
On Bipartite Distance-Regular Cayley Graphs

with Small Diameter

Edwin R. van Dam
Department of Econometrics and O.R.

Tilburg University
The Netherlands

Edwin.vanDam@uvt.nl

Mojtaba Jazaeri
Department of Mathematics

Shahid Chamran University of Ahvaz
Ahvaz, Iran

M.Jazaeri@scu.ac.ir

School of Mathematics
Institute for Research in Fundamental Sciences (IPM)

P.O. Box: 19395-5746, Tehran, Iran

M.Jazaeri@ipm.ir

Submitted: Sep 28, 2021; Accepted: Apr 2, 2022; Published: Apr 22, 2022

© The authors. Released under the CC BY-ND license (International 4.0).

Abstract

We study bipartite distance-regular Cayley graphs with diameter three or four.
We give sufficient conditions under which a bipartite Cayley graph can be con-
structed on the semidirect product of a group — the part of this bipartite Cayley
graph which contains the identity element — and Z2. We apply this to the case
of bipartite distance-regular Cayley graphs with diameter three, and consider cases
where the sufficient conditions are not satisfied for some specific groups such as the
dihedral group. We also extend a result by Miklavič and Potočnik that relates dif-
ference sets to bipartite distance-regular Cayley graphs with diameter three to the
case of diameter four. This new case involves certain partial geometric difference
sets and — in the antipodal case — relative difference sets.

Mathematics Subject Classifications: 05B10, 05E30
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1 Introduction

We study bipartite distance-regular Cayley graphs with diameter three or four. The
subjects of both distance-regular graphs and Cayley graphs form important areas in al-
gebraic graph theory. For background (and more) on distance-regular graphs, we refer
to the monograph [5], survey [11], and website [3]. The question which distance-regular
graphs are Cayley graphs is a problem which has received increasing attention recently
(see [11, problem 70]). Miklavič and Potočnik [28] for example classified distance-regular
Cayley graphs on dihedral groups. It turned out that every non-trivial distance-regular
Cayley graphs on a dihedral group is bipartite with diameter three. This gives rise to the
question which bipartite distance-regular graphs with diameter three are Cayley graphs.
Is it the case that all such distance-regular Cayley graphs can be realized on the semidirect
product of a group and Z2? We note that, in general, for a given bipartite graph, it is an
NP-complete problem to decide if it has an automorphism of order 2 which interchanges
the two parts; see [2, p. 106].

In this paper, we give sufficient conditions under which a bipartite Cayley graph can
be constructed on the semidirect product of a group — the part of this bipartite Cayley
graph which contains the identity element — and Z2. We apply this to the case of
bipartite distance-regular Cayley graphs with diameter three, and consider cases where
the sufficient conditions are not satisfied for some specific groups such as the dihedral
group.

The development of a difference set is well known to be a symmetric design. In
turn, the incidence graph of a symmetric design is a bipartite distance-regular graph with
diameter three. Miklavič and Potočnik [28] made precise when this construction from a
difference set leads to a Cayley graph. Here we extend this to the case of diameter four.
This new case involves certain partial geometric difference sets and — in the antipodal
case — relative difference sets.

We note that Chen and Li [7] studied relative difference sets in relation to antipodal
distance-regular graphs with diameter three. In this case the connection set of the Cayley
graph is the relative difference set, just like partial difference sets are connection sets of
strongly regular graphs (i.e., distance-regular graphs with diameter two).

The paper is further organized as follows. In Section 2, we introduce notation and
the relation between distance-regular graphs with diameter three and difference sets. We
recall the above mentioned correspondence between difference sets and Cayley graphs
by Miklavič and Potočnik [28] in Proposition 1. We add to this an observation about
constructing bipartite Cayley graphs from sets in an abelian group in Proposition 2.

In Section 3, we consider bipartite Cayley graphs. We give conditions on the order and
size such that a bipartite Cayley graph can be constructed on the semidirect product of a
group — the part of this bipartite Cayley graph which contains the identity element — and
Z2. In Proposition 8, we extend this result to the case when the graph has no eigenvalue 0.
Before applying all this in Section 5, we first introduce certain partial geometric difference
sets in Section 4, as these are relevant both for diameters three and four. In Proposition
9, we extend the result by Miklavič and Potočnik [28] by relating certain partial geometric
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difference sets to bipartite distance-regular Cayley graphs with diameter four. We apply
this to some examples before zooming in on the antipodal bipartite case in Proposition
10. Also here we mention some interesting examples.

In Section 5, we then apply the results of Section 3 to the case of bipartite distance-
regular Cayley graphs with diameter three, and consider some specific groups such as the
dihedral group.

In the final section, we mention some (mostly known) results on bipartite distance-
regular Cayley graphs of larger diameter.

2 Distance-regular Cayley graphs and difference sets

2.1 Preliminaries

Let Γ be a connected graph with diameter d. Then Γ is called distance-regular with
intersection array {b0, b1, . . . , bd−1; c1, c2, . . . , cd} whenever, for each pair of vertices x and
y at distance i, where i = 0, 1, . . . , d, the number of neighbours of x at distance i+ 1 and
i − 1 from y are constant numbers bi and ci, respectively. This implies that a distance-
regular graph is regular with valency b0 = k and that the number of vertices at distance
i from a fixed vertex is constant. This number is denoted by ki and it follows that
ki+1 = kibi

ci+1
, where i = 0, 1, . . . , d − 1. Also the number of neighbours of x at distance i

from y is a constant number k − bi − ci, which is denoted by ai. If Γ is bipartite, then
ai = 0 for i = 0, 1, . . . , d.

Let G be a finite group and S be an inverse-closed subset of G not containing the
identity element; we call S the connection set. Then the Cayley graph Cay(G,S) is the
graph whose vertex set is G, where two vertices a and b are adjacent (denoted by a ∼ b)
whenever ab−1 ∈ S. By Si we denote the set of elements at distance i in Cay(G,S) from
the identity element. Recall that a graph Γ is a Cayley graph if and only if there exists
a subgroup of the automorphism group of Γ which acts regularly on the vertex set of Γ
(see e.g., [4, Lemma 16.3]). In this paper, the identity element of a group G is denoted
by e and its order by |G|.

