. Regions of type 2 come in antipodal
pairs of equal lengths and exactly one of the regions in each pair has the element of P to
the left of the element of P ′. Recall from the proof of Theorem 7 that Q denotes the event
that O0 = BR and O1 = WL. Conditionally on Q being realized, the region of type 2
containing the origin can be divided into three: the portion from the left boundary to the
black dot, the portion from the black dot to the white dot and the portion from the white
dot to the right boundary. By symmetry, conditionally on Q, the expected lengths of the
first and third portions are equal. The position of the white dot is T1 and we denote by
ρ the position of the right boundary. See Figure 6.
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0 T1

ρ
T1 + T2−Tn

. . . . . .

0 T1

ρ
T1 + T2−Tn

. . . . . .

T1 + · · ·+ Tk+1−(Tn + · · ·+ Tn+1−l)

Figure 6: Arrangement and positions of the relevant points under A∅ (top) and Ak,l
(bottom).

By Equation (3), we have

E[L2,n] = E[L2(T ,Γ)]
2n ,

where the expectation on the left-hand side refers to a model on a circle of unit length
while the expectation on the right-hand side refers to the exponential spacing model. On
the other hand, since in the exponential spacing model there are n choices for the point
to place in 0, we have

E[L2(T ,Γ)] = 2nE[(2ρ− T1)1Q],

thus
E[L2,n] = E[(2ρ− T1)1Q].

We use again the partition of Q given by Equation (4). Conditionally on A∅, we have

ρ = 2T1 + T2

2
so

E[(2ρ− T1)1A∅ ] = 1
2n−1 E[T1 + T2] = 1

2n−2 .

Let k, l > 1 be such that k + l 6 n− 1 and assume for now that k > 2. Conditionally
on Ak,l, we have

2ρ = min(T1 + · · ·+ Tk+1, 2T1 + T2).

Setting X = T1, Y = T2, U = T3 + · · ·+ Tk+1 and V = Tn+1−l + · · ·+ Tn, we have

E[(2ρ− T1)1Ak,l ] = 1
2min(1+k+l,n−1) × E[min(Y + U,X + Y )1{X<Y+U and X<V }].

Since U ∼ Erlang(k − 1, 1), V ∼ Erlang(l, 1) and X, Y , U and V are independent, we
deduce

2min(1+k+l,n−1) E[(2ρ− T1)1Ak,l ] = I1 + I2,
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where

I1 :=
∫ ∞
x=0

e−x
∫ ∞
u=x

uk−2

(k − 2)!e
−u
∫ ∞
y=0

(x+ y)e−y
∫ ∞
v=x

vl−1

(l − 1)!e
−vdv dy du dx

corresponds to the case X < U and

I2 :=
∫ ∞
x=0

e−x
∫ x

u=0

uk−2

(k − 2)!e
−u
∫ ∞
y=x−u

(u+ y)e−y
∫ ∞
v=x

vl−1

(l − 1)!e
−vdv dy du dx

corresponds to the case U < X. A straightforward computation yields

I1 =
k−2∑
i=0

l−1∑
j=0

(
i+ j

j

)
1

3i+j+1 + 1
9

(
i+ j

j

)
i+ j + 1

3i+j

and
I2 =

l−1∑
j=0

(
j + k − 1

j

)
1

3j+k + 1
9

(
j + k − 1

j

)
j + k

3j+k−1

so that

2min(1+k+l,n−1) E[(2ρ− T1)1Ak,l ] =
k−1∑
i=0

l−1∑
j=0

(
i+ j

j

)
1

3i+j+1 + 1
9

(
i+ j

j

)
i+ j + 1

3i+j . (7)

If k = 1, then conditionally on A1,l we have 2ρ = T1 + T2 so that

E[(2ρ− T1)1A1,l ] = 1
2min(2+l,n−1) E[T21{T1<T2 and T1<Tn+1−l+···+Tn}].

Similar computations as above show that formula (7) is also valid for k = 1.
Recalling the definition of ϕ(x) from Equation (5), we observe that

E[(2ρ− T1)1Q] = 1
2n−2 + ϕ

(1
3

)
+ 1

9ϕ
′
(1

3

)
.

