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Abstract

The Hales–Jewett Theorem states that any r–colouring of [m]n contains a
monochromatic combinatorial line if n is large enough. Shelah’s proof of the the-
orem implies that for m = 3 there always exists a monochromatic combinatorial
line whose set of active coordinates is the union of at most r intervals. For odd r,
Conlon and Kamčev constructed r–colourings for which it cannot be fewer than r
intervals. However, we show that for even r and large n, any r–colouring of [3]n

contains a monochromatic combinatorial line whose set of active coordinates is the
union of at most r−1 intervals. This is optimal and extends a result of Leader and
Räty for r = 2.

Mathematics Subject Classifications: 05D10

1 Introduction

The Hales–Jewett theorem is a cornerstone of Ramsey theory from which many results
can be derived, most notably van der Waerden’s Theorem. In order to state the theorem
we will need to introduce some notation.

Given positive integers m and n, let [m]n be the collection of all words of length n with
letters taken from the alphabet [m] = {1, . . . ,m}. We write [m]n? =

(
[m] ∪ {?}

)n \ [m]n

and refer to the coordinates in ` ∈ [m]n? where the symbol ? occurs as active. Let `[α]
denote the word in [m]n obtained by substituting each occurrence of the symbol ? in `
by α ∈ [m]. The set of m words {`[1], . . . , `[m]} ⊂ [m]n is referred to as a combinatorial
line in [m]n, and we will abbreviate it by `.
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Theorem 1 (Hales–Jewett [14]). For any positive integers m and r there exists a positive
integer n such that any r–colouring of [m]n contains a monochromatic combinatorial line.

The smallest such n is called the Hales–Jewett number and denoted by HJ(m, r).
We will be imposing additional structural requirements on the desired monochromatic

objects, a direction which is often pursued in Ramsey theory. Shelah’s celebrated proof
of the Hales–Jewett Theorem [20] uses a single induction (on m) and therefore gives
primitive recursive bounds for HJ(m, r). Very recently Golshani and Shelah [12] pro-
posed an alternative proof obtaining the same class of bounds. The proof in [20] yields
monochromatic combinatorial lines with a specific structure, which has drawn the atten-
tion of several researchers. To discuss these results, we describe a combinatorial line as
q–fold if the set of its active coordinates consists of at most q sub-intervals of {1, . . . , n}
for some positive integer q. Shelah’s argument implies that for sufficiently large n, any
r–colouring of [m]n contains a monochromatic q–fold line with q 6 HJ(m − 1, r). In
particular, when the alphabet size is m = 3, we get a monochromatic r–fold line in [3]n.
The reason for this is the following: the r intervals are constructed using a pigeonhole-
principle argument establishing that the symbols 1 and 2 are interchangeable on those
intervals, which effectively reduces the size of the alphabet by one. Conlon and the first
author were interested in this additional structure given by the proof as a clue towards
understanding the optimality of Shelah’s approach. They showed that for odd r and all
n, there are r–colourings of [3]n containing no monochromatic (r−1)–fold lines. In other
words, Shelah’s proof yields monochromatic lines in [3]n with the simplest possible active
set in this sense.

Perhaps surprisingly, Leader and Räty [17] showed that the restriction on the parity
of r is necessary by proving that for sufficiently large n, any 2–colouring of [3]n contains
a monochromatic 1–fold line. We show that this case is not an exception by extending
their result to any even number of colours.

Theorem 2. For any even integer r > 2 there exists a positive integer N = N(r) such
that any r–colouring of [3]N contains a monochromatic combinatorial line whose set of
active coordinates is a union of at most r − 1 intervals.

The colouring from [7] shows that this result is optimal. Given the scarcity of quan-
titative results in this area of Ramsey theory, it is interesting that we can pin down an
exact answer for all r. The fact that the minimal number of intervals depends on the
parity of r could also come as a surprise, seeing as the Hales–Jewett Theorem is purely
combinatorial.

In the context of van der Waerden’s theorem, a number of researchers have looked at
analogous questions, where the family of arithmetic progressions is restricted to a specific
subclass, usually by putting restrictions on the common difference [2, 5, 9].

The proof of Theorem 2 relies on reducing the problem of finding (r− 1)–fold lines in
arbitrary colourings to considering specific colourings with a certain arithmetic structure.
Interestingly, the colourings found in [7] have precisely this structure. The Hales–Jewett
Theorem is naturally phrased in terms of proper colourings of a 3-uniform hypergraph,
but our reduction turns it largely into a graph colouring problem. Colourings of this type
occur elsewhere in literature, e.g. in showing that the Hales–Jewett theorem implies van
der Waerden’s Theorem.
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Structure of the paper. We start Section 2 by introducing some necessary notation
and then giving an outline of the proof of Theorem 2. The individual steps of this outline
will be executed in Subsections 2.1 to 2.5. Section 3 contains some further remarks and
open questions.

2 Proof of Theorem 2

We start this section by fixing some notation and giving an outline of the proof of Theo-
rem 2. Given a word w = w1 . . . wn ∈ [m]n, let its contraction w be obtained by contract-
ing every interval on which w is constant to a single letter of [m]. The word w = 11233322,
for example, has the contraction w = 1232. We write P(m,n) = {w : w ∈ [m]n} for
the set of patterns on the alphabet [m] of length at most n. Note that this notion also
plays an important role in [17] and was in fact previously introduced by Furstenberg and
Katznelson in [10].

Given some pattern p = p1 . . . pk ∈ P(m,n) and i ∈ [m], we also use the notation

ϕi(p) = #{1 6 j 6 k : pj = i} and ϕ(p) =
(
ϕ1(p), . . . , ϕm(p)

)
.

We refer to ϕ(p) as the count of p. Lastly, we write

ϕ
(q+1)
i (p) = ϕi(p) (mod q + 1) and ϕ(q+1)(p) =

(
ϕ
(q+1)
1 (p), . . . , ϕ(q+1)

m (p)
)

and refer to ϕ(q+1)(p) ∈ Zm
q+1 as the reduced count of p. From now on, the number of

colours will be equal to q + 1, that is

r = q + 1.

