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Abstract

A permutation in a digraph G = (V, E) is a bijection f : V' — V such that for
all v € V' we either have that f fixes v or (v, f(v)) € E. A derangement in G is a
permutation that does not fix any vertex. Bucic, Devlin, Hendon, Horne and Lund
proved that in any digraph, the ratio of derangements to permutations is at most
1/2. Answering a question posed by Bucic, Devlin, Hendon, Horne and Lund, we
show that the set of possible ratios of derangements to permutations in digraphs is
dense in the interval [0, 1/2].

Mathematics Subject Classifications: 05A05, 05C80
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1 Introduction

A permutation in a digraph (with no loops) G = (V, E) is a bijection f : V' — V such
that for all v € V' we either have that f fixes v or (v, f(v)) € E. A derangement in G is
a permutation that does not fix any vertex. We define the parameter (d/p)e to be the
ratio of derangements to permutations in G. As an aside, it is worth noting that if A is
the adjacency matrix of the graph G, then the ratio we are studying can be written

per(A)

(d/p)a = m;

where per(-) refers to the permanent of a matrix and I, is the n x n identity matrix.

Bucic, Devlin, Hendon, Horne and Lund [1] showed that (d/p)e < 1/2 for all digraphs
G, with equality if and only if G is a directed cycle. They also gave a construction (the
blow-up of a directed cycle) that can achieve a ratio arbitrarily close to but not equal to
1/2. Let S = {(d/p)c : G is a digraph} be the set of values arising as a ratio (d/p). In
[1] they analyzed the ratio (d/p)¢s for the random graph G' = G(n,m), and as a corollary
of this analysis they showed that S is dense in [0,1/e]. This corollary follows from two
facts: (d/p)q is concentrated around its mean, and by choosing a suitable value of m one
can make the expected ratio (d/p)¢q close to any given value in [0,1/e]. At the end of the
paper [1] they ask whether S is dense in [0,1/2]. Our main theorem, below, answers this
question in the positive.

Theorem 1. The set of possible ratios of derangements to permutations in digraphs is
dense in [0,1/2].

The construction we use, described in more detail later, is a random subgraph of the
blow-up of a directed cycle. The main part of the proof is an application of the second
moment method (see [2], for example, for an introduction to the method) to show that the
number of derangements and permutations are concentrated around their expectations.

2 Proof of Theorem 1

2.1 Outline

First we outline the proof. Suppose we are given a fixed real number r € [0,1/2]. We will
show that there exists a sequence of digraphs Gy such that the ratio of derangements to
permutations in Gy, is r + o(1) as k — oo (which proves Theorem 1). If r = 0 or 1/2 this
is trivial. Indeed, for r = 0 observe that a digraph with one vertex and no edges has no
derangements and one permutation, and for r = 1/2 observe that any directed cycle has
one derangement and two permutations. So we assume 0 < r < 1/2.

Our construction is as follows. As defined in [1], let the digraph Dy, where k > 1
and ¢ > 2 have vertices v;; for i € [k] and j € [¢] such that (v, vy,) € E(Dy,) if and
only if m = j 4+ 1mod!/. In other words, Dy, is the blow-up of a directed ¢-cycle where
each vertex is expanded to a set of k vertices. We let V; = {v;; : j € [{]}. As was shown
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in [1], the number of derangements on Dy, is (k!)* and the number of permutations on

k ¢ k AN
k 1
Dy is E ((z>(k - z)') . Hence, (d/p)re = (E <;> > can be made arbitrarily
i=0 '

= i=0
close to 1/2 by choosing ¢ large enough (even for large k). This construction yields a
graph for which the ratio of derangements to permutations is arbitrarily close to 1/2 but
not exactly 1/2. We will also use this construction, but we will randomly remove some
edges. By taking a random subgraph we can “interpolate” between Dy, (a dense digraph
whose ratio of derangements to permutations is close to 1/2) and a sparse random digraph
(whose ratio is 0).