Applying formula (6) to express ϕ(1
3) and using Lemma 27 to compute

ϕ′
(1

3

)
= 9

8 −
9

2n−1 + 2n+ 5
8 · 3n−3 ,

we conclude that
E[L2,n] = 3n + 2n+ 11

8 · 3n−1 .
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3.4.2 Expected total length of regions of type 1

Proposition 29. For every n > 3, we have

E [L1,n] = 3n−1 − n− 1
2 · 3n−1 .

Proof. Denote by S the event that O0 = BL and On−1 6= BR. By Lemma 15, this is
equivalent to requiring that the dot at position 0 is a black dot looking to the left and
lying in a region of type 1. Denote by λ (resp. ρ) the position of the left (resp. right)
boundary of that region. Since regions of type 1 come in antipodal pairs of equal length
with exactly one which is occupied, and the point is equally likely to look to the left or
to the right, Lemma 23 and a reasoning similar to the one for L2,n yields

E[L1,n] = E[(2ρ− 2λ)1S],

where the expectation on the left-hand side refers to a model on a circle of unit length
while the expectation on the right-hand side refers to the exponential spacing model.

Recall the definitions of α+ and α− from the proof of Theorem 7 and define β+ and β−
similarly for white dots. More precisely, for any OCDC o = (o0, o1, . . . , on−1), we define

β(o) = {1 6 i 6 n− 1|oi ∈ {WL,WR}} .

If β(o) 6= ∅, set β−(o) = min(β(o)) and β+(o) = max(β(o)). Define the following events.
For every 1 6 l 6 n− 2,

S1
l := {O0 = BL, On−1 = BL, β

−(O) = 1, β+(O) = n− 1− l}.

For every 1 6 l 6 n− 3,

S2
l := {O0 = BL, α

+(O) = n− 1− l, β−(O) = 1, β+(O) = n− 1}.

For every k, l > 1 such that k + l 6 n− 2,

S3
k,l := {O0 = BL, On−1 = BL, α

−(O) = 1, β−(O) = k + 1, β+(O) = n− 1− l}.

For every k, l > 1 such that k + l 6 n− 3,

S4
k,l := {O0 = BL, α

−(O) = 1, α+(O) = n− 1− l, β−(O) = k + 1, β+(O) = n− 1}.

For every 1 6 l′ 6 n− 2,

S5
l′ := {O0 = BL, α(O) = {1, . . . , n− 1− l′}, β(O) = {n− l′, . . . , n− 1}}.

Observing that O0 = BL implies that α(O) 6= ∅ and that On−1 = BL implies that
β(O) 6= ∅, we deduce that all the events defined above form a partition of S.

We first treat the cases of Sm with 1 6 m 6 4. We write X = T1, U = T2 + · · ·+Tk+1,
V = Tn−l + · · · + Tn−1 and Y = Tn. Then U ∼ Erlang(k, 1), V ∼ Erlang(l, 1) and X, Y ,
U and V are independent.
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The event S1
l corresponds to imposing the colors of min(l+2, n−1) dots and requiring

that V < Y < X. Conditionally on S1
l we have 2λ = −V − Y and 2ρ = X − Y . Hence

2min(l+2,n−1) E[(2ρ− 2λ)1S1
l
] =

∫ ∞
v=0

vl−1

(l − 1)!e
−v
∫ ∞
y=v

e−y
∫ ∞
x=y

(x+ v)e−xdx dy dv.

Thus
2min(l+2,n−1) E[(2ρ− 2λ)1S1

l
] = 9 + 4l

4 · 3l+1 .

The event S2
l corresponds to imposing the colors of min(l+2, n−1) dots and requiring

that V + Y < X. Conditionally on S2
l we have 2λ = −Y and 2ρ = X − Y − V . Hence

2min(l+2,n−1) E[(2ρ− 2λ)1S1
l
] =

∫ ∞
v=0

vl−1

(l − 1)!e
−v
∫ ∞
y=0

e−y
∫ ∞
x=v+y

(x− v)e−xdx dy dv.