The goal will therefore be to find a monochromatic q–fold combinatorial line. The (q+1)–
colouring constructed by Conlon and the first author is in fact a function of ϕ(q+1)(w).
We will show that colourings of this type are inherent to the problem by passing precisely
from any colouring of [3]n to a function of ϕ(q+1)(w).

Given some pattern p ∈ P(3, n) and k ∈ N (the set of positive integers), the notation

(p)k =

k times︷ ︸︸ ︷
pp . . .p

refers to the k–fold repetition of that pattern. For the rest of the section, we fix

k0 = k0(q) = 18q + 12 (1)

and define the buffered version of a pattern x = x1 . . . xk′ ∈ P(3, k0) satisfying x1 6= 1
and xk′ 6= 2 to be

x+ = 1x (23)2k0 (13)2k0 (21)2k0 231 ∈ P(3, 13k0 + 4).

The buffer will help us circumvent the anomaly that certain patterns (e.g. x = 3)
are contained in images of very few combinatorial lines under the contraction map. In
contrast, x+ can be found in images of many combinatorial lines.

Using these definitions, we define the following three hypergraphs for any m > 2.
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• H(m,n, q) refers to the m-uniform hypergraph with vertex set [m]n and edge set
consisting of all q–fold combinatorial lines in [m]n.

• P(m,n, q) refers to the hypergraph obtained from H(m,n, q) by identifying vertices
whose contractions coincide and keeping the edges. Each vertex of H(m,n, q) is
mapped to its contraction in P(m,n, q) and after this mapping, the edges in this
hypergraph are of order m− 1 or m.

• C(n, q) refers to the hypergraph on Z3
q+1 obtained by taking the sub-hypergraph of

P(3, n, q) induced by the set of vertices p ∈ P(3, 13k0+4+q) that are buffered, that
is p = x+ for some appropriate x ∈ P(3, k0), and then identifying and labelling
vertices based on their reduced count ϕ(q+1)(x). That is, an edge {x+,u+,v+}
in P(3, n, q) induces the edge {ϕ(q+1)(x), ϕ(q+1)(u), ϕ(q+1)(v)} in C(n, q), assuming
x+,u+ and v+ are of length at most 13k0 + 4 + q. Since we are restricting ourselves
to the case of m = 3 for the definition of C(n, q), all edges in this hypergraph are
of order two or three.

Note that the first of these hypergraphs is m-uniform and the other two contain edges
of order m as well as m− 1. We will emphasise the order of an edge whenever relevant.
Furthermore, whenever we refer to graph theoretic objects or terminology such as cliques
or two adjacent vertices, we are referring only to edges of order two.

We can now describe the idea of the proof as follows: Any colouring of [3]n that
avoids monochromatic q–fold combinatorial lines simply corresponds to a proper vertex-
colouring of H(3, n, q), i.e. a colouring with no monochromatic edges. Using a purely
Ramsey-theoretic argument, we first show that for any such colouring and n large enough
we can find a sub-hypergraph isomorphic to the set of q–fold combinatorial lines in [3]ñ,
where ñ is significantly smaller than n, with the following important property: any two
words in this sub-hypergraph that have the same contraction must also have the same
colour. We can therefore identify all the words in this sub-hypergraph that get contracted
to the same pattern, meaning we are now considering colourings of P(3, ñ, q).

We continue by showing that this sub-hypergraph has a rich structure. For instance,
the line ` = 1∗∗22 ∗11 induces the edge {121, 13231}. More generally, P(3, ñ, q) contains
many interlaced cliques of size q + 1, i.e. q–powers of arbitrarily long paths. Besides
establishing that any proper colouring of the original hypergraph requires at least q + 1
colours, this structure will imply that, within a significant part of our sub-hypergraph, we
can identify patterns with each other if they have the same reduced count ϕ(q+1). This
further reduces the problem to colourings of C(ñ, q). This hypergraph is translation-
invariant, has edges between any two vertices which differ in a single coordinate as well
as some important additional restrictions. These restrictions imply that it cannot be
(q + 1)–colourable for odd q, from which the main theorem follows. Only edges of order
two in P(3, ñ, q) will be relevant to make the step to C(ñ, q), but those of order three are
crucial for ultimately deriving the lower bound on the chromatic number.

We note that everything up to the bound on the chromatic number of C(ñ, q) holds
for general q (odd or even) with r = q+1, and that the initial Ramsey theoretic reduction
to the patterns also holds for general m. Therefore, our proof along with the colouring
from [7] gives a good intuition on why the function I(3, q + 1) displays the alternating
behaviour depending on the parity of q.
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In the remainder of this section, we first show in Subsection 2.1 that if P(m,n, q)
is not (q + 1)–colourable, then neither is H(m,N, q) for some appropriately large N .
Then we assume that n > 13k0 + 4 + q and show in Subsection 2.3 that if C(n, q) is
not (q+ 1)–colourable, then neither is P(3, n, q). We conclude the proof of Theorem 2 in
Subsection 2.5 by showing that any (q+1)–colouring of C(n, q) must contain a monochro-
matic edge.

2.1 From H(m,n, q) to P(m,n, q) – reduction to patterns

The notation and idea behind this part are derived from the approach of Leader and
Räty [17] for the specific case of q = 1.

We define the set of breakpoints of a given word w = w1 . . . wn ∈ [m]n to be the set
T (w) = {a1, . . . , ak} for which wai−1+1 = · · · = wai and wai 6= wai+1 for 1 6 i 6 k + 1
where we set a0 = 0 and ak+1 = n. Let S(k) refer to all subsets of size k of some given
set S. Given some N > n and A = {a1 < · · · < an−1} ∈ [N − 1](n−1), let wA denote the
word wA = wA

1 . . . w
A
N ∈ [m]N defined by wA

ai−1+1 = · · · = wA
ai

= wi for 1 6 i 6 n where

we set a0 = 0 and an = N . Note that in general wA = w and T (wA) ⊆ A. Specifically
T (wA) = A if and only if w = w.

