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Abstract

We consider 2-colourings f : E(G) → {−1, 1} of the edges of a graph G with
colours −1 and 1 in Z. A subgraph H of G is said to be a zero-sum subgraph of
G under f if f(H) :=

∑
e∈E(H) f(e) = 0. We study the following type of questions,

in several cases obtaining best possible results: Under which conditions on |f(G)|
can we guarantee the existence of a zero-sum spanning tree of G? The types of
G we consider are complete graphs, K3-free graphs, d-trees, and maximal planar
graphs. We also answer the question of when any such colouring contains a zero-
sum spanning path or a zero-sum spanning tree of diameter at most 3, showing in
passing that the diameter-3 condition is best possible. Finally, we give, for G = Kn,
a sharp bound on |f(Kn)| by which an interesting zero-sum connectivity property
is forced, namely that any two vertices are joined by a zero-sum path of length at
most 4.

One feature of this paper is the proof of an Interpolation Lemma leading to a
Master Theorem from which many of the above results follow and which can be of
independent interest.

Mathematics Subject Classifications: 05C35
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1 Introduction

Perhaps the most obvious point of reference for the origin of problems on zero-sum trees
is the almost trivial observation that, given a graph G, either G or its complement G,
is connected, that is, has a spanning tree. A two-colouring formulation of this problem
gives it a Ramsey-theoretic flavour: if the edges of complete graph Kn are coloured
with two colours, then Kn must have a monochromatic spanning tree. This quest for a
monochromatic spanning tree has been modified in various ways which turn simple results
like this into interesting research questions. For example, one can let the colours be 0 and
1 and then require that the sum of the colours on the edges of the spanning tree is even,
making it a problem in zero-sum Ramsey-theory over Z2, which is completely solved
[6, 17, 16, 43]. The problem now takes on a more decidedly Ramsey-theoretic nature
because the right question to ask would be: is there an N such that, for all n > N , n odd,
any 0-1 colouring of E(Kn) contains a spanning tree such that the sum of the colours on
the edges of the spanning tree is even. The extension to colourings with elements of Zn,
the cyclic group of integers modulo n, and requiring the sum of the colours on the edges
of the spanning tree to be equal to 0 mod n is then clear.

In this paper, we shall consider various variations of this problem, always asking that
the required subtree is zero-sum (or almost zero-sum when appropriate - to be defined
later), that is, the sum of colours on its edges is zero in some domain. In fact, we will
study the variant when the edges of the complete graph are coloured with colours −1
and 1, discovering, on the way, some surprising differences between this case and the case
when the colours used are −1, 0 and 1.

Another direction which we shall investigate is the same as above but just changing
the nature of the subtree required, for example asking for a spanning path, or a spanning
subtree of diameter 3. We shall also consider, in what we call zero-sum connectivity,
namely that any two vertices of Kn are joined by a zero-sum path of length at most 4.

Another variation we consider is when the host graph, whose edges we are colouring, is
not the complete graph. In this context, we consider complete bipartite graphs, maximal
planar graphs, and maximal d-degenerate graphs.

In the Table 1, we summarize the main results we obtain in this work concerning
zero-sum or almost zero-sum spanning subgraphs, organized by type of host graph and
spanning subgraph.

Many of these results can stand alone as a separate instance of the problem of finding
zero-sum spanning subtrees. However, one of the main aims of this paper is also to
illustrate some main techniques which unite them. We therefore consider Section 3 to be
crucial in this paper, where we prove an Interpolation Lemma, and a what we call the
Master Theorem, from which many of the results in the other sections follow and which
might also have independent interest.

In the next section, we shall give the main definitions we will require, along with some
background in the form of existing results, which will also serve as a benchmark and
guideline for our main zero-sum results in this paper.

the electronic journal of combinatorics 29(1) (2022), #P1.9 2



Host graph Spanning subgraph
Bound on

min{e(−1), e(1)} Thm.
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)
+ c 6

Kn tree
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c

2

)
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⌊
n
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⌊
n−3
2

⌋⌋
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connected K3-free tree bn2

4
c 17

d-tree tree bn−1
2
cd−

(
d+1
2

)
19

maximal planar tree 3bn−1
2
c − 5 21

Figure 1: Summary of results on zero-sum or almost zero-sum spanning subgraphs.

2 Main definitions, notation and some background

Let G be a graph and let f : E(G) → A be a mapping with range values in an abelian
group A. For a subgraph H 6 G, we set f(H) =

∑
e∈E(H) f(e) as the weight of H under

f , where the sum is taken in A. For the case that A = Zk, the cyclic group on k elements,
and H is a graph such that k divides e(H), we say that Kn has a zero-sum H under f
if f(H) :=

∑
e∈E(H) f(e) ≡ 0 (mod k). The least n such that Kn contains a zero-sum H

under f for every f : E(Kn)→ Zk is denoted by R(H,Zk) and is called the Zk-zero-sum
Ramsey number of H (for a survey see [7]).

The particular case that H is a spanning tree of Kn was one of the first problems
raised in the emergence of zero-sum Ramsey theory around 1990. The question of the
existence of a zero-sum (mod n) spanning tree for every f : E(Kn+1) → Zn, was solved
affirmatively in the case when n is prime in [3], and for every n in [21], and in further
generality in [40].

Also, in classical Ramsey theory, much research has been done trying to gain more
knowledge about the forced structure of monochromatic spanning trees in an edge-coloured
complete graph and, in particular, it is known that there is always a monochromatic
spanning tree of height two (hence diameter four), as well as spanning trees called
brooms [4, 24]. However, efforts in this vein to get some further knowledge on the structure
of forced zero-sum (mod n) spanning trees seems to not have been developed further.

The appearance of new versions of zero-sum problems, where the range set is not Zk,
but elements in Z, mostly {−1, 0, 1} or {−1, 1}, started in [18] (see also [11, 8, 9, 13]), al-
though an early paper about possible weights of spanning trees of the n-dimensional cube
Qn under a {−1, 1}-colouring of its edges appeared in [26]. One of the first questions
considered was: under what conditions does f : E(Kn) → {−1, 0, 1} force a zero-sum
(over Z) spanning tree? The exact solution is: whenever f : E(Kn) → {−1, 0, 1} is such
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that n ≡ 1 (mod 2) and the absolute weight |f(Kn)| 6 n−2, then there exists a zero-sum
(over Z) spanning tree, and this bound is sharp [18].

In this paper, we shall concentrate on colouring the edges of a graph G, mostly the
complete graph Kn, with colours−1 and 1. To consider this problem, we need to introduce
some further notation which will be used in the sequel. For f : E(G)→ {−1, 1} we write
E(−1) = {e ∈ E(G) : f(e) = −1}, E(1) = {e ∈ E(G) : f(e) = 1}, e(−1) = |E(−1)| and
e(1) = |E(1)|. If f(H) = 0, we say that H 6 G is zero-sum under f , while if |f(H)| = 1,
we say that H is almost zero-sum. Of course, the first can only happen if e(H) ≡ 0
(mod 2) and the latter only if e(H) ≡ 1 (mod 2).