Thus
2min(l+2,n−1) E[(2ρ− 2λ)1S2

l
] = 3

2l+2 .

The event S3
k,l corresponds to imposing the colors of min(k + l + 2, n − 1) dots and

requiring that V < Y < X + U . Conditionally on S3
l we have 2λ = −V − Y and

2ρ = min(X,X + U − Y ). Hence

2min(k+l+2,n−1) E[(2ρ− 2λ)1S3
k,l

] = I1 + I2

where

I1 =
∫ ∞
x=0

e−x
∫ ∞
y=0

e−y
∫ ∞
u=y

uk−1

(k − 1)!e
−u
∫ y

v=0

vl−1

(l − 1)!(x+ v + y)e−vdv du dy dx

corresponds to the case Y < U and

I2 =
∫ ∞
y=0

e−y
∫ y

u=0

uk−1

(k − 1)!e
−u
∫ y

v=0

vl−1

(l − 1)!e
−v
∫ ∞
x=y−u

(x+ v + u)e−xdx dv du dy

corresponds to the case Y > U . Computations yield

I1 = l + 2− k + 2l + 4
2k+1 −

k−1∑
i=0

(
i+ l

l

)
l

3i+l+1 −
k−1∑
i=0

l−1∑
j=0

(
i+ j

j

)
3l + i+ j + 4

3i+j+2

and
I2 = k + 2l + 3

2k+2 −
(
k + l

l

)
l

3k+l+1 −
l−1∑
j=0

(
k + j

j

)
3l + k + j + 4

3k+j+2

2min(k+l+2,n−1) E[(2ρ− 2λ)1S3
k,l

] =

l + 2− k + 2l + 5
2k+2 −

k∑
i=0

(
i+ l

l

)
l

3i+l+1 −
k∑
i=0

l−1∑
j=0

(
i+ j

j

)
3l + i+ j + 4

3i+j+2 .

the electronic journal of combinatorics 29(1) (2022), #P1.59 28



The event S4
k,l corresponds to imposing the colors of min(k + l + 2, n − 1) dots and

requiring that V + Y < X + U . Conditionally on S4
l we have 2λ = −Y and 2ρ =

min(X,X + U − Y − V ). Hence

2min(k+l+2,n−1) E[(2ρ− 2λ)1S4
k,l

] = I3 + I4

where

I3 =
∫ ∞
x=0

e−x
∫ ∞
y=0

e−y
∫ ∞
v=0

vl−1

(l − 1)!e
−v
∫ ∞
u=y+v

uk−1

(k − 1)!(x+ y)e−udu dv dy dx

corresponds to the case Y + V < U and

I4 =
∫ ∞
y=0

e−y
∫ ∞
v=0

vl−1

(l − 1)!e
−v
∫ y+v

u=0

uk−1

(k − 1)!e
−u
∫ ∞
x=y+v−u

(x+ u− v)e−xdx du dv dy

corresponds to the case Y + V > U . Computations yield

I3 =
k−1∑
i=0

i∑
h=0

(
l + h− 1

h

)
3 + i− h

2l+i+2

and
I4 =

k∑
h=0

(
l + h− 1

h

)
3 + k − h

2l+k+2

thus
2min(k+l+2,n−1) E[(2ρ− 2λ)1S4

k,l
] =

k∑
i=0

i∑
h=0

(
l + h− 1

h

)
3 + i− h

2l+i+2 .

The cases S1
l (resp. S2

l ) correspond to S3
0,l (resp. S4

0,l) provided we extend the definitions
of S3

k,l and S4
k,l to k = 0.