Example 3. Let w = 13323 be given. We have T (w) = {1, 3, 4}. If A = {2, 3, 5, 6} and
N = 8 then wA = 11 3 33 2 33.

This notation allows us to make the following statement.

Proposition 4. For any n, r ∈ N there exists N = N(n, r) ∈ N so that for any r–
colouring χ of [m]N there exists A = A(n,N, χ) ∈ [N − 1](n−1) such that χ(wA

1 ) = χ(wA
2 )

for any w1,w2 ∈ [m]n satisfying w1 = w2.

Proof. Give the patterns in P(m,n) an arbitrary ordering, say P(m,n) = {p1, . . . ,pk},
and write ti = |pi| for their respective length. Set n0 = n − 1 and recursively define
ni = R(ti−1,r)(ni−1) for 1 6 i 6 k where R(t,r)(s) = R(t,r)(s, . . . , s) is the r–colour Ramsey
number for t-sets. Lastly, set N = N(n, r) = nk + 1.

Now let χ be an arbitrary but fixed r–colouring of [m]N and let us recursively define
sets Tk ⊃ · · · ⊃ T1 ⊃ T0 satisfying |Ti| > ni for 0 6 i 6 k as well as certain properties
with respect to that colouring. We start by setting Tk = [N − 1]. Let |Ti| > ni be

given and observe that χ induces a colouring χi on T
(ti−1)
i given by χi(A) = χ(pA

i ) for

A ∈ T
(ti−1)
i . Now, since by definition ni = R(ti−1,r)(ni−1), it follows that there exists

Ti−1 ⊂ Ti satisfying |Ti−1| > ni−1 such that T
(ti−1)
i−1 is monochromatic with respect to χi.

Now fix some A = {a1 < · · · < an−1} ∈ T (n−1)
0 . Consider two words w1,w2 ∈ [m]n

which satisfy w1 = w2 = pj for some 1 6 j 6 k. We note that there exist A1, A2 ∈ A(tj−1)

such that wA
1 = pA1

j and wA
2 = pA2

j , that is T (wA
1 ) = A1 and T (wA

2 ) = A2. Since

T0 ⊂ Tj−1, we have A1, A2 ∈ T
(tj−1)
j−1 and therefore

χ(wA
1 ) = χ(pA1

j ) = χj(A1) = χj(A2) = χ(pA2
j ) = χ(wA

2 )

as desired.
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The lemma states that within [m]N we can find a ‘copy’ of [m]n in which any two
words with the same contraction must also have the same colour. The following corollary
captures this point.

Corollary 5. For any n, r ∈ N there exists N = N(n, r) ∈ N such that if P(m,n, q) is
not r–colourable, then neither is H(m,N, q).

Proof. Given a proper r–colouring χ of the vertex set [m]N of H(m,N, q), we note that
χ′ given by χ′(w) = χ(wA) for w ∈ [m]n and A as given by Proposition 4 defines a
proper colouring of [m]n. This follows since any combinatorial line ` in [m]n consist-
ing of {`[1], . . . , `[m]} corresponds to the combinatorial line `A in [m]N consisting of
{`[1]A, . . . , `[m]A}. Proposition 4 now implies that χ′ also induces a proper colouring of
P(m,n, q), proving the statement.

2.2 The structure of edges in P(m,n, q)

Before we proceed with the reduction to the reduced count, let us describe the structure
of the edges in P(m,n, q). Let us write P?(m,n) = {` : ` ∈ [m]n?} where the contraction
also contracts repeated occurrences of the symbol ?. We start with a simple observation
which follows from the definition of P(m,n, q).

Lemma 6. For any ` ∈ P?(m,n), the set
{
`[1], . . . , `[m]

}
forms an edge in P(m,n, q).

Proof. Let ` = `1 . . . `k where k 6 n. Clearly `′ = `1 . . . `k(`k)n−k ∈ [m]n? is a combina-

torial line in [m]n so that {`[1], `[2], . . . , `[m]} = {`′[1], `′[2], . . . , `′[m]} forms an edge in
P(m,n, q).

In general, the edges described in the previous lemma are of order m or m − 1.
The central observation used for the next reduction is that for the case of m = 3 a
combinatorial line of the form ` = 1 ? 2 connects the patterns 12 and 132 by an edge of
order two, since both `[1] = 112 and `[2] = 122 get contracted to the same pattern. This
is a particularity of that alphabet order and the main reason why this approach does not
easily extend to larger m.

Let us derive a precise description of when an edge of order two occurs between two
vertices in P(3, n, q). Edges of order two will be sufficient in realising the reduction to
the reduced count, but edges of order three will be crucial at the end of the section when
establishing the lower bound on the chromatic number for odd q.

We start by introducing two more necessary notions. Let {α1, α2, α3} = {1, 2, 3} and
p ∈ P(3, n). An α3–insertion in p is the operation of inserting a copy of the letter
α3 between an instance of α1 and an instance of α2 in p. An α3–alteration of p is the
operation of moving one instance of α3 whose neighbours in p are α1 and α2 to another
part of p so that its neighbouring letters are again α1 and α2.

Example 7. The pattern 13212 can be obtained from 1212 by a 3–insertion and from
12312 by a 3–alteration.

Only the notion of insertion will be needed for the remainder of this subsection, but
alterations will become important in the next one.
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Lemma 8. Let p1,p2 be two patterns in P(3, n) and α ∈ [3]. If p2 is obtained from p1

by at most q successive α–insertions, then p1 and p2 are adjacent in P(3, n, q).