The structure of this paper is briefly as follows. In the next section, we shall prove
important results which will underpin most of the particular zero-sum results which will
be presented further on. Analogous to the above situation with colours −1, 0 and 1, we
shall consider in Section 4 the existence of zero-sum spanning trees for edge-colourings
f : E(Kn)→ {−1, 1}. As we shall see, somewhat counter-intuitively, the absence of 0 in
the range of f forces a much less tight bound on |f(Kn)|, namely |f(Kn)| 6 n2

4
+ O(n)

(Theorem 13), compared to the case where 0 is allowed, where we need |f(Kn)| 6 n− 2
[18], as mentioned above. Observe that a condition of type |f(Kn)| 6 h(n) is equivalent
to asking min{e(−1), e(1)} > 1

2

((
n
2

)
− h(n)

)
. Hence, the appearance of conditions on

min{e(−1), e(1)} is typical of all zero-sum problems over Z and the effect of the differ-
ence between the range {−1, 0, 1} and {−1, 1} has been already shown to be somewhat
dramatic (see [8]). We also give in this section a sharp result on zero-sum spanning paths
and spanning trees with diameter at most 3 in a complete graph whose edges are coloured
with −1 and 1. This result is also inspired by one of the starting points of this paper,
namely the folklore variants of the result: if G is a graph of diameter diam(G) > 4, then
diam(G) 6 2 [27].

In Section 5, we shall study the analogous case of zero-sum spanning trees for {−1, 1}-
colourings of biparite graphs, d-trees and maximal planar graphs, giving in all three cases
best possible bounds.

In Section 6, we shall consider zero-sum connectivity, where we will require that any
two vertices of Kn are joined by a zero-sum path of length at most 4.

Finally, in the concluding section, we shall present some ideas for further investigation.

3 The master theorem for zero-sum and almost-zero sum span-
ning subgraphs

3.1 Definitions and examples

We give some definitions and results which will be used in the sequel.

Edge replacement
Given a subgraph H of a graph G, we say that a subgraph H ′ of G is obtained by an
edge-replacement from H if there are edges e ∈ E(H) and e′ ∈ E(H ′)\E(H) such that
E(H ′) = (E(H)\{e}) ∪ {e′}.
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Closed family
A family F of subgraphs of a graph G is called a closed family in G if, for any two
subgraphs H and H ′ of G which are isomorphic to members of F , there is a chain
H = H1, H2, . . . , Hq = H ′ of subgraphs of G, each one isomorphic to some member
of F , such that, for 1 6 i 6 q − 1, Hi+1 is obtained from Hi by an edge-replacement.

When the family F is closed in the graph Kn we shall just say that F is a closed
family, omitting the host graph Kn.

A classic example of a closed family is the family of spanning trees of a connected
graph G, which form the basis of the so called Cycle Matroid of G.

Lemma 1 ([41]). The family of spanning trees of a connected graph forms a closed family.

In particular the following property of the spanning trees of a connected graph serves
as an inspiration for the notion of amoebas that we shall recall immediately: For any
two spanning trees T and T ′ of a connected graph G, there is a chain of spanning trees
T = T0, T1, . . . , Tq = T ′, such that, for 1 6 i 6 q − 1, Ti+1 is obtained from Ti by an edge
replacement.

A graph G on n vertices is called a local amoeba if, for any two copies H and H ′ of
G in Kn, there is a chain H = G0, G1, . . . , Gq = H ′ such that, for every 1 6 i 6 q − 1,
Gi
∼= G and Gi+1 is obtained from Gi by an edge-replacement. A graph G is called a

global amoeba if there exists an integer n0 = n0(G) > |V (G)|, such that for all n > n0 and
any two copies H and H ′ of G in Kn, there is a chain H = G0, G1, . . . , Gq = H ′ such that,
for every 1 6 i 6 q − 1, Gi

∼= G and Gi+1 is obtained from Gi by an edge-replacement.
The notion of amoebas was introduced in [11], further developed in [12, 10] and also used
in [13]. A major result in [12] states that a graph G is a global amoeba if and only if
G∪K1 is a local amoeba, meaning that the minimum possible n0 as taken above is never
larger than n+ 1.

Example 2. The following are examples of closed families:

1. A local amoeba on n vertices is a closed family with a single element. Examples of
such graphs are, to mention some, the path Pn, and Kn − e, the complete graph
minus an edge, for n > 4 [12].

2. For every N > n, a global amoeba on n vertices forms a closed family in KN with
a single element. Examples of such graphs are: Pn, nK2, and the graph consisting
of a cycle Ck with a pending edge, to mention some [12].

3. The family of all connected graphs on n vertices and a fixed number of edges is a
closed family in Kn.

4. The family of all graphs having a Hamiltonian path on n vertices and a fixed number
of edges is a closed family in Kn.
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Covering family
A family D of graphs is called a covering family of a closed family F if, for every H ∈ D
and every edge e ∈ E(H), H − e ∈ F (i.e., H − e is isomorphic to a member of F).

For example, D = {Cn} is a covering family of the closed family F = {Pn}. Also,
the family of all Hamiltonian graphs on n vertices and m + 1 edges is a covering fam-
ily of the closed family of all graphs on n vertices and m edges having a Hamiltonian path.

The family Half(F)
For a family F of graphs on m edges, we define

Half(F) =
{
H : H 6 F for some F ∈ F , e(H) =

⌊m
2

⌋
, H has no isolates

}
.

Further basic notation
Let F be a family of graphs on m edges. A graph G is said to have an F-decomposition
if the edges of G can be covered by an edge-disjoint union of copies of members of F .
The Turán number of F , denoted by ex(n,F), is defined as the maximum integer q such
that there exists a graph H with |V (H)| = n and |E(H)| = q and no member of F as a
subgraph of H. If F consists of only one graph F , we write ex(n, F ) instead of ex(n,F).

3.2 The interpolation lemma

Lemma 3 (Interpolation lemma for a closed family on a graph G). Let F be a closed
family on a graph G such that its members have each m edges, and let f : E(G)→ {−1, 1}.
Suppose there are two members H,H ′ ∈ F , which are subgraphs of G, and assume that
f(H) 6 1 and f(H ′) > −1. Then there is a subgraph Z 6 G, Z ∈ F , which is zero-sum
or almost zero-sum under f .

Proof. Since F is closed in G, there is a chain of graphs H = H0, H1, . . . , Hq = H ′, where
Hi 6 G and Hi ∈ F for all 1 6 i 6 q, such that, for 1 6 i 6 q − 1, Hi+1 is obtained
from Hi by an edge replacement. Since we remove one edge and insert a new one, we
have clearly |f(Hi) − f(Hi+1)| ∈ {0, 2}, for each 1 6 i 6 q − 1. Observe also that all
values f(Hi) are of the same parity as m. Hence, in the case m ≡ 0 (mod 2), on the
way along the chain from H to H ′, there must be a j ∈ {1, 2 . . . , q} such that f(Hj) = 0.
Similarly, in the case that m ≡ 1 (mod 2) there must be a j ∈ {1, 2 . . . , q − 1} such that
f(Hj) = −1 and f(Hj+1) = 1. Hence, we have proved in both cases that there is a graph
Z 6 G, Z ∈ F with |f(Z)| 6 1, and we are done.

We are now ready to prove our main theorem of this section.

3.3 The master theorem

The following theorem deals with three situations where some information is known on
a closed family F in a graph Kn of order n, namely the case when we know the Turán
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number ex(n,Half(F)) or at least a reasonable upper bound on it; the case when Kn has
an F -decomposition; and the case when Kn has a D-decomposition where D is a covering
family of F .