A semidirect product of a group H with a group K, which is denoted by H o K or
K nH, is a (not necessarily unique) group G containing a normal subgroup H1 which is
isomorphic to H and a subgroup K1 isomorphic to K such that G = H1K1 and H1∩K1 =
{e}.

2.2 Symmetric designs and difference sets

A 2-(n, k, µ) design consists of a finite set of order n (of elements called points) and a
family of k-element subsets (with k > 2) of this set (called blocks) such that each pair of
points is included in exactly µ blocks. Moreover, this design is called symmetric whenever
the numbers of points and blocks are equal. The incidence graph of a symmetric 2-(n, k, µ)
design is a bipartite graph with two parts of points and blocks such that a point is adjacent
to a block whenever the point lies in the block. It is known that this incidence graph is
a bipartite distance-regular graph with diameter three, and the other way around.
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Indeed, let Γ be a bipartite distance-regular graph with diameter 3. Then its inter-
section array is {k, k − 1, k − µ; 1, µ, k}, where µ = c2; see also the distance-distribution
diagram below. It is well known that the graph Γ is the incidence graph of a sym-
metric 2-(n, k, µ) design, where 2n is the number of vertices of this graph (see e.g., [15,
Thm. 5.10.3]). Note that if such a design exists, then k(k − 1) = (n − 1)µ, for example

because n − 1 = k2 = k(k−1)
µ

. If k < n − 1 (in which case we call the graph non-trivial),
then the distance-3 graph Γ3 is also a bipartite distance-regular graph with intersection
array {n − k, n − k − 1, k − µ; 1, n − 2k + µ, n − k}, which is the incidence graph of
the so-called complementary symmetric 2-(n, n − k, n − 2k + µ) design. Furthermore,

{k1,
√
k − µ[n−1]

,−
√
k − µ[n−1]

,−k1} is the spectrum (the multiset of all eigenvalues of
the adjacency matrix) of this graph.

Figure 1: Distance-distribution diagram

Trivial examples in the context of this paper are the complete bipartite graph Kn,n

minus a perfect matching. These are the incidence graphs of the (trivial) 2-(n, n−1, n−2)
designs; or the bipartite distance-regular graphs with intersection array {k, k− 1, 1; 1, k−
1, k}, i.e., those with k = n−1, or equivalently µ = k−1. Such graphs are Cayley graphs
on the dihedral group D2n (see e.g., [10, §3.1]).

An (n, k, µ)-difference set in a finite group H, where |H| = n, is a subset D ⊆ H of
size k such that every non-identity element of H can be expressed exactly µ times as (a
“multiplicative difference”) d1d

−1
2 , where d1, d2 are elements of D. Moreover, from an

(n, k, µ)-difference set D in a finite group H, one can construct a symmetric 2-(n, k, µ)
design called the development of D, by considering {Dh | h ∈ H} as the set of blocks. We
note that if D is a difference set, then H \D is also a difference set, and its development
is the complementary design of the development of D. Moreover, D−1 is also a difference
set (even when H is nonabelian), because its development gives the dual design (i.e., the
design obtained by interchanging the role of points and blocks). An (n, k, µ)-difference
set D is called trivial whenever k ∈ {0, 1, n− 1, n}.

We recall the following result by Miklavič and Potočnik [28] that relates bipartite
distance-regular Cayley graphs with diameter 3 and certain difference sets.

Proposition 1. [28, Lemma 2.8] Let G be a group of order 2n and S a subset of G of
size k. Then the following statements are equivalent:1

1In the formulation in [28] we replaced D = a−1S by D = Sa−1 because of our slightly different
definition of Cayley graphs. The original formulation is also valid with our definition, but it is less
natural.
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• S ⊆ G\{e}, S = S−1 and Cay(G,S) is a non-trivial bipartite distance-regular graph
with diameter 3 and intersection array {k, k − 1, k − µ; 1, µ, k};

• there is a subgroup H of index 2 in G and an element a ∈ G \H such that the set
D = Sa−1 is a non-trivial (n, k, µ)-difference set in H satisfying D−1 = aDa;

• there is a subgroup H of index 2 in G such that for every a ∈ G\H, the set D = Sa−1

is a non-trivial (n, k, µ)-difference set in H satisfying D−1 = aDa.

For abelian groups, we can be a bit more specific (and constructive).

Proposition 2. Let D be a subset (not necessarily a difference set) of an abelian group
H. Then the incidence graph of its development is isomorphic to the Cayley graph on
the generalized dihedral group G = Dih(H) = H o Z2 with connection set S = Dc, where
c2 = 1 (c /∈ H) and chc = h−1 for every element h ∈ H.

Proof. We note that S contains only elements of order 2 and hence it is inverse-closed.
The map that sends (point) h to h and (block) Dh to h−1c is an isomorphism. Indeed, if
h1 ∼ Dh2 (in the incidence graph), then h1h

−1
2 ∈ D. It follows that h1(h

−1
2 c)−1 = h1ch2 =

h1h
−1
2 c ∈ Dc and therefore h1 is adjacent to h−12 c in the Cayley graph, and the other way

around.

This lemma applies for example in the case of the incidence graph of a Desarguesian
projective plane (as we observed before in [10, § 3.5]). Recall that a projective plane of
order q is a symmetric 2-(q2 + q+ 1, q+ 1, 1) design and the incidence graphs of projective
planes are precisely the bipartite distance-regular graphs with diameter three and girth 6
(i.e., with c2 = 1); these have intersection array {k, k − 1, k − 1; 1, 1, k}, with k = q + 1.
Indeed, it is well known that a Desarguesian projective plane can be constructed as the
development of a (Singer) difference set in a cyclic group, hence by the above lemma,
its incidence graph is indeed a Cayley graph, more specifically on a dihedral group. We
conclude the following (well-known) result.

