
An Area-Depth Symmetric q, t-Catalan Polynomial

Joseph Pappe
Department of Mathematics

UC Davis
One Shields Ave.
Davis, CA, U.S.A.

jhpappe@ucdavis.edu

Digjoy Paul
School of Mathematics

Tata Institute of Fundamental Research
1st Homi Bhaba Road
Colaba, Mumbai, India

dpaul@math.tifr.res.in

Anne Schilling
Department of Mathematics

UC Davis
One Shields Ave.
Davis, CA, U.S.A.

anne@math.ucdavis.edu

Submitted: Sept 22, 2021; Accepted: Mar 31, 2022; Published: Apr 22, 2022

© The authors. Released under the CC BY-ND license (International 4.0).

Abstract

We define two symmetric q, t-Catalan polynomials in terms of the area and depth
statistic and in terms of the dinv and dinv of depth statistics. We prove symmetry
using an involution on plane trees. The same involution proves symmetry of the
Tutte polynomials. We also provide a combinatorial proof of a remark by Garsia
et al. regarding parking functions and the number of connected graphs on a fixed
number of vertices.

Mathematics Subject Classifications: 05A19, 05E10, 05C05, 05C30

1 Introduction

The q, t-Catalan functions were first introduced in connection with Macdonald polynomi-
als and Garsia–Haiman’s theory of diagonal harmonics [10] as certain rational functions
in q and t. They can be obtained as the bigraded Hilbert series of the alternating compo-
nent of a certain module of diagonal harmonics, whose dimension is equal to the Catalan
number Cn = 1

n+1

(
2n
n

)
. In terms of symmetric functions, they can be expressed using of

the nabla operator and the elementary symmetric functions en as

Cn(q, t) = 〈∇en, en〉.
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The combinatorics of the q, t-Catalan polynomials was developed in various papers [11,
14, 15]. In particular, Haglund [14] gave a combinatorial formula as a sum over all Dyck
paths graded by the area and bounce statistics (see (5)). Shortly thereafter, Haiman
announced a different combinatorial formula using the area and dinv statistics (see (3)).
The zeta map [1, 15] relates these two combinatorial formulas. One of the main open
problems related to the q, t-Catalan polynomials Cn(q, t) is a combinatorial proof of its
symmetry in q and t.

In this paper, we introduce two different q, t-analogues of the Catalan numbers Cn,
which are symmetric in q and t. We also get a new formula for the original q, t-Catalan
polynomials (see Corollary 35).

The first polynomial Fn(q, t) (see (8)) is the sum over all Dyck paths graded by area
and depth. There are several maps from Dyck paths to plane trees, see for example
Definitions 7, 9 and 11 from [22, 15, 6] below. The intuition for the depth statistics is
that it is the sum over the depths of the various vertices in the plane tree. (This is related
to a particular labelling of the vertices in a plane tree as given in Definition 20.) The
symmetry in q and t is proved by defining a duality on plane trees, which switches the
area and depth sequence. This duality turns out to be a composition of the maps in
Definitions 7 and 9. We prove that on Dyck paths, the corresponding involution is equal
to a recursively defined involution introduced by Deutsch [9]. In particular, this gives an
alternative proof of the symmetry of the Tutte polynomial for the Catalan matroid [5].
The polynomials Fn(q, t) satisfy a recursion that relates them to q, t-Catalan polynomials
defined in terms of increasing/decreasing factorizations [18, Section 5] and to Hurwitz
graphs [4].

The second polynomial Gn(q, t) (see (9)) is defined in terms of the dinv and dinv
of depth statistics denoted ddinv. The dinv statistics can be formulated using the area
sequence, so using the depth sequence instead yields the dinv of depth statistics. This
polynomial is also symmetric in q and t.

We also address a remark in [12] stating that the sum of parking functions graded by
two to the area is equal to the number of connected graphs on a fixed number of vertices.

The paper is organized as follows. In Section 2 we review the definitions associated
with the q, t-Catalan polynomials Cn(q, t) and define the polynomials Fn(q, t) and Gn(q, t).
In particular, the definition of depth and ddinv is given. Furthermore, we review several
maps from Dyck paths to plane trees. Our main results are stated in Section 3. In
particular, a recursion for Fn(q, t) is proved as well as symmetry of Fn(q, t) and Gn(q, t)
using an involution ω that interchanges area and depth. The paper concludes with some
further results on parking functions.

2 Background and Definitions

In Section 2.1, we review Dyck paths and their various statistics. In Section 2.2, we define
new statistics and related polynomials. In Section 2.3 we give background knowledge on
plane trees and their various connections to Dyck paths. We conclude in Section 2.4 with
the definition and some results on parking functions and labelled trees.
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2.1 Dyck Paths

A Dyck path of semilength n is a lattice path with vertices in Z>0 × Z>0 from (0, 0) to
(n, n) consisting of North (1, 0) and East (0, 1) steps that never passes below the line
y = x. Let the set of all Dyck paths with semilength n be denoted by Dn. It is well
known that Dn is enumerated by the n-th Catalan number Cn = 1

n+1

(
2n
n

)
.

Given π ∈ Dn, let the area sequence of π be the vector (a1(π), a2(π), . . . , an(π)),
where ai(π) is the number of full unit squares in the i-th row completely between π and
the diagonal y = x. Let

area(π) =
n∑
i=1

ai(π), (1)

that is, the total number of squares between the path π and the diagonal. Note that a Dyck
path is uniquely determined by its area sequence. Additionally, a vector (a1, a2, . . . , an) ∈
Zn>0 is an area sequence of some Dyck path in Dn if and only if a1 = 0 and 0 6 ai 6 ai−1+1
for 2 6 i 6 n.

Using the area sequence of a Dyck path π, we can define another statistic on Dyck
paths as follows

dinv(π) = |{(i, j) | i < j, ai(π) = aj(π)} ∪ {(i, j) | i < j, ai(π) = aj(π) + 1}|. (2)

The q, t-Catalan polynomial is defined as

Cn(q, t) =
∑
π∈Dn

qarea(π)tdinv(π). (3)

The polynomial Cn(q, t) is symmetric in q and t, that is, Cn(q, t) = Cn(t, q) (see for
example [15]). It is an open question to find a combinatorial proof of its symmetry.

To define the bounce statistic of π ∈ Dn, we first must construct the bounce path
B(π) by the following algorithm:

(1) Start at the point (0,0).

(2) Continue North until the start of an East step of π is met.

(3) Continue East until the diagonal y = x is met.