Theorem 4 (Master theorem for zero-sum and almost-zero sum spanning subgraphs).
Let f : E(Kn) → {−1, 1} be a colouring of the edges of Kn. Let F be a closed family
of graphs on m edges. Let c ∈ {0, 1} be such that m ≡ c (mod 2). Then each one of
the following three conditions imply the existence of a zero-sum or an almost zero-sum
spanning graph of Kn which is a member of F .

1. If min{e(−1), e(1)} > ex(n,Half(F)).

2. If Kn has an F-decomposition, and

|f(Kn)| < 2 + c

m

(
n

2

)
.

3. If D is a covering family of F such that Kn has a D-decomposition, and

|f(Kn)| < 3 + c

m+ 1

(
n

2

)
.

Moreover, the condition in 1 is best possible.

Proof.
1. Since min{e(−1), e(1)} > ex(n,Half(F)), we infer that there is a subgraph H− on
bm

2
c edges, all of them coloured −1, and such that H− is a subgraph of some graph F−

isomorphic to some member in F . Analogously, there is a subgraph H+ on bm
2
c edges,

all of them coloured 1, and such that H+ is a subgraph of some graph F+ isomorphic to
some member in F (it is possible that F− = F+). Then we have

f(F−) 6
⌈m

2

⌉
−
⌊m

2

⌋
, and f(F+) >

⌊m
2

⌋
−
⌈m

2

⌉
.

When m ≡ 0 (mod 2), then we have f(F−) 6 0 and f(F+) > 0, while in the case that
m ≡ 1 (mod 2), it follows that f(F−) 6 1 and f(F+) > −1. If we have in the latter
case that f(F−) = 1 or f(F+) = −1, we are done. So we may assume in both cases
that f(F−) 6 0 and f(F+) > 0 and thus, by the Interpolation Lemma (Lemma 3), we
conclude that there is a zero-sum or an almost zero-sum spanning graph of Kn which is
a member of F .

We will show here also that the bound min{e(−1), e(1)} > ex(n,Half(F)) is best
possible. To this purpose, we take a colouring f : E(Kn) → {−1, 1} with e(−1) =
ex(n,Half(F)) such that Kn does not contain any subgraph H isomorphic to any member
of Half(F) with all its edges coloured −1. Then Kn can neither contain any subgraph
isomorphic to any member of F with

⌊
m
2

⌋
edges coloured −1, implying that there is no
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zero-sum or almost zero-sum copy of any member of F .

2. Since Kn has an F -decomposition, it follows that Kn is the union of t = 1
m

(
n
2

)
edge-

disjoint spanning subgraphs H1, H2, . . . , Ht which are members of F . Recall that c ∈
{0, 1} is such that m ≡ c (mod 2). If f(Hi) > 2 + c for all 1 6 i 6 t, or f(Hi) 6 −2− c
for all 1 6 i 6 t, then

|f(Kn)| =

∣∣∣∣∣
t∑

i=1

f(Hi)

∣∣∣∣∣ > t(2 + c) =
2 + c

m

(
n

2

)
,

contradicting the hypothesis. Hence, there are indexes i1, i2 such that f(Hi1) 6 1 + c and
f(Hi2) > −1 − c. If c = 0, since f(Hi) ≡ 0 (mod 2) for all i, it follows that f(Hi1) 6 0
and f(Hi2) > 0. On the other hand, if c = 1, we have f(Hi1) 6 1 and f(Hi2) > −1. If,
in this case, we have that f(Hi1) = 1 or f(Hi2) = −1, then we are done. Thus, we can
assume that in both cases f(Hi1) 6 0 and f(Hi2) > 0 holds. Hence, by the Interpolation
Lemma (Lemma 3), it follows that there is a spanning subgraph H which is isomorphic
to some member of F and which is zero-sum or almost zero-sum under f .

3. Since Kn has a D-decomposition, it that follows E(Kn) is the union of t = 1
(m+1)

(
n
2

)
edge-disjoint spanning subgraphs H1, H2, . . . , Ht which are members of D. Recall that
c ∈ {0, 1} is such that m ≡ c (mod 2). If f(Hi) > 3+c for all 1 6 i 6 t, or f(Hi) 6 −3−c
for all 1 6 i 6 t, then

|f(Kn)| =

∣∣∣∣∣
t∑

i=1

f(Hi)

∣∣∣∣∣ > t(3 + c) =
3 + c

m+ 1

(
n

2

)
,

contradicting the hypothesis. Hence, there are indexes i1, i2 such that f(Hi1) 6 2 + c and
f(Hi2) > −2− c. Since f(Hi) ≡ 1 +m ≡ 1 + c (mod 2) for all 1 6 i 6 t, we deduce that,
actually,

f(Hi1) 6 1 + c and f(Hi2) > −1− c

hold. If f(Hi1) = 1 + c, then there has to be an edge e1 ∈ E(Hi1) such that f(e1) = 1.
Then Hi1−e1 is isomorphic to some member in F and it has f(Hi1−e1) = f(Hi1)−1 = c,
so in this case we are done. Similarly, if f(Hi2) = −1 − c, then there has to be an edge
e2 ∈ E(Hi2) such that f(e2) = −1, implying that Hi2 − e2, which is isomorphic to some
member in F , has f(Hi2 − e2) = f(Hi2) + 1 = −c and we have finished. Hence, we can
assume that

f(Hi1) 6 c− 1 and f(Hi2) > −c+ 1.

From this we infer the existence of edges e′1 ∈ E(Hi1) and e′2 ∈ E(Hi2) such that f(e′1) =
−1 and f(e′2) = 1. Thus, we have that the graphs Hi1 − e′1 and Hi2 − e′2 are isomorphic
to some members of F such that

f(Hi1 − e′1) 6 c and f(Hi2 − e′2) > −c.
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If, in the case that c = 1, we have that f(Hi1 − e′1) = 1 or that f(Hi2 − e′2) = −1, then
we have finished. So we may assume in both cases that

f(Hi1 − e′1) 6 0 and f(Hi2 − e′2) > 0.

Hence, by the Interpolation Lemma (Lemma 3), we obtain the existence of a zero-sum or
an almost zero-sum spanning subgraph H which is isomorphic to some graph in F .

Observe that the condition min{e(−1), e(1)} > ex(n,Half(F)) in item 1 of Theorem
4 can only be satisfied if

(
n
2

)
> 2(ex(n,Half(F)) + 1). However, if F is a fixed family (not

depending on n), then ex(n,Half(F)) = o(n2) because of the well known observation of

Erdős that every graph H contains a bipartite subgraph H ′ with e(H ′) = b e(H)
2
c. On the

other hand, if F grows with n, than ex(n,Half(F)) can be already quadratic as will be
evident in Theorem 5. Also the condition

(
n
2

)
> 2(ex(n,Half(F)) + 1) might be hard to

be computed. In such cases, items 2 and 3 of the Master theorem can give some concrete
upper-bounds. We also stress that, while by talking about spanning subgraphs we usually
think of spanning trees or perfect matchings in which there is at least a linear number
of edges, the Master theorem works as well for the case where the number of the edges
in the spanning graph is below linear and even constant (where most of the vertices of
the spanning graph have degree 0.) The following short subsection demonstrates this
versatility of the Master theorem.

Finally, we would like to point out that items 2 and 3 of the Master theorem could be
modified to use a maximum packing instead of a decomposition via the formula for the
packing number obtained by Caro and Yuster in [15] and adapting the bound on |f(Kn)|
accordingly (tightening it by at most a linear amount).

4 Applications of the master theorem

In this section, we shall demonstrate applications of the three parts of the Master Theorem
concerning zero-sum spanning graphs of Kn.

