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Abstract

In this paper we prove new bounds for sums of convex or concave functions.
Specifically, we prove that for all A,B ⊆ R finite sets, and for all f, g convex or
concave functions, we have

|A+B|38|f(A) + g(B)|38 ≳ |A|49|B|49.

This result can be used to obtain bounds on a number of two-variable expanders
of interest, as well as to the asymmetric sum-product problem. We also adjust our
technique to prove the three-variable expansion result

|AB +A| ≳ |A|
3
2
+ 3

170 .

Our methods follow a series of recent developments in the sum-product liter-
ature, presenting a unified picture. Of particular interest is an adaptation of a
regularisation technique of Xue, originating in a paper of Rudnev, Shakan, and
Shkredov, that enables us to find positive proportion subsets with certain desirable
properties.

Mathematics Subject Classifications: 11B30, 05A20

Introduction

Given finite sets A and B of real numbers, the sum set and product set of A and B are
defined as

A+B = {a+ b : a ∈ A, b ∈ B}, AB = {ab : a ∈ A, b ∈ B}.

Erdős and Szemerédi conjectured that at least one of |A+A| or |AA| is large with respect
to |A|. Specifically, they conjectured the following.1

Conjecture 1 (Erdős - Szemerédi). For all A ⊆ Z a finite set, and for all ε > 0, we have

|AA|+ |A+ A| ≫ |A|2−ε.
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This conjecture remains open, and has given rise to the study of the sum-product
phenomenon, which, loosely defined, is the notion that finite sets cannot be simultaneously
additively and multiplicatively structured. Conjecture 1 is believed to be true over the
real numbers, where current progress is given by Rudnev and Stevens [13].

There are many variants of this problem in the literature; one family of such variants
are concerned with convex functions2. Such results quantify the notion that convex func-
tions destroy additive structure. Some examples of common problems in this area are the
following:

For A ⊆ R a finite set, and f be a convex function:

• Is the set A+ f(A) always large?

• Is at least one of the sets A+ A or f(A) + f(A) always large?

Much research has been done towards these problems and their variants, see for instance
[2, 3, 5]. This is also related to the notion of a convex set, that is, a set A = {a1 < a2 <
· · · < an} such that ai+1−ai > ai−ai−1 for all 2 ! i ! n−1. Any convex set is the image
of the interval [n] under some convex function f . Current progress for these problems is
given, respectively, by Li and Roche-Newton, [5] and Shkredov [17].

Theorem 2 (Li, Roche-Newton). Let A ⊆ R be a finite set, and let f be a convex function.
Then we have

|A+ f(A)| ≳ |A| 2419 .
Theorem 3 (Shkredov). Let A ⊆ R be a finite set, and let f be a convex function. Then
we have

|A+ A|+ |f(A) + f(A)| ≳ |A| 10079 .

These problems are also related to expander results. Results of this nature state that
some set, defined by (typically polynomial) combinations of elements of A, is always large.
Two of the simplest examples of expanders are the sets

AA+ A = {ab+ c : a, b, c ∈ A}, A(A+ 1) = {a(b+ 1) : a, b ∈ A}
which are both expected to have size at least |A|2−ε for all ε > 0. In fact, the expander
A(A + 1) is a special case of the set A + f(A) from above. The current bounds in the
literature for these expanders are due to Roche-Newton and Warren [9] and Jones and
Roche-Newton [4], respectively.

Theorem 4 (Roche-Newton, Warren). For all A ⊆ R finite, we have

|AA+ A| ≳ |A| 32+ 1
194 .

Theorem 5 (Jones, Roche-Newton). For all A ⊆ R finite, we have

|A(A+ 1)| ≳ |A| 2419 .
1In this paper we use the standard notation X ≪ Y to mean that there exists an absolute constant

c with X ! cY . We have Y ≫ X iff X ≪ Y . The symbols ≲ and ≳ are used to suppress logarithmic
factors, and we write X ∼ Y if we have X ≲ Y ≲ X.

