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Abstract

In a recent paper of Andrews and Paule, several Schmidt-type partition identities
are considered within the framework of MacMahon’s Partition Analysis. Following
their work, we derive a new Schmidt-type identity concerning diagonal hooks of
partitions. We provide an analytic proof based on MacMahon’s Partition Analysis
and a combinatorial proof through an involution on the set of partitions. We also
establish connections between Schmidt-type distinct partitions and partitions with
nonpositive and negative cranks.

Mathematics Subject Classifications: 11P84, 05A17

1 Introduction

A partition of a natural number n is a nonincreasing sequence of positive integers whose
sum equals n. For any partition λ, we define its size |λ| as the sum of all parts in λ and
define its length `(λ) as the number of parts in λ. Throughout, P denotes the set of
partitions, and D denotes the set of partitions into distinct parts.

In their most recent work on MacMahon’s Partition Analysis, Andrews and Paule [3]
revisited a Monthly problem proposed by Frank Schmidt [7].

Theorem S. Let f(n) denote the number of partitions µ into distinct parts µ1 > µ2 >
µ3 > · · · such that µ1 + µ3 + µ5 + · · · = n. Then f(n) = p(n), the number of partitions of
n.

∗Partially supported by a Killam Postdoctoral Fellowship from the Killam Trusts.
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The published solution of Theorem S is due to Peter Mork [6], and it is combinatorial,
relying on a bijection concerning diagonal hooks of partitions. Graham Lord also found
the same bijection without hooks involved; see the Editorial comment in [6].

Andrews and Paule observed that Theorem S, and other identities sharing the same
nature, can be well fit into the framework of MacMahon’s Partition Analysis. One example
is as follows.

Theorem A–P. Let g(n) denote the number of partitions µ into parts µ1 > µ2 > µ3 > · · ·
such that µ1 + µ3 + µ5 + · · · = n. Then g(n) = p2(n), the number of partitions of n into
two colors.

In Theorem S and Theorem A–P, the main ingredients are partitions with the sum of
odd-indexed parts equal to n. A natural variant is to replace the odd-indexed parts with
other odd-indexed statistics of partitions.

The object of our paper follows along these lines, focusing on odd-indexed diagonal
hooks.

Definition 1 (Durfee square). The Durfee square of a partition λ is the largest square
that fits inside the Ferrers diagram of λ. We denote by D(λ) the length of the Durfee
square of λ.

Definition 2 (Diagonal hook lengths). Let λ be an integer partition with Durfee square
of length D(λ). For 1 6 i 6 D(λ), we denote by Γi(λ) the hook length of the i-th diagonal
entry of the Durfee square of λ, ordering from top-left to bottom-right. These Γi(λ)’s are
called the diagonal hook lengths of λ. For example, the partition λ = 4 + 4 + 3 + 3 + 2 + 1
with D(λ) = 3 has diagonal hook lengths Γ1(λ) = 9, Γ2(λ) = 6 and Γ3(λ) = 2; see Figure
1.

9

6

2

Figure 1: Diagonal hook lengths of 4 + 4 + 3 + 3 + 2 + 1.

Our main result is stated as follows.

Theorem 3. Let γe(n) (resp. γo(n)) be the number of partitions λ such that its length `(λ)
and the length D(λ) of its Durfee square has the same parity (resp. different parities) and
such that the diagonal hook lengths satisfy (Γ1(λ)+1)+(Γ3(λ)+1)+(Γ5(λ)+1)+ · · · = n.
Then, γe(n) − γo(n) equals the number of partitions of n into even parts. In particular,
γe(2n+ 1) = γo(2n+ 1).
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Example 4. The partitions counted by γe(4) are 3, 1 + 1 + 1 and 2 + 2, and the partition
counted by γo(4) is 2 + 1; see Figure 2. Then γe(4) − γo(4) = 3 − 1 = 2. On the other
hand, 4 has two partitions into even parts: 4 and 2 + 2.