(4) If the bounce path has reached the point (n, n), then stop. Otherwise go back to
step (2).

Let (0, 0) = (b0, b0), (b1, b1), . . . , (bk, bk) = (n, n) be the points on the diagonal that B(π)
touches. Then bounce is defined as

bounce(π) =
k−1∑
i=1

n− bi. (4)
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Proposition 1. [15] We have

Cn(q, t) =
∑
π∈Dn

qarea(π)tbounce(π). (5)

There exists a bijection ζ : Dn → Dn on Dyck paths, called the zeta map, which has
the property that for π ∈ Dn

area(π) = bounce(ζ(π)),

dinv(π) = area(ζ(π)).

This proves that (3) and (5) are equal. The inverse of the zeta map first appeared connec-
tion with nilpotent ideals in certain Borel subalgebras of sl(n) [1]. For its connections with
the combinatorics of q, t-Catalan polynomials, see [15]. The zeta map was further studied
and generalized in [2, 7, 24, 8]. For the definition of the zeta map, see [15, Theorem 3.15].
In Proposition 13 below, we state another formulation of the zeta map in terms of plane
trees (which can also serve as the definition).

2.2 Depth polynomials

Let π ∈ Dn. We produce a labelling for π column-by-column using the following algorithm:

(1) In the leftmost column, label all cells directly to the right of a North step with a 0.

(2) In the i-th column from the left, locate the bottommost cell c in the column that
is directly right of a North step; note that such a cell may not exist. From c travel
Southwest diagonally until a cell c′ that is already labelled is reached. Let ` be the
labelling of c′. Label all cells directly to the right of a North step in the i-th column
with an `+ 1.

Define this to be the depth labelling of π. The depth sequence (d1(π), d2(π), . . . , dn(π))
of π can be obtained by reading the entries of the depth labelling of π in the following
manner:

(1) Let v be the empty vector. Let c be the cell directly right of the first North step of
π.

(2) Append the label of c to the end of v. If the length of v is n, then stop and let

(d1(π), d2(π), . . . , dn(π)) = v.

(3) Otherwise, travel Northeast diagonally from c until a cell that is labelled is reached.
If this cell exists and has not been seen before, then redefine c to be this cell. If no
such cell exists or the cell was already visited before by the algorithm, then consider
the set of all cells that have been visited already but have a labelled cell directly
above them that has not been visited. Out of this set choose the rightmost one and
let c be the cell directly above this cell. Go back to step (2).
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Remark 2. Note that in the above definition, the rightmost cell of all visited cells with a
labelled cell directly above is also the cell in this set with the largest label. Namely, look
at the lowest cell in the same column as c, which is labelled. All cells that were already
visited but have a labelled cell directly above them are to the left of this cell on the same
diagonal or lower. By the construction of the labels, these cells all have strictly smaller
labels.

Define the depth statistic as follows

depth(π) =
n∑
i=1

di(π). (6)

Similar to how dinv was defined in terms of the area sequence in (2), we can associate a
“dinv” type statistic called ddinv to the depth sequence of a Dyck path. Formally,

ddinv(π) = |{(i, j) | i < j, di(π) = dj(π)} ∪ {(i, j) | i < j, di(π) = dj(π) + 1}|. (7)

Example 3. In Figure 1, a Dyck path π ∈ D9 with its depth labelling is shown. The
depth sequence is (0, 1, 1, 2, 0, 1, 2, 2, 0). Hence the depth is depth(π) = 9. Finally

{(1, 5), (1, 9), (5, 9), (2, 3), (2, 6), (3, 6), (4, 7), (4, 8), (7, 8), (2, 5), (2, 9), (3, 5), (3, 9), (6, 9), (4, 6)}

are pairs contributing to the ddinv statistic in (7), hence ddinv(π) = 15.

0
0
0

1
2
2

1
1

2

Figure 1: Example of a Dyck path π ∈ D9 with its depth labelling.

Next we define two q, t-Catalan polynomials using the just introduced statistics:

Fn(q, t) =
∑
π∈Dn

qarea(π)tdepth(π) (8)

and
Gn(q, t) =

∑
π∈Dn

qdinv(π)tddinv(π). (9)

We will prove various properties of these polynomials in Section 3, including that they
are symmetric in q and t.
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Example 4. We list the first few polynomials:

n Cn(q, t) Fn(q, t) Gn(q, t)

1 1 1 1

2 q + t q + t q + t

3 q3 + q2t+ qt2 + t3 + qt q3 + q2t+ qt2 + t3 + qt q2t2 + q3 + t3 + 2qt

4 q6 + q5t+ q4t2 + q3t3 + q2t4 + qt5 + t6 q6 + q5t+ q4t2 + 2q3t3 + q2t4 + qt5 + t6 q5t2 + q4t3 + q3t4 + q2t5

+q4t+ q3t2 + q2t3 + qt4 +q4t+ qt4 +q6 + q4t2 + q2t4 + t6

+q3t+ q2t2 + qt3 +q3t+ 2q2t2 + qt3 +2q3t+ 2qt3 + q2t+ qt2

Remark 5. Note that Cn(1, 1) = Fn(1, 1) = Gn(1, 1) = Cn are all equal to the n-th Catalan
number. The difference Fn(q, t)−Cn(q, t) can be written as (1− t)(1− q)Mn(q, t). Evalu-
ating Mn(1, 1) yields the sequence 0, 0, 0, 1, 14, 124, 888, 5615, 32714, . . ., which curiously is
the 5-th number after each 1 in the Riordan array, see [17]. Both (Gn−Cn)/((q−1)(t−1))
and (Gn−Fn)/((q−1)(t−1)) are also conjectured to have positive coefficients. At q = t =
1, the corresponding sequences are 0, 0, 0, 1, 11, 83, 530, 3071, 16997, 86778, 436084, . . . and
0, 0, 0, 1, 10, 69, 406, 2183, 11082, 54064, 256204, . . ., which do not seem to appear in [17].

2.3 Plane Trees

In this paper, all rooted trees are drawn with the root on top and its descendants below.
The principal subtrees of a rooted tree T are the rooted trees obtained by removing the
root of T and considering the children of the root of T to be the new roots of their
respective trees.

Definition 6. A plane tree is a rooted tree, which either consists only of the root vertex
r or it consists recursively of the root r and its principal subtrees (T1, . . . , Tk) which
themselves are plane trees. Note that the subtrees are linearly ordered. Let the set of all
plane trees on n+ 1 vertices be denoted by Tn+1.