2In this paper all convex functions considered are strictly convex functions. Furthermore, our results
also apply to strictly concave functions.
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Main Results

The proof of the sum-product result in [13] makes use of a combination of techniques used
previously in the real numbers, combined with a technique used to prove sum-product
results in finite fields, see [10]. In this paper we extend these techniques to give both
quantitative and qualitative improvements to the problems mentioned above. Note that
we make no attempt to optimise the logarithmic factors in our results, since in all cases
the polynomial factor exponents are not expected to be tight. Our main result is the
following.

Theorem 6. Let A,B ⊆ R be finite sets, and let f and g each be either a convex or
concave function. Then we have

|A+B|38|f(A) + g(B)|38 ≳ (|A||B|)49.

For certain choices of A,B, f, and g, this theorem implies improvements to many of
the problems mentioned above. Firstly, we can recover the following improvements to
Theorems 2 and 3.

Corollary 7. For all A ⊆ R finite, and f a convex function, we have

|A+ f(A)| ≳ |A|49/38,

|A+ A|+ |f(A) + f(A)| ≳ |A|49/38.

The first inequality follows from setting B = f(A) and g = f−1. The second follows
from setting B = A and f = g. By slightly adjusting the proof of Theorem 6, we can
obtain a better bound for differences.

Corollary 8. For all A ⊆ R finite, and f a convex function, we have

|A− A|5|f(A)− f(A)|5 ≳ |A|13.

In the case A = [1, . . . , n], this matches the bounds of Schoen and Shkredov [15] and
Rudnev and Stevens [13] for estimates on differences and sums of convex sets respectively.
Furthermore we match the result of Li and Roche-Newton [5] in the case of few differences,
many convex differences.

Secondly, we find an asymmetric sum-product result.

Corollary 9. For all A,B ⊆ R finite, we have

|AB|38|A+B|38 ≳ (|A||B|)49.

This follows from setting A = X, B = Y , f = g = log(x). Corollary 9 appears to be
a little studied variant of the asymmetric sum-product problem: One example of a result
in this direction is by Solymosi [19], who showed that |A + A||B + B||AB| ≳ |A|2|B|2.
There has also been work towards the more difficult problem of finding a lower bound
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on |A + B||AC|, see for instance [2], or [6, Theorem 10], where the results are rather
of a qualitative nature. The statement of Corollary 9 is particularly interesting in the
extremal cases of ‘few sums’ or ‘few products’: e.g. if |A| = |B| = N and |A + B| ≲ N ,

then |AB| ≳ N
3
2
+ 3

38 . Typically the exponent of 3/2 is a barrier in sum-product estimates,
and so in this sense, Corollary 9 is threshold-breaking.

Thirdly we give some results demonstrating the principle that ‘translation destroys
multiplicative structure’, in particular improving Theorem 5.

Corollary 10. For all A,B ⊆ R finite, we have

|A(A+ 1)| ≳ |A|49/38,

|AB|+ |(A+ 1)(B + 1)| ≳ (|A||B|)49/76.

Finally, by combining techniques used in the proof of Theorem 6 with the method of
Roche-Newton and Warren, we can give an improvement and generalisation of Theorem
4.

Theorem 11. Let A,B ⊆ R be finite sets with |A| ∼ |B|. Then we have

|AB + A| ≳ |A| 32+ 3
170 .

Techniques

Here we give an overview of the techniques that we use, hinting at the aspects of our
method that are most amenable to future improvements. These techniques can be sum-
marised as follows:

1. The Szemerédi-Trotter theorem gives good bounds on E+
3 (A,B), especially if we

have data of the form rQR(a) $ T for each a ∈ A. Similarly, the Szemerédi-Trotter
theorem gives good bounds on E+

3 (f(A), B) for a convex function f , if we have data
of the form rQ−R(a) $ T for each a ∈ A.

