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Abstract

In his famous monograph on permutation groups, H. Wielandt gives an example
of a Schur ring over an elementary abelian group of order p2 (p > 3 is a prime),
which is non-schurian, that is, it is the transitivity module of no permutation group.
Generalizing this example, we construct a huge family of non-schurian Schur rings
over elementary abelian groups of even rank.

Mathematics Subject Classifications: 20C05

1 Introduction

A Schur ring over a finite group H is a subring of a group algebra of H, which has a
distinguished linear basis corresponding to a certain partition of H. A typical example of
a Schur ring is obtained when H is a regular subgroup of a group G 6 Sym(H) and the
partition is formed by the orbits of the stabilizer of 1H in G. These rings were introduced
by I. Schur (1933) and named after him schurian. However there are non-schurian Schur
rings. Apparently, the first such example was given by H. Wielandt [10, Theorem 26.4]
for elementary abelian groups H of rank 2; some other examples can be found in [3, 9]. A
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goal of the present paper is to generalize Wielandt’s example by constructing non-schurian
Schur rings over all elementary abelian groups of even rank except for the order 22, 32,
and 24.

Let F = Fq be a Galois field of order q. We denote by L the set of all lines, 1-
dimensional subspaces, in the 2-dimensional F-vector space V = F2. Then L = {Lα | α ∈
F ∪ {∞}}, where

Lα = {(x, αx) | x ∈ F} (α ∈ F),

L∞ = {(0, x) | x ∈ F}.

Let Π = {P1, . . . , Pr} be a partition of L into a disjoint union of r > 1 subsets Pi,

i = 1, . . . , r. This partition induces a partition Π̃ = {{(0, 0)}, P̃1, . . . , P̃r} of the vector

space V , where P̃i =
⋃
Lα∈Pi L

]
α and L]α = Lα \{(0, 0)}. It is easy to see that the partition

Π̃ defines a Schur ring S(Π) over the additive group V + which is an elementary abelian
group of order q2 (Theorem 1). We set

M(Π) = {α ∈ F ∪ {∞} | {Lα} ∈ Π}. (1)

Our main theorem shows that, if {∞, 0, 1} ⊂ M(Π) and M(Π) \ {∞} is not a sub-
field of F, then the Schur ring S(Π) is not schurian (Theorem 2). The above men-
tioned Wielandt’s example is just the case when q > 5 is a prime number and Π =
{{L∞}, {L0}, {L1},L \ {L∞, L0, L1}}.

It should be noted that the number of (pairwise nonisomorphic) constructed Schur
rings is really huge. Indeed, the number of all (not necessarily nonisomorphic) rings is
roughly equal to the number of all partitions of the set L\{L∞, L0, L1}, which is of order
c
√
q, where c is a positive constant. On the other hand, when q is a prime, the group

H = V + is elementary abelian of order q2. It is known (see [1] and [6, Theorem 3.9]) that
any two Schur rings over such a group are isomorphic if and only if the partition of one of
them is the image of the partition of the other with respect to a suitable element of the
group Aut(H) = GL(2, q). It follows that the isomorphism class of a Schur ring over H is
of cardinality at most q4. Thus if q is prime, then the number of pairwise nonisomorphic
Schur rings in the constructed family is exponential in q.

We complete the introduction by remarking that there is a one-to-one (isomorphism
and schurity preserving) correspondence between Schur rings and association schemes
admitting a regular automorphism group, see [7, Subsection 2.2]. The classes of the
association scheme corresponding to a Schur ring over a group H are the Cayley graphs
on H, the connecting sets of which are the classes of the partition of the ring. In the sense
of the correspondence, the Schur rings constructed in our paper correspond to fusions of
amorphic association schemes appeared in [4, Sec. 3]; some other non-schurian fusions
were studied in [5]. Thus Theorem 1 can also be deduced by using from [4, Theorem 3.3].
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2 Proofs of the main results

2.1 Schur rings

Let H be a finite group, ZH the group ring of H over the ring of rational integers Z, and
Π a partition of H. Set

A =
⊕
X∈Π

ZX ⊂ ZH,

where for any set X ⊂ H, we put X =
∑

x∈X x ∈ ZH. Following [10], we say that A is a
Schur ring over H if the following conditions are satisfied:

(S1) {1H} ∈ Π,

(S2) {x−1 | x ∈ X} ∈ Π for all X ∈ Π, and

(S3) A is a subring of ZH.

A typical example of a Schur ring is obtained as follows. Let G 6 Sym(H) be a
(transitive) permutation group containing H as a regular subgroup, and let G1 be the
stabilizer of the point 1H in G. Then the partition of H into the G1-orbits defines a
Schur ring over H [10, Theorem 24.1]. Any Schur ring obtained in this way is said to be
schurian.