Proposition 3. Let Γ be a bipartite distance-regular graph with diameter 3 and girth 6.
Then Γ is the incidence graph of a projective plane. Moreover, if the projective plane is
Desarguesian, then Γ is a Cayley graph on a dihedral group.

For a table of abelian difference sets with small parameters, we refer to [20, Table
18.73].

We finally note that there are non-abelian difference sets for which the development
is not a Cayley graph. Before we go deeper into distance-regular Cayley graphs, we now
first derive some elementary results on bipartite Cayley graphs.

3 Bipartite Cayley graphs

In this section, we will first consider some elementary properties of bipartite Cayley
graphs, mostly motived by Proposition 2. In Section 3.4, we will go deeper into the
case of nonsingular graphs, which will all be used in Section 5 when we continue with the
study of bipartite distance-regular Cayley graphs with diameter 3.
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3.1 Normal subgroups and the semidirect product

Lemma 4. Let Cay(G,S) be a connected bipartite Cayley graph. Then the part of this
bipartite graph which contains the identity element is a normal subgroup H of index 2 in
the group G and S ⊆ G \H.

Proof. Let H be the part of the bipartite graph Cay(G,S) which contains the identity
element e. If a, b ∈ H, then ba ∈ H. To see this let d(e, b) = 2n, where n ∈ N. Then
there exists a path of length 2n between a and ba which implies that ba ∈ H. Moreover,
similarly, a−1, b−1 ∈ H. This implies that H is a subgroup of G. On the other hand, each
part of this regular bipartite graph has the same size and therefore the subgroup H is
normal since the index of this subgroup in G is 2 and this completes the proof.

Lemma 5. Let Γ = Cay(G,S) be a connected bipartite Cayley graph of order 2n and
valency k and let H be the part of this bipartite graph which contains the identity element.
If n is odd or k is odd, then G is isomorphic to H o Z2.

Proof. First, let n be an odd number. Then the normal subgroup H has odd order n.
Because G has even order, it contains an involution a, which clearly cannot be in H.
Therefore G = H o 〈a〉.

Secondly, let k be an odd number, so |S| is odd. Because S = S−1, the number of
s ∈ S that is not an involution (i.e., for which s 6= s−1) is even, so there must be an
involution a ∈ S. Therefore G = H o 〈a〉.

3.2 Complete bipartite graphs

Let us first make a few observations about the bipartite distance-regular graphs with
diameter two: the regular complete bipartite graphs Kn,n, with n > 1. These are Cayley
graphs for any group G of order 2n having a subgroup H of order n, by considering
S = G \ H. If moreover S contains an involution a, then G = H o 〈a〉. For odd n, it
is clear from the above that this is the case. However, for even n, it is different. For
example if G is the (abelian) group G = Z2n, which has a (abelian) subgroup H (of even
numbers) isomorphic to Zn, but G \H does not have an involution. Still, Kn,n can easily
be constructed on a semidirect product H o Z2 such as the dihedral group. We will also
see this distinction for bipartite distance-regular graphs with larger diameter.

3.3 No involutions

Let us try to find a general setting for the previous example, i.e., in the case that there are
no involutions in G\H. Consider a bipartite Cayley graph Γ = Cay(G,S) where the usual
subgroup H is such that a semidirect product of H and Z2 can be defined (such as when
H is abelian). For a ∈ G\H, we let Ta = Sa−1, which is a subset of H. Let G′ = Ho 〈c〉,
with c2 = e, but c /∈ G. We now take S ′ = Tac. If S ′ is inverse-closed (in G′), then we
can use it as a connection set and obtain a bipartite Cayley graph Γ′ = Cay(G′, S ′).

Lemma 6. The Cayley graph Γ′ = Cay(G′, S ′) is isomorphic to Γ = Cay(G,S).
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Proof. The map ϕ : Cay(G,S)→ Cay(G′, S ′) defined by

ϕ(h) = h, ϕ(a−1h) = ch,

for h ∈ H, is an isomorphism, as is easily checked.

As a corollary, we obtain the following (cf. Proposition 2).

Corollary 7. Let Γ = Cay(G,S) be a connected bipartite Cayley graph and let H be the
part of this bipartite graph which contains the identity element. If H is abelian, then Γ
can be constructed as a Cayley graph on the generalized dihedral group Dih(H).

Proof. We can apply the above construction with G′ = Dih(H) for any a ∈ G \H. The
set S ′ is inverse-closed because all elements in Dih(H) \H are involutions.

A particular example where this applies (and that is more interesting than the complete
bipartite graph) is the following description as a Cayley graph of the 4-cube (a bipartite
distance-regular graph with diameter 4); the only 4-regular bipartite Cayley graph on 16
vertices with integral eigenvalues, according to Minchenko and Wanless [29].

Let G = Z4 × Z4 = 〈a, b | a4 = b4 = 1, ab = ba〉 and S = {a, a−1, b, b−1}. Then
H = 〈ab, a2〉, which is isomorphic to Z4 × Z2, but G \ H does not have involutions.
However, the 4-cube can also be described on Dih(H), or (Z4 × Z2) o Z2 = 〈ab, a2, c |
(ab)4 = (a2)2 = c2 = 1, (ab)a2 = a2(ab), (c(ab))2 = (ca2)2 = 1〉, with connection set
S ′ = Sa−1c.

We note that the above construction is not the only way to obtain isomorphic bipartite
Cayley graphs. For example, consider the below bipartite Cayley graph on 18 vertices
and valency 4. Note that this is the only such Cayley graph with integral eigenvalues [29];
it is the bipartite double of the Paley graph P (9).

Indeed, let G = Z6 × Z3 = 〈a, b | a6 = b3 = 1, ab = ba〉, S = {a, a5, a3b, a3b2},
G′ = (Z3 × Z3) o Z2 = 〈a2, b, c | (a2)3 = b3 = c2 = 1, a2b = ba2, ca2c = a−2, cbc = b−1〉,
and S ′ = {c, a2c, bc, a2bc}. The normal subgroup H in G is isomorphic to Z3 × Z3 but
it can be checked that there is no element g ∈ G \ H, such that S ′ = Sg−1c. Still, the
corresponding Cayley graphs are isomorphic.