In this paper all asymptotics are as k — oo. { is treated as fixed. We use standard
big-0O, little-o and 2 notation. We write x ~ y if x = (1 +o0(1))y. All logarithms are base
e.

2.2 Proof details

Let the random graph Gy ¢(m) be chosen uniformly from among all subgraphs of Dy, , with
m edges. We will fix some p, £ and let m = pk?{ (so p is the probability that any particular
edge of Dy, becomes an edge of Gy ). Let the random variables X,Y be the number of
derangements and permutations in Gy ¢(m) respectively. Let D, P be the collection of all
possible derangements and permutations on Dy (m).

2.2.1 First moments of X,Y
We have

k20—ke
]E[X] = Z [P[D C Gk,z] — (k,!)é(m—ke)

e (%)
) - 2) o5
~ ()7 e {g (1 N %) } ’ (2.1)

where on the second line we have used the following fact:

B (2 (1) 05D

For completeness we include the proof although it is well-known.

Fact 2.

Proof.

O e

a
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fe(x) = Z 1.:_ . (2.2)

Note that the above power series for f,(x) converges for all x and therefore in particular
each f; is continuous in x. We have

k ¢ . .
RN m G ((k—ipe (11 Kok
—Z(—.) () exp{—z wm) POt

— (k:!)épke§ (%)Ep—” exp {g (1 —~ %) +0 (Z Z 1) } : (2.3)

We split the above sum into two ranges of 7. Note that for 0 < i < V'k we have

4+ 1 1 4+ 1
exp{O(ZjL )}:1+O(ﬁ),whilefor\/géigkwehaveexp{O(Z—i_ )}

k k
O(1). Thus line (2.3) becomes

(K1Y P (1 +0 (%)) exp {g (1 _ %) } g; (%)Zp—ié

+O(1) > (1)519—“ . (24)

7
VE<i<k

As k£ — oo we have

> (&) v nm

0<i<vk
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and
1 ¢ y o] 1 l y
> () e (5) v,
Vi<i<k i=vE

since the latter is the tail of a convergent series. Thus, returning to our estimate of E[Y]
on line (2.4), we have

E[Y] ~ (k) exp {§ (1 - ;) } 1(1/) (2.5)
2.2.2 Choosing p, £

Now that we know E[X], E[Y] we will choose p, ¢ to make sure that the ratio of E[X] to
E[Y] is close to r. Using lines (2.1) and (2.5) we have

E[X] 1
15
so we would like to choose ¢ and 0 < p < 1 so that f,(1/p) = 1/r. We have
k ¢
) 1 1 1 1
xlg&ﬁ(x)zoo, fg(1)22(5> :1+1+?+@+@+....

=0

Note that we can make f,(1) arbitrarily close to 2 by taking ¢ large. Indeed, we have

fg(l) 2 2 and
4
1
=2 .
) T

Since r < 1/2, we can choose ¢ so that f,(1) < 1/r. Then by the intermediate value
theorem there is some = € (1, 00) such that f,(x) = 1/r. We choose p to be the value 1/z,
so 0 <p<1land f,(1/p) =1/r. So we view ¢ and p as constants determined entirely by
T

1
92i—1

ﬁu):2+2;<%)égz+§:<

122

2.2.3 Second moments of X,Y

In this section we show that E[X?] ~ E[X]? and E[Y?] ~ E[Y]?>. This will complete the
proof, since then by the second moment method we have that

X E[X] 1
Yo EY]  f(1/p)
with probability approaching 1 as k goes to infinity.

To help us estimate E[X?], E[Y?] we will find the function h(a,b) (defined below)
useful. Suppose we have some fixed matching B of b many edges in the graph K, ,. Then

=T
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by inclusion-exclusion the number of perfect matchings that do not have any edges from

B is \
h(a,b) == (—1)" <Z> (a —w)!.

w=0

Note that we always have h(a,b) < a!l. We will now observe that, roughly speaking,

h(a,b) ~ © whenever b~ a — co. More formally we have the following
e

Fact 3. Suppose a — a'/'* < b < a. Then we have
a!

h(a,b) = (1 + O(a_4/5))