For more details on Schur rings the reader is referred to [7].

2.2 Construction

Keeping the notations from Introduction, let q be a power of prime and H an elementary
abelian group of order q2. To avoid misunderstanding, we use multiplicative notation for
H and fix an isomorphism ρ : V + → H. Let Π = {P1, . . . , Pr} be a partition of L, and

let P̃1, . . . , P̃r be as in Introduction. Set

P̃i =
∑
Lα∈Pi

∑
x∈L]α

ρ(x) ∈ ZH, i = 1, . . . , r,

and

S(Π) = Zρ(0, 0)⊕

(
r⊕
i=1

ZP̃i

)
⊂ ZH.

Theorem 1. Let Π be an arbitrary partition of L. Then S(Π) is a Schur ring over the
group H.

Proof. The conditions (S1) and (S2) are clear by definition. It is easily seen that if

Qi =
∑
Lα∈Pi

∑
x∈Lα

ρ(x) ∈ ZH, i = 1, . . . , r,
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then

S(Π) = Zρ(0, 0)⊕

(
r⊕
i=1

ZQi

)
. (2)

Since S(Π) is closed with respect to addition, it suffices to show that S(Π) written in form
(2) is closed with respect to multiplication. Let α and β be distinct elements of F∪{∞}.
Then (∑

x∈Lα

ρ(x)

)∑
y∈Lβ

ρ(y)

 =
∑
x∈Lα

∑
y∈Lβ

ρ(x + y) =
∑
z∈V

z ∈ S(Π),

because Lα and Lβ are distinct 1-dimensional subspaces of the 2-dimensional vector space
V . Also we have (∑

x∈Lα

ρ(x)

)2

= q

(∑
x∈Lα

ρ(x)

)
.

Thus, if i 6= j, then

QiQj = |Pi| |Pj|
∑
z∈V

z ∈ S(Π),

and
Qi

2 = qQi + |Pi|(|Pi| − 1)
∑
z∈V

z ∈ S(Π).

Thus, S(Π) is a Schur ring over H.

2.3 The main theorem

We are ready to state the main result of the present paper.

Theorem 2. Let F be a Galois field of order q, L the set of all lines in the vector space
V = F2, Π a partition of L, and S(Π) the Schur ring over the elementary abelian group
H ∼= V + of order q2. Suppose that

{∞, 0, 1} ⊂ M(Π) and M(Π) \ {∞} is not a subfield of F, (3)

where M(Π) is defined by (1). Then the Schur ring S(Π) is non-schurian.

Remark 3. The first assumption in (3) can be replaced by the assumption |M(Π)| > 3.
This follows from the fact that the action of GL(2, q) on L is 3-transitive for q > 3 [2,
p. 245]. Note that the second assumption in (3) is invariant with respect to the action of
GL(2, q) on L under the assumption {∞, 0, 1} ⊂ M(Π).

To prove Theorem 2, let q = pe, where p is a prime and e > 1 is an integer. We need
the following auxiliary lemma.

Lemma 4. Let σ be an Fp-linear transformation on V such that the sets L0, L1, and L∞
are σ-invariant. Let α, β ∈ F be such that the sets Lα and Lβ are σ-invariant. Then so
are Lα+β and Lαβ.
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Proof. We fix an element ζ ∈ F such that F = Fp[ζ]; for example, ζ is a primitive (pe−1)th
root of unity. Then the set {1, ζ, . . . , ζe−1} is an Fp-basis of F. Given x ∈ F or x ∈ V , we
define the column vector

V (x) = [x, ζx, . . . , ζe−1x]T .

Let M(e, p) be the full matrix algebra of degree e over Fp, and let Ψ : F → M(e, p) be
the regular representation of F as an Fp-algebra with respect to the basis {1, ζ, . . . , ζe−1}.
Namely, Ψ(γ)V (1) = V (γ) for all γ ∈ F.

Let x = (1, 0) and y = (0, 1) ∈ V . Then

{x, ζx, . . . , ζe−1x}, {y, ζy, . . . , ζe−1y}, {(x + y), ζ(x + y), . . . , ζe−1(x + y)}

are Fp-bases of L0, L∞, and L1, respectively. Since L0, L1, and L∞ are σ-invariant, there
exist matrices A,B,C ∈M(e, p) such that

σ(sV (x)) = sAV (x), σ(sV (y)) = sBV (y), σ(sV (x + y)) = sCV (x + y)

for all row vectors s ∈ (Fp)e. Since the set {x, ζx, . . . , ζe−1x,y, ζy, . . . , ζe−1y} is Fp-
linearly independent, we have A = B = C.