For the case of S5
l′ , we define X = T1, U = T2 + · · · + Tn−1−l′ , Z = Tn−l′ , V =

Tn−l′+1 + · · · + Tn−1 and Y = Tn. Then U ∼ Erlang(n − 2 − l′, 1), V ∼ Erlang(l′ − 1, 1)
and X, Y , U , V and Z are independent. The event S5

l′ corresponds to requiring that
V + Y < X + U and imposing the colors of n − 1 dots. Conditionally on S5

l′ we have
2λ = −Y and 2ρ = min(X,X + U − Y − V ). Setting k = n − 2 − l′ and l = l′ − 1 and
comparing with the computation for S4

k,l we deduce that if 2 6 l′ 6 n− 3:

2n−1 E[(2ρ− 2λ)1S5
l′
] =

n−2−l′∑
i=0

i∑
h=0

(
l′ + h− 2

h

)
3 + i− h

2l′+i+1 . (8)

A separate computation shows that Equation (8) still holds when l′ = n − 2. So the
total contributions of S5

l′ for 2 6 l′ 6 n − 2 correspond to the contributions of S4
k,l with

k + l = n− 3 and 0 6 k 6 n− 4. For l′ = 1, another separate computation gives

2n−1 E[(2ρ− 2λ)1S5
1
] = 2n − n− 2

2n−1 .
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For every s > 1, we denote by Gs the set of all pairs of integers (k, l) such that k > 0,
l > 1 and k + l 6 s. Then E[L1,n] = A1 − A2 − A3 + A4 + A5 with

A1 =
∑

(k,l)∈Gn−2

1
2min(k+l+2,n−1)

(
l + 2− k + 2l + 5

2k+2

)

A2 =
∑

(k,l)∈Gn−2

1
2min(k+l+2,n−1)

k∑
i=0

(
i+ l

l

)
l

3i+l+1

A3 =
∑

(k,l)∈Gn−2

1
2min(k+l+2,n−1)

k∑
i=0

l−1∑
j=0

(
i+ j

j

)
3l + i+ j + 4

3i+j+2

A4 =
∑

(k,l)∈Gn−3

1
2k+l+2

k∑
i=0

i∑
h=0

(
l + h− 1

h

)
3 + i− h

2l+i+2

A5 = 2n − n− 2
22n−2 + 1

2n−1

n−4∑
k=0

k∑
i=0

i∑
h=0

(
n− k + h− 4

h

)
3 + i− h
2n−k+i−1 .

Computing these sums can be done via lengthy but elementary manipulations of in-
dices and summation formulas, analogous to those of Lemma 27. Here we simply indicate
the auxiliary summation variables needed and the order in which to compute the sums.
For A4 it is useful to introduce u = l + i, v = l + h, s = k + l and compute the sums
on s, l, v, u in this order (meaning that the sum on s is the innermost sum); A5 can
be deduced easily. For A1, A2, A3 it is more convenient to split the terms for which
k + l = n − 2 from the others. Then A1 is straightforward; A2 can be calculated by
introducing s = k + l, u = i + l and computing the sums on l, u, s in this order; for A3,
one can introduce s = k + l, u = i+ j and compute the sums on l, s, j, u in this order. In
this way, at each step the sums to compute are either of the form ∑b

m=am
dxm, or of the

form ∑n
m=0

(
n
m

)
md, with d ∈ {0, 1, 2}. These being standard, we omit the computations

here. Thus we get

A1 = 1
9

(
11− 9n+ 1

2n−1 + 3n+ 4
22n−2

)
A2 = 1

16

(
1− 2n− 1

3n−1

)
A3 = 1

16

(
15− n+ 1

2n−5 + 10n+ 7
3n−1

)
A4 = 5

18 −
2n− 5

2n − 13 + 3n
9 · 22n−2

A5 = 2n− 5
2n + 1

22n−2

and combining these yields
E [L1,n] = 3n−1 − n− 1

2 · 3n−1 .
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3.5 Equidistribution of regions of each type

This subsection is devoted to the proof of Theorem 11, which is done by making use of
Theorems 7 and 8.

Proof of Theorem 11. Recall that we identify the circle with the interval [0, 1), so that,
for 0 6 t 6 1, the circular arc from 1 to e2iπt gets identified to the interval [0, t]. We can
restrict ourselves to 0 6 t 6 1

2 , since for 1
2 < t 6 1, we have for every k ∈ {0, 1, 2}

hk,n(t) = hk,n

(
t− 1

2

)
+ hk,n

(1
2

)
`k,n(t) = `k,n

(
t− 1

2

)
+ `k,n

(1
2

)
.