Proof. Assume without loss of generality that α = 3. We will construct some ` ∈ P?(3, n)
satisfying `[1] = `[2] = p1 and `[3] = p2. Let p2 = p1 . . . pk and let j1, . . . , jk′ denote
the k′ 6 q indices of the 3–insertions that take one from p1 to p2, that is if one removes
pj1 , . . . , pjk′ from p2 then one obtains p1. We now define ` = `1 . . . `k by

`i =

{
pi for i ∈ {1, . . . , k} \ {j1, . . . , jk′},
? for i ∈ {j1, . . . , jk′}.

It immediately follows that `[1] = `[2] = p1 and `[3] = p2, so by Lemma 6 ` forms an
edge between p1 and p2 in P(3, n, q).

2.3 From P(3, n, q) to C(n, q) – Reduction to the reduced count

Let us introduce one last definition. For {α1, α2, α3} = {1, 2, 3} we call a pattern in
P(3, n) α3–diverse if it is of length at most n−q and it contains at least q copies of either
of the subwords α1α2 or α2α1.

Example 9. The pattern 121 is 3–diverse if q 6 2 and n > 5

Note that we are not yet restricting ourselves to buffered patterns for the following
remark and the subsequent lemma.

Remark 10. For any given α–diverse pattern p ∈ P(3, n) there exists a sequence p =
b1, . . . ,bq+1 in P(3, n) so that bi+1 can be obtained from bi by an α–insertion for 1 6
i 6 q.

Lemma 11. Let χ be a proper (q + 1)–colouring of P(3, n, q), p1,p2 ∈ P(3, n) and
α ∈ {1, 2, 3}. We have χ(p1) = χ(p2) if either of the following two cases holds:

(i) p2 can be obtained from p1 by exactly q + 1 α–insertions,

(ii) p1 and p2 are α–diverse patterns and p2 can be obtained from p1 by an α–alteration.

Proof. Let us start with case (i). By assumption, there exists a sequence of patterns
p1 = b0,b1, . . . ,bq,bq+1 = p2 in P(3, n) so that bi+1 is obtained from bi by an α–
insertion for any 0 6 i 6 q. By Lemma 8, there is an edge of order two connecting bi to
bj if |i− j| 6 q and i 6= j. It follows that {b1, . . . ,bq} forms a clique of order q that lies
in the neighbourhood of both p1 and p2. Since χ uses q+1 colours, the desired statement
follows.

p1 = b0

b1 b2 bq

bq+1 = p2

Regarding case (ii), one can easily see that since p2 can be obtained from p1 by an α–
alteration and p1 and p2 are α–diverse, there exist patterns b1,b2,b3, . . . ,bq in P(3, n)
such that b1 that can be obtained from both p1 and p2 by an α–insertion and bi+1 can
be obtained from bi by an α–insertion for 1 6 i 6 q − 1.
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p1

p2

b1 b2
bq

Again by Lemma 8, it follows that {b1,b2, . . . ,bq} form a clique of order q that lies in
the neighbourhood of both p1 and p2. The desired statement follows.

Throughout the remainder of the paper we will assume that n > 13k0 + 4 + q and
restrict ourselves to the patterns in the vertex set of P(3, n, q) that are buffered, that is
we will consider

P+ = {p+ : p = p1, . . . , pk′ ∈ P(3, k0) s.t. p1 6= 1 and pk′ 6= 2} ⊂ P(3, n− q).

Note that we have chosen n large enough so that this set is non-empty. Furthermore,
since k0 = 18q + 12 and P+ ⊂ P(3, n − q), every pattern contained in P+ is α–diverse
in P(3, n, q) for any α ∈ [3]. We can now establish the central lemma that allows us to
perform the next reduction.

Lemma 12. Let χ be a proper (q + 1)–colouring of P(3, n, q) and p1,p2 ∈ P+. If
the reduced count of the two patterns is the same, that is ϕ(q+1)(p1) = ϕ(q+1)(p2), then
χ(p1) = χ(p2).

Proof. We will show that for any p ∈ P+ there exists a sequence of diverse words

p = b1,b2, . . . ,bk1 = c1, c2, . . . , ck2

such that bi+1 can be obtained from bi for 1 6 i < k1 by a single alteration and ci can
be obtained from ci+1 for 1 6 i < k2 by exactly q + 1 α–insertions, where the α ∈ [3]
is allowed to depend on the step. Crucially, we will also show that ck2 is determined
by the reduced count of p, so that the two sequences obtained by starting at p1 and p2

terminate in the same pattern. By Lemma 11, it follows that χ(p1) = χ(p2).
We start by constructing the sequence b1, . . . ,bk1 : let us refer to a copy of any letter

α3 ∈ {1, 2, 3} in a pattern as movable if it is positioned between a copy of α1 and α2

where as usual {α1, α2, α3} = {1, 2, 3}. In the pattern 12321 for example, both copies
of the letter 2 are movable whereas none of the others are. We let x ∈ P(3, k0) be the
pattern for which

p = x+ = 1 | x | (2 xy 3)2k0 (1 xy 3)2k0 (2 xy 1)2k0 231.

Here both the bar as well as the symbol xy only serve as a visual aid to help us with
the following definitions: we will refer to the part between the two bars – that is ini-
tially x – as the core and to the part to the right of the second bar – that is initially
(2 xy 3)2k0 (1 xy 3)2k0 (2 xy 1)2k0 231 – as the buffer. We will refer to the spaces between the
12s, 13s and 21s in the buffer marked by the symbol xy as slots.

We now obtain bi+1 from bi by choosing an arbitrary movable letter from the core and
moving it by an alteration into an appropriate slot in the buffer. We do so in a canonical
fashion by always moving a letter to the left-most available slot. The slot itself, with the
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corresponding symbol, gets removed. Note that the bars stay in place throughout this
process and serve as the reference point for our notions of core and buffer, even as both
change in length.