4.1 Spanning paths

The first application is a theorem in which we determine exactly the minimum amount of
edges in each colour required in order to force a zero-sum or an almost zero-sum spanning
path. This is done using Half(Pn) and a recent deep theorem of Ning and Wang [35] on
Turán numbers for linear forests.

The next results are two examples of application of the Master theorem for path-
decompositions and cycle-decompositions of Kn, which give weaker bounds than the the-
orem but are tailor made to demonstrate this technique.

We need a few more definitions and results. Let L(t, k) denote the family of all linear
forests on t vertices and k edges.
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Theorem 5 ([35]). Let k and n be positive integers such that k 6 n− 1. Then

ex(n,L(n, k)) = max

{(
k

2

)
,

(
n

2

)
−
(
n− bk−1

2
c

2

)
+ c

}
,

where c ∈ {0, 1} is such that k − 1 ≡ c (mod 2).

In Figure 2 below, the extremal graphs for ex(n,L(n, k)) given in [35] are depicted.

Figure 2: Extremal graphs for ex(n,L(n, k))

Theorem 5 is the key for calculating the exact Turán number ex(n,Half(Pn)), which
we will need in order to be able to apply item 1 of the Master Theorem. Observe that
Theorem 5 can also be stated for the family Lk of all linear forests with exactly k edges
and no isolates (recall k 6 n−1), because we have clearly that ex(n,L(n, k)) = ex(n,Lk).

Theorem 6. Let n > 3, let c ∈ {0, 1} be such that bn−1
2
c − 1 ≡ c (mod 2), and let

f : E(Kn)→ {−1, 1} be a colouring fulfilling

min{e(−1), e(1)} >
(
n

2

)
−
(
n− bn−3

4
c

2

)
+ c.

Then there is a zero-sum or an almost zero-sum spanning path. Moreover, the bound is
sharp.

Proof. As mentioned before, the family of all spanning paths of Kn is a closed family.
Moreover, it is straightforward to see that Half(Pn) = Lbn−1

2 c. Hence, by Theorem 5, we

have

ex(n,Half(Pn)) = ex
(
n,Lbn−1

2 c
)

=

(
n

2

)
−
(
n− bn−3

4
c

2

)
+ c.

Together with the simple inequalities bn−3
4
c 6 n−3

4
and c 6 1, it is straightforward to

check that 2(ex(n,Half(Pn)) + 1) 6
(
n
2

)
for n > 4. For n = 3, the same inequality

can be checked separately. Hence, together with the hypothesis that min{e(−1), e(1)} >(
n
2

)
−
(
n−bn−3

4
c

2

)
+c, it follows by item 1 of Theorem 4 that there is a zero-sum or an almost

zero-sum spanning path and that the bound is sharp.
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The sharpness of this theorem is a consequence of the Master Theorem coming from
the extremal examples of L

(
n, bn−1

2
c
)
-free graphs on n vertices, which were given in

[35] (see Figure 2). Thus, a colouring f : E(Kn) → {−1, 1} where the (−1)-edges (or,
equivalently, the 1-edges) induce one of these extremal graphs is a colouring in which the
number of edges in one of the colours has one unit less than what is allowed in Theorem 6
but where no zero-sum or almost zero-sum spanning path can be found.

4.2 Decompositions yielding zero-sum spanning subgraphs

There is a wide range of results concerning decompositions of the complete graph into
certain subgraphs. To show the versatility of item 2 of the Master theorem, we will provide
several examples that make use of known decompositions of Kn. We will start with an
example that applies the well-known decomposition of the complete graph into spanning
paths (see [25]).

Example 7. Let n ≡ 0 (mod 2) and let f : E(Kn) → {−1, 1} such that |f(Kn)| < 3n
2

.
Then there is a spanning path Z with |f(Z)| = 1.

Proof. Since n ≡ 0 (mod 2), Kn can be decomposed into n
2

Hamilton paths (see [25]),
hence into n

2
paths on n−1 edges. Then, with n−1 ≡ 1 = c (mod 2), and the hypothesis

that

|f(Kn)| < 3n

2
=

2 + c

n− 1

(
n

2

)
,

item 2 of Theorem 4 yields that there is an almost spanning path.

Note that the condition on |f(Kn)| is much stronger than the one in Theorem 6, which
gives a sharp bound.

For the following examples, we will heavily use the structural properties of global
amoebas. So let G be a global amoeba, say of order t < n. Recall that, in the first item
of Example 2, we show that the family {G} is a closed family. Moreover, G∪ (n− t)K1 is
again a global amoeba and also a local amoeba [12]. Hence, {G ∪ (n− t)K1} is a closed
family.
Ringel’s conjecture [23], solved recently by Montgomery, Pokrovskiy, and Sudakov [34],
states that, for n large, every tree T on n edges decomposes K2n+1. Applying item 2 of
the Master theorem to the closed family {T ∪nK1}, where T is a global amoeba tree (see
[12] and [10] for plenty of examples), one can easily obtain the following.

Example 8. Let n be large such that Ringel’s conjecture holds true. Let G = T ∪ nK1,
where T is a global amoeba tree on n edges. We take c ∈ {0, 1} such that n ≡ c (mod 2).
Then any f : E(K2n+1) → {−1, 1} satisfying |f(K2n+1)| < (2 + c)(2n + 1) contains a
zero-sum spanning G.

Let H be a graph. We denote with gcd(H) the greatest common divisor among all
degrees of the vertices of H. Wilson showed in [42] that, given a graph H, then, for n
large, Kn has an {H}-decomposition if and only if e(H) divides

(
n
2

)
, and gcd(H) divides
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n− 1. Now suppose H is a global amoeba. It was shown in [12] that every global amoeba
H has minimum degree 0 or 1, and if ∆ > 1 is its maximum degree, then there is a vertex
having degree r for all 1 6 r 6 ∆. It follows that gcd(H) = 1, which divides n − 1.
Hence, by Wilson’s result, if n is sufficiently large and e(H) divides

(
n
2

)
, then Kn has an

{H}-decomposition. Using all this together in combination with item 2 of Theorem 4,
the following example can be easily deduced.

Example 9. Let H be a global amoeba on m > 0 edges and q vertices, and let c ∈ {0, 1}
such that m ≡ c (mod 2). We take a large integer n (to apply Wilson’s theorem) such
that m divides

(
n
2

)
. If f : E(Kn) → {−1, 1} is such that |f(Kn)| < 2+c

m

(
n
2

)
, then it

contains a zero-sum or an almost zero-sum spanning G = H ∪ (n− t)K1.

Observe that, for any global amoeba H of order t < n, one can adapt the Master
theorem using the fact that Kn is nearly {H}-decomposable in the sense that there is an
H-packing that covers all but at most a linear number of edges of Kn [15]. This can be
also used for the graph qH, whenever qt < n because the union of global amoebas is again
a global amoeba [12].

4.3 Covering families yielding zero-sum spanning subgraphs

The odd counterpart to Example 7 can be handled via a decomposition of the complete
graph into Hamiltonian cycles (see [25]), as we show in the following example.

Example 10. Let n ≡ 1 (mod 2) and let f : E(Kn) → {−1, 1} such that |f(Kn)| <
3(n−1)

2
. Then there is a zero-sum spanning path.