Let us first focus on the proof of Theorem 11 (i), as (ii) can be showed in the same
way. Firstly, remark that the variables (h0,n(t)

2n , h1,n(t)
2n , h2,n(t)

2n )
06t61

2
live in the compact

space [0, 1][0,
1
2 ], so the sequence that we consider is tight. Thus, we only have to check

the convergence of its finite-dimensional marginals. Fix m > 1 and 0 < a1 < a2 < · · · <
am < 1

2 to be m real numbers. We also set a0 = 0 and am+1 = 1
2 . We first prove that the

proportions of regions of each color in [a0, a1] . . . , [am, am+1] are “almost independent”, and
then use Theorem 7 on each of these intervals to get the result. For this, let N1, . . . , Nm+1
be the number of dots in each of these intervals. Recall that black (resp. white) dots
correspond to elements of P (resp. P ′). It is clear that (N1, . . . , Nm+1) is distributed as
a multinomial of parameters (n; 2(a1 − a0), 2(a2 − a1), . . . , 2(am+1 − am)). Thus, for any
1 6 i 6 m+ 1, a Chernoff bound provides

P
(
|Ni − 2n(ai − ai−1)| > n3/4

)
6 2e−2

√
n.

This implies that, with probability going to 1 as n→∞:

∀1 6 i 6 m+ 1, |Ni − 2n(ai − ai−1)| 6 n3/4. (9)

Let us assume from now on that this holds. We now need to control the interactions
between two different intervals of the form [ai, ai+1]. The key remark is the following:
among all the lines arising as the boundary of some region entirely contained inside
[ai, ai+1], at most 4 are not midpoints of two dots that are both inside [ai, ai+1]. These four
lines involve the leftmost and rightmost dots of each color in the interval. Hence, overall,
at most 4(m+ 1) regions are created by interactions between two intervals. Consider now
the affine map sending ai to 0 and ai+1 to 1

2 . Conditionally to the number of points in
the interval [ai, ai+1], their images by this map are i.i.d. uniform on [0, 1

2 ]. By (9), using
Theorem 7 and the previous key remark, jointly for all i:

(
h0,n(ai+1)− h0,n(ai)

2n ,
h1,n(ai+1)− h1,n(ai)

2n ,
h2,n(ai+1)− h2,n(ai)

2n

)
(d)−→

n→∞

(
ai+1 − ai

4 ,
ai+1 − ai

2 ,
ai+1 − ai

4

)
.
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Thus, the finite-dimensional marginals of the process converge, and one gets (i).
Let us now check that the same method may be applied to prove (ii). The sequence

involved is tight for the same reason. To prove the convergence of the finite-dimensional
marginals of the process, we again use the fact that only a bounded number of regions
arise from the interaction between two different intervals. The only additional ingredient
that we need is the following result, whose proof can be found in [5], which tells us that
all the regions are small enough, so that omitting a bounded number of regions does not
change much the sum of the lengths of the regions of a given type.
Lemma 30 ([5]). Let Mn be the maximal distance between two consecutive points for n
i.i.d. uniform points on [0, 1

2 ]. Then, as n→∞, in probability:

nMn

log n →
1
2 .

Considering the first dot to the left and the first dot to the right of a region of type k
with k ∈ {0, 1, 2}, we find that an upper bound for the length of that region is (k+ 1)Mn.
By Lemma 30, with probability going to 1 as n → ∞, every region length is less than√
n, and thus one can use the same key argument as in the proof of (i). By Theorem 8,

we get jointly for all i:

(`0,n(ai+1)− `0,n(ai), `1,n(ai+1)− `1,n(ai), `2,n(ai+1)− `2,n(ai))
(d)−→

n→∞

(
ai+1 − ai

8 ,
ai+1 − ai

2 ,
3(ai+1 − ai)

8

)
.

Hence, the finite-dimensional marginals of the process converge, and one gets (ii).