We iterate this until there are no more movable letters in the core and refer to the
point at which this happens as k′1. Since x is of length at most k0, we note that we
have constructed the buffer large enough to not only contain all of x, but also large
enough that all of the bi remain α–diverse for any α ∈ [3]. If the core of bk′1

is empty,
then we set k1 = k′1. If, however, the core of bk′1

is non-empty, then we must have
bk′1

= 1 | 2121 . . . 21 | 2 . . . 231. In this case, we proceed by moving the last 3 in bk′1
in

front of the core so that bk′1+1 = 13 | 2121 . . . 21 | 2 . . . 21. We observe that we are now
able to recursively move all remaining letters from the core into the buffer until we reach
bk1−1 = 13 | | 2 . . . 21. We finish by moving the 3 back to its original position, so that

bk1 = 1 | | (213)ϕ1 (2 xy 3)2k0−ϕ1 (123)ϕ2 (1 xy 3)2k0−ϕ2 (231)ϕ3 (2 xy 1)2k0−ϕ3 231

where (ϕ1, ϕ2, ϕ3) = ϕ(x) is the count of x. Note that the order in which the movable
letters were chosen does not affect the outcome of this process, that is, bk1 is independent
of the ordering.

We now proceed to obtain ci+1 from ci by removing, for each step, exactly q + 1 of
either the 1s, 2s or 3s from, respectively, the parts (213), (123) or (231). We can continue
to do so until we reach

ck2 = 1 | | (213)ϕ
(q+1)
1 (2 xy 3)2k0−ϕ

(q+1)
1 (123)ϕ

(q+1)
2 . . .

. . . (1 xy 3)2k0−ϕ
(q+1)
2 (231)ϕ

(q+1)
3 (2 xy 1)2k0−ϕ

(q+1)
3 231.

where (ϕ
(q+1)
1 , ϕ

(q+1)
2 , ϕ

(q+1)
3 ) = ϕ(q+1)(x). We note that ck2 only depends on the reduced

count of the original core x. Since the original buffer is identical for any core, it follows
that ck2 also only depends on the reduced count of p, as desired.

Thus we have proved the following statement.

Corollary 13. If C(n, q) is not (q + 1)–colourable, then neither is P(3, n, q).

2.4 The structure of edges in C(n, q)

Let us establish the structure of some of the edges that can be found in C(n, q). In fact,
these will be essentially almost all of the edges that can be found in C(n, q), though we
do not provide a formal proof of this. Recall that in C(n, q) the vertex associated with

`[α]
+
∈ P+ is labelled with the reduced count of `[α] for any α ∈ [3]. Let e1 = (1, 0, 0),

e2 = (0, 1, 0) and e3 = (0, 0, 1) be the standard basis vectors in N3.

Lemma 14. Given any x ∈ Z3
q+1 as well as any a1, a2, a3 ∈ Z satisfying 0 < a1+a2+a3 6

q and ai + aj > 0 for i 6= j, the set {x + a1 e1,x + a2 e2,x + a3 e3} forms an edge in
C(n, q), where addition is modulo q + 1.

Proof. Write x = (x1, x2, x3) where 0 6 x1, x2, x3 6 q are treated as integers. We note
that we must have either a1, a2, a3 > 0 or ai2 , ai3 > −ai1 > 0 for {i1, i2, i3} = {1, 2, 3}.
We will distinguish between these two cases.
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Case 1. Assume that a1, a2, a3 > 0. Consider

` = (2 ? 3)a1 (213)x1 (23)2(q+1)−x1−a1 . . .

(1 ? 3)a2 (123)x2 (13)2(q+1)−x2−a2 . . .

(2 ? 1)a3 (231)x3 (21)2(q+1)−x3−a3 ∈ P?(3, k0).

Here the dots merely indicate that the word is continued in the next line. Also note that
xi + aj 6 2q so that 2(q+ 1)− x1− a1 > 0 for any i, j ∈ {1, 2, 3}. It is easy to verify that

ϕ(q+1)
(
`[1]
)

= (x1 + a1, x2, x3) = x + a1 e1,

where all addition is modulo q + 1. Similarly, ϕ(q+1)
(
`[i]
)

= x + ai ei for i ∈ {2, 3}. We
note that ` is of length at most 18q+12 = k0 so that `+ ∈ P?(3, n) and hence by Lemma 6{
`+[1], `+[2], `+[3]

}
constitutes an edge in P(3, n, q) so that {x+a1 e1,x+a2 e2,x+a3 e3}

is an edge in C(n, q).

Case 2. Assume that a1 < 0 and a2, a3 > |a1|. The other cases follow likewise. Consider

` = (1 ? 1)|a1| (213)x1 (23)2(q+1)−x1+|a1| . . .

(1 ? 3)a2−|a1| (123)x2 (13)2(q+1)−x2−a2 . . .

(2 ? 1)a3−|a1| (231)x3 (21)2(q+1)−x3−a3 ∈ P?(3, k0).

It is again easy to verify that ϕ(q+1)
(
`[i]
)

= x + ai ei for i ∈ [3] As before we conclude
that {x + a1 e1,x + a2 e2,x + a3 e3} forms an edge in C(n, q).

The edges described in the following easy corollary form a ‘Latin cube’-type structure
in C(n, q), that is {x,x + ei,x + 2 ei, . . . ,x + q ei} form a clique of order q + 1 for any
x ∈ Z3

q+1 and i ∈ {1, 2, 3}.

Corollary 15. For any x ∈ Z3
q+1, i ∈ {1, 2, 3} and a ∈ {1, . . . , q} there is an edge of

order two between the vertices x and x + a ei in C(n, q) where addition is modulo q + 1.
Therefore, if χ is a proper (q+1)–colouring of C(n, q), then for any x and ei, each colour
occurs exactly once in the set {χ(x), χ(x + ei), χ(x + 2 ei), . . . , χ(x + q ei)}.

2.5 A lower bound on the chromatic number of C(n, q)

Throughout this section we will continue to assume that n > 13k0 + 4 + q and simply
write Cq = C(n, q). The vertex set of Cq is Z3

q+1 and the edges of Cq that we will use
are described in Lemma 14 and Corollary 15. As already noted, Cq contains plenty of
cliques of order q + 1 so that χ(Cq) > q + 1. We know that this bound is sharp for even
q, but we wish to show the following:

Proposition 16. For odd q we have χ(Cq) > q + 1.