2. Using a regularisation result, we can find a subset C ⊆ A so that |C| ≳ |A| and for
which we have the additive data rQ−R(c) $ T for each c ∈ C.

3. We can count solutions (a, b, c) to a tautological equation of the form a − b =
(a+ c)− (b+ c), where we insist that a− b, a+ c are in certain (different) sets via
third moment energy bounds. This gives an auxiliary energy bound, see Proposition
17 below.

4. A corollary of the regularisation result (see Corollary 16 below) allowing us to upper
bound certain products of energies, together with this auxiliary energy bound, leads
to the result.
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Underlying many results about expander sets in R (with few variables) is the Sze-
merédi-Trotter theorem. It is common knowledge that the Szemerédi-Trotter theorem
is particularly strong for finding bounds on the third moment energy E+

3 (A,B), an idea
first introduced by Schoen and Shkredov [15]. This, in part, is due to the ‘trick’ that
every element of A can be written as a product of elements of AA and A in at least |A|
ways: a = (ab)/b for any choice of b ∈ A (we assume here that 0 /∈ A). However, if one
has additional multiplicative structure on A, say rQR(a) $ T for each a ∈ A and some
auxiliary sets Q and R and a number T , one can use this information in place of the
aforementioned ‘trick’. This gives a third moment energy bound in terms of Q,R and
T , the strength of which depends on the strength of the multiplicative information. This
is the idea behind the so-called Szemerédi-Trotter sets introduced by Shkredov [17], for
which the notation d+(A) (and variants thereof) is used. We note that an analogue of this
idea takes place in Fp using the point-line incidence bound of Stevens-de Zeeuw [20] in
place of the Szemerédi-Trotter theorem, which naturally produces a bound on the fourth
moment energy. For a convex function f , this trick changes as follows: we can obtain
bounds on E+

3 (f(A), B) if we have additive structure on A, say rQ−A(a) $ T for all a ∈ A.
To benefit from the ‘enhanced energy trick’ described above, we need the appropriate

data on Q,R and T . A generic technique for this, first described in [12] and refined in
[18], yields a subset C ⊆ A with suitable parameters: that is, if E+

3 (A) ∼ |Dt|t3 for some
Dt ⊆ A − A, then rDt−A(c) $ |Dt|t|A|−1, and |C| $ |Dt|t|A|−1. A recent expository
lemma of Xue [21] enhances the strength of this result, to enable one to take |C| ≳ |A| -
we use an adaptation of this regularisation result.

We conclude this section by considering where improvements to these techniques may
be found. Certainly for the real numbers, there is hope that one could find a more
optimised subset of A, with the data on Q,R and T optimised for the specific applications
within our paper. Indeed, such a ‘better subset’ is present in the current bounds for
the sum-product problem [13]). In [13], an elementary, somewhat geometric, argument
justifies the existence of the subset used in the context of the sum-product problem.

The third item of our list might also be improved as follows: we bound the number of
solutions to a − b = (a + c) − (b + c) in terms of the third moment energy. During this
argument, we use Cauchy-Schwarz to bound a factor of E+

3/2(A, ·) which appears as a by-

product of Hölder’s inequality. However, it may be possible to directly bound E+
3/2(A, ·)

using other methods. For example, if A is a convex set, then Solymosi and Ruzsa [14]
show that E+

3/2(A,B) ≪ |A+B|3/2 for any set B.

In the proof of Theorem 11, we (implicitly) turn to the recent technique of studying
the line energy (see e.g. [7, 9]). We would not be surprised if future developments of this
concept provide further tools relevant to the results in this paper.