4 Uniform realizable words and bracelets

The aim of this section is to prove Theorem 31 stated below, which immediately implies
Theorem 12 about the asymptotic shape of a uniformly random realizable word.

Let w(n) be a random word taken uniformly in the set of realizable words of length
2n. We define the folded word obtained from w(n) to be the word ŵ(n) of length n on
the alphabet {00, 10, 01, 11}, whose letter in position i is the concatenation w(n)

i w
(n)
i+n. For

x ∈ [0, n] and a ∈ {00, 11, 10, 01}, denote by Sax the number of letters a in ŵ(n) between
positions 0 and bxc. Then the following holds:

Theorem 31. (i) The following holds in probability:(
S00
n

n
,
S11
n

n
,
S10
n

n
,
S01
n

n

)
−→
n→∞

(1
6 ,

1
6 ,

1
3 ,

1
3

)
.
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(ii) We have the functional convergence:

2√
n

(
S00
cn −

cn

6 , S
11
cn −

cn

6 , S
10
cn −

cn

3 , S
01
cn −

cn

3

)
06c61

(d)−→
n→∞

(
W (2)
c ,W (2)

c ,W (1)
c −W (2)

c ,−W (1)
c −W (2)

c

)
06c61

where W (1),W (2) are two independent Brownian motions of respective variances 2/3
and 2/9.

To simplify notations, we will often drop the dependence in n. We prove both parts
of the theorem at once. The main idea in the proof is to rephrase it in terms of a
random walk, and then use a local limit theorem. A local limit theorem controls the
precise value of a random walk after a large number of steps. Let us state it properly (see
e.g. [8, Theorem 6.1] for a proof of this result). Recall that a random variable Y ∈ Zj
is called aperiodic if there is no strict sublattice of Zj containing the set of differences
{x− y, x, y ∈ Zj,P(Y = x) > 0,P(Y = y) > 0}.

Theorem 32 ([8]). Let j > 1 and (Yi)i>1 :=
(
(Y (1)

i , . . . , Y
(j)
i )

)
i>1

be i.i.d. random
variables in Zj with finite variance, such that the covariance matrix Σ of Y1 is positive
definite. Assume in addition that Y1 is aperiodic and denote by M the mean of Y1.
Finally, define for n > 1

Tn = 1√
n

(
n∑
i=1

Yi − nM
)
∈ Rj.

Then, as n→∞, uniformly for x ∈ Rj such that P (Tn = x) > 0,

P (Tn = x) = 1
(2πn)j/2

√
det Σ

e−
1
2
txΣ−1x + o

(
n−j/2

)
.

We now define a walk from a realizable word, in an almost bijective way: given any
a := xy ∈ {00, 01, 10, 11}, define f(a) = x − y. Then, to a folded realizable word ŵ :=
ŵ1 · · · ŵn, we associate the walk S satisfying S0 = 0 and, for all i > 1, Si − Si−1 = f(ŵi).

Remark that occurrences of 01 (resp. 10) in ŵ correspond to jumps by −1 (resp. +1)
in S. Jumps by 0 in S may correspond to either 00 or 11, but as these two letters shall
alternate in a folded realizable word, if one knows whether the first jump 0 corresponds
to 00 or 11, then it is possible to recover ŵ from S. By symmetry, we assume from now
on that the first jump by 0 corresponds to 11, so that the map ŵ 7→ S is a bijection from
Ŵ+

n to Walks+(n), where Ŵ+
n is the set of folded realizable words whose first 11 appears

before the first 00, and Walks+(n) is the set of walks of length n, starting from 0 and with
steps in {0,+1,−1}, with an even nonzero number of steps 0.