Proof. Since n ≡ 1 (mod 2), Kn can be decomposed into n−1
2

Hamiltonian cycles (see
[25]), hence into n−1

2
cycles on n edges. Then, with n − 1 ≡ 0 = c (mod 2), and the

hypothesis that

|f(Kn)| < 3(n− 1)

2
=

3 + c

n

(
n

2

)
,

item 3 of Theorem 4 yields that there is a zero-sum spanning path.

There has been much interest in solving the Oberwolfach problem, in which it is asked
into which unions of cycles whose lengths sum up to n can the complete graph Kn be
decomposed. This problem has been solved positively for all unions of cycles of equal
length k (and n divisible by k) with exception of 2C3 and 4C3 which it is known that they
do not decompose K6 and K12, respectively; it is also known to be true for all cycles of even
length, and other particular cases, see [5] for a survey. Recently, the Oberwolfach problem
was solved for all large n by Glock, Joos, Kim, Kühn, and Osthus in a more general setting
[22]. See also [29] for an even more recent solution of a broader generalization given by
Keevash and Staden.
Further, it is known that, for any t > 1 and k > 2, (t−1)Ck∪Pk is a global amoeba (using
Theorem 4.4 in [12] and the fact that Pk is a global amoeba). Observe that the family
D = {tCk} is a covering family for F = (t− 1)Ck ∪ Pk. Thus, since tCk decomposes Ktk,
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the Master theorem can be applied to this particular case and the next example follows
easily.

Example 11. Let t > 1 and k > 2 be integers, and let n = tk. Take c ∈ {0, 1} such that
n− 1 ≡ c (mod 2). If f : E(Kn)→ {−1, 1} fulfills |f(Kn)| < 3+c

2
(n− 1), then there is a

zero-sum or an almost zero-sum spanning (t− 1)Ck ∪ Pk. In case n is odd, it also follows
that there is an almost zero-sum spanning tCk (just closing the Pk with one edge).

Similar examples can be made for the global amoeba (n
3
−1)K1,2∪K2 with the covering

family {n
3
K1,2}, when n is a multiple of 3 (because Kn has a K1,2-resolvable design [1]),

and for the global amoeba (n
4
− 1)K1,3 ∪K1,2 with the covering family {n

4
K1,4}, when n

is a multiple of 4 (because Kn has a K1,3-resolvable design [1]).

4.4 Spanning trees

Let Fk be the family of forests on k edges without isolated vertices.

Lemma 12. For integers n, k such that n > k, ex(n,Fk) =
(
k
2

)
.

Proof. We prove this by induction on k. For k = 1, 2 it is true and we assume this is true
for k, so let us prove it for k + 1.

Let G be a graph of order n > k + 1 and with e(G) >
(
k+1
2

)
. If ∆(G) > k + 1 we are

done as there is a star on at least k + 1 edges. So we assume that ∆(G) 6 k. Let v be a
vertex with deg(v) > 1. Delete v to get G∗ = G − v. Clearly, e(G∗) >

(
k+1
2

)
− k >

(
k
2

)
.

Hence, by the induction hypothesis, G∗ contains a forest F ∗ on k edges. Adding the
vertex v and a single edge incident with v to F ∗, we get a forest F with e(F ) = k + 1.

The graph Kk ∪Kn−k shows that the bound is sharp.

Theorem 13. Let f : E(Kn)→ {−1, 1} be a colouring with min{e(−1), e(1)} >
(bn−1

2
c

2

)
.

Then Kn contains a zero-sum or an almost zero-sum spanning tree, and this result is
sharp.

Proof. Let Tn be the family of all spanning trees of Kn, i.e. the family of all trees on n−1
edges, which is a closed family by Lemma 1. Clearly, Half(Tn) = Fbn−1

2
c. Then we have,

with Lemma 12, that

min{e(−1), e(1)} >
(
bn−1

2
c

2

)
= ex(n,Fbn−1

2
c) = ex(n,Half(Tn)).

Hence, Theorem 4 yields the result.

The only requirement now for this to work is that 2
((bn−1

2
c

2

)
+ 1
)

6
(
n
2

)
= e(Kn),

which is always true.
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4.5 Zero-sum trees of diameter at most 3

We now consider spanning trees of diameter at most three. We denote by T 3
n the family

of all spanning trees of Kn of diameter at most 3.

Lemma 14. T 3
n is a closed family. Moreover, for any two spanning trees T, T ∗ ∈ T 3

n , there
is a chain T = T1, T2, . . . , Tq = T ∗ of trees contained in T 3

n such that, for 1 6 i 6 q − 1,
Ti+1 is obtained from Ti by an edge-replacement and such that q 6 2(n− 2).

Proof. We observe that a spanning tree of Kn of diameter at most 3 is either a star K1,n−1
or a double star Sp,q with centres u and v adjacent, such that u has p leaves, v has q leaves,
and such that p+ q = n− 2. We look at the following operations of edge-replacements.

1. A spanning tree of Kn of diameter 3 which is a double star Sp,q can be transformed
into a spanning star via spanning trees of diameter at most 3. This process requires
q steps.

Let the spanning tree be Sp,q with u and v the centres, where u has p leaves and v
has q leaves. Consecutively, for every leaf z incident with v, delete the edge zv and
add the edge zu until all leaves of v are attached to u, giving a spanning star with
centre u. All the spanning trees in the process have diameter 3 except the final star
which has diameter 2.

2. Any spanning star with centre u can be transformed into a spanning star with centre
v ∈ V (Kn) \ {u} with all the trees in the process having diameter 3. This process
requires n− 2 steps.

Consecutively, for every leaf z adjacent to the centre u with exception of v, delete
the edge zu and add the edge zv until all leaves are done. All the intermediate trees
in the process are of diameter 3.

3. Any spanning star of Kn with centre u and leaf v can be transformed into a double
star Sp,q with centres u and v having a particular set of p leaves attached to u and
the remaining q = n− 2− p leaves attached to v. This process requires q steps.

Given a spanning star with centre u and a leaf v, and a set S of p vertices to remain
leaves attached to u, for every leaf z of u not in S, we delete the edge zu and add
the edge zv, giving the required double star Sp,q. With exception of the star with
which we started, every step involves a spanning tree of diameter 3.

These three operations suffice to transform any spanning tree of Kn of diameter at
most 3 to any other spanning tree of diameter at most 3 with all trees in the process
having diameter at most 3. In fact, the number of edge replacements is bounded by
2(n − 2) edge-replacements. Indeed, if we have any pair of spanning trees T and T ∗ of
diameter at most 3, we have the following possible situations. If T is a double star and
T ∗ a star or vice versa, we require at most n − 3 steps by operation 1 or 3 above. If T
and T ∗ are both stars, we require at most n − 2 steps by operation 2. Finally, if T and
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T ∗ are both double stars, we can use operation 1, then operation 2 and then operation 3,
but we can do it the most efficient as possible. Suppose T ∼= Sp,q with p 6 q and centres
u and v, and T ∗ ∼= Sr,s with r 6 s and centres x and y. We transform T to a star with
centre v, which involves p 6 n−2

2
steps. Then transform this star with centre v to a star

with centre y, involving n − 2 steps. Finally, we transform this star to T ∗ with x as the
centre, involving another r 6 n−2

2
steps. Hence, the number of edge-replacements is at

most n−2
2

+ (n− 2) + n−2
2

= 2(n− 2).

It is well known that ex(n,K1,k) =
⌊
k−1
2
n
⌋
, see for instance [32]. We will use this

result for the following theorem.