1 Preliminaries

We use the notation rQ−R(a) to denote the number of representations of the element a as
a difference from Q − R, that is, rQ−R(a) = |{(q, r) ∈ Q × r : q − r = a}|, and similarly
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for rQR(a) etc. The kth moment additive energy between sets A and B is defined to be

E+
k (A,B) :=

!

x∈A−B

rkA−B(x)

for k $ 1. If A = B we simply write E+
k (A). Similarly, we define the multiplicative energy

E×
k (A,B) :=

"
x r

k
A/B(x), where we assume that 0 /∈ B.

1.1 Energy Bounds via Szemerédi - Trotter

Before beginning the proofs, we require some technical lemmas. The first gives a bound
for the additive energy of two sets A and B, subject to multiplicative information on the
set A, and can be found in [13]. We give the proof for completeness, noting that the proof
for Lemma 13 follows from a similar argument.

Lemma 12. Let A,B,C, Q,R ⊂ R be finite sets with the property that rQR(a) $ T for
all a ∈ A and some T $ 1. Then if |R||C| ≪ (|Q||B|)2 ,

|{(a, b, c) ∈ A× B × C : c = a− b}| ≪ (|Q||R||B||C|)2/3
T

. (1)

Furthermore, if |R||A| ! |Q|2|B|,

E+
3 (A,B) ≪ |Q|2|R|2|B|2

T 3
log |A| . (2)

The next lemma bounds the additive energy of two sets f(A) and B, where f is a
convex function, subject to additive information on the set A.

Lemma 13. Let A ⊂ R be finite, and let f be a convex (or concave) function. Suppose that
there exist finite sets Q,R ⊆ R with |Q| $ |R| and a number T $ 1 so that rQ−R(a) $ T
for all a ∈ A. Then for any set B satisfying |R||A| ≪ |Q|2|B|, we have

E+
3 (f(A), B) ≪ |Q|2|R|2|B|2

T 3
log |A| .

We remark that we have stated Lemmas 12 and 13 as a third energy bound. The same
technique with an additional interpolation argument gives us kth moment energy bounds,
see e.g. [13] for details.

Proof of Lemma 12. To prove the first bound, we note that by utilising the information
on the sets Q and R, we have

|{(a, b, c) ∈ A× B × C : c = a− b}| ! 1

T
|{(q, r, b, c) ∈ Q×R× B × C : c = qr − b}|,

which can be viewed as incidences between the set of lines L given by y = qx− c for
(q, c) ∈ Q×C, and the point set P = R×B. Applying the Szemerédi - Trotter theorem,
we have

|{(q, r, b, c) ∈ Q×R× B × C : c = qr − b}| = I(P, L) ≪ (|Q||R||B||C|)2/3 + |Q||B|.
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Because of the constraint present in the statement of the lemma, the leading term
dominates. We therefore have

|{(a, b, c) ∈ A× B × C : c = a− b}| ≪ (|Q||R||B||C|)2/3

T

as needed.
For the second part of the lemma, we decompose the support of E+

3 (A,B) into dyadic
ranges: for i = 0, . . . ⌊log |A|⌋, let Di := {d ∈ A− B : rA−B(d) ∈ [2i, 2i)} ⊆ A− B. Then

E+
3 (A,B) =

⌊|A|⌋!

i=0

!

d∈Di

r3A−B(d) <
!

i

|Di|23i+3 ≪ log |A|max
i

|Di|23i .

With Di playing the role of C in (1), we have

2i|Di| ! |{(a, b, d) ∈ A× B ×Di : d = a− b}| ≪ (|Q||R||B||Di|)2/3
T

.

The result then follows, and all that is left to do is to verify the condition required, for
C = Di, i.e. that |Q||Di| ≪ (|R||B|)2. Note that since Di ⊆ A−B, this is certainly true
if we have

|Q||A||B| ≪ (|R||B|)2 ⇐⇒ |Q||A| ≪ |R|2|B|

which is the stated condition.

1.2 Regularisation Results

In this section we give some regularisation results required for the proof. The first is a
lemma present in [13]. This lemma will be used to give a certain subset of A on which
much of the energy is supported, and with certain popularity properties.