Note that Tn+1 is also enumerated by the n-th Catalan number Cn. This can be shown
by a bijection between Dn and Tn+1. Here, we discuss three such bijections that will be
useful to us. The first bijection can, for example, be found in [22, Page 10].

Definition 7. Let the Stanley map σ : Dn → Tn+1 be defined as follows:

(1) Consider the Dyck path π as a string π1π2 · · · π2n of length 2n in the alphabet {N,
E} corresponding to the North and East steps of π.

(2) Start at the root node. Label this as vertex v.

(3) For 1 6 i 6 2n, if πi = N then add a child to the right of all preexisting children of
v. Label this new child as v. If πi = E, set v to be the parent of v.

Example 8. The Dyck path of Figure 1 corresponds to the plane tree in Figure 2A under
σ.
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(A) σ(π) (B) η(π) (C) β(π)

Figure 2: Plane trees corresponding to the Dyck path π of Figure 1 under σ, η, and β,
respectively.

The next bijection is the restriction of a bijection between parking functions and
labelled trees to Dyck paths. The bijection on parking functions can, for example, be
found in [16] and [15, Chapter 5].

Definition 9. Let the Haglund–Loehr map η : Dn → Tn+1 be defined as follows:

(1) For each cell in the first column that lies directly right of a North step attach a
child to the root vertex. Associate the rightmost child to the topmost cell in the
first column, the second rightmost child to the second topmost cell in the first
column, and so on such that the leftmost child is associated with the bottommost
cell in the first column.

(2) To determine the children of any other vertex v, travel on the Northeast diagonal
from its associated cell under π until it reaches a cell directly to the right of a North
step. If this cell exists and is the bottommost cell in its column that is directly
right of a North step, then attach k children to v, where k is the number of cells in
this column that lie directly right of a North step. For each of these new vertices,
associate them to the appropriate cell as laid out above.

Example 10. The Dyck path of Figure 1 corresponds to the plane tree in Figure 2B
under η.

The last map we mention can be found in [6].

Definition 11. Let the Benchekroun–Moszkowski map β : Dn → Tn+1 be defined as
follows:

(1) Consider the Dyck path π as a string π1π2 · · · π2n of length 2n in the alphabet {N,
E} corresponding to the North and East steps of π. Append π0 = E to the front of
the string.

(2) For each vertex, we attach one of two states: “Checked” or “Not Checked”. Start
with just the root vertex in the “Not Checked” state.
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(3) Recursively consider πi for i = 0, 1, . . . , 2n. If πi = E, then find the set of all
closest vertices to the root in the “Not Checked” state. Out of these vertices choose
the leftmost vertex and label this vertex as v. Let k be the number of consecutive
North steps directly following πi. Append k children to v all in “Not Checked” state.
Change the state of vertex v to “Checked”. If πi = N , then perform no action on
the graph.

Example 12. The Dyck path of Figure 1 corresponds to the plane tree in Figure 2C
under β.

It turns out that σ and β can be used to obtain the zeta map.

Proposition 13. [6] Let π ∈ Dn. Then ζ(π) = β−1 ◦ σ(π).

2.4 Labelled trees and parking functions

A labelled tree on n vertices is a tree T with vertex set {0, 1, . . . , n− 1}, where the vertex
labelled 0 is considered to be the root of the tree. We also use the convention that in a
drawing of a labelled tree any vertex v sits above its children and the labels of its children
increase from left to right. Let Ln represent the set of all labelled trees on n vertices. The
cardinality of Ln is known to be nn−2.

A coinversion of T ∈ Ln is an ordered pair (i, j) such that j is a descendant of i and
0 < i < j. Denote the number of coinversions of a labelled tree T by coinv(T ). Gessel
and Wang [13] proved combinatorially that∑

G∈Cn

qe(G) = qn−1
∑
T∈Ln

(1 + q)coinv(T ), (10)

where Cn is the set of all labelled connected graphs with vertex set {0, . . . , n−1} and e(G)
is the number of edges in G. Evaluating at q = 1 gives the surprising result that

|Cn| =
∑
T∈Ln

2coinv(T ). (11)

Remark 14. Note that Gessel and Wang [13] studied tree inversions instead of coinversions,
but these statistics can be seen to be jointly equidistributed on labelled trees by relabelling
vertex i by n+ 1− i for i 6= 0 which was observed by Irving and Rattan [18].

A parking function P on n cars is equivalent to a Dyck path π ∈ Dn, where the
numbers 1 through n are placed directly right of the North steps of π such that each
number appears exactly once and the numbers in each column are strictly decreasing.
We refer to the labels {1, . . . , n} in the parking function P as cars. Denote the set of all
parking functions on n cars by Pn. The area of parking function P is taken to be the area
of its corresponding Dyck path. The cardinality of Pn is known to be (n + 1)n−1 which
implies that there exists a bijection with labelled trees on n + 1 vertices. We review the
bijection discovered in [16].
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Definition 15. Let the Haglund–Loehr map λ : Pn → Ln+1 be defined as follows:

(1) Start with the root vertex labelled 0. For each car labelled i in the first column of
the parking function, attach a vertex labelled i to the root 0.

(2) To determine the children of any other vertex v, travel Northeast from its associated
car until it reaches another car. If this car exists and is the bottommost car in its
column, attach a child labelled i to v for each car i in the column.

Observe that restricting λ to the parking functions containing car i in row i recovers
η of Definition 9 (by ordering siblings in increasing order and then disregarding the labels
on the tree).

Haglund and Loehr [16] also defined a function d̃i(T ) on the vertices 0 6 i 6 n for
T ∈ Ln+1 such that d̃0(T ) = 0 and d̃j(T ) = d̃i(T ) + k − 1, where vertex j is the k-th
smallest/leftmost child of vertex i. For any P ∈ Pn, we have

area(P ) =
n∑
i=0

d̃i(λ(P )). (12)

3 Results

In Section 3.1, we prove a recursion for the polynomials Fn(q, t). In Section 3.2, we
introduce the notation of a dual plane tree using various reading words. We use this to
prove in Section 3.3 that Fn(q, t) and Gn(q, t) are symmetric in q and t. This also gives
an expression of the usual Catalan polynomials in terms of the depth and dinv of depth
statistics. In Section 3.4, we relate the involution that interchanges depth and area used
to prove the symmetry in Section 3.3 to an involution by Deutsch [9]; this yields an easy
proof of the symmetry of the Tutte polynomials of the Catalan matroid [5]. In Section 3.5,
we consider the setup of parking functions and address a remark in [12].