3

`(λ) = 1

D(λ) = 1

3

`(λ) = 3

D(λ) = 1

3

1

`(λ) = 2

D(λ) = 2

3

`(λ) = 2

D(λ) = 1

Figure 2: Partitions counted by γe(4) and γo(4).

This paper is organized as follows. We first prove Theorem 3 in Section 2 with MacMa-
hon’s Partition Analysis applied to compute related generating functions. Then in Section
3, we construct an involution on the set of partitions which leads to a combinatorial proof
of Theorem 3. Finally, in Section 4, we give a variant of Mork’s bijection that builds con-
nections between Schmidt-type distinct partitions and partitions with nonpositive and
negative cranks.

2 MacMahon’s Partition Analysis

2.1 An identity from MacMahon’s Partition Analysis

The main ingredient we require from MacMahon’s Partition Analysis is the following
result due to Andrews and Paule [3, Lemma 3.1]:

Lemma 5. For any nonnegative integers a and b,∑
j1,j2,...,jm>a
j1−j2>b
j2−j3>b

...
jm−1−jm>b

xj11 x
j2
2 · · ·xjmm =

xb1(x1x2)b · · · (x1x2 · · ·xm−1)b(x1x2 · · ·xm)a

(1− x1)(1− x1x2) · · · (1− x1x2 · · ·xm)
. (1)

Recall that the MacMahon operator Ω> is defined by

Ω
>

∞∑
s1=−∞

· · ·
∞∑

sr=−∞

As1,...,srλ
s1
1 · · ·λsrr :=

∞∑
s1=0

· · ·
∞∑
sr=0

As1,...,sr ,

where the functions As1,...,sr in several complex variables are rational over C and the λi
are restricted to a neighborhood of the circle |λi| = 1. Furthermore, we require that
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the As1,...,sr are such that any of the series involved are absolutely convergent within the
domain of definition of As1,...,sr . Now, the left hand side of (1) can be written as

Ω
>

∑
j1,...,jm>0

xj11 x
j2
2 · · ·xjmm λj1−j2−b1 λj2−j3−b2 · · ·λjm−1−jm−b

m−1 λjm−am .

Then, as shown by Andrews and Paule, Lemma 5 follows by induction on m.
From a combinatorial perspective, Lemma 5 can be interpreted as follows. First, the

left hand side of (1) can be treated as the generating function for colored partitions of
the form j1 + j2 + · · · + jm where j1, j2, . . . , jm > a and ji − ji+1 > b for 1 6 i 6 m − 1.
Here, we color j1 by x1, j2 by x2, . . . , and jm by xm.

Now, we subtract a from jm, a + b from jm−1, . . . , and a + (m − 1)b from j1. Then
the subtracted numbers are counted by

x
a+(m−1)b
1 x

a+(m−2)b
2 · · · xa+b

m−1x
a
m,

which gives the numerator on the right hand side of (1). Also, after subtracting these
numbers, we are left with a partition µ with µ1 > µ2 > · · · > µm > 0 and µi colored by
xi for each 1 6 i 6 m.

Recall that in the Ferrers diagram of a partition, each part of size s is represented as
a row of s nodes. Now, we color the first node of each row by x1, the second node by x2,
and so on. Then the part of size s is counted by

x1x2 · · ·xs.

As an example, the partition 5 + 3 + 3 + 3 + 2 + 2 + 1 is represented by Figure 3 with
this coloring. Given any partition ν with parts at most m (so at most m columns in
the Ferrers diagram), if we color it as above, then for each 1 6 i 6 m, the i-th column
in the Ferrers diagram of ν is colored by xi. Taking the conjugate of ν, we arrive at a
partition with at most m parts and the i-th part colored by xi. The gives a one-to-one
correspondence with the partitions µ in the above. In other words, the partitions µ can
be generated by

1

(1− x1)(1− x1x2) · · · (1− x1x2 · · ·xm)
.