Lemma 14. Let Rε be a map with parameter ε ∈ (0, 1) that, to every sufficiently large
finite additive set X, associates a subset Rε(X) ⊆ X of cardinality |Rε(X)| $ (1− ε)|X|.

For any such map Rε, any m > 1 and a sufficiently large finite set A, set
ε = c1 log

−1(|A|) for some c1 ∈ (0, 1). Then there exists a set B ⊆ A (depending on
Rε, m), with |B| $ (1− c1)|A| such that

E+
m(Rε(B)) $ c2 E

+
m(B) ,

for some constant c2 = c2(m, c1) in (0, 1].

We also require the following proposition. It is very similar to an expository lemma of
Xue [21, Lemma 5.1], but has been amended to admit an asymmetric form. We present the
rather technical proof of this proposition in the appendix, where we make the dependence
on log(|A|) and k hidden in the notation explicit.
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Proposition 15. Let A, V be finite subsets of R, let k > 1 be a real number and fix
c1 ∈ (0, 1).

Then there are sets B,C with C ⊆ B ⊆ A and |C| ≳k,c1 |B| $ (1 − c1)|A| such that
the following property holds: there is a number 1 ! t ! |B| and a set Dt = {x ∈ B − V :
t ! rB−V (x) < 2t} such that

E+
k (B, V ) ∼k |Dt|tk

and

rDt+V (c) ∼k
|Dt|t
|B|

for any c ∈ C.

On a high level, the proofs of Lemma 14 and Proposition 15 follow the same scheme:
given a set A, we define a map which extracts a positive proportion subset A′ ⊆ A with
desirable properties. In Lemma 14, this map is abstract, whereas in Proposition 15 it
is explicit. We then iterate this procedure until some stopping condition is satisfied. In
Lemma 14, this stopping condition is relative to the mth energy; in Proposition 15, the
stopping condition is defined with respect to the support of the kth energy. These two
regularisation results differ primarily because of this subtlety. Finally, we argue that this
procedure must terminate in an acceptable number of steps, thus eventually outputting
a positive proportion subset B ⊆ A.

Proposition 15 admits the following corollary, which is similar to a result of Shakan
[16, Theorem 1.10].

Corollary 16. Let A, V ⊆ R be finite, and f be a convex (or concave) function. Then
there are sets B,C with C ⊆ B ⊆ A and |C| ≳ |B| ≫ |A| such that

E+
3 (B, V )E+

3 (f(C), U) ≲ |U |2|V |2|A|3

for any set U with |U ||V | ≫ |A|.

Proof. We apply Proposition 15 with k = 3 to obtain the setsB and C, so that E+
3 (B, V ) ∼

|Dt|t3 where rB−V (d) ∈ [t, 2t) for all d ∈ Dt and rDt+V (c) ≫ |Dt|t|B|−1 for all c ∈ C.
We are able to obtain a bound on E+

3 (f(C), U) using Lemma 13:

E+
3 (f(C), U) ≲ |Dt|2|V |2|U |2

|Dt|3t3|B|−3
∼ |V |2|U |2|A|3

E+
3 (B, V )

.

We remark that since |U ||V | ≳ |A|, it follows that min(|Dt|, |V |)|C| ≲ max(|Dt|, |V |)2|U |
and so we may indeed apply Lemma 13.

2 Auxiliary energy bounds

A unifying idea behind the proofs in this paper is the following proposition:
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Proposition 17. Let A,C ⊆ R be finite, and k $ 1. Suppose that E+
k (A) ∼ |D|∆k for

some D ⊆ A− A and ∆ $ 1, where rA−A(d) ∈ [∆, 2∆). Then we have

|D|9∆12 ≲ |A+ C|6E+
3 (A)

4E+
3 (C)2E+

3 (A,D)E+
3 (C,A+ C)2

|C|18|A|3 . (3)

The stated form of Proposition 17 gives us a great deal of flexibility. For example,
if we had multiplicative information on the set A in the guise of Lemma 13 – that is,
if rQR(a) $ T for all a ∈ A – then we obtain an energy estimate in terms of this data.
Proposition 17 also admits a multiplicative form, in which E×

k (A) ∼ |D|∆k. Then all
instances of E3 in (3) should be replaced by E×

3 , and A+ C by AC.