3.4 Bipartite nonsingular Cayley graphs

In this section, we consider bipartite Cayley graphs that have no eigenvalues 0, in order to
obtain similar results as in the previous section for the cases that k is even and n is even,
but not divisible by 4. Note that bipartite distance-regular graphs with odd diameter
have no eigenvalue 0 (contrary to those with even diameter).

Proposition 8. Let Γ = Cay(G,S) be a connected bipartite Cayley graph of order 2n and
valency k and let H be the part of this bipartite graph which contains the identity element.
If n is not divisible by 4 and Γ has no eigenvalue 0, then G is isomorphic to H o Z2.
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Proof. By Lemma 5, we may assume that n is even. Assume that n is not divisible by 4,
so that n = 2m for some odd m. Then the Sylow 2-subgroup L, say, of G has order 4 and
L is not contained in the normal subgroup H (the latter which has order n).

If L is cyclic, then we may use a so-called normal p-complement theorem. Indeed,
by [34, Cor. 10.24], there exists a normal subgroup N of (odd) order m in the group G
such that G = NL and N ∩ L = {e}. Now the quotient group G/N is cyclic because L
is cyclic, so G/N = {N,Na,Na2, Na3} for some a /∈ N . Note also that N is contained
in H, for otherwise G = H ∪ gH for some g ∈ N \ H, so G = NH, which implies that
|G| = 8|H ∩N |, which is a contradiction. Because we may assume that the involution a2

is in H, it follows that H = N ∪Na2.
Next, we will use that the cosets of a normal subgroup form an equitable partition in

a Cayley graph [10, § 2.3]. In this case, we obtain an equitable partition with four parts
G/N for Γ. Moreover, we have a very particular quotient matrix. If xa ∈ S, where x ∈ N ,
then (xa)−1 ∈ Na3. This implies that the numbers of adjacent vertices to a fixed vertex
(x) of N in Na and in Na3 are equal. It follows that the quotient matrix equals k/2 times
the adjacency matrix of the 4-cycle, which has eigenvalue 0. Thus, also Γ has eigenvalue
0 [6, Lemma 2.3.1], which contradicts our assumption. Hence the Sylow 2-subgroup L
cannot be cyclic.

Thus, L is isomorphic to Z2×Z2, and L\H (which is nonempty) contains an involution
a, and it follows that G = H o 〈a〉.

4 Partial geometric difference sets

Before we apply the results of Section 3, we first need to introduce partial geometric
designs and difference sets. Particular cases of these are also defined, as they naturally
connect to bipartite distance-regular graphs with diameter 4.

4.1 Partial geometric designs and distance-regular graphs with diameter 4

A symmetric partial geometric design — or symmetric 11
2
-design — with parameters

(n, k, α, β) is a 1-design with n points and n blocks of size k with the property that for
each point-block pair (p,B), the number of incident point-block pairs (p′, B′), p′ 6= p,
B′ 6= B, with p′ ∈ B and p ∈ B′ equals β or α, depending on whether p is in B or not,
respectively. Note that every symmetric design is also a partial geometric design.

The incidence graphs of symmetric partial geometric designs are precisely the regular
bipartite graphs with four or five distinct eigenvalues [12]. Not all regular bipartite graphs
with five distinct eigenvalues are distance-regular, as in the case of four eigenvalues. It was
shown however [9, Prop. 3.5] that if in such a graph, the number of common neighbors of
two vertices at distance 2 is constant (c2 = µ), then it is distance-regular (with diameter
4).

On the other hand, it is known (see [5, Prop. 1.7.1]) that a bipartite distance-regular
graphs with diameter 4 is the incidence graph of an incidence structure called (square)
partial λ-geometry, as introduced by Drake [13]. We need not further define these but

the electronic journal of combinatorics 29(2) (2022), #P2.12 8



instead build on the definition of (symmetric) partial geometric design with the additional
property that any two points meet in either 0 or µ blocks, and dually, any two blocks
share either 0 or µ points.2

In general, a bipartite distance-regular graph Γ with diameter 4 on 2n vertices has
intersection array {k, k − 1, k − µ, k − c3; 1, µ, c3, k}, so µ = c2, and c3 = k(k−1)(k−µ)

(n−k)µ
(which follows from the standards relations between parameters). The halved graphs of Γ
are strongly regular graphs, with parameters following from the above intersection array.
Recall that if Γ is a Cayley graph, then also these halved graphs are Cayley graphs, which
may give extra restrictions for existence as a Cayley graph.

An example where this applies is the distance-regular graph on 100 vertices (and a
related partial 5-geometry on 50 points) that can be constructed from the cocliques in
the Hoffman-Singleton graph (see [5, Thm. 13.1.1(iv)]). This graph is not a Cayley graph
because its halved graphs are the complement of the Hoffman-Singleton graph, which is
known not to be a Cayley graph [26, 33].

Note finally that if we view the (distance-regular) Γ as the incidence graph of a sym-
metric partial geometric design with parameters (n, k, α, β), then it follows that α = µc3
and β = (k − 1)(µ − 1) (we omit a derivation, which is similar as the later derivation in
the group case in Proposition 9).

4.2 Partial µ-geometric difference sets

A partial geometric difference set — or 11
2
-difference set — in a finite group H with

parameters (n, k, α, β), as introduced by Olmez [31], is a k-subset D of H, where |H| = n,
with the property that every h ∈ H can be expressed as d1d

−1
2 d3, with d1, d2, d3 ∈ D, in

either 2k− 1 + β or α ways, depending on whether h ∈ D or not, respectively. Note that
the contribution 2k − 1 comes from the “trivial” ways to express h ∈ D as a required
triple product. As in the case of the usual difference sets, also here the development of a
partial geometric difference set D is a symmetric partial geometric design; moreover, D−1

is also a partial geometric difference set and its development is the dual design (which
has the same parameters).