(&
as a — o0

Proof. We have
pab) = ¥ (—1)" (Z) (@—w)l=a ¥ (_u}!)w % (2.6)

o<w<b

Now, for 0 < w < a1 we have by Fact 2 that

o= () {5 (i) ro( )]
= (140 (@) exp {07} = 1+ 0@,

Meanwhile for w > a'/*° we have that the corresponding term in line (2.6) has absolute
value

1 () 1
Wl (@) S (@)

by Stirling’s approximation. Thus, the sum of all such terms in line (2.6) is at most
bexp {0 (al/lo loga)} = O(a=%/)
(this bound is quite comfortable). By the Alternating Series Test we have that

—1)r 1 1 1 s

0<w<al/10

; = exp {—Q (al/lo log a)}

Breaking up the sum for h(a,b) we have

mapy=ar| Y EOL s (CDT 0

nggal/lo

=al|(1+ O(a_4/5)) Z (=1)* + O(a=)

— (140"

al
~-
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We find that

E[X?]= Y P[D,D CGr= (k)" D P[Do,D CGCpyl
D,D'eD D'eD
ke (k2é (2ke— b

= o> |t ) (T S] B

b=0 m beS, = 1

where D, is a fixed derangement and in the inner sum, .S, is the set of /-dimensional

vectors b = (b, ...by) whose components are nonnegative integers summing to b
By 2, if b < k*/!° then we have

(k2e—(2kz—b)

m—(%ﬁ—b)) _ 2k0—b (2k¢ — ) L _ l
(k;f) =D eXp { 5 20 m +0
= (1+ O(k™1%)) p** P exp {26 (1 — 1) } ,
p

_ |
and by Fact 3 we have h(k — b,k — b.) = (1+ O(k_4/5)) M Therefore the term

e
corresponding to b in (2.7) is
(W (2kt— b
\m—(2kt-b) ) b)
(kQZ) Z H ( ) = be, k=)
m bGSb c=1

= (1+O(k™"?)) p** P exp {2@ (1 — %) } ﬁ (;ﬂ) (k—b)!

- C
bes, =1

= (1+O(k™7)) (k1) p* P exp {2@ (1 — %) - g} I1 %
bes, =1
= (L4 O(k™%)) (k))'p** exp {z (1 - %) } i

where on the last line we used the multinomial formula. Meanwhile if b > k19 then the
term corresponding to b in (2.7) is

(W (2kt— b)

b S () ) ok =)

m beS, = 1

<)

bes, =1

= ()
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= (k)" - exp {-Q (K" log k) },
and so the sum of all terms in (2.7) with b > k'/1% is at most

ke~ (kD) - exp {—Q (k""" log k) } = (k1) - O (k=*/°).

Therefore,
k2e (20— b)
¢ A m—(2ké-b) /.
3 [ S (ot -
m bes, = 1

—w | X arow ey wcten {e(1-2)

0<bk1/10

(k)0 (k747) ]
—4/5 20, 2 2 a gb
— (14 O(k™"9)) (k!) Zp“exp{f(l—;,)} 2. 7'y

_ oty e (1)) (o2} o)
= (1+O(k™*?)) (k))*p™** exp {z (1 — %) }
~ E[X]%

For E[Y?] we find an exact expression to be cumbersome, but the following upper
bound will suffice. We claim (with justification below) that E[Y?] is at most

2.

0<i,j<k
0<b<kl
beSy

(W—(zu (i+7)0—b)

m— 7 ) k! k—i k_bc . . .
(ka’@(ﬁ)ﬂ)“ (“) H( bf)( j )h(k;—J—bc,k:—z—bc—Z]).

m c=1

(2.8)

The term corresponding to a tuple (4, 7, b, 5) above is an upper bound on the contribution
to E[Y?] due to pairs of permutations (P, P') such that P fixes i vertices per part, P’
fixes 7 vertices per part, and P and P’ share a total of b edges where b. of the shared
edges are between V. and part V,.,;. The first factor is the edge probability, and the next
factor is the number of choices for P. The next factor is an upper bound on the number
of choices for P’. Indeed, we choose the edges of P from V, to V., by first choosing b,
edges of P to be shared, then we choose j vertices in V, to be fixed by P’, and finally we
choose a matching between the remaining vertices (the vertices of V. U V., that are not
fixed by P’ and are not endpoints of the b, shared edges already chosen). This matching
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must avoid any edges of P, and the vertices to be matched induce at least k — 7 — b, — 27
edges of P, explaining the last factor above.