3.1 Recursion for Fn(q, t)

We begin by giving a recursion for Fn(q, t).

Proposition 16. We have F0(q, t) = 1 and for any n > 1

Fn(q, t) =
n∑
k=1

qk−1tn−kFk−1(q, t)Fn−k(q, t).

Proof. Let
Dn(k) = {π ∈ Dn | π first touches the diagonal at (k, k)}.

Let f : Dn(k)→ Dk−1 ×Dn−k be the classical bijection sending

π = π1π2 · · · π2n 7→ (π2 · · · π2k−1, π2k+1 · · · π2n).
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Let f1(π) and f2(π) be the first and second component of f(π), respectively. Note that
appending a North step to the beginning and an East step at the end of a Dyck path of
semilength m increases the area by m. As π is obtained by concatenating N , f1(π), E,
and f2(π), we have qarea(π) = qk−1qarea(f1(π))qarea(f2(π)). Now consider the depth labelling of
π. Observe that the labellings of all North steps after π2k+1 can be uniquely determined
by the labelling to the right of π2k+1. Since the labelling to the right of the first North step
is 0 and (k, k) is the first time π touches the diagonal, we have that the labelling to the
right π2k+1 is 1. However, looking at the corresponding depth labelling in f2(π), this value
is a zero. Thus, to get from the depth labelling of f2(π) to the that of π2k+1 · · · π2n in π,
we must add 1 to each of the n− k labels. Additionally, from the definition of the depth
labelling, we see that the portion of π from (0, 1) to (k− 1, k) corresponding to f1(π) has
the same depth labelling as f1(π). This gives us that tdepth(π) = tn−ktdepth(f1(π))tdepth(f2(π)).
Therefore, ∑

π∈Dn(k)

qarea(π)tdepth(π) = qk−1tn−kFk−1(q, t)Fn−k(q, t). (13)

Summing over k from 1 to n gives the desired result.

The recursion in Proposition 16 relates the polynomials Fn(q, t) to the q, t-Catalan
polynomials in [18, Section 5] in terms of increasing/decreasing factorizations and to Hur-
witz graphs [4] since they satisfy the same recurrence. Note that in [4] the authors defined
a statistics bmaj on Dyck paths, which corresponds to our depth statistics. However, depth
and bmaj are defined in different ways. In particular, the depth sequence is a refinement
of depth, which will be used in subsequent sections to define a duality.

3.2 Dual plane trees

We define two labellings of plane trees and an associated reading word to each labelling.

Definition 17. The labelling A of a plane tree T , denoted by TA, is defined recursively
by the following algorithm:

(1) Label the root as 0.

(2) For any other vertex v, let m be the labelling of its parent w. Label v as m+ k− 1,
where v is the k-th leftmost child of w.

Definition 18. Let T be a plane tree with n+1 vertices. The reading word of TA, denoted
by readA(T ), is given by the following algorithm:

(1) Start by setting readA(T ) to be an empty vector. Append the labels of the children
of the root in increasing order.

(2) If the length of readA(T ) equals n, then output readA(T ). Otherwise, consider the set
of vertices whose labels have already been added to readA(T ) but whose children’s
labels have not been added. Find the vertex in this set with the largest label and
at least one child. Call this vertex v. Append the labels of all the children of v in
increasing order.
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Note that the definition of the reading word in Definition 18 is well-defined. To show
this, it suffices to explain why no two vertices with the same label will be considered by
the definition at the same step. Let v and w be any two vertices that have the same label.
If one is an ancestor of the other, then they would not be considered at the same point
anywhere in the algorithm. Otherwise, consider the closest common ancestor of v and w
and label it x. Let v′ (resp. w′) be the child of x on the path from v (resp. w) to x. As
the label of w′ is strictly larger than that of v′, w will be considered before v′ and thus
before v in the algorithm.

Example 19. The labelling TA of the tree T in Figure 2A is given in Figure 3A. The
corresponding reading word is readA(T ) = (0, 1, 1, 2, 0, 1, 2, 2, 0).

0

0 1

0 1 2 1 2

0 2

(A) TA

−1

0 0

1 1 1 1 1

2 2

(B) TD

Figure 3: Plane tree labellings TA and TD of the plane tree in Figure 2A.

Definition 20. The labelling D of a plane tree T , denoted by TD, is defined by labelling
a vertex v by the number of edges in the path from v to the root minus one.

Remark 21. Note that the map λ : Pn → Ln+1 of Definition 15 on parking functions
with car i in row i (or equivalently map η) sends the coinversions of labelled trees in the
codomain to the labelling D defined in Definition 20.

Definition 22. Let T be a plane tree with n + 1 vertices. The reading word of TD,
denoted by readD(T ), is defined by the following algorithm:

(1) Start by setting readD(T ) to be an empty vector. Append the label of the root.

(2) If the length of readD(T ) equals n + 1, then remove the label corresponding to the
root from readD(T ) and output readD(T ). Otherwise consider the set of all vertices
whose vertices have already been added to readD(T ) but have at least one child
whose label has not been added. Find the vertex in this set with the largest label
and call the vertex v. Attach to readD(T ) the label of the leftmost child of v that
has not already been added.

This definition is also well-defined as vertices with the same labels will never be con-
sidered at the same time.
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Example 23. The labelling TD of the tree T in Figure 2A is given in Figure 3B. The
corresponding reading word is readD(T ) = (0, 1, 2, 1, 1, 2, 0, 1, 1).

Definition 24. Let T be a plane tree. Let the k-th child of a vertex v be the k-th
leftmost child of v. We define the dual plane tree of T , denoted by T dual, by the following
algorithm:

(1) Initialization: Set T dual to be a single vertex u which we label as the root of T dual.
If the root of T has a child, then add a child to u of T dual. Set this to be the 1-st
child of u and associate this child with the 1-st child of the root in T .

(2) Determining if a non-root vertex v in T dual has a child: Look at the associated
vertex v′ of v in the original plane tree T . If v′ has a sibling to its right, then attach
a child to v which will be the 1-st child of v. Associate the child of v in T dual with
the sibling directly right of v′ in T . If v′ has no sibling to its right, then v has no
children.