Proof. We begin by defining the popular set

P (A,C) :=

#
x ∈ A+ C : rA+C(x) $

|A||C|
log |A||A+ C|

$
.

We also define the set

A′ :=

#
a ∈ A : |{c ∈ C : a+ c ∈ P (A,C)}| $ |C|

2

$
.

We perform a refinement step at the beginning of the proof, making use of Lemma
14. We claim that Lemma 14 can be applied with the map Rε giving the subset A′ ⊆ A
defined above. Firstly we prove that |A′| is large with respect to |A|. We have

!

a∈A′

|{c ∈ C : a+ c ∈ P (A,C)}|+
!

a∈A\A′

|{c ∈ C : a+ c ∈ P (A,C)}|

= |{(a, c) ∈ A× C : a+ c ∈ P (A,C)}|

$
%
1− 1

log |A|

&
|A||C|.

By setting |A \ A′| = c|A| and using the bounds

!

a∈A′

|{c ∈ C : a+ c ∈ P (A,C)}| ! (1− c)|A||C|

!

a∈A\A′

|{c ∈ C : a+ c ∈ P (A,C)}| ! c

2
|A||C|

we conclude that |A′| $
'
1− 2

log |A|

(
|C|. We can therefore apply Lemma 14 at the

outset of the proof, obtaining a set A′ as above with the property that |A′| ≳ |A|, and
E+
k (A

′) ∼ E+
k (A).

We now consider the number of solutions (a, b, c) ∈ A2 × C to the trivial equation

a− b = (a+ c)− (b+ c) (4)
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where the difference a− b comes from the set D ⊆ A′ − A′ such that |D|∆k ∼ E+
k (A

′) ∼
E+
k (A), and such that the sum a+ c is popular, that is, a+ c ∈ P (A,C).
There are at least Ω(|C||D|∆) solutions to equation (4). We partition solutions to (4)

with the relevant conditions, via the following:

(a, b, c) ∼ (a+ t, b+ t, c− t), t ∈ R ,

and let [a, b, c] represent this equivalence class. Since t cancels out in equation (4), these
classes are non-trivial.

Let N denote the number of solutions to equation (4). We have

|C||D|∆ ≪ N =
!

[a,b,c]

|[a, b, c]|

and so, after an application of the Cauchy-Schwarz inequality, we obtain

(|C||D|∆)2 ! |{equivalence classes}| ·
!

[a,b,c]

|[a, b, c]|2. (5)

We now aim to bound the two factors in equation (5).
To bound the number of equivalence classes, note that each equivalence class gives a

solution to the equation

d = s1 − s2, d ∈ D, s1 ∈ P (A,C), s2 ∈ A+B.

Therefore we have

|{equivalence classes}| ! |{(d, s1, s2) ∈ D × P (A,C)× A+ C : d = s1 − s2}|.

By the popularity of s1, we have

|{equivalence classes}| ≲ |A+ C|
|A||C| |{(d, a, c, s) ∈ D × A× C × A+ C : d− a = c− s}|

=
|A+ C|
|A||C|

!

x

rD−A(x)rC−(A+C)(x)

! |A+ C|
|A||C| E

+
3 (A,D)

1
6 (|A||D|) 1

2E+
3 (C,A+ C)

1
3 ,

where the final bound is an application of Hölder’s inequality, followed by Cauchy-Schwarz.
We now aim to bound the sum !