Given the above characterization of bipartite distance-regular graphs with diameter
4 among the incidence graphs of symmetric partial geometric designs, it follows easily
that the incidence graph of the development of a partial geometric difference set D is
distance-regular with c2 = µ if and only if every h ∈ H \ {e} can be written as d1d

−1
2 ,

with d1, d2 ∈ D in µ or 0 ways and — dually — every h ∈ H \ {e} can be written as
d−11 d2, with d1, d2 ∈ D in µ or 0 ways. We call such a partial geometric difference set a
partial µ-geometric difference set. Note that a difference set is a degenerate case of this;
in which case the diameter is 3 instead of 4, as we saw before.

We can now obtain a similar characterization as in Proposition 1.

Proposition 9. Let G be a group of order 2n and S a subset of G of size k. Then the
following statements are equivalent:

2We denote the λ in partial λ-geometry by µ.
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1. S ⊆ G \ {e}, S = S−1 and Cay(G,S) is a bipartite distance-regular graph with
diameter 4 and intersection array {k, k − 1, k − µ, k − c3; 1, µ, c3, k};

2. there is a subgroup H of index 2 in G such that for every a ∈ G\H, the set D = Sa−1

is a partial µ-geometric difference set with parameters (n, k, µc3, (k − 1)(µ − 1))
satisfying D−1 = aDa;

3. there is a subgroup H of index 2 in G and an element a ∈ G\H such that the set D =
Sa−1 is a partial µ-geometric difference set with parameters (n, k, µc3, (k−1)(µ−1))
satisfying D−1 = aDa.

Proof. (1) ⇒ (2): Assume (1) and let H be the part of the bipartite graph containing
e. Let a ∈ G \ H and D = Sa−1. Then D−1 = aDa and (in group ring notation)
we have that D−1D = aS−1Sa−1 = aS2a−1 = a(k{e} + µS2)a

−1 = k{e} + µaS2a
−1, so

every non-identity element of H can be written as d1d
−1
2 in µ or 0 ways. Dually the

same holds because DD−1 = S2 = k{e} + µS2. Finally, DD−1D = kD + µS2D =
kD + µS2Sa

−1 = kD + µ((k − 1)S + c3S3)a
−1 = kD + µ(k − 1)D + µc3(H \ D) =

(2k − 1)D + (µ − 1)(k − 1)D + µc3(H \ D), hence D is a partial µ-geometric difference
set with parameters (n, k, µc3, (k − 1)(µ− 1)).

(2)⇒ (3): Trivial.
(3) ⇒ (1): Assume (3), then S is inverse-closed because D−1 = aDa. From above

considerations, it follows that the incidence graph of the development of D is a bipartite
distance-regular graph Γ with diameter 4 and intersection array {k, k − 1, k − µ, k −
c3; 1, µ, c3, k}. This incidence graph is isomorphic to Cay(G,S). To see this, consider the
map ϕ : Cay(G,S)→ Γ with ϕ(h) = h and ϕ(a−1h) = Dh, for h ∈ H. It is clear that ϕ
is a bijection. Moreover, if h1 ∼ a−1h2, then h1(a

−1h2)
−1 ∈ S = Da, hence h1h

−1
2 ∈ D,

h1 ∈ Dh2, and finally ϕ(h1) ∼ ϕ(a−1h2), and the other way around.

For example, the Van Lint-Schrijver partial geometry pg(5, 5, 2) [23] can be constructed
as the development of a partial 1-geometric difference set on the additive group of GF (81).
Indeed, if γ is a primitive fifth root of unity, then D = {0, 1, γ, γ2, γ3, γ4} is such a partial
1-geometric difference set. Another nice description in the group Z4

3 is also available [23,
Construction 2]. Hence, by Proposition 2, its incidence graph — the distance-regular
Van Lint-Schrijver graph — is a Cayley graph. The recently constructed other partial
geometry pg(5, 5, 2) [8, 21] does not have a group that acts transitively on the points, so
its incidence graph is not a Cayley graph.

Also a few other examples are well known to be Cayley graphs, such as the folded
8-cube and folded 9-cube.

Another example that is not a Cayley graph (next to the earlier mentioned graph
related to the Hoffman-Singleton graph) is the Leonard graph. This follows because the
corresponding design is not self-dual, and hence the Leonard graph is not vertex-transitive
[5, Thm. 11.4.4].

We finally note that in our previous paper [10, Prop. 3.3], we obtained the condition
that s must be 0 or 4 mod 6 for the incidence graph of a generalized quadrangle of order
s to be a Cayley graph. Also for s = 4, it is not a Cayley graph [10, Prop. 3.7].
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4.3 Symmetric relative difference sets and antipodal graphs

A special case of partial µ-geometric designs is the family of symmetric transversal designs
STDµ[rµ; r], or symmetric (r, µ)-nets. Their incidence graphs are precisely the antipodal
bipartite distance-regular graphs with intersection array {rµ, rµ− 1, (r− 1)µ, 1; 1, µ, rµ−
1, rµ}. The corresponding concept of partial µ-geometric difference sets is that of sym-
metric (rµ, r, rµ, µ)-relative difference sets.

Let H be a finite group and N a proper subgroup of H such that |N | = r and
[H : N ] = m. Then a k-subset D of H is an (m, r, k, µ)-relative difference set relative to
N (the “forbidden” subgroup) whenever every h ∈ H \ {e} can be written as d1d

−1
2 , with

d1, d2 ∈ D in 0 or µ ways, depending on whether h ∈ N or not, respectively. Moreover,
we say that D is symmetric whenever D−1 is also a relative difference set (possibly with
a different forbidden subgroup). Jungnickel [19] showed that if N is normal, then D is
symmetric.

Similar as before, the development of a symmetric (rµ, r, rµ, µ)-relative difference set is
a symmetric transversal design STDµ[rµ; r], and hence its incidence graph is an antipodal
bipartite distance-regular graph with diameter 4 (in fact, it is an r-cover of a complete
multipartite graph).

The following is in some sense a special case of Proposition 9.