Now take n to be a positive integer. We want to study a uniform element of the set
Walks+(n). To this end, we first study the set Walks(n) of walks of length n, starting
from 0 and with jumps in {0,+1,−1}. We define a walk (Ti)06i6n := (Si, Ki)06i6n on
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Z2 as follows: its first coordinate is a uniform element of Walks(n), K0 = 0 and, for any
0 6 i 6 n − 1, Ki+1 − Ki = 1Si+1−Si=0. In other words, the second coordinate of T
enumerates the steps 0 in the walk S. It is clear by definition that (Ti)06i6n is a random
walk on Z2 starting from (0, 0), with i.i.d. jumps Y1, . . . , Yn whose distribution is the
following:

P (Y1 = (1, 0)) = P (Y1 = (−1, 0)) = P (Y1 = (0, 1)) = 1
3 .

In particular, Y1 has respective mean and covariance matrix

M =
(

0
1/3

)
and Σ =

(
2/3 0
0 2/9

)

We want to prove the functional convergence of the walk S, along with the process
(Ki)06i6n counting the number of “0” jumps in the walk, conditionally on Kn being
even and nonzero. Since, clearly, P (Kn = 0) = o(P(Kn = 0 mod 2)), we only need to
condition Kn to be even.

In what follows, we define (Su)u∈[0,n] (resp. (Ku)u∈[0,n]) as the linear interpolation of
(Si)06i6n (resp. (Ki)06i6n) on the whole interval.

Proposition 33. The following convergence holds in distribution, in C([0, 1],R2):((
Scn√
n
,
Kcn − cn/3√

n

)
06c61

∣∣∣∣Kn = 0 mod 2
)

(d)−→
n→∞

(
W (1)
c ,W (2)

c

)
06c61

where W (1),W (2) are independent Brownian motions of respective variances 2/3 and 2/9.

The whole proof of this proposition is highly inspired from the one of [10, Lemma 4.1].
Let us start with a result on the corresponding unconditioned random walk:(

Scn√
n
,
Kcn − cn/3√

n

)
06c61

(d)−→
n→∞

(
W (1)
c ,W (2)

c

)
06c61

(10)

This result is a consequence of Theorem 32. Indeed, by [4, Theorem 16.14], it is
enough to check that the one-dimensional convergence holds for c = 1. One gets this from
Theorem 32. Uniformly for a, b in a compact subset of R:

P(Sn = ba
√
nc, Kn = bn/3 + b

√
nc) ∼

n→∞

1
2πn
√

det Σ
e−

1
2( 2

3a
2+ 2

9 b
2).

This implies (see e.g. [1, Theorem 7.8]) that (Sn/
√
n, (Kn − n/3)/

√
n) converges in dis-

tribution to (W (1)
1 ,W

(2)
1 ). The convergence (10) follows.

We now want a conditioned version of (10), taking into account the fact that Kn has
to be even. To this end, take 0 < u < 1 and take F : C([0, u],R2) → R a bounded
continuous functional. Set

En := E
[
F

(
Scn√
n
,
Kcn − cn/3√

n

)
06c6u

∣∣∣∣∣ Kn = 0 mod 2
]
.
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Setting ϕn(i) = P(Kn = i mod 2) and observing that the (unconditioned) walk until
time nu is independent of the walk between nu and n, one can write:

En = E
[
F

(
Scn√
n
,
Kcn − cn/3√

n

)
06c6u

ϕn−bnuc(Kbnuc)
ϕn(0)

]
(11)

In order to estimate this quantity, simply remark that Kn is distributed as a binomial
Binn of parameters (n, 1/3). Now, remark by a simple computation that P(Binn = 0
mod 2)+P(Binn = 1 mod 2) = 1, and P(Binn = 0 mod 2)−P(Binn = 1 mod 2) = 3−n,
which implies that ϕn(0) and ϕn(1) both converge to 1/2 as n→∞.

Thus, (11) can be rewritten:

En = E
[
F

(
Scn√
n
,
Kcn − cn/3√

n

)
06c6u

1/2 + o(1)
1/2 + o(1)

]

= E
[
F

(
Scn√
n
,
Kcn − cn/3√

n

)
06c6u

]
+ o(1) (12)

and we get Proposition 33 on [0, u]. In order to extend it to the whole interval [0, 1], it
now suffices to show that the process is tight on [0, 1].