This gives the denominator on the right hand side of (1), and therefore, Lemma 5 holds
true.

2.2 Proof of Theorem 3

To prove Theorem 3, we also need the Frobenius symbol of a partition λ, which is a
two-rowed array (

s1 s2 · · · sm
t1 t2 · · · tm

)
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x1 x2 x3 x4 x5

x1 x2 x3

x1 x2 x3

x1 x2 x3

x1 x2

x1 x2

x1

Figure 3: Partition 5 + 3 + 3 + 3 + 2 + 2 + 1.

with s1 > s2 > · · · > sm > 0 and t1 > t2 > · · · > tm > 0, where si (resp. ti) counts the
number of nodes to the right of (resp. below) the i-th diagonal entry of the Durfee square
of λ in its Ferrers diagram.

Thus, the partition λ with Frobenius symbol above has

|λ| =
∑

16i6m

si +
∑

16i6m

ti +m.

We also have
`(λ) = t1 + 1, D(λ) = m

and for 1 6 i 6 m,
Γi(λ) = si + ti + 1.

Notice that our desired result is equivalent to∑
λ∈P

(−1)`(λ)+D(λ)q(Γ1(λ)+1)+(Γ3(λ)+1)+(Γ5(λ)+1)+··· =
1

(q2; q2)∞
, (2)

where the q-Pochhammer symbol is defined for n ∈ N ∪ {∞} by

(A; q)n :=
n−1∏
k=0

(1− Aqk).

In terms of the Frobenius symbol, it is also equivalent to show

1 +
∑
m>1

s1>s2>···>sm>0
t1>t2>···>tm>0

(−1)t1+m+1q(s1+t1+2)+(s3+t3+2)+(s5+t5+2)+··· =
1

(q2; q2)∞
. (3)

Now, in (1), we set a = 0, b = 1, x1 = x3 = · · · = q and x2 = x4 = · · · = 1. Then

∑
s1>s2>···>sm>0

qs1+s3+s5+··· =


qk

2

(q; q)k(q; q)k
if m = 2k,

qk
2−k

(q; q)k(q; q)k−1

if m = 2k − 1.
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On the other hand, if we set a = 0, b = 1, x1 = −q, x3 = x5 = · · · = q and x2 = x4 =
· · · = 1 in (1), then

∑
t1>t2>···>tm>0

(−1)t1qt1+t3+t5+··· =


− qk

2

(−q; q)k(−q; q)k
if m = 2k,

qk
2−k

(−q; q)k(−q; q)k−1

if m = 2k − 1.

Therefore, ∑
s1>s2>···>sm>0
t1>t2>···>tm>0

(−1)t1+m+1q(s1+t1+2)+(s3+t3+2)+(s5+t5+2)+···

= q2bm+1
2
c

∑
s1>s2>···>sm>0

qs1+s3+s5+···
∑

t1>t2>···>tm>0

(−1)t1+m+1qt1+t3+t5+···

=


q2k2+2k

(q2; q2)k(q2; q2)k
if m = 2k,

q2k2

(q2; q2)k(q2; q2)k−1

if m = 2k − 1.

(4)

It follows that

1 +
∑
m>1

s1>s2>···>sm>0
t1>t2>···>tm>0

(−1)t1+m+1q(s1+t1+2)+(s3+t3+2)+(s5+t5+2)+···

= 1 +
∑
k>1

(
q2k2+2k

(q2; q2)k(q2; q2)k
+

q2k2

(q2; q2)k(q2; q2)k−1

)

= 1 +
∑
k>1

q2k2

(q2; q2)k(q2; q2)k

=
1

(q2; q2)∞
,

where we use an identity due to Euler [1, p. 21, (2.2.9)] in the last equality. Now, (3) is
proved, and thus, we arrive at Theorem 3.