By hypothesis, Lα is σ-invariant. Therefore by the above argument for Fp-bases
{x, ζx, . . . , ζe−1x}, {αy, ζαy, . . . , ζe−1αy}, {(x + αy), ζ(x + αy), . . . , ζe−1(x + αy)} of
L0, L∞, and Lα, respectively, we have

σ(sV (αy)) = sAV (αy) = sAΨ(α)V (y) (4)

for all s ∈ (Fp)e. On the other hand,

σ(sV (αy)) = σ(sΨ(α)V (y)) = sΨ(α)AV (y).

Thus, AΨ(α) = Ψ(α)A and similarly AΨ(β) = Ψ(β)A.
The set {x + αy + βy, ζ(x + αy + βy), . . . , ζe−1(x + αy + βy)} is a basis of Lα+β.

Since also

σ(sV (x + αy + βy)) = σ(sV (x)) + σ(sV (αy)) + σ(sV (βy))

= sAV (x) + sAV (αy) + sAV (βy)

= sAV (x + αy + βy) ∈ Lα+β

by (4), the set Lα+β is σ-invariant.
The set {x + αβy, ζ(x + αβy), . . . , ζe−1(x + αβy)} is a basis of Lαβ. Since also

σ(sV (x + αβy)) = σ(sV (x)) + σ(sV (αβy))

= σ(sV (x)) + σ(sΨ(α)Ψ(β)V (y))

= sAV (x) + sΨ(α)Ψ(β)AV (y)

= sAV (x) + sAΨ(α)Ψ(β)V (y)

= sAV (x) + sAV (αβy) = sAV (x + αβy) ∈ Lαβ,

the set Lαβ is σ-invariant.
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The next lemma can be extracted from the proof of [10, Lemma 26.3]. To make the
paper self-contained, we give a full proof of it.

Lemma 5. Let G be a transitive permutation group on a finite abelian group H containing
H as a regular subgroup. Suppose that there are subgroups A, B and C of H such that
H = A× B = A× C = B × C and A, B and C are invariant with respect to the action
of the stabilizer G1 of 1H ∈ H in G. Then H is a normal subgroup of G.

Proof. By assumption, A is invariant with respect to the action of G1. This means
G1AG1 ⊂ G1A and thus G1A is a subgroup of G. Similarly, G1B is also a subgroup
of G. We set M = {g ∈ G | (G1Ab)g = G1Ab for all b ∈ B} and N = {g ∈ G |
(G1Ba)g = G1Ba for all a ∈ A}. Clearly, A 6M and B 6 N .

Let m ∈ M , g ∈ G, b ∈ B. There exist x ∈ G1A and b′ ∈ B such that bg−1 = xb′.
Now (G1Ab)(g

−1mg) = G1Axb
′mg = G1Ab

′mg = G1Ab
′g = G1Ax

−1b = G1Ab and thus
g−1mg ∈M . This means that M CG and similarly N CG.

Suppose g ∈ M ∩ N . Let a ∈ A and b ∈ B. Then (G1ab)g ⊂ (G1Ab)g = G1Ab and
(G1ab)g ⊂ (G1Ba)g = G1Ba. Now (G1ab)g ⊂ G1Ab ∩ G1Ba = G1ab. Since H = AB is
regular, g = 1 holds. We have M ∩N = 1, and thus MN = M ×N .

We set AG = 〈Ag | g ∈ G〉 C G. Since M C G, AG 6 M and similarly BG 6 N .
Thus AG and BG commute elementwise. The same is true for AG and CG, and BG and
CG. Especially, CG commutes with H = AB elementwise. Since an abelian transitive
group is regular [10, Proposition 4.4], we have CG 6 CG(H) = H, and similarly AG 6 H,
BG 6 H. Now H = AB 6 AGBG 6 H and thus H = AGBG CG.

Proof of Theorem 2. Suppose that the Schur ring S(Π) is schurian. Then there is a (tran-
sitive) permutation group G 6 Sym(H) containing H = ρ(V +) as a regular subgroup.
Moreover,

H = ρ(L0)× ρ(L1) = ρ(L0)× ρ(L∞) = ρ(L1)× ρ(L∞)

and
ρ(L0), ρ(L1), ρ(L∞) ∈ S(Π).

By Lemma 5, we conclude that H is normal in G. According to [8, Theorem 4.2], we may
assume that the stabilizer G1 is a subgroup of Aut(H) ∼= GL(2e, p).

Now let α, β ∈ M(Π) \ {∞}. Then given σ ∈ G1, the sets Lα and Lβ are obviously
σ-invariant. By Lemma 4, this implies that so are the sets Lα+β and Lαβ. It follows that

ρ(Lα+β), ρ(Lαβ) ∈ S(Π) and α + β, αβ ∈M(Π).

Thus, M(Π) \ {∞} must be a subfield of F, which completes the proof.
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