Theorem 15. Let n > 3 and let f : E(Kn)→ {−1, 1} such that

min{e(−1), e(1)} >
⌊
n

2

⌊
n− 3

2

⌋⌋
.

Then there is a zero-sum or an almost zero-sum spanning tree of diameter at most 3.

Proof. Since K1,n−1 ∈ T 3
n , we clearly have K1,bn−1

2
c ∈ Half(T 3

n ). Hence, we can conclude

that

ex(n,Half(T 3
n )) 6 ex(n,K1,bn−1

2
c) =

⌊bn−1
2
c − 1

2
n

⌋
=

⌊
n

2

⌊
n− 3

2

⌋⌋
.

By Lemma 14, T 3
n is a closed family. Hence, by Theorem 4, there is a zero-sum or an

almost zero-sum spanning tree of diameter at most 3.
It remains to check that 2

(⌊
n
2

⌊
n−3
2

⌋⌋
+ 1
)
6 n(n−1)

2
, which holds true for n > 3.

Observe that one cannot hope to obtain a zero-sum or an almost zero-sum star (i.e. a
tree of diameter 2) even in the case that

{e(−1), e(1)} =

{⌈
n(n− 1)

4

⌉
,

⌊
n(n− 1)

4

⌋}
where |f(Kn)| 6 1. This is because, for infinitely many n’s there are integers x and y
such that x+ y = n, x > y, for which we can split V (Kn) = (X ∪ Y ) such that |X| = x,
|Y | = y and

(
x
2

)
= xy +

(
y
2

)
, being able to colour all edges in X with −1 and all edges

in E(Kn)\E(X) with +1 such that e(−1) = e(1) [8, 14], but where there is no zero-sum
spanning star nor an almost zero-sum spanning star.

5 Zero-sum spanning trees in other graph classes

In this section, we will deal with graph classes that are different from the family of
complete graphs.
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5.1 Zero-sum spanning trees in K3-free graphs

Lemma 16. Let k be a positive integer, and let G be a K3-free graph with e(G) > bk2
4
c.

Then G contains a forest F on at least k edges, and the bound is sharp.

Proof. We proceed by induction on k. For k = 1, 2, it is true. Assume this is true for k
and let us prove it for k+1. Observe first that b q2

4
c = b q

2
cd q

2
e for any non-negative integer

q. Now let G be a K3-free graph with e(G) > b (k+1)2

4
c. We may assume no vertex in G is

isolated. Suppose first that δ(G) 6 bk+1
2
c and let v be a vertex of minimum degree in G.

Consider G∗ = G− v. Then G∗ is again K3-free, and has the following edge-number:

e(G∗) = e(G)− degG(v) >

⌊
(k + 1)2

4

⌋
−
⌊
k + 1

2

⌋
=

⌊
k + 1

2

⌋⌈
k + 1

2

⌉
−
⌊
k + 1

2

⌋
=

⌊
k + 1

2

⌋(⌈
k + 1

2

⌉
− 1

)
=

⌊
k

2

⌋⌈
k

2

⌉
=

⌊
k2

4

⌋
.

Hence, by the induction hypothesis, G∗ contains a forest F ∗ on k edges. Now add v and
one edge incident with v to get a forest F with k + 1 edges, as required.

So we may assume δ(G) > bk+3
2
c. Take two adjacent vertices u and v. Since G is

K3-free, u and v have no common neighbour. So all the edges incident with v but not u,
together with all the edges incident with u but not v, and the edge uv form a tree on at
least 2bk+1

2
c+ 1 > k + 1 edges and we are done.

For the sharpness, take the complete bipartite graph Kb k
2
c,d k

2
e which has bk

2
cdk

2
e edges

but no forest on k edges.

Theorem 17. Let n be a positive integer and let G be a connected K3-free graph of order
|V (G)| ∈ {2n, 2n + 1} such that e(G) > bn2

2
c + 2. Let f : E(G) → {−1, 1} be such that

min{e(−1), e(1)} > bn2

4
c. Then there is a zero-sum or an almost zero-sum spanning tree,

and these bounds are sharp.

Proof. Consider the graph G− induced by the −1-edges, and the graph G+ induced by
the 1-edges. Since min{e(G−), e(G+)} > bn2

4
c, we can use Lemma 16 with k = n, from

which follows that G− and G+ contain a forest F− and, respectively, F+ on at least n
edges each. Complete F− to a spanning tree T− on 2n edges and F+ to a spanning tree
T+ on 2n edges. Since, clearly, f(F−) 6 0 and f(F+) > 0, the Interpolation Lemma 3
yields the result.

We now consider sharpness. Let G be a connected bipartite graph on 2n or 2n + 1
vertices and at least bn2

2
c+2 edges such that G has a subgraph H isomorphic to Kbn

2
c,dn

2
e.

Evidently, G is K3-free. We colour all edges from H with −1, and all remaining edges
with 1. Clearly, e(1) > e(−1) = bn

2
cdn

2
e = bn2

4
c. To have a zero-sum spanning tree, we

need n edges coloured −1 and n edges coloured +1. However, from E(H) we can take
only n− 1 edges, since otherwise we would have a cycle.
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5.2 Zero-sum spanning trees in d-trees

For an integer d > 1, a graph G is said to be d-degenerate (also called in the literature
partial d-tree) if for every induced subgraph H of G, δ(H) 6 d. A d-tree is a maximal d-
degenerate graph, that is, a graph obtained from the complete graph Kd+1 by successively
adding vertices, each vertex being adjacent to exactly d vertices in the former graph. The
number of edges in a d-tree on n > d + 1 vertices is nd −

(
d+1
2

)
. It is clear that every

d-tree on n vertices contains an induced d-tree on n′ vertices for every k, d+ 1 6 n′ 6 n.
For early surveys on d-degenerate graphs and d-trees, see [31, 39], and further results on
maximal d-degenerate graphs and d-trees can be found in [20, 38].

Lemma 18. Let k and d be non-negative integers. Let G be a d-degenerate graph with

e(G) >

{ (
k
2

)
, if k 6 d,

kd−
(
d+1
2

)
, else.

Then G contains a forest on at least k edges. Moreover, the bound is best possible for any
choice of the parameters.

Proof. If d = 1, then G is itself a forest and the bound on e(G) is equal to k − 1 in
both cases, so the claim is trivial. So we assume d > 2. For the case that k 6 d, the
claim follows from Lemma 12. So we may assume that k > d + 1. We will prove the
statement by induction on k. Observe that, for k = d + 1, kd−

(
d+1
2

)
=
(
k
2

)
, so the base

case is also covered by Lemma 12. Suppose now the claim is true for k. Now let G be a
d-degenerate graph with e(G) > (k + 1)d−

(
d+1
2

)
edges. We can assume, without loss of

generality, that G has no isolated vertices. Let v ∈ V (G) be a vertex of minimum degree
and define G∗ = G− v, which is again d-degenerate. By the d-degeneracy of G, we have
1 6 deg(v) 6 d. It follows that

e(G∗) > (k + 1)d−
(
d+ 1

2

)
− deg(v)

> (k + 1)d−
(
d+ 1

2

)
− d

= kd−
(
d+ 1

2

)
.

Hence, by the induction hypothesis, G∗ contains a forest F ∗ on k edges. Adding the
vertex v and exactly one edge incident with it to F ∗, we get a forest F with at least k+ 1
edges in G, proving the induction step.