We will prove the proposition by considering a single colour, say ‘red’, which is as-
sumed to induce no hyperedges of Cq. We will show that the red set is determined by
any two vertices which have a common neighbour in Cq (via edges of size two), and in
fact it comes from the zero set of a linear functional. We show this using an inductive
argument. Implicitly, it was shown in [7] that χ(Cq) 6 q+ 1 for even q using exactly this
type of colouring.
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Lemma 17. Let χ be a proper (q + 1)–colouring of Cq. Let a ∈ Z and b ∈ N0 such that
|a| 6 b as well as max(b, a+ b) 6 q and let {ia, ib, i0} = {1, 2, 3}. If there exists x ∈ Z3

q+1

such that
χ(x) = χ(x− a eia + b eib)

then for any s0, s1 ∈ Z, we have

χ
(
p(s0, s1)

)
= χ(x), where (2)

p(s0, s1) = px,a,b,i0,ia,ib(s0, s1) = x + s0
(
− (a+ b) ei0 − b eib

)
+ s1

(
− a eia + b eib

)
.

Here all addition is modulo q + 1.

Proof. Let us highlight two special cases of (2) that will be needed throughout the proof:

(i) Equation (2) with (s0, s1) = (1, 1) reads χ
(
x− (a+ b) ei0 − a eia

)
= χ(x).

(ii) Equation (2) with (s0, s1) = (−1, 0) reads χ
(
x + (a+ b) ei0 + b eib

)
= χ(x).

We now prove the statement by induction on

d = max(b, a+ b) =

{
a+ b if a > 0
b if a < 0.

(3)

Note that by assumption 0 6 d 6 q. For d = 0 we must have a = b = 0, for which the
statement is trivially true. We therefore assume that the statement of the Lemma holds
for 0, 1, . . . , d− 1 < q and prove it for d.

We cannot have a = 0 since x and x + b eib are adjacent by Corollary 15. Let us now
focus on the the case a+ b > 0. The case where a+ b = 0, that is a = −d and b = d, will
rely on previously having proven the statement for all other cases and therefore has to
wait until the end of this proof. That case will in fact turn out to be impossible. Let us
further restrict the case a+ b > 0 by first proving that p(1, 1) is red in a separate claim.
This special case will in fact turn out to be essential in establishing (2) for arbitrary s0, s1
when a + b > 0 by serving both as a base case and as a tool for the inductive step of
another induction.

Claim 18. Let a′ ∈ Z\{0} and b′ ∈ N satisfy b′ > a′ > −b′ as well as max(b′, a′+b′) = d.
If there are {i′a, i′b, i′0} = {1, 2, 3} and x′ ∈ Z3

q+1 such that

χ(x′) = χ(x′ − a′ ei′a + b′ ei′b), (4)

then
χ(x′ − a′ ei′a − (a′ + b′) ei′0) = χ(x′). (5)

Proof of Claim 18. We write

c = x′ − a′ ei′a , y′ = c + b′ ei′b , and z = c− (a′ + b′) ei′0 .

For the remainder of the proof we simply say that the colour of x′ = c + a′ei′a and
y′ = c + b′ei′b is red. The aim will be to show that z is also red. Specifically, we will
proceed by showing that c + jei′0 cannot be red for any −(a′ + b′) < j 6 q − (a′ + b′), so
that by Corollary 15 z = c− (a′ + b′)ei′0 in fact must be red. To that end, assume to the
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contrary that c + jei′0 is red for some −(a′ + b′) < j 6 q − (a′ + b′) and note that we can
already exclude the case j = 0, as c is adjacent to x′ (as well as y′) by Corollary 15.

Let us also offer some intuition on the proof. The vertices x′,y′ and z form a right
tetrahedron with the apex at c. The idea is to re-orient the axes (keeping the apex at
c) so that the corresponding lengths a and b satisfy max(b, a + b) < d, allowing for an
application of the inductive hypothesis or Lemma 14.

Case 1. Assume that a′ > 0. We will reach a contradiction through a case distinction
illustrated in Figure 1.

Case 1.1Case 1.3Case 1.2

a′

b′

−(a′ + b′) (q + 1)− (a′ + b′)c

x′

y′

z z

Figure 1: Relative positions of the involved points in the case a′ > 0.

Case 1.1. If 1 6 j < (q + 1) − (a′ + b′), then we note that x′ and y′ form a hyperedge
with any of the vertices c + j ei′0 as described in Lemma 14 and therefore these vertices
cannot be red.

Case 1.2. If −(a′ + b′) < j < −b′, we will apply the inductive hypothesis in the form of
(ii) with

a = −a′, b = −j, ia = i′a, ib = i′0 and x = c + j ei′0 ,

so that x + b eib − aeia = c + a′ei′a = x′ and x + b eib + (a+ b)ei0 = c− (a′ + j)ei′b . Note
that we can use the inductive hypothesis as b = −j > b′ > |a′| = |a| and max(b, a+ b) =
b = −j < a′ + b′ = d. Since c + j ei′0 and c + a′ ei′a are red by assumption, the inductive
hypothesis implies that c − (a′ + j) ei′b is red. But y′ = c + b′ ei′b is also red, so we have
b′ = −j − a′ by Corollary 15, implying the contradiction a′ + b′ = −j < a′ + b′.

Case 1.3. If −b′ 6 j 6 −1, then we will use the inductive hypothesis in the form of (i)
with

a = j, b = b′, ia = i′0, ib = i′b and x = c + j ei′0 ,

so that x + b eib − aeia = c + b′ei′b and x− a eia − (a+ b)ei0 = c− (j + b′)ei′a . Note that
the inductive hypothesis can be used since b = b′ > −j = |a| and max(b, a + b) = b′ <
a′+ b′ = d. It follows that that c− (j+ b′) ei′a is red. However, since c+ a′ ei′a is also red,
we have a′ = −j − b′ by Corollary 15, giving the contradiction a′ + b′ = −j < a′ + b′.