Proposition 10. Let G be a group of order 2r2µ and S a subset of G. Then the following
statements are equivalent:

1. S ⊆ G\{e}, S = S−1 and Cay(G,S) is an antipodal bipartite distance-regular graph
with diameter 4 and intersection array {rµ, rµ− 1, (r − 1)µ, 1; 1, µ, rµ− 1, rµ};

2. there is a subgroup H of index 2 in G and a subgroup N of H of order r such that for
every a ∈ G \H, the set D = Sa−1 is a symmetric (rµ, r, rµ, µ)-relative difference
set relative to N in H satisfying D−1 = aDa;

3. there is a subgroup H of index 2 in G, a subgroup N of H of order r, and an element
a ∈ G\H such that the set D = Sa−1 is a symmetric (rµ, r, rµ, µ)-relative difference
set relative to N in H satisfying D−1 = aDa.

Proof. Most of the proof is omitted because it is similar as the proof of Proposition 9.
Additional details are as follows.

(1) ⇒ (2): Let N = S4 ∪ {e}. Because the Cayley graph is antipodal, it follows that
N is a subgroup of H. It follows that D = Sa−1 is an (rµ, r, rµ, µ)-relative difference set
relative to N in H. Similarly, D−1 is an (rµ, r, rµ, µ)-relative difference set relative to the
subgroup a−1Na in H.

The antipodal bipartite distance-regular graphs with diameter 4 and µ = 1 are in-
cidence graphs of affine planes minus a parallel class of lines. As we already observed
before (but provided with few arguments) in [10], relative difference sets in the abelian
group GF (q)2 are known for the Desarguesian affine planes AG(2, q) minus a parallel class
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of lines, for prime powers q. Again, by Proposition 2, their incidence graphs, which are
antipodal bipartite distance-regular graphs with diameter 4, are therefore Cayley graphs.

Many more constructions of relative difference sets are known that give rise to distance-
regular Cayley graphs. For such constructions, we refer to the survey paper on relative
difference sets by Pott [32], for example.

A distinguished case is the one with r = 2: symmetric transversal designs STDµ[2µ; 2]
give rise to the Hadamard graphs (on 8µ vertices), which in turn are equivalent to
(distance-regular) Hadamard matrices of size 2µ; see [5, §1.8]. The smallest Hadamard
graphs are C8 and the 4-cube, which are clearly Cayley graphs. For µ = 4 and µ = 6,
the (unique) Hadamard graphs are also Cayley graphs, as they can be obtained from
appropriate relative difference sets (as in [35]).

We mention once more the distance-regular 4-cube (recall also the earlier remarks in
Section 3), for it has a cospectral graph: the Hoffman graph. This graph is neither a Cay-
ley graph nor is it distance-regular. Still, it can be constructed from a square transversal
design; however its dual is not a transversal design. In this case this implies that the
Hoffman graph is only “half distance-regular”. Likewise, Hiramine [17] constructed non-
symmetric relative difference sets, among others one with parameters (12, 3, 12, 4). It gives
rise to a half distance-regular graph that is cospectral to the Suetake graph (the unique
distance-regular graph with intersection array {12, 11, 8, 1; 1, 4, 11, 12}). The latter comes
from the unique symmetric transversal design STD4[12; 3], see [36]. We found a related
relative difference set in the abelian group H = Z2 × Z3 × Z6. Indeed, let

D = {000, 002, 004, 005, 011, 023, 100, 101, 114, 122, 123, 125}.

Proposition 11. The set D is a relative difference set in the abelian group H = Z2 ×
Z3×Z6, relative to the normal subgroup N = Z3. The incidence graph of its development
is the Suetake graph, which is therefore a Cayley graph.

Another very interesting antipodal bipartite distance-regular graph with diameter 4
is the hexacode graph on 36 vertices [5, Thm. 13.2.2], which comes from the unique
STD2[6; 3]. We checked that its automorphism group does not have a regular subgroup,
so it is not a Cayley graph. Besides the above two examples with r = 3, we also mention
the Pappus graph (the incidence graph of the affine plane of order 3 minus a parallel class
of lines; see above), and the four graphs coming from an STD3[9; 3]. The latter were
classified by Mavron and Tonchev [25]. We checked that only the one with the smallest
automorphism group is not a Cayley graph (in particular, it is not even vertex-transitive).
The distance-transitive one can be constructed from a relative difference set in Z3

3, and
the other two in Z9 × Z3 and (Z3 × Z3) o Z3, respectively.

We finish this section by mentioning that we checked also that the distance-transitive
graph coming from an STD2[8; 4] is a Cayley graph (in particular, that it can be obtained
from a relative difference set in Z4 × Z4 × Z2).
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5 Bipartite distance-regular Cayley graphs with diameter 3

We now return to bipartite distance-regular graphs with diameter three to go deeper into
the more general results in Section 3. The following result follows immediately from there.

Proposition 12. Let Γ = Cay(G,S) be a distance-regular Cayley graph with intersection
array {k, k − 1, k − µ; 1, µ, k}, and H be the part of this bipartite graph which contains
the identity element. Then Γ can be constructed on H oZ2, except possibly when |H| = 0
mod 4, k is even, and H is non-abelian.

Note that we are not claiming that G is isomorphic to H o Z2.
In the remainder of this section, we study the (possibly) exceptional cases for the above

theorem for certain well-known groups. Note that if n = |H|, then k(k − 1) = (n − 1)µ,
so if n is even, then µ must be even as well. So we assume that |H| = 0 mod 4, and k
and µ are even.

First, observe that the symmetric group has a unique normal subgroup of index 2, the
alternating group, so also any bipartite Cayley graph on the symmetric group, the part
containing the identity element must be the alternating group, and G is isomorphic to
H o Z2.

5.1 The dihedral group

Similarly as for the symmetric group, for n odd, the dihedral group D2n has a unique
normal subgroup of index 2, the cyclic group (which is trivially in accordance with the
above proposition).

If n is even, then D2n has three normal subgroups H of index 2 and in each case, the
group is the semidirect product of H with Z2 [30, Thm. 3]. For the case where H is not
the cyclic group, we obtain further information below. Note that this may be relevant for
the classification of distance-regular Cayley graphs on dihedral groups; see [28].