3 An involution

Recall Mork’s bijection [6] between partitions of n and partitions µ into distinct parts
µ1 > µ2 > µ3 > · · · such that µ1 + µ3 + µ5 + · · · = n. The same correspondence gives a
bijection between partitions of n into even parts and partitions µ into distinct even parts
µ1 > µ2 > µ3 > · · · such that µ1 + µ3 + µ5 + · · · = n.

Therefore, to derive a combinatorial proof of Theorem 3, it suffices to show the fol-
lowing result.
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Theorem 6. Let γ(m,n) denote the weighted count of partitions λ with weight w(λ) =
(−1)`(λ)+D(λ) such that the Durfee square has length D(λ) = m and (Γ1(λ)+1)+(Γ3(λ)+
1) + (Γ5(λ) + 1) + · · · = n. Let d(m,n) denote the number of partitions µ into m distinct
even parts µ1 > µ2 > · · · > µm such that µ1 + µ3 + µ5 + · · · = n. Then for any positive
integers m and n, γ(m,n) = d(m,n).

Notice that by (4), we have, for any positive integer m,

∑
n>0

γ(m,n)qn =


q2k2+2k

(q2; q2)k(q2; q2)k
if m = 2k,

q2k2

(q2; q2)k(q2; q2)k−1

if m = 2k − 1.

On the other hand, in (1), we may set a = 1, b = 1, x1 = x3 = · · · = q and x2 = x4 =
· · · = 1 to obtain

∑
j1>j2···>jm>1

qj1+j3+j5+··· =


qk

2+k

(q; q)k(q; q)k
if m = 2k,

qk
2

(q; q)k(q; q)k−1

if m = 2k − 1.

(5)

Replacing q by q2 in the above yields

∑
n>0

d(m,n)qn =


q2k2+2k

(q2; q2)k(q2; q2)k
if m = 2k,

q2k2

(q2; q2)k(q2; q2)k−1

if m = 2k − 1.

Thus, γ(m,n) = d(m,n).
Below, we also give a combinatorial proof of this relation. Then, combining with

Mork’s bijection, we arrive at a combinatorial proof of Theorem 3.
Our starting point is an involution on the set P of partitions. We construct a map

φ : P →P as follows.

I Given any partition λ with Durfee square of length m, we decompose it as in Figure 4.
Here, the block below the Durfee square gives a partition π and the block to the right
of the Durfee square gives a partition µ whose conjugate is µ.

I Let x be the smallest part in π that appears an odd number of times. Let y be the
smallest part in µ. If x or y does not exist, we assume that it has size ∞.

I If x 6 y, then we delete the part x from π and add a part of size x to µ (and thus one
column is added to µ). If x > y, we delete the part y from µ (and thus one column is
deleted from µ) and add a part of size y to π. We call the new partition φ(λ).
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µ

π

m×m

Figure 4: Decomposition of λ with Durfee square of length m.

Lemma 7. The map φ is an involution on P, that is, φ(φ(λ)) = λ for any λ ∈P. Also,
φ preserves the size of the Durfee square and each diagonal hook length.

Proof. First, it is obvious from the construction of φ that it preserves the size of the
Durfee square and each diagonal hook length.

For any partition λ, we decompose it as in Figure 4 and get π and µ (and thus µ).
For the image φ(λ), we decompose in the same way and obtain π∗ and µ∗ (and thus µ∗).
Also, x(π) (resp. x(π∗)) denotes the smallest part in π (resp. π∗) that appears an odd
number of times and y(µ) (resp. y(µ∗)) denotes the smallest part in µ (resp. µ∗).

If both x(π) and y(µ) are ∞, then π∗ = π and µ∗ = µ, and thus, φ(λ) = λ. Below we
assume that the smaller one of x(π) and y(µ) is not ∞.