[a,b,c]

|[a, b, c]|2

where it is understood that the sum is taken over equivalence classes satisfying the relevant
conditions. Note that this sum counts pairs of triples from the same equivalence class,
and for each pair we have

(a, b, c) ∼ (a′, b′, c′) =⇒ ∃ t with a− a′ = b− b′ = c′ − c = t.
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We therefore have
!

[a,b,c]

|[a, b, c]|2 !
!

t

rA−A(t)
2rC−C(t) ! E+

3 (A)
2
3E+

3 (C)
1
3

where again, the final inequality is a result of Hölder’s estimate. Finally, from (5) we have

(|C||D|∆)2 ≲ |A+ C|
|A||C| E

+
3 (A,D)

1
6 (|A||D|) 1

2E+
3 (C,A+ C)

1
3E+

3 (A)
2
3E+

3 (C)
1
3 .

Rearranging and raising both sides to the sixth power concludes the proof.

3 Proof of Theorem 6

We actually prove the following, slightly more general theorem.

Theorem 18. Let f and g be convex or concave functions. Let A,B ⊆ R be finite sets.
Then we have

|A|49|B|49 ≲ |A+B|38|f(A) + g(B)|38 (6)

and

|A|39|B|39 ≲ |A±B|20|f(A)±g(B)|20|A−A|5||B−B|5|f(A)−f(A)|5|g(B)−g(B)|5 . (7)

We clarify that in this theorem, one may take f to be convex, and g to be concave.
On a high level, the proof proceeds by applying two iterations of Corollary 16 to A

and B with judicious choices of V in each case. Then we apply Proposition 17 to the
ensuing subsets and their convex (resp. concave) counterparts. This gives an additive
energy relation. We obtain the statements of Theorem 18 using Cauchy-Schwarz and
Hölder inequalities.

Let us make two simple observations regarding the third moment energy of a setX that
we use in the subsequent argument. Firstly, note that E+

3 (−X,X −X) = E+
3 (X,X −X)

due to the symmetry of the difference set. Secondly, for any set Y ⊆ X and any set Z,
we have E+

3 (Y, Z) ! E+
3 (X,Z).

Proof. Here we prove the slightly more technical statement (6), and indicate the changes
necessary to prove (7). We begin by applying Corollary 16 to the set A with V = A to
obtain sets A2 ⊆ A1 ⊆ A with |A2| ≳ |A1| ≫ |A| and

E+
3 (A1, A)E

+
3 (f(A2), U) ≲ |A|5|U |2 for any U .

Note that if |U | ≫ 1, then this follows from Corollary 16; if |U | ≪ 1, then it follows
trivially.

We now apply the concave analogue of Corollary 16, this time to the set f(A2) with
V = f(A) and the function f−1. We obtain 3 the sets A4 ⊆ A3 ⊆ A2 with |A4| ≳ |A3| ≫
|A2| ≳ |A| so that

E+
3 (f(A3), f(A))E

+
3 (A4, U) ≲ |A|5|U |2 for any U .

3Strictly speaking, we obtain sets f(A4) ⊆ f(A3) ⊆ f(A2).
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We repeat this argument for the set B taking V = B to obtain B2 ⊆ B1 ⊆ B so that

E+
3 (B1, B)E+

3 (g(B2), U) ≲ |B|5|U |2 for any U ,

and then once more to g(B2) with V = g(B) and function g−1 to obtain B4 ⊆ B3 ⊆ B2

with |B4| ≳ |B| and

E+
3 (g(B3), g(B))E+

3 (B4, U) ≲ |B|5|U |2 for any U .

To prove (6), we dyadically decompose with relation to the sets A4, B4, f(A4), g(B4),
according to the second moment energy to obtain sets Di and numbers ti $ 1 so that

E+
2 (A4) ∼ |D1|t21, E+

2 (B4) ∼ |D2|t22
E+
2 (f(A4)) ∼ |D3|t23, E+

2 (g(B4)) ∼ |D4|t24 .
To prove (7), we would instead dyadically decompose according to the 12/7th moment

energy, so that e.g. E+
12/7(A4) ∼ |D1|t12/71 . Note that e.g. D1 ⊆ A4 − A4.