Proposition 13. Let Γ = Cay(G,S) be a distance-regular Cayley graph with intersection
array {k, k − 1, k − µ; 1, µ, k}, with µ < k − 1, such that G is a dihedral group of order
2n, with n = 2m even and with cyclic subgroup C of order n. Let H be the part of this
bipartite graph which contains the identity element. If H is not the cyclic group, then the
Cayley graph ΓC = Cay(C, S∩C) is the incidence graph of a partial geometric design with
parameters (m, k1, α, β) and distinct eigenvalues {±k1,±

√
k − µ, 0}, where k1 = |S ∩ C|,

k2 = k − k1, α = µ(2k1−k2)
2

, and 2k1 − 1 + β − α = (k1 − k2)2 = k − µ.

Proof. The normal subgroup C gives rise to an equitable partition with two parts for this
graph. Let k1 = |S ∩ C|, k2 = k − k1, then this partition has quotient matrix[

k1 k2
k2 k1

]
.

Note that k1 6= 0 because C 6= H and k2 6= 0 since Γ is connected. Furthermore,
(k1 − k2)2 = k − µ since the eigenvalues k = k1 + k2 and k1 − k2 of the quotient matrix
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are also eigenvalues of the Cayley graph Cay(G,S) [6, Lemma 2.3.1]. It then also follows
that 4k1k2 = k(k − 1) + µ = nµ. Next, we will use that the eigenvalues of Cayley graphs
can be expressed as character sums of the underlying group by a theorem of Babai [1,
Thm. 3.1] (see also the survey paper [24]), and use the relation between character sums
of G and those of C.

The eigenvalues of the circulant Cayley graph ΓC are

λj =
∑
c∈S∩C

ωjc,

where j = 0, 1, . . . , n − 1 and ω = e
2πi
n (for convenience, we consider S ∩ C as a subset

of Zn). Note that λ0 = k1, and in addition, it is easy to see that λm+j = −λj for every
j = 0, 1, . . . ,m − 1. On the other hand, the irreducible characters of the dihedral group
G have degree 1 or 2. The eigenvalues ±k (both have multiplicity 1) of Γ correspond to
irreducible characters of degree 1. Thus, all other irreducible characters must correspond
to eigenvalues ±

√
k − µ (and indeed, it is easy to see that also k1 − k2 corresponds to an

irreducible character of degree 1).
Each of the m− 1 irreducible characters ψj of degree 2 corresponds to two eigenvalues

λj1 and λj2 of Γ, and it follows from Babai’s theorem, the character values, and the fact
that S is inverse-closed that

λj1 + λj2 =
∑
s∈S

ψj(s) =
∑
c∈S∩C

(ωjc + ω−jc) = 2
∑
c∈S∩C

ωjc = 2λj,

for j = 1, . . . ,m− 1.
Next, we use that λj1 and λj2 can only take values ±

√
k − µ, so λj can only take

values ±
√
k − µ and 0. This implies that the bipartite Cayley graph ΓC has (distinct)

eigenvalues {±k1, 0}, {±k1,±
√
k − µ}, or {±k1,±

√
k − µ, 0}.

If it has eigenvalues {±k1, 0}, then it is a complete bipartite graph. In this case
4mk2 = 4k1k2 = nµ = 2mµ and therefore µ = 2k2. On the other hand, we have
k(k− 1) = (n− 1)µ. Hence (m+ k2)(m+ k2− 1) = (2m− 1)2k2 and therefore k2 = m− 1
or k2 = m, which implies that Γ is a complete bipartite graph minus a perfect matching
or a complete bipartite graph, which is a contradiction.

If ΓC has eigenvalues {±k1,±
√
k − µ}, then it must be distance-regular [6, Prop. 15.1.3].

On the other hand, distance-regular circulant graphs have been classified [27] and there-
fore ΓC must be a complete bipartite graph minus a perfect matching. This implies (from
the eigenvalues) that µ = k − 1, and so Γ is also a complete bipartite graph minus a
perfect matching, which again is a contradiction.

Thus, ΓC has eigenvalues {±k1,±
√
k − µ, 0} and so it is the incidence graph of a

partial geometric design with parameters (m, k1, α, β), where α and β are as stated (see
[12, §3.1] and Section 4), which completes the proof.

As a side remark we note that that circulant distance-regular graphs have been clas-
sified [27] (and the only non-trivial examples are Paley graphs), and hence it follows that
the induced graphs on C cannot be distance-regular.
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5.2 The dicyclic group

Let G be the dicyclic group Q4m = 〈a, b | a2m = e, am = b2, b−1ab = a−1〉, and let n = 2m.
If m is odd, then the group G has a unique subgroup of index 2, the cyclic group H = 〈a〉
[30, Thm. 3]. In this case, we claim that there is no non-trivial bipartite distance-regular
Cayley graph with diameter 3. Indeed, suppose that bai ∈ S for some i. Then also
b−1ai = (bai)−1 ∈ S. But this implies that the two vertices e and b2 have the same
neighbours, which is a contradiction. Therefore we can conclude the following.

Proposition 14. Let m be odd. Then there is no non-trivial bipartite distance-regular
Cayley graph with diameter 3 on the dicyclic groups Q4m.

For m even, the group Q4m has three subgroups of index 2, and these are cyclic or
dicyclic [30, Thm. 3]. If H is cyclic, then the same argument as above implies that there
is no non-trivial bipartite distance-regular Cayley graph with diameter 3 on the group
G. If H is dicyclic, then a similar argument as in the proof of Proposition 13 applies.
Therefore we can conclude the following.

Proposition 15. Let Γ = Cay(G,S) be a distance-regular Cayley graph with intersection
array {k, k− 1, k− µ; 1, µ, k}, with µ < k− 1, such that G is the dicyclic group Q4m with
cyclic subgroup C of order n = 2m. Let H be the part of this bipartite graph which contains
the identity element. If H is not the cyclic group, then the Cayley graph ΓC = Cay(C, S∩
C) is the incidence graph of a partial geometric design with parameters (m, k1, α, β) and

distinct eigenvalues {±k1,±
√
k − µ, 0}, where k1 = |S ∩ C|, k2 = k − k1, α = µ(2k1−k2)

2
,

and 2k1 − 1 + β − α = (k1 − k2)2 = k − µ.