(3) Determining if a vertex v (including the root) in T dual has a k-th child
for k > 1: Let w be the (k − 1)-th child of v. Look at the associated vertex w′ of
w in T . If w′ has a child, then attach a k-th child to v. Associate the k-th child of
v to the 1-st child of w′. If w′ has no children, then v has no k-th child.

r

1 2

3 4 5 6 7

8 9

(A) T with labels.

u

r

1 2

3 4 5 6 7

8 9

(B) Overlay of T dual

(red edges) on T (black
edges) as in proof of
Proposition 26.

u

1 3 8

2 6 4

7 5 9

(C) T dual with labels.

Figure 4: Construction of the dual plane tree T dual of the plane T in Figure 2A.

Example 25. The dual plane tree T dual of the plane tree T in Figure 2A is given in
Figure 4C. Observe, by comparing with Figure 2, that in this example T dual = η ◦σ−1(T ).
This will be proved in general in Corollary 33.

It is easy to see that T dual ∈ Tn+1 by observing that every non-root node of T is paired
with a non-root node of T dual, there are no loops in T dual, and the children of every vertex
are given a proper ordering. To show that the term dual plane tree is not a misnomer,
we also prove that this operation is an involution.

Proposition 26. Let T be a plane tree. Then (T dual)dual = T .
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Proof. Draw the plane tree T in the canonical way with every vertex sitting above all
of its descendants and the order of its children increasing from left to right. Next place
the root of T dual to the left of all vertices in T and draw the plane tree T dual on top of
T such that any vertex in T dual is drawn on top of its corresponding vertex in T . Under
this configuration all vertices in T dual sit to the left of their descendants, and the order
of their children increase from top to bottom. Since a vertex v and its corresponding
vertex v′ lie on top of each other in the specified configuration, we will abuse notation
and refer to both as vertex v. Interchanging the position of the two trees (i.e. flipping
the plane along the perpendicular bisector of the two root nodes), we clearly see that for
a vertex v in T its first child corresponds to the sibling on the right of v in T dual and its
k-th child corresponds to the first sibling of the (k − 1)-th child of v for k > 1. Thus,
(T dual)dual = T .

The two reading words are related under the dual map on plane trees.

Proposition 27. Let T be a plane tree. Then

readD(T dual) = readA(T ) and readA(T dual) = readD(T ).

Proof. It suffices to prove that readD(T ) = readA(T dual) since then this implies that
readD(T dual) = readA((T dual)dual) which equals readA(T ) by Proposition 26.

Let readD(T ) = (r1, r2, . . . , rn) and readA(T dual) = (s′1, s
′
2, . . . , s

′
n). Let vi be the vertex

in T that has label ri. Similarly, let wi be the vertex in T dual that has label s′i. We will
prove by induction that (r1, r2, . . . , rk) = (s′1, s

′
2, . . . , s

′
k) and that wk corresponds to vk

under dual for 1 6 k 6 n. We have that both w1 and v1 are the leftmost child of their
respective root nodes and the labelling of each is equal to zero. By the definition of T dual,
we have w1 corresponds to v1. Assume that (r1, r2, . . . , rk) = (s′1, s

′
2, . . . , s

′
k) and that wk

corresponds to vk. If vk+1 is a child of vk, then rk+1 = rk + 1. Note that by definition of
T dual, wk must have a sibling to its right. This implies that wk+1 is the sibling directly
right of wk and wk+1 corresponds to vk+1. We have rk+1 = rk + 1 = s′k + 1 = s′k+1. If
vk+1 is not a child of vk, then vk+1 is the leftmost unvisited child of y, where y = vi for
some 1 6 i < k and y has the largest label out of all parents with unvisited children.
Note as vk does not have any children, wk has no siblings to its right. Thus, to find wk+1

we look for the leftmost child of the vertex x, where x = w` for some 1 6 ` 6 k and x
has the largest label out of all parents with unvisited children. The condition that x has
unvisited children in T dual implies that the parent of its corresponding vertex x′ = v` in
T has an unvisited child. Thus the parent of x′ either is y or has label smaller than y. If
it has a label smaller than y then by the definition of T dual and our inductive hypothesis,
there exists vj with 1 6 1 6 k that has unvisited children and label strictly greater than x
which is a contradiction. Therefore x′ is the rightmost visited child of y and the leftmost
child of x corresponds to the sibling to the right of x′. This implies that wk+1 corresponds
with vk+1 and wk+1 = w` = v` = vk+1.
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3.3 Symmetry of Fn(q, t) and Gn(q, t)

In this section, we prove the symmetry of the polynomials Fn(q, t) and Gn(q, t). We do
so by defining an involution on Dyck paths using the Stanley and Haglund–Loehr maps
σ and η, which switches the area and depth statistics. We begin by relating the area and
depth sequences under the Stanley and Haglund–Loehr maps using the two reading words
above. Recall that ai(π) and di(π) are defined in Sections 2.1 and 2.2.

Proposition 28. Let π ∈ Dn. Then

readD(σ(π)) = (a1(π), a2(π), . . . , an(π)),

readA(σ(π)) = (d1(π), d2(π), . . . , dn(π)).

Proof. Let (r1, r2, . . . , rn) = readD(σ(π)). We use induction on 1 6 k 6 n to prove that

(r1, r2, . . . , rk) = (a1(π), a2(π), . . . , ak(π))

and the k-th vertex (excluding the root) added in the creation of σ(π) corresponds to the
vertex with label rk. Observe that r1 corresponds to the label of the leftmost child of the
root node. Note that this is the first node added in σ(π). Thus, r1 = 0 = a1(π). Assume
that (r1, r2, . . . , rk) = (a1(π), a2(π), . . . , ak(π)) and rk is the label of the k-th vertex vk
added in the creation of σ(π) excluding the root. If the (k + 1)-th vertex vk+1 added to
σ(π) is a child of vk, then in the Dyck path ak+1(π) = ak(π) + 1. Since the label of vk
was added last to (r1, . . . , rk), we know that in the previous step the parent of vk had the
largest label out of all parents containing a child whose label was not already appended to
the reading word. As vk has a larger label than its parent and contains a child vk+1, rk+1

is the label of the leftmost available child of vk which would coincide with vk+1. We have
the label of vk+1 is one more than vk giving us rk+1 = rk + 1 = ak(π) + 1 = ak+1(π). Now
assume that vk+1 is not a child of vk. In the Dyck path, this corresponds to a block of
East steps after the k-th North step. Let ` denote the size of this block of East steps. We
see that ak+1(π) = ak(π) + `− 1. In the tree, this corresponds to going ` vertices towards
the root along the path from vk to the root and attaching a new vertex vk+1 to this vertex
w. Note that this implies that vk and all vertices strictly between vk and w do not have
any additional children that have not already been added. This implies that w has the
largest label of all vertices that contain a child whose label has not been appended to the
reading word. Thus, rk+1 corresponds to the label of vk+1 which is one more than the
label of w. Thus, rk+1 = rk − ` + 1 = ak(π) − ` + 1 = ak+1(π). By induction, we obtain
readD(σ(π)) = (a1(π), a2(π), . . . , an(π)).