If x(π) 6 y(µ), then π∗ is obtained by deleting x(π) from π. Thus, x(π) appears an
even number (including zero) of times in π∗ and thus x(π∗) > x(π). Also, x(π) is added
to µ to get µ∗. Since x(π) 6 y(µ), we have y(µ∗) = x(π). Hence, x(π∗) > y(µ∗). By the
arguments in the next paragraph, we have φ(φ(λ)) = λ.

If x(π) > y(µ), then µ∗ is obtained by deleting y(µ) from µ. Thus, y(µ∗) > y(µ).
Also, π∗ is obtained by adding y(µ) to π. Since x(π) > y(µ), we know that y(µ) appears
an even number (including zero) of times in π. Thus, y(µ) appears an odd number of
times in π∗, and therefore, x(π∗) = y(µ). Hence, x(π∗) 6 y(µ∗). By the arguments in the
previous paragraph, we also have φ(φ(λ)) = λ.

Lemma 8. The only partitions that stay invariant under φ are those with µ the empty
partition and π a partition with even multiplicities.

Furthermore, for partitions λ not staying invariant under φ (that is, φ(λ) 6= λ), we
have w(φ(λ)) = −w(λ) where w(λ) is as in Theorem 6.

Proof. The first part has already been shown in the proof of Lemma 7. For the second
part, we also notice from Lemma 7 that D(φ(λ)) = D(λ). Furthermore, if λ does not stay
invariant under φ, then the block below the Durfee square of φ(λ) is obtained by adding
one part to or deleting one part from the block below the Durfee square of λ. Therefore,
`(φ(λ)) differs by ±1 to `(λ). We conclude that

w(φ(λ)) = (−1)D(φ(λ))+`(φ(λ)) = (−1)D(λ)+`(λ)±1 = −w(λ).
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This gives the second part of the lemma.

Now, we are ready to show Theorem 6.

Combinatorial proof of Theorem 6. For convenience, we denote by Pm the subset of P
including partitions with Durfee square of length m. By Lemmas 7 and 8,∑

λ∈Pm

w(λ)q(Γ1(λ)+1)+(Γ3(λ)+1)+··· =
∑
λ∈Pm

λ invariant under φ

w(λ)q(Γ1(λ)+1)+(Γ3(λ)+1)+···.

Therefore, by Lemma 8, we are left with partitions λ in Pm such that in its decompo-
sition, µ is the empty partition and π is a partition with even multiplicities. Notice that
each column of π contains an even number of nodes. That is, if π is the conjugate of π,
then all πi are nonnegative even numbers for 1 6 i 6 m. Thus, Γi(λ)+1 = πi+2(m+1−i).
So we arrive at a partition into m distinct even parts.

Conversely, if we are given a partition ν into m distinct even parts, we subtract
2(m + 1 − i) from each part νi for 1 6 i 6 m. Then we append the conjugate of the
resulting partition below an m × m box. The partitions that are invariant under φ are
uniquely determined.

We therefore conclude that γ(m,n) = d(m,n).

φ



Figure 5: Partitions λ and λ∗ in Example 9 under φ.

Example 9. Let λ = 8 + 8 + 8 + 8 + 7 + 5 + 4 + 4 + 2 + 1 + 1 and λ∗ = 9 + 9 + 8 + 8 +
7 + 5 + 4 + 4 + 1 + 1. Then λ∗ = φ(λ) and λ = φ(λ∗). See Figure 5.

Example 10. The partition λ = 3 + 3 + 3 + 2 + 2 + 2 + 2 + 1 + 1 with Durfee square of
length 3 stays invariant under φ. Its diagonal hook lengths are given in Figure 6. Also, it
corresponds to the partition 12 + 8 + 2 into three distinct even parts.
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11

7

1

Figure 6: Partition λ in Example 10 that stays invariant under φ.