We also note that if m is even and H is a dicyclic group, then the only involution of
the group G = Q4m is in H. So S contains no involutions, which implies that the Cayley
graph Cay(G,S) is not on the semidirect product of a group — the part of this bipartite
Cayley graph which contains the identity element — and Z2.

5.3 The semidihedral group

Let m = 2`−1, with ` > 1. Let G be the semidihedral group SD4m = 〈a, b | a2m = b2 =
e, bab = am−1〉. Then the group G has three subgroups of index 2, the cyclic group, the
dihedral group D2m, and the dicyclic group Q2m [30, Thm. 3]. If H is cyclic or dicyclic,
then there exist involutions outside the normal subgroup H and therefore the group G is
the semidirect product of H with Z2.

The case that H is a dihedral group is related to an old problem about the (non)-
existence of non-trivial difference sets in dihedral groups. It is proved in [22] that if an
(n, k, µ)-difference set in a dihedral group of order n exists, then k−µ must be odd. Thus,
Lemma 5 can be applied, and we obtain the following.

Proposition 16. Every bipartite distance-regular Cayley graph with diameter 3 on a
semidihedral group is on the semidirect product of a group — the part of this bipartite
Cayley graph which contains the identity element — and Z2.
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We note that the character table of the semidihedral group is more complicated than
the character tables of the dihedral group and the dicyclic group, so to extract a similar
result as Propositions 13 and 15 seems quite ambitious.

5.4 Small cases

We finish this section with some interesting small cases. The smallest 2-(n, k, µ) designs
with n and k even and k < n − 1 are the 2-(16, 6, 2) designs, and their complementary
2-(16, 10, 6) designs. The next smallest ones are the 2-(64, 28, 12) designs.

There are three non-isomorphic 2-(16, 6, 2) designs and therefore three non-isomorphic
distance-regular graphs with intersection array {6, 5, 4; 1, 2, 6} [5, p. 222]. It turns out that
all three are Cayley graphs. One of them is the folded 6-cube which is a Cayley graph
on the elementary abelian 2-group of order 32 [10, §3.3]. By using GAP [14] and the
difference sets in [20, Table 18.77], we can construct all three as follows.

• G1 is the elementary abelian group of order 32 with generators 〈a, b, c, d, f〉 of invo-
lutions, H = 〈a, b, c, d〉, and S = {af, bf, cf, df, f, abcdf};

• G2 = 〈a, b, c | a8 = b2 = c2 = e, ab = ba, cac = a−1, cbc = b−1〉 is isomorphic to
Dih(H), H = 〈a, b〉 is isomorphic to Z8 × Z2, and S = {c, ca, ca2, ca4, cab, ca6b};

• G3 = 〈a, b, c, d | a4 = c2 = d2 = (da)2 = (da2)2 = e, a2 = b2, ac = ca, bc = cb, dabc =
(db)−1〉 is isomorphic to SD16 × Z2, H = 〈a, b, c〉 is isomorphic to Q8 × Z2 and
S = {d, da2, (db)4da, (db)6da, db, dabc}.

This implies that every bipartite distance-regular graph with diameter 3 on 32 vertices
is a Cayley graph on the semidirect product of a group — the part of this bipartite
Cayley graph which contains the identity element — and Z2. It turns out that all three
distance-regular graphs have the 4-cube as an induced subgraph. This antipodal bipartite
distance-regular graph with diameter 4 can (once more) be constructed as a Cayley graph
Cay(K,S ∩K) on a subgroup K of index 2 — cf. Propositions 13 and 15 — as described
below (see also the structures of connected 4-regular bipartite integral Cayley graphs in
[29, Table 3]). Recall also Proposition 10.

• K = 〈af, bf, cf, df〉 is an elementary abelian subgroup in G1, and
S ∩K = {af, bf, cf, df};

• K = 〈a2, b, c〉 ∼= D8 × Z2 is a subgroup in G2, and S ∩K = {c, ca2, ca4, ca6b};

• K = 〈db, da〉 ∼= SD16 is a subgroup in G3, and S ∩K = {(db)4da, (db)6da, db, dabc}.

6 Bipartite distance-regular Cayley graphs with larger diameter

We conclude this paper with some (mostly known) results on bipartite distance-regular
Cayley graphs with larger diameter. We note that the list of known bipartite distance-
regular graphs with diameter at least 5 is quite limited, see [5, §6.11].
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The families of bipartite distance-regular graphs with unbounded diameter d include
the 2d-cycle, the d-cube, and the folded 2d-cube, which are clearly Cayley graphs. In
an earlier paper [10, Prop. 3.1], we showed that the Doubled Odd graphs are not Cayley
graphs.

It was also shown that the Foster graph (with diameter 8) is not a Cayley graph
[10, Prop. 4.2], nor are the incidence graphs of the known generalized hexagons (of order
any prime power) [10, Prop. 3.6]. The latter are bipartite distance-regular graphs with
diameter 6.

Finally, we consider the (known) antipodal bipartite distance-regular graphs with di-
ameter 5. These are all bipartite doubles of triangle-free strongly regular graphs Γ. Be-
cause the halved graphs of such a bipartite double is isomorphic to the complement of Γ,
it follows that the bipartite double of Γ is a Cayley graph if and only if Γ is a Cayley graph
(cf. [10, §3.4]). The known examples of triangle-free strongly regular graphs that are well
known not to be Cayley graphs are the Petersen graph and the Hoffman-Singleton graph
[33]. We also checked that the Gewirtz graph and the M22-graph on 77 vertices are not
Cayley graphs, because their automorphism groups do not have subgroups of order n (the
number of vertices). Besides the folded 5-cube (whose bipartite double is the 5-cube),
the only (known) example in this class that is a Cayley graph is the Higman-Sims graph
[16, 18].
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