Let (s1, s2, . . . , sn) = readA(σ(π)). Similar to the previous paragraph, we use induction
on 1 6 k 6 n to prove that

(s1, s2, . . . , sk) = (d1(π), d2(π), . . . , dk(π))

and the North step corresponding to dk(π) created the vertex v corresponding to the label
sk in σ(π). We have that d1(π) = 0 corresponds to the first North step which created the
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leftmost child of the root node. Note that s1 = 0 and also corresponds to the leftmost
vertex of the root node. Assume that (s1, s2, . . . , sk) = (d1(π), d2(π), . . . , dk(π)) and the
North step corresponding to dk(π) in the Dyck path created the vertex vk corresponding
to the label sk in σ(π). If the vertex vk+1 corresponding to sk+1 is a sibling of vk then
sk+1 = sk + 1. By the previous paragraph, siblings correspond to North steps on the
same diagonal. Note that no other North step can lie between the diagonal connecting
the North step Nk of vk and the North step Nk+1 of vk+1 (keep in mind that Nk does
not mean the k-th North step of π). Also, Nk+1 needs to be the bottommost North
step in its column, otherwise vk and vk+1 would not be siblings in σ(π). Since the depth
label dk(π) corresponds to Nk, we have that dk+1(π) is the labelling of Nk+1. Thus,
dk+1(π) = dk(π) + 1 = sk + 1 = sk+1. Assume that the vertex vk+1 corresponding to
sk+1 is not a sibling of vk. This implies that vk+1 is the leftmost child of the vertex w
with the largest labelling in (s1, s2, . . . , sk) whose children’s labels have not been added
yet. Looking at the North step Nk corresponding to dk, we have that the first North
step reached by traveling northeast from Nk is not in the bottom of its column. Thus
to find the North step corresponding to dk+1(π), we must find the largest labeled cell
visited by (d1(π), d2(π), . . . , dk(π)) that has a labelled cell directly above which has not
been visited. Note that having a labeled cell directly above corresponds to having a child.
Thus the North step corresponding to dk+1(π) is the same as the North step corresponding
to vk+1 and is one cell directly above the North step corresponding to w. Note that the
labelling of w is si and the labelling of its corresponding North step is di(π) for some
1 6 i 6 n. As vk+1 is the leftmost child of w, we have sk+1 = si. Similarly, as dk+1(π) lies
in the same column as di(π), we have dk+1(π) = di(π). By induction di(π) = si, implying
dk+1(π) = sk+1. By induction we obtain readA(σ(π)) = (d1(π), d2(π), . . . , dn(π)).

Proposition 29. Let π ∈ Dn. Then

readA(η(π)) = (a1(π), a2(π), . . . , an(π)),

readD(η(π)) = (d1(π), d2(π), . . . , dn(π)).

Proof. Let x be the parking function obtained by labelling the North step in the i-th row
by i. Then [16] have showed the first equality.

We prove the second equality by induction. Let (r1, r2, . . . , rn) = readD(η(π)). We
prove that (r1, r2, . . . , rk) = (d1(π), d2(π), . . . , dk(π)) for 1 6 k 6 n and the North step
corresponding to dk(π) created the vertex v corresponding to the label rk in η(π). We
have that d1(π) = 0 and it lies to the right of the first North step. The first North
step under the map η creates the leftmost child of the root which is precisely the vertex
whose label is r1 = 0. Assume that (r1, r2, . . . , rk) = (d1(π), d2(π), . . . , dk(π)) and the
North step corresponding to dk(π) created the vertex vk whose label is rk. Let vk+1 be
the vertex whose label is rk+1. Also define Nk and Nk+1 to be the North steps that
created vk and vk+1, respectively. Assume that the vertex vk+1 is a child of vk. As
vk+1 is a child of vk, we obtain rk+1 = rk + 1. By the definition of readD, we have
that vk+1 is the leftmost child of vk. This implies that their A label is the same. Since
readA(η(π)) = (a1(π), a2(π), . . . , an(π)), we have the North steps that created vk and vk+1
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under η lie on the same diagonal. By the definition of η, we have that Nk+1 must be
at the bottom of its column and no other North step lies between the Nk and Nk+1.
Thus dk+1(π) is the depth labelling of Nk+1 which satisfies dk+1(π) = dk(π) + 1 = rk + 1.
Assume now that vk+1 is not a child of vk which implies by the definition of readD that
vk does not have any children. Consider the subset S ′ of S = {v1, v2, . . . , vk} containing
all vertices with a child that is not also in S. Let w be the vertex in S ′ with the largest
label. We have that vk+1 is the leftmost child of w that is not in S. As vk does not have
a child, the first North step attained by traveling Northeast from Nk is not at the bottom
of its column or does not exist. Thus to find Nk+1, we must find the largest labeled cell
visited by (d1(π), d2(π), . . . , dk(π)) that has a labelled cell directly above which has not
been visited. Note that having two North steps consecutively corresponds to them being
siblings under η. Additionally, observe that the vertex in S with the largest label out
of vertices in S containing a sibling not in S is a child of w. Thus vk+1 and the node
created by Nk+1 are the same. All the children of w have the same D labelling, and depth
labelings in the same column of π are equal. Paired with the inductive hypothesis, this
implies rk+1 = dk+1.

We are now ready to show that combining the Stanley and Haglund–Loehr maps gives
an involution that interchanges area and depth.

Proposition 30. Let ω = σ−1◦η : Dn → Dn. Then ω is an involution which interchanges
the depth and area sequence.

Proof. By Propositions 28 and 29 we have that

(d1(ω(π)), d2(ω(π)), . . . , dn(ω(π))) = (a1(π), a2(π), . . . , an(π)),

(a1(ω(π)), a2(ω(π)), . . . , an(ω(π))) = (d1(π), d2(π), . . . , dn(π)).

Additionally, we have

(a1(ω
2(π)), a2(ω

2(π)), . . . , an(ω2(π))) = (d1(ω(π)), d2(ω(π)), . . . , dn(ω(π)))

implying (a1(ω
2(π)), a2(ω

2(π)), . . . , an(ω2(π))) = (a1(π), a2(π), . . . , an(π)). Since the area
sequence uniquely determines a Dyck path, we have that ω is an involution.