Case 2. Assume that a′ < 0. The contradiction will be reached through another case
distinction that is illustrated in Figure 2.

Case 2.1. If 1 6 j 6 |a′| − 1, we will apply (ii) with

a = −j, b = |a′|, ia = i′0, ib = i′a and x = x′ = c + a′ei′a ,
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Case 2.2Case 2.12.42.3

a′

b′

−(a′ + b′) (q + 1)− (a′ + b′)c
x′

y′

z z

Figure 2: Relative positions of the involved points in the case a′ < 0.

so that x+b eib−aeia = c+j′ei′0 and x+b eib +(a+b)ei0 = c+(−a′−j)ei′b . Note that we
can use the inductive hypothesis as b = |a′| > j = |a| and max(b, a+ b) = |a′| < b′ = d. It
follows that c+ (−a′− j) ei′b is red. Since y′ = c+ b′ei′b is also red, we have b′ = −j− a′,
implying the contradiction a′ + b′ = −j.
Case 2.2. If |a′| 6 j < (q + 1) − (a′ + b′), then we argue as in case 1.1. That is, we
observe that x′ and y′ form a hyperedge with any of the vertices c+ j ei′0 as described in
Lemma 14 and therefore these vertices cannot be red.

Case 2.3. If −(a′+ b′) < j 6 −|a′|, then we proceed as in case 1.2. That is, we apply (ii)
with

a = |a′|, b = −j, ia = i′a, ib = i′0 and x = c + j ei′0 ,

to conclude that c+ (a+ b) ei′b is red. Note that we could use the inductive hypothesis as
b = −j > |a′| = |a| as well as max(b, a+ b) = |a′| − j < |a′|+ a′ + b′ = b′ = d. It follows
that b′ = a+ b = |a′| − j, implying the contradiction a′ + b′ = −j < a′ + b′.

Case 2.4. If max
(
− |a′|,−(a′ + b′)

)
< j 6 −1, then we proceed as in case 2.1. That is,

using (ii) with

a = −j, b = |a′|, ia = i′0, ib = i′a and x = x′,

we get that c + (a + b) ei′b is red. Note that we could use the inductive hypothesis as
b = |a′| > −j = |a| as well as max(b, a + b) = |a′| − j < |a′| + a′ + b′ = b′ = d. Hence
b′ = a+ b = −j + |a′|, implying the contradiction a′ + b′ = −j < a′ + b′.

As previously in Case 1, we conclude that z must be red. This concludes the proof of
Claim 18. �

Claim 18 will now be used to show (2) in full generality, so for all s0, s1 ∈ Z, when
a+ b > 0 and max(b, a+ b) = d. Recall that the case a+ b = 0 will be dealt with at the
very end of this proof. Also recall that

p(s0, s1) = x + s0
(
− (a+ b) ei0 − b eib

)
+ s1

(
− a eia + b eib

)
.

The assumption of our lemma is that p(0, 0) = x and p(0, 1) = x− a eia + b eib are red.
Claim 18 established that p(1, 1) is red as well, though its implications will go beyond
that. As previously in the proof of the Claim 18, we have to distinguish two cases for a.
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+a +b

+(a+b)

p(s0-1,0)

p(s0-1,1)

p(s0-1,s0)

1

p(s0,1)
1

1

p(s0,s0)

2p(s0,0)

3 p(s0,s0+1)

Figure 3: The inductive step over s0 in the case a > 0.

Case I. If a > 0, then we start by showing that p(s0, s1) is red for any s0, s1 ∈ N0

satisfying s1 6 s0 + 1 by induction on s0. We note that for s0 = 0 the statement holds
as p(0, 0) = x and p(0, 1) = x− a eia + b eib . Assume therefore that the statement holds
for s0 − 1 and let us show that it holds for s0 and any 0 6 s1 6 s0 + 1. We will do so
through another case distinction that is illustrated in Figure 3:

1. We start by proving it for 0 < s1 < s0+1. By inductive assumption, p(s0−1, s1−1)
and p(s0 − 1, s1) are red so that we can apply Claim 18 with

a′ = a, b′ = b, i′a = ia, i′b = ib and x′ = p(s0 − 1, s1 − 1),

to deduce that p(s0, s1) is also red.

2. Secondly, suppose s1 = 0. The inductive hypothesis and Case 1 imply that p(s0 −
1, 0) and p(s0, 1) are red, so we may apply Claim 18 with

a′ = −a, b′ = a+ b, i′a = ia, i′b = i0 and x′ = p(s0, 1),

to deduce that p(s0, 0) is also red.

3. Finally, consider s1 = s0 + 1. Case 1 and the inductive hypothesis imply that
p(s0, s0) and p(s0 − 1, s0) are red, so we may apply Claim 18 with

a′ = −b, b′ = a+ b, i′a = ib, i′b = i0 and x′ = p(s0, s0),

to deduce that p(s0, s0 + 1) is also red.

This concludes the inductive step, so we have shown that (2) holds for any s0 ∈ N0 and
0 6 s1 6 s0 + 1 when a > 0. However, since the summation is done modulo (q + 1), we
have for instance p(s0, s1) = p(s0 − (q + 1), s1). It immediately follows that p(s0, s1) is
red for any s1, s0 ∈ Z.

Case II. If a < 0, then we note that, by Claim 18, z = x − a eia − (a + b) ei0 is red. If
a+ b > |a|, then we rewrite that last equation as x = z− |a| eia + (a+ b) ei0 and observe
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that the position of x in relation to z satisfies the conditions of Case I. One can quickly
verify that px,a,b,i0,ia,ib(s0, s1) = pz,|a|,a+b,ib,ia,i0(s0− s1,−s1 + 1), where addition is modulo
q + 1, to see that the new orientation does in fact still span the same lattice structure.
If a + b 6 |a| then we note that z = x− (a + b) ei0 + |a| eia so that now z in relation to
x satisfies the conditions of Case I. We can again relate the new orientation to the old
one through px,a,b,i0,ia,ib(s0, s1) = pz,a+b,|a|,ib,i0,ia(s0− s1, s0− 1). In either scenario we can
immediately derive (2).