For the sharpness, consider, for the case that 1 6 k 6 d + 1, the complete graph Kk.
Indeed, Kk is d-degenerate and has

(
k
2

)
edges, but no forest on k edges. When k > d+ 1,

take any d-tree on k vertices with exactly kd −
(
d+1
2

)
edges, which contains no forest on

k edges.

We can now prove the theorem about zero-sum spanning trees in d-trees.
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Theorem 19. Let G be a d-tree on n > 2d+2 vertices. Let f : E(G)→ {−1, 1} such that
min{e(−1), e(1)} > bn−1

2
cd−

(
d+1
2

)
. Then G contains a zero-sum or an almost zero-sum

spanning tree, and the bound is sharp.

Proof. Observe first that the condition min{e(−1), e(1)} > bn−1
2
cd−

(
d+1
2

)
can always be

satisfied. Indeed, for this to hold, it is required that

2

(⌊
n− 1

2

⌋
d−

(
d+ 1

2

)
+ 1

)
6 nd−

(
d+ 1

2

)
= e(G),

which is always true. To prove the statement, we use Lemma 18 with k = bn−1
2
c > d+ 1.

Then there exists a forest F− on at least bn−1
2
c edges coloured −1 and a forest F+ on

at least bn−1
2
c edges coloured +1. Complete F− to a spanning tree T− on n − 1 edges

and complete F+ to a spanning tree T+ on n − 1 edges. Then we have that f(T−) 6 1
while f(T+) > −1. If f(T−) = 1 or f(T+) = −1, T− or T+ is an almost zero-sum tree.
Hence, we can assume that f(T−) 6 0 and f(T+) > 0, and so it follows with Lemma
3 that there is a zero-sum or an almost zero-sum spanning tree. For the sharpness,
consider any d-tree on n > 2d+ 2 vertices. Then it contains a d-tree H on bn−1

2
c > d+ 1

vertices which has clearly e(H) = bn−1
2
cd −

(
d+1
2

)
. Let f : E(G) → {−1, 1} such that

the edges of H are coloured −1, and all remaining edges are coloured 1. Observe that
e(1) > e(−1) = bn−1

2
cd−

(
d+1
2

)
. To have a zero-sum spanning tree of G, we need precisely

a forest with bn−1
2
c edges coloured −1, which we are forced to choose from H. However,

this is impossible since |V (H)| = bn−1
2
c.

5.3 Zero-sum spanning trees in maximal planar graphs

Since planar graphs are 5-degenerate, results like Lemma 18 with d = 5 and its conse-
quences hold for planar graphs. However, one would expect that better bounds can be
obtained than in the previous section by exploiting the special properties of planarity. We
do this here for maximal planar graphs, keeping in mind that a maximal planar graph on
n > 3 vertices has 3n− 6 edges and that any embedding of such a graph in the plane has
the outer face bounded by a triangle.

Lemma 20. Let k > 3 be an integer and let G be a planar graph with e(G) > 3k − 5.
Then G contains a forest on at least k edges and the bound is best possible.

Proof. We will prove the statement by induction on k. If k = 3, then 3k−5 = 4 > 3 =
(
k
2

)
.

Hence, the induction start follows by Lemma 12. We assume now the bound holds for
k, where k > 3, and we will prove it for k + 1. Let G be a planar graph with at least
3(k + 1) − 5 edges and order n. We may assume that G has no isolated vertices. Let
G1, . . . , Gt be the connected components of G of order n1, . . . , nt, where t > 1. If G has a
component, say Gt, isomorphic to K2, then consider the planar graph G∗ = G−Gt, and
observe that

e(G∗) = e(G)− 1 > 3(k + 1)− 5− 1 = 3k − 3 > 3k − 5.
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Hence, by the induction hypothesis, G∗ contains a forest F on at least k edges, and thus
F ∪Gt is a forest contained in G that has at least k+ 1 edges, so we are done. Therefore,
we may assume that ni > 3 for all 1 6 i 6 t. Since every component in G is planar, we
have

3n− 6t =
t∑

i=1

(3ni − 6) >
t∑

i=1

e(Gi) = e(G) > 3(k + 1)− 5 = 3k − 2.

This gives n > k + 2t − 2
3
, so in fact n > k + 2t. On the other hand, every component

Gi of G has a spanning tree Ti on ni− 1 edges, which together produce a spanning forest
F = ∪ti=1Ti with

e(F ) =
t∑

i=1

(ni − 1) = n− t > k + t > k + 1,

and we are done.
For the sharpness, consider any maximal planar graph on k vertices, which has exactly
3k − 6 edges, but no forest on k edges.

We can now prove the theorem about zero-sum or almost zero-sum spanning trees in
maximal planar graphs.

Theorem 21. Let G be a maximal planar graph on n > 7 vertices. Let f : E(G) →
{−1, 1} such that min{e(−1), e(1)} > 3bn−1

2
c − 5. Then G contains a zero-sum or an

almost zero-sum spanning tree, and the bound is sharp.

Proof. Observe that the condition min{e(−1), e(1)} > 3bn−1
2
c− 5 can always be satisfied

since 2(3bn−1
2
c− 5) 6 3n− 6 = e(G). To show the existence of the desired spanning tree,

we use Lemma 20 with k = bn−1
2
c > 3. Since min{e(−1), e(1)} > 3bn−1

2
c − 5, there exist

forests F− and F+, each on at least b (n−1)
2
c edges such that all edges of F− are coloured

−1 and all edges of F+ are coloured 1. Complete F− to a spanning tree T− on n−1 edges
and complete F+ to a spanning tree T+ on n − 1 edges. Then we have that f(T−) 6 1,
while f(T+) > −1. If f(T−) = 1 or f(T+) = −1, T− or T+ is an almost zero-sum tree.
Hence, we can assume that f(T−) 6 0 and f(T+) > 0, and so it follows with Lemma 3
that there is a zero-sum or an almost zero-sum spanning tree.

To show the sharpness, we proceed in an analogous way to the proof of sharpness for
Theorem 19. We start with K3 embedded in the plane and add, recursively, new vertices
such that, each time a new vertex is added, it is made adjacent to the three vertices
bounding the current outer face. In this way, we can obtain, for any 3 6 k 6 n, a maximal
planar graph of order n containing an induced maximal planar subgraph of order k. So, for
n > 7, let G be a maximal planar graph of order n containing a maximal planar subgraph
P on bn−1

2
c vertices. Let f : E(G) → {−1, 1} such that the edges of P are coloured −1

and the remaining edges are all coloured 1. Observe that e(1) > e(−1) = bn−1
2
c − 6. To

have a zero-sum spanning tree of G, we need precisely a forest of bn−1
2
c edges coloured

−1, which we have to take from P , and this is impossible since |V (P )| = bn−1
2
c.
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6 Zero-sum connectivity

Theorem 22. Let n > 6 and f : E(Kn)→ {−1, 1} such that min{e(−1), e(1)} >
⌈
n+1
2

⌉
.

Then for every two vertices x and y, there is a zero-sum path of length at most 4 with x
and y the end vertices of this path. Furthermore the lower bound is sharp.

Proof. For every pair of vertices x and y having another vertex u such that f(ux) 6= f(uy)
we are done, as x-u-y is a zero-sum path. So let x, y be a pair of vertices such that for
every u ∈ V \{x, y}, f(xu) = f(uy). This splits V \{x, y} into two sets A and B (one pos-
sibly empty), where A := {u : f(xu) = f(uy) = 1} and B := {u : f(xu) = f(uy) = −1}.
Assume, without lost of generality, that |A| > |B| (otherwise we can multiply all colours
by −1 and do as follows).

Case 1: If |B| = 0 we have |A| = n − 2 > 4. By hypothesis e(−1) >
⌈
n+1
2

⌉
, so even

if f(xy) = −1 we still have
⌈
n+1
2

⌉
− 1 edges coloured −1 in the subgraph induced by

A. Since
⌈
n+1
2

⌉
− 1 >

⌈
n−2
2

⌉
, this is enough to guarantee the existence of three vertices

u, v, w ∈ A such that f(uv) = f(vw) = −1. Then, x-u-v-w-y is a zero-sum path.

Case 2: If |B| = 1 we have |A| = n−3 > 3. Let z be the only vertex in B. If there are ver-
tices u, v ∈ A such that f(zu) = f(zv) = −1 then x-u-z-v-y is a zero-sum path. Suppose
there is only one vertex u ∈ A such that f(zu) = −1 then, either there is a vertex v ∈ A
such that f(vu) = 1, or there are two vertices v, w ∈ A such that f(vu) = f(wu) = −1; in
the first case x-v-u-z-y is a zero-sum path, while in the second case x-v-u-w-y is a zero-sum
path. It remains to consider the case where f(zu) = 1 for every u ∈ A; in this case note
that outside A there are at most three edges coloured −1 and, since

⌈
n+1
2

⌉
> 4, we must

have an edge uv, with u, v ∈ A, such that f(uv) = −1, hence x-u-v-z-y is a zero-sum path.

Case 3: If |B| > 2 we have |A| = n − 4 > 2. Consider u, v, z, w vertices such that
u, v ∈ A and z, w ∈ B. If f(uz) = f(uw) = 1 then x-z-u-w-y is a zero-sum path. So,
we may assume without lost of generality that f(uz) = −1. Then f(vu) = −1 (otherwise
x-v-u-z-y would be a zero-sum path), and f(vz) = 1 (otherwise x-v-z-u-y would be a
zero-sum path) but then x-z-v-u-y is a zero-sum path.

In order to show that the lower bound in Theorem 22 is best possible we exhibit, for n = 4
and n = 5, a colouring function f ∗ : E(Kn) → {−1, 1} with min{e(−1), e(1)} =

⌈
n+1
2

⌉
and two vertices such that there is no zero-sum path of length at most 4 between them;
and, for n > 6, a colouring f ∗ : E(Kn)→ {−1, 1} with min{e(−1), e(1)} =

⌈
n+1
2

⌉
−1 and

a pair of vertices with the same property.
Let n ∈ {4, 5}, and let f ∗ : E(Kn) → {−1, 1} be a colouring such that the −1-edges

induce a K3, being a, b, c its 3 vertices. Then e(−1) = 3 =
⌈
n+1
2

⌉
, and there is no zero-sum

path of length at most 4 with a and b being the end vertices of this path.
Let n > 6. Consider a colouring f ∗ : E(Kn) → {−1, 1} such that the set of edges

coloured −1 induce a bn
2
cK2. Hence, e(−1) = bn

2
c =

⌈
n+1
2

⌉
− 1, and for two vertices a
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and b such that f ∗(ab) = −1 there is no zero-sum path of length at most 4 between them;
to see this, note that such a path has to start and end with edges coloured 1, thus the
middle edges have to be both coloured −1, which is impossible.

Next we show that the lower bound is in fact critical to zero-sum connectivity without
any restriction on the length of the zero-sum paths.

With min{e(−1), e(1)} 6 dn−1
2
e, there is a colouring preventing zero-sum path of any

length (not only 2 or 4) — we take a matching of dn−1
2
e edges coloured −1 and the rest

coloured +1, so that no two vertices adjacent by an edge coloured −1 have a zero-sum
path between them.

Next we show that distance four zero-sum paths are inevitable. We cannot force every
two vertices to have a zero-sum path of length two even if min{e(−1), e(1)} = bn(n−1)

4
c

(half the edges). Consider Kn (n sufficiently large) and choose two vertices x and y.
Connect x and y to all other vertices by edges coloured −1. The rest of the edges are
coloured −1 and +1, just to get the number of −1 and +1 edges as equal as possible.
Every (x, z, y)-path has weight −2 and |e(−1)− e(1)| 6 1.

So n sufficiently large is just to make sure the first 2(n− 2) edges coloured −1 are at

most half the number of edges, namely 2(n− 2) 6 n(n−1)
4

which is true for n > 7.

7 Conclusion

We have studied, for various graph families F , the problem of finding conditions on a
2-colouring of E(H) (H is, in most cases, the complete graph Kn) with colours −1 and
+1 such that, given a graph G in F , there is, in any such 2-colouring of H, a copy of G
such that the sum of the colours on E(G) is zero or ±1. Usually the conditions on the
colouring take the form of bounds on the number of edges coloured −1 or +1. Most of
the bounds we have obtained are sharp, but not all, for example in the case of spanning
trees of diameter at most three.

We have given a unified treatment of this problem by obtaining most of our results as
consequences of a Master Theorem which we have applied for classes F such as spanning
subtrees or spanning paths. It would be interesting to be able to do the same for some
families of dense graphs.

Another intriguing problem is to find conditions such that any ±1-colouring of K4n

has a zero-sum matching on 2n edges. The main difficulty in applying our techniques is
that the graph 2nK2 is not a local amoeba in K4n, hence the various copies of matchings
in K4n is not a closed family and we cannot use Lemma 3 and Theorem 4.

The following construction shows that, for infinitely many integers n, there are {−1, 1}-
colourings of the complete graph K4n, where the number of edges of both colours is nearly
balanced, but such a colouring does not contain a zero-sum spanning matching. To see
this, let n be a square, say n = t2. Let A ∪ B be a partition of the vertex set of K4n

such that |A| = 2n + t − 1 and |B| = 2n − t + 1. We colour 1 all edges with one end
vertex in A and one in B, while the remaining edges are all coloured −1. Then there are
|A||B| = (2n + t − 1)(2n − t + 1) = 4n2 − t2 + 2t − 1 edges coloured 1, and there are
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(
4n
2

)
− |A||B| = 2n(4n − 1) − (4n2 − n + 2

√
n − 1) = 4n2 − n − 2t + 1 edges coloured

−1. That means that we have a difference of only 4t − 2 = 4
√
n − 2 between these two

numbers. To see that there is no zero-sum spanning matching, observe that we need n
matching edges from each colour, meaning that we would have n 1-coloured edges crossing
between A and B, which would leave |A| − n = n + t − 1 = t2 + t − 1 = t(t + 1) − 1
free vertices from A and |B| − n = n− t+ 1 = t2 − t+ 1 = t(t− 1) + 1 vertices from B.
However, since both numbers t(t + 1)− 1 and t(t− 1) + 1 are odd, we can take at most
t(t+1)−2

2
+ t(t−1)

2
= t2− 1 = n− 1 matching edges coloured -1. Hence, there is no zero-sum

spanning matching.
So we pose the following problem:

Problem 23. Given f : E(K4n) → {−1, 1} such that e(−1) = e(1), does a zero-sum
matching always exist?

Note: After a preprint of our paper appeared on arXiv, several researchers showed interest
in the topic and also a variety of problems related to it. We give seven references of such
follow-up papers [2, 19, 28, 30, 33, 36, 37] which were written between the appearance
of our preprint and the publication of the paper. In particular, Problem 23 was solved
affirmatively in [19] and, independently, in [30].
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