Example 31. Consider the Dyck path π in Figure 1 with area and depth sequences (see
also Example 3)

a(π) = (0, 1, 2, 1, 1, 2, 0, 1, 1) and d(π) = (0, 1, 1, 2, 0, 1, 2, 2, 0).

Then ω(π) is given in Figure 5 and it is easy to check that a(ω(π)) = d(π) and d(ω(π)) =
a(π).

Corollary 32. Let π ∈ Dn. Then ω(π) = σ−1((σ(π))dual) = η−1((η(π))dual).

Proof. By Proposition 30, it suffices to prove that the area sequences of σ−1((σ(π))dual)
and η−1((η(π))dual) are equal to the depth sequence of π. Using Propositions 27, 28,
and 29, we observe that this is indeed the case.
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Figure 5: w(π) with π as in Figure 1 with depth labelling.

Corollary 33. Let T ∈ Tn+1. Then T
dual = η ◦ σ−1(T ).

Proof. This follows directly from Proposition 30 and Corollary 32.

Finally, we are ready to prove the symmetry of Fn(q, t) and Gn(q, t).

Theorem 34. We have

Fn(q, t) = Fn(t, q) and Gn(q, t) = Gn(t, q).

Proof. By Proposition 30, ω is a bijection on Dn that interchanges the area and depth
sequence of a Dyck path. As area and depth are defined as the sum of their respective
sequences, we have that ω interchanges area and depth, thereby proving symmetry of
Fn(q, t).

By (2) and (7), the definitions of dinv and ddinv are identical except with the area and
depth sequence interchanged. Since by Proposition 30 the involution ω interchanges the
area and depth sequences, ω also interchanges dinv and ddinv. Thus, Gn(q, t) is symmetric
in q and t.

From a similar argument, we obtain the following corollary.

Corollary 35. We have

Cn(q, t) =
∑
π∈Dn

qdepth(π)tddinv(π).

3.4 The Deutsch involution and ω

We now define an involution (·)′ on Dyck paths first introduced by Deutsch in [9].

Definition 36. We define (·)′ : Dn → Dn recursively as follows:

(1) ε′ = ε, where ε is the empty Dyck path.

(2) For π ∈ Dn and n > 1, write π = NαEβ, where α and β are Dyck paths. Note that
α, β are allowed to be empty. Then define π′ = Nβ′Eα′.
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The map ω = σ−1 ◦ η gives an explicit description of Deutsch’s recursive operator as
we first observed using FindStat [20].

Proposition 37. Let π ∈ Dn. Then ω(π) = π′.

Proof. By Proposition 30, it suffices to prove that

(d1(π), d2(π), . . . , dn(π)) = (a1(π
′), a2(π

′), . . . , an(π′)).

We proceed by induction on n. We have that both the area and depth sequence of ε are
∅. Assume that

(d1(π), d2(π), . . . , dj(π)) = (a1(π
′), a2(π

′), . . . , aj(π
′))

for all π ∈ Dj, where 0 6 j 6 n. Let π ∈ Dn+1 and let α and β be Dyck paths such
that π = NαEβ. Let k − 1 be the semilength of α. We have that (k, k) is the first time
the path π touches the diagonal after (0, 0). From the definition of the depth labelling
and the argument in the proof of Proposition 16, we have (d1(π), d2(π), . . . , dn+1(π)) =
(0, d1(β) + 1, d2(β), . . . , dn+1−k(β), d1(α), d2(α), . . . , dk−1(α)). From the definition of the
area sequence and (·)′, we have that

(a1(π′), a2(π′), . . . , an+1(π′)) = (0, a1(β′) + 1, a2(β′) + 1, . . . , an+1−k(β′) + 1, a1(α′), a2(α′), . . . , ak−1(α′)).

Note that α and β have semilength strictly less than n+ 1. Hence by induction

(d1(β), . . . , dn+1−k(β)) = (a1(β
′), . . . , an+1−k(β

′))

and
(d1(α), d2(α), . . . , dk−1(α)) = (a1(α

′), a2(α
′), . . . , ak−1(α

′)).

Thus,
(d1(π), d2(π), . . . , dn+1(π)) = (a1(π

′), a2(π
′), . . . , an+1(π

′)).

Using Corollary 32 and Proposition 37, we find a relation between the (·)dual operator
defined on plane trees and the one defined on Dyck paths.

Corollary 38. The following diagram commutes:

Dn Dn

Tn+1 Tn+1.

(·)′

σ or η σ or η

(·)dual

Deutsch proved [9] that the operator (·)′ interchanges the initial rise (IR) of a Dyck
path (the number of North steps before the first East step) with its number of returns
(RET) (the number of times the Dyck path touches the diagonal excluding the point
(0, 0)). We see that the initial rise and the number of returns of a Dyck path correspond
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to the length of the leftmost path from the root to a leaf and the number of children of the
root, respectively, under σ (and vice versa under η). This gives an alternate explanation
of the symmetry of the Tutte polynomial

TCatn(q, t) =
∑
π∈Dn

qIR(π)tRET(π)

associated with the Catalan matroid Catn defined in [5].
Stump [23] proved that the coefficient of qatb of TCatn(q, t) only depends on the sum

a+b using a map given by Speyer [21]. This map τ fixes Dyck paths π, where RET(π) = 1
and sends Dyck paths π = Nα1ENα2ENα3E · · ·NαkE to NNα1Eα2ENα3E · · ·NαkE,
where RET(π) = k > 1 and αi is a Dyck path that is possibly empty. Speyer’s map has a
nice relation with ω as follows.

Proposition 39. Let π ∈ Dn. Then τ
−1 ◦ ω(π) = ω ◦ τ(π).

Proof. If RET(π) = 1, then τ(π) = π and ω ◦ τ(π) = ω(π). As ω interchanges initial rises
and the number of returns, we have IR(ω(π)) = 1. This implies that τ−1 ◦ ω(π) = ω(π).
Thus, we have τ−1 ◦ ω(π) = ω ◦ τ(π).

If RET(π) = k > 1, let π = Nα1ENα2ENα3E · · ·NαkE, where αi is a possibly empty
Dyck path. We show ω(π) = τ ◦ ω ◦ τ(π). From Definition 36 and Proposition 37

ω(π) = N(Nα2ENα3E · · ·NαkE)′Eα′1.