Proof of tension on the whole interval. The convergence (12) shows notably that, condi-
tionally to the fact that Kn = 0 mod 2, the process

(Scn/
√
n, (Kcn − cn/3)/

√
n)06c61 (13)

is tight on [0, u] for every u ∈ (0, 1). To show that it is in addition tight on [u, 1], we only
need to check that, for u ∈ (0, 1), the process

(Sn−cn/
√
n, (Kn−cn − n(1− c)/3)/

√
n)06c6u

is tight conditionally on Kn = 0 mod 2. For this, we use the invariance of the process
by time-reversal: the process (Ŝi, K̂i)06i6n := (Sn − Sn−i, Kn −Kn−i)06i6n has the same
distribution as (Si, Ki)06i6n, and this is also true under the condition that Kn = 0 mod 2.
By definition, we can write(

Sn−cn√
n
,
Kn−cn − n(1− c)/3√

n

)
06c6u

=
(
Ŝn − Ŝcn√

n
,
K̂n − n/3√

n
− K̂cn − cn/3√

n

)
06c6u

.

Now, letting σ2 := 2n/9 be the variance of K1, we obtain that, uniformly for b in a
compact subset of R,

P(Kn = bn/3 + b
√
nc
∣∣∣Kn = 0 mod 2) = 2√

2πnσ
e−

b2
2σ2 + o

(
1√
n

)
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as n→∞. This implies that, conditionally on Kn = 0 mod 2, (Kn−n/3)/
√
n converges

in distribution. Hence, by (12), the initial process (13) is tight on [u, 1] conditionally on
Kn = 0 mod 2.

Finally, the process is tight on [0, 1]. Furthermore, the convergence of the finite-
dimensional marginals is just a consequence of (12). This put together implies Proposi-
tion 33.

We can now prove the main result of this section, Theorem 31, by translating Proposi-
tion 33 in terms of folded realizable words. For this, we make use of the following lemma,
which relates the behaviour of a folded realizable word in Ŵ+

n to the behaviour of the
associated element of Walks+(n).
Lemma 34 (From the walk to the word). Let ŵ be a folded realizable word in Ŵ+

n and
(Si, Ki)06i6n be the associated walk on Z2. For any i > 0, denote by αi (resp. βi, γi, δi)
the number of occurrences of 11 (resp. 00, 10, 01) in the word ŵ up to position i. Then
the following holds. For any i > 0, any a ∈ Z, any p > 0:{

Si = a
Ki = p

⇐⇒
{
αi = bp+1

2 c, βi = bp2c
γi = i−p+a

2 , δi = i−p−a
2 .

This lemma, whose proof is straightforward, implies Theorem 31:

Proof of Theorem 31. The proof just boils down to putting together Lemma 34 and
Proposition 33. Indeed, Lemma 34 (keeping the same notation as in its statement) allows
us to write for all 1 6 i 6 n:

αi = i

6 + Ki − i/3
2 + c1 = βi + c2

γi = i

3 + Si − (Ki − i/3)
2

δi = i

3 + −Si − (Ki − i/3)
2 ,

where c1, c2 are bounded in absolute value by 1, independently of n and i. This proves
point (ii) of the theorem by the convergence of Proposition 33. Using the fact that
sup06c61 |W (1)

c |, sup06c61 |W (2)
c | are bounded in probability, point (i) follows.

Remark 35. Notice that the conclusions of Theorems 12 and 31 still hold when one con-
siders a uniform realizable bracelet instead of a uniform realizable word. Indeed, one just
has to check that, with probability going to 1 as n→∞, the equivalence class up to shift
and reversal of a uniform realizable word of size 2n has cardinality 2n. To see this, first
recall that we only need to deal with the first n letters of a realizable word of size 2n,
then remark that a word of length n equal to one of its cyclic shifts is necessarily periodic,
of period at most n/2. Thus, there are at most 3n/2 realizable words with fixed period.
Summing over all possible periods, there are at most n3n/2 such words, which is o(#Wn).
Furthermore, a word of length n which is equal to its reversal is determined by its first
n/2 letters, hence there are at most n3n/2 words whose reversal may be equal to one of
their shifts. The result follows.
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