We now apply Proposition 17 to each of the sets A4, B4, f(A4), g(B4), choosing C in
(3) to be B4, A4, g(B4), f(A4) respectively.

We then multiply together the four instances of (3) obtained from these applications,
and make liberal use of the simple observations noted at the beginning of this section
together with the consequences of Corollary 16, which allows us to match up energies on
the right hand side and bound them to get an equation with no energies present. After a
lengthy calculation, we obtain the following.

)

1!i!4

|Di|7t12i ≲ |A+B|20|f(A) + g(B)|20|A|9|B|9 . (8)

To prove statement (7), we recall that we had initially dyadically decomposed accord-
ing to the 12/7th energy and so, after an application of Hölder’s inequality for E+

12/7(A4)
etc., we are done.

To prove statement (6), let us multiply (8) on both sides by (t1t2t3t4)
2. Note that

|D1|t31|D3|t33 ! E+
3 (A4, A)E

+
3 (f(A3), f(A)) ≲ |A|7 =⇒ t1t2 ≲

|A|7

E+
2 (A)E

+
2 (f(A))

and similarly

(t2t4) ≲
|B|7

E+
2 (B)E+

2 (g(B))
.

Hence we obtain
*
E+
2 (B)E+

2 (g(B))E+
2 (A)E

+
2 (f(A))

+9 ≲ |A+B|20|f(A) + g(B)|20|A|23|B|23 .

Finally, we use the Cauchy-Schwarz relation

|X|2|Y |2
|X + Y | ! E+

2 (X, Y ) ! E+
2 (X)1/2E+

2 (Y )1/2

to complete the proof.
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4 Proof of Theorem 11

In this section we prove Theorem 11 proving two complementary bounds, using a combi-
nation of the methods found in [10], [13], and [9].

4.1 Proof of Theorem 11 - Bound 1

The method of Roche-Newton and Warren [9] involved studying the line energy of lines
of a particular structure - this notion was first developed by Elekes, see for instance [1].
Their results, combined with an incidence theorem of Rudnev and Shkredov [11] and
an additive combinatorial result of Roche-Newton and Rudnev4 [8] imply the following
incidence bound. See also [7] for more information on line energy and its applications.

Theorem 19. Let L be a set of lines of the form y = ax + a′ for a, a′ ∈ A ⊆ R \ {0} a
finite set. Let B,C ⊆ R be two finite sets. Then we have

I(B × C,L) ≲ E×
4 (A)

1
12 |A| 76 |B| 23 |C| 12 + |A|2|C| 12 .

We shall apply Theorem 19 to the point set B× (AB+A) and to the set of lines L of
the form y = ax+ a′ with a, a′ ∈ A. Note that without loss of generality we may remove
0 from A if it is present. For each line y = ax + a′, for each b ∈ B the point (b, ab + a′)
lies on this line, and so we have at least |A|2|B| ∼ |A|3 incidences. Using Theorem 19 we
obtain

|A|3 ≲ I(B × (AB + A), L) ≲ E×
4 (A)

1
12 |A| 76 |B| 23 |AB + A| 12 + |A|2|AB + A| 12 . (9)

Note that if the second term dominates we have a much stronger result than claimed
in the statement in Theorem 11. Let us therefore assume the first term dominates. Hence
we have the first of our two bounds:

|A|7/3 ≲ |AB + A|E×
4 (A)

1/6 ! |AB + A||A| 16E×
3 (A)

1/6. (10)

4.2 Proof of Theorem 11 - Bound 2

To find the second bound, let us apply the multiplicative version of Proposition 15 to the
set A with V = A to obtain sets A2 ⊆ A1 ⊆ A with |A2| ≳ |A1| ≫ |A| so that

E×
3 