On the other hand,

τ(π) = NNα1Eα2ENα3E · · ·NαkE,
ω ◦ τ(π) = N(Nα3E · · ·NαkE)′E(Nα1Eα2)

′

= N(Nα3E · · ·NαkE)′ENα′2Eα
′
1,

τ ◦ ω ◦ τ(π) = NN(Nα3E · · ·NαkE)′Eα′2Eα
′
1

= N(Nα2ENα3E · · ·NαkE)′Eα′1.

Hence, ω(π) = τ ◦ ω ◦ τ(π).

3.5 Parking Functions

Kreweras [19] essentially proved recursively∑
T∈Ln+1

qcoinv(T ) =
∑
π∈Pn

qarea(π). (14)

Combining this with (10), one obtains the formula

qn
∑
π∈Pn

(1 + q)area(π) =
∑

G∈Cn+1

qe(G), (15)
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which was also observed in [3]. Following in Gessel and Wang’s footsteps [13], we provide
a combinatorial proof of this formula.

We start by defining an algorithm that produces a specific spanning tree from a labelled
connected graph. Recall from Section 2.4 that Ln is the set of all labelled trees on n
vertices and Cn is the set of all labelled connected graphs with vertex set {0, . . . , n− 1}.

Definition 40. Let S : Cn → Ln be given by the following algorithm:

(1) Start with all vertices of G ∈ Cn in the “Not Seen” state.

(2) Visit vertex 0 and set its state to “Seen”. Visit all vertices v adjacent to 0 in
increasing label order including the edges from vertex 0 to v.

(3) If all vertices of G are in the “Seen” state, then return the subgraph of G comprised
of all vertices and edges that were visited. Otherwise, find the vertex v that was
visited last and is in the “Not Seen” state. Set v to “Seen”. Visit all “Not Seen”
vertices w adjacent to v that have not been visited already including the edge
between v and w, where vertices with smaller labels are visited first.

Clearly, S(G) is connected and acyclic for any G ∈ Cn implying that S is well defined.
For T ∈ Ln, let GS(T ) denote the set of all labelled connected graphs G satisfying S(G) =
T .

Example 41. Consider the labelled connected graph G in Figure 6A. Its spanning tree
S(G) is given in Figure 6B.

1 2 0 3

5

4

(A) G ∈ C6

1 2 0 3

5

4

(B) S(G)

Figure 6: Connected labelled graph G and its spanning tree S(G).

We will now associate a set of labelled connected graphs to a labelled tree by adding
certain edges to the tree. Let T ∈ Ln. To each vertex i in T , we associate a set of edges
ET (i) that are not in T as follows. Let Q be the unique path from i to the root node 0 in
T . We let

ET (i) = {{i, j} | j is a sibling of some vertex k ∈ Q and j < k}.

Define ET =
⋃n
i=0 ET (i) and let GE(T ) denote the set of all connected graphs obtained by

adding some subset of edges from ET to T .
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Example 42. Let T be the labelled tree in Figure 6B. Then

ET = {{1, 3}, {1, 4}, {2, 3}, {2, 4}, {5, 3}, {5, 4}, {4, 3}}.

Proposition 43. Let T ∈ Ln. Then GS(T ) = GE(T ).

Proof. Let G ∈ GS(T ). This implies that G = T t S, where S is a set of edges not in
T . Assume S 6⊆ ET and let e = {v, w} ∈ S − ET , where v was “Seen” before w in the
construction of S(G). Observe that in the step, where v is marked as “Seen”, all visited
vertices that are “Not Seen” are endpoints of edges in ET . Hence, vertex w has not been
visited when v was marked as “Seen”. This implies that v is a parent of w in T which
contradicts e being an edge not in T . Therefore, GS(T ) ⊆ GE(T ).

Let G = T t S, where S ⊆ ET and assume S(G) 6= T . Let edge e = {v, w} ∈ S be
the first edge used in S(G) that is not present in T . Assume v is marked “Seen” before
vertex w in the construction of S(G). Recall that w is a smaller sibling of a vertex on
the path from v to the root in T . This implies that w has already been visited when v
is marked as “Seen”, and thus the edge e cannot have been used in the construction of
S(G). Therefore, GE(T ) ⊆ GS(T ) and GS(T ) = GE(T ).

Observe that the following relation holds between the number of associated edges of
a vertex to the statistic defined after Definition 15.

Lemma 44. Let i be a vertex in T ∈ Ln. Then |ET (i)| = d̃i(T ).

Proof. We induct on the distance of vertex i to the root, where distance is defined as
the length of the path between the two vertices. The only vertex that is distance 0 from
the root is the root itself. We clearly have ET (0) = ∅ and d̃0(T ) = 0. Assume that
|ET (i)| = d̃i(T ) for all vertices i that are distance m from the root. Let j be a vertex that
is distance m + 1 from the root and let Q be the unique path from j to the root. By
assumption, |ET (i)| = d̃i(T ), where i is the parent of j. Let S be the set of all siblings
of j that are smaller than j. Observe that ET (j) = ET (i) ∪ S and d̃j(T ) = d̃i(T ) + k − 1
where j is the k-th smallest child of i. Thus, |ET (j)| = d̃j(T ).

We now prove (14) combinatorially.

Theorem 45. We have

qn
∑
π∈Pn

(1 + q)area(π) =
∑

G∈Cn+1

qe(G).

Proof. By Proposition 43 and using the fact that a tree on n+ 1 vertices has n edges, we
observe ∑

G∈Cn+1

qe(G) =
∑

T∈Ln+1

qe(T )(1 + q)|ET | =
∑

T∈Ln+1

qn(1 + q)|ET |. (16)

Using Lemma 44, Definition 15, and (12), we have∑
T∈Ln+1

qn(1 + q)|ET | =
∑

T∈Ln+1

qn(1 + q)
∑n

i=0 d̃i(T ) =
∑
π∈Pn

qn(1 + q)area(π). (17)

Combining the equations above, we obtain the desired result.
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Substituting q = 1 into Theorem 45 gives the following result which provides an
explicit proof of a remark found in [12, Section 3].

Corollary 46. The following identity holds∑
π∈Pn

2area(π) = |Cn+1|.

From Theorem 45 and (10), we obtain a new proof of the fact that area and coinv are
equidistributed over labelled trees/parking functions [18].

Corollary 47. The following identity holds∑
T∈Ln

qarea(λ
−1(T )) =

∑
T∈Ln

qcoinv(T ).
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