4 A variant of Mork’s bijection and cranks of partitions

In [5], Hopkins, Sellers and Yee considered partitions with bounded cranks: for any non-
negative integer j, ∑

λ∈P
crank(λ)6−j

q|λ| =
∑
n>0

q(n+1)(n+j)

(q; q)n(q; q)n+j

. (6)

Here the crank of a partition λ is defined by Andrews and Garvan [2]:

crank(λ) :=

{
`(λ) if ω(λ) = 0,

µ(λ)− ω(λ) if ω(λ) > 0,

where ω(λ) denotes the number of ones in λ, and µ(λ) denotes the number of parts in
λ that are larger than ω(λ). The existence of the crank statistic was first predicted by
Dyson [4] to give a unified combinatorial interpretation of Ramanujan’s congruences for
the partition function.

Comparing (6) for j = 0 and 1 with (5), it is natural to expect connections between
Schmidt-type distinct partitions and partitions with nonpositive and negative cranks.

To start our investigation of such connections, let us review Mork’s bijection given in
[6].

Theorem 11 (Mork). For any positive integer k, there exists a bijection between partitions
µ into 2k or 2k − 1 distinct parts such that µ1 + µ3 + µ5 + · · · = n and partitions of n
with Durfee square of length k.

Let µ be as in Theorem 11. If µ has 2k − 1 parts, we append an empty part µ2k = 0.
Now, Mork’s bijection ψ can be illustrated by Figure 7. Here, the value below (resp. to
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Γ1

Γ2

. . .

Γi

. . .

Γk−1

Γk µ2k

(µ2k−2 − µ2k−1) + µ2k

(µ2i − µ2i+1) + · · ·+ (µ2k−2 − µ2k−1) + µ2k

(µ4 − µ5) + · · ·+ (µ2k−2 − µ2k−1) + µ2k

(µ2 − µ3) + · · ·+ (µ2k−2 − µ2k−1) + µ2k

(µ
2
k−

1 −
µ

2
k )−

1

(µ
2
k−

3 −
µ

2
k−

2 )
+

(µ
2
k−

1 −
µ

2
k )−

1

(µ
2
i−

1 −
µ

2
i )

+
···+

(µ
2
k−

1 −
µ

2
k )−

1

(µ
3 −

µ
4 )

+
···+

(µ
2
k−

1 −
µ

2
k )−

1

(µ
1 −

µ
2 )

+
···+

(µ
2
k−

1 −
µ

2
k )−

1

Figure 7: Mork’s bijection ψ(µ).

the right of) the i-th diagonal node denotes the number of nodes in the Ferrers diagram
of ψ(µ) that are below (resp. to the right of) the i-th diagonal node.

Next, we introduce the j-Durfee rectangle of a partition for j a nonnegative integer.

Definition 12 (j-Durfee rectangle). The j-Durfee rectangle of a partition λ is the largest
rectangle of size d × (d + j) that fits inside the Ferrers diagram of λ. We denote by
Dj(λ) = d the length of the j-Durfee rectangle. In particular, the 0-Durfee rectangle is
the same as the Durfee square.

Now, we define a variant of Mork’s bijection, denoted by ψ∗, as follows. Let µ ∈ D be
a partition into m distinct parts.

I If m = 2k, then ψ∗(µ) is illustrated by Figure 8.

I If m = 1, then ψ∗(µ) is 1 + 1 + · · ·+ 1 with 1 appearing µ1 times.

I If m = 2k − 1 with k > 2, then ψ∗(µ) is illustrated by Figure 9.

Evidently, for any µ ∈ D , ψ∗(µ) is a partition.
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Γ1

Γ2

. . .

Γi

. . .