This completes the inductive step over d for a+b > 0. The remaining case is −a = b =
d, so let x and y = x+b eia +b eib be red. By Corollary 15, the vertex x+b eia is adjacent
to x (as well as y) and therefore cannot be red. The vertices x+b eia+j ei0 form an edge of
order three with x and y for any |a| = b < j 6 q as described in Lemma 14 and therefore
these vertices also cannot be red. Now assume that x + b eia + j0 ei0 is red for some
1 6 j0 6 b− 1. We apply (2) with −j0 in place of a and the same value of b. Note that
| − j0| = j0 < b as well as max(b,−j0 + b) = b = d and j0 6= b. We previously established
that (2) holds in this case, so using observation (ii) we get that x+b eia +(−j0+b) eib must
be red. Since y = x+ b eia + b eib is also red, we must have b− j0 = b in contradiction to
j0 > 1. We have shown that the vertices x+ b eia + j ei0 cannot be red for any 0 6 j 6 q,
contradicting Corollary 15. It follows that (2) vacuously holds for the case −a = b = d,
completing the inductive step over d and proving Lemma 17.

Let us now derive Proposition 16 from Lemma 17.

Proof of Proposition 16. By Corollary 15, one of the vertices {j e2 : 0 6 j 6 q} must
have the same colour as −e1, say χ(j0 e2) = χ(−e1). If j0 = 0, then we get an immediate
contradiction. For j0 6= 0, we apply Lemma 17 with

a = −1, b = j0, ia = 1, ib = 2 and x = −e1.

With p(s0, s1) as in the statement of Lemma 17, it follows that p(s0, s1) have the same
colour as −e1 and b e2 for any s0, s1 ∈ Z. Let Aa, Ab, A0 respectively denote the set of
their projections onto the axes ia, ib, i0 in Z3

q+1. We note that

|Aa| = (q + 1)/ gcd(1, q + 1) = q + 1,

|Ab| = (q + 1)/ gcd(j0, q + 1),

|A0| = (q + 1)/ gcd(j0 − 1, q + 1).

However, in order to respect the latin cube structure described by Corollary 15, we must
have |Aa| = |Ab| = |A0| = q + 1. It follows that

1 = gcd(j0, q + 1) = gcd(j0 − 1, q + 1), (6)

which immediately gives a contradiction since q + 1 is even by assumption and at least
one of j0 and j0 − 1 must be even as well.

Theorem 2 now follows as an immediate consequence of Proposition 16, Corollary 13
and Corollary 5, where we set the N2 = N2(r) of Theorem 2 equal to N5(r, 13k0+4+q) =
N5(r, 235q + 160) from Corollary 5, where of course q = r − 1.
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3 Remarks and Open Questions

In this paper, we settle the particular inquiry started by Conlon and the first author into
structural properties of the monochromatic combinatorial lines of length three given by
the Hales–Jewett theorem. Of course, many related issues remain very much open, which
we will outline in the following.

Bounds for larger alphabets

Let I(m, r) be the minimum q so that for sufficiently large n any r–colouring of [m]n

contains a q–fold combinatorial line. In [7], it was shown that I(3, r) = r for odd r and
conjectured that the result extends to I(m, r) = HJ(m−1, r). Given the result of Leader
and Räty, this conjecture was later retracted, though it is still reasonable to wonder if
I(m, r) is at all linked to HJ(m− 1, r) when m > 3.

Question 19. Can we improve on either of the immediate bounds

max {I(m− 1, r), I(m, r − 1)} 6 I(m, r) 6 HJ(m− 1, r)? (7)

In particular, r−1 is the best explicit lower bound that the present methods can give
on I(m, r), which is probably far from the truth.

An upper bound separating I(m, r) from HJ(m− 1, r) would entail a new argument
for the Hales-Jewett theorem. For instance, the reduction to the hypergraph P(3, n, r)
conceived by Leader and Räty, along with the observation that P(3, n, r) contains an
r–clique, already gives an alternative proof for an alphabet of size 3. For m > 3, this
strategy essentially reduces the alphabet size by one and therefore may be a good starting
point for further inquiries.

Bounds for the Hales–Jewett number

There is currently a large gap in the best bounds on HJ(3, r), see [3, 20, 15, 16, 4, 6].
More specifically, we have

rc ln(r) 6 HJ(3, r) 6 22cr (8)

for some c > 0, where the upper bound is a recent result of Conlon [6] and the lower bound
follows from a lower bound on the van der Waerden number W (3, r) due to Graham,
Rothschild and Spencer [13]. With this in mind, we ask the following question.

Question 20. Given r > 2 and q > 2dr/2e − 1, what N = N(r, q) guarantees the
existence of q–fold lines in any r–colouring of [3]N?

A better lower bound on N(r, q) may turn out to be more accessible than one for
HJ(3, r).

The cyclic setting

It should also be noted that the setup becomes significantly more natural if we take a
cyclic ground set for the coordinates, that is Zn rather than [n], so that we might have an
interval at the border that ‘wraps’ around. In particular, the step to the reduced count
in Subsection 2.3 becomes easier while actually resulting in a stronger statement that
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avoids the need for the “buffer”. We therefore highly recommend that anyone interested
in further exploring this topic use that setup instead of the one employed so far in this
and the previous papers.

The Density Hales–Jewett Theorem

Much of the recent interest in the Hales–Jewett theorem has been focused at density
versions, see for example [18, 1, 19, 8, 11]. It would be interesting if a similar line
of inquiry could be followed in this setting. However, to our knowledge, none of the
currently stated proofs of the density version allow for similar structural observations as
studied in this paper.
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