We will now estimate the significant terms in (2.8). Assume 7,7,b < k*/'°. Then by
Fact 2

(m—(zke—(iﬂ)e—b)

m*(2k€*(i+j)f*b)) _ 2kl (i+5)l—b (QM - (Z + j)g - b)2 1— 1 1
(ksf) P exp 572( , +0 2

_ p2k€—(i+j)€—b exp {QE (1 . 1) +0 (k,—Q/l[))} )

p

Next we estimate

g |
h(k‘—j—bc,k‘—i—bc—zj):(1+O(k—4/5))w

by Fact 3. So the product in (2.8) is

)4 .
k—1i\ (k—b, ) ) )
H( b, )( ; )h(k—j—bc,k‘—z—bc—zy)

c=1
y4

:(1+O 4/5 H J 'bc)j(k_j_bc)!

J! e

< (140 (k77)) (5) 1;[1%‘ (2.9)

The sum of terms in (2.8) corresponding to small 4, j, b is at most

o5 el () T

0<i,j,b<k1/10
EES[J

2 " ENY /RN b
= (1 +0 (k_4/5)) exp {ﬁ (1 — Z_9> } Z pHe e (ﬁ) <F) ol

0<i,5,b<k1/10

oot (1)) 5 e
k!)
|

<ij,b
1\2
] 2€ 2k0 exp g (1 _ _) } (_>
p
where on the second-to-last line we have used

o) -l
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It remains to show that the sum of all other terms (i.e. terms where 7, j, or b is at least
k'/1%) is negligible compared to E[Y]?, which is of order (k!)*p**. Note that by Fact 2

(W—(zke—(z‘ﬂ)e—b)

m— (2h0— (b)) 2kt ()b 2kt —(i+ )t =0 ( 1 1
() ! o 2170 ARV

—0 (kaé—(i+j)£—b) .

Thus, the sum (over b) of terms corresponding to a fixed triple (i, j,b) in line (2.8) big-O

of
ST LT

beSy

)
o (4 (4 ST

20 2k¢ Eb
= ((k1)*p*") - (p(i+j>f+b(z'!)f(j!)£b!) .

It is easy to see that if ¢, j or b is at least k1% then the second factor above is
exp { Q (l{;l/w log k‘)} Since the number of triples (i, j, b) is polynomial in k, the sum of
2 2“) which is a negligible

all such terms (i.e. where i,7 or b is at least k‘l/w) is o ((k!)
contribution to E[Y?]. Therefore we have E[Y?] ~ E[Y]?.

3 Remarks and Open Problems

The reader should note that we did not use a “binomial” random construction (e.g.
keep each edge of Dy, with probability p independently) because such a model lacks the
concentration we need here. Indeed, for example Janson ([3]) showed that the number
of perfect matchings in G(n,p) is not concentrated even when it is quite large, while
the number of perfect matchings of G(n, m) is concentrated. We tried to use a binomial
random construction and found that the second moments were too large, which in light
of Janson’s result makes sense (for example derangements in our graph are just a union
of several perfect matchings on bipartite graphs).

There are still interesting open problems in [1]. In particular it is still open whether
S, the set of possible ratios (d/p)g, is equal to Q N [0,1/2]. Here we would like to pose
another open problem that is mostly unrelated to our result. In particular, we ask about
stability for digraphs whose ratio (d/p)q is close to 1/2: is it possible that, if a graph
has (d/p) in the interval [1/2 — ¢, 1/2] for sufficiently small ¢, then it must be “nearly” a
blowup of a t-cycle with ¢ > t(c)?
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