Γk−1

Γk µ2k − 1

(µ2k−2 − µ2k−1) + µ2k − 1

(µ2i − µ2i+1) + · · ·+ (µ2k−2 − µ2k−1) + µ2k − 1

(µ4 − µ5) + · · ·+ (µ2k−2 − µ2k−1) + µ2k − 1

(µ2 − µ3) + · · ·+ (µ2k−2 − µ2k−1) + µ2k − 1

(µ
2
k−

1 −
µ

2
k )−

1

(µ
2
k−

3 −
µ

2
k−

2 )
+

(µ
2
k−

1 −
µ

2
k )−

1

(µ
2
i−

1 −
µ

2
i )

+
···+

(µ
2
k−

1 −
µ

2
k )−

1

(µ
3 −

µ
4 )

+
···+

(µ
2
k−

1 −
µ

2
k )−

1

(µ
1 −

µ
2 )

+
···+

(µ
2
k−

1 −
µ

2
k )−

1
+
k

Figure 8: The map ψ∗(µ) with µ ∈ D and `(µ) = 2k.

Theorem 13. Let k be any positive integer.
The map ψ∗ gives a bijection between partitions µ into 2k distinct parts such that

µ1 + µ3 + µ5 + · · · = n and partitions λ of n with D(λ) = k and crank nonpositive.
Also, the map ψ∗ gives a bijection between partitions µ into 2k− 1 distinct parts such

that µ1 + µ3 + µ5 + · · · = n and partitions λ of n with D1(λ) = k − 1 and crank negative.

For its proof, we require the following result due to Hopkins, Sellers and Yee [5].

Lemma 14. Let j be a nonnegative integer. Then for any nonempty partition λ, crank(λ) 6
−j if and only if ω(λ)−Dj(λ) > j where ω(λ) is the number of ones in λ and Dj(λ) is
the length of the j-Durfee rectangle of λ.

Proof of Theorem 13. Let µ ∈ D . If `(µ) = 2k, we have ω(ψ∗(µ)) = k + (µ1 − µ2)− 1 >
k, and D(ψ∗(µ)) = k. Thus, ω(ψ∗(µ)) − D(ψ∗(µ)) > 0, and by Lemma 14, we have
crank(ψ∗(µ)) 6 0. Conversely, given any partition λ with D(λ) = k and crank(λ) 6 0,
we can compute each µ1, µ2, . . . , µ2k through the construction of ψ∗.

If `(µ) = 2k−1, we have ω(ψ∗(µ)) = µ1 > 1 if k = 1 and ω(ψ∗(µ)) = k+(µ1−µ2)−1 >
k if k > 2, and D1(ψ∗(µ)) = k − 1 (since µ2k−2 − µ2k−1 > 1 in the case k > 2). Thus,
ω(ψ∗(µ)) − D(ψ∗(µ)) > 1, and by Lemma 14, we have crank(ψ∗(µ)) 6 −1. Conversely,
given any partition λ with D1(λ) = k− 1 and crank(λ) 6 −1, we can recover each µ1, µ2,
. . . , µ2k−1 through the construction of ψ∗.
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Γ1

Γ2

. . .

Γi

. . .

Γk−1 (µ2k−2 − µ2k−1)

(µ2i − µ2i+1) + · · ·+ (µ2k−2 − µ2k−1)

(µ4 − µ5) + · · ·+ (µ2k−2 − µ2k−1)

(µ2 − µ3) + · · ·+ (µ2k−2 − µ2k−1)

(µ
2
k−

1 −
1)

(µ
2
k−

3 −
µ

2
k−

2 )
+

(µ
2
k−

1 −
1)−

1

(µ
2
i−

1 −
µ

2
i )

+
···+

(µ
2
k−

3 −
µ

2
k−

2 )
+

(µ
2
k−

1 −
1)−

1

(µ
3 −

µ
4 )

+
···+

(µ
2
k−

3 −
µ

2
k−

2 )
+

(µ
2
k−

1 −
1)−

1

(µ
1 −

µ
2 )

+
···+

(µ
2
k−

3 −
µ

2
k−

2 )
+

(µ
2
k−

1 −
1)−

1
+
k

Figure 9: The map ψ∗(µ) with µ ∈ D and `(µ) = 2k − 1 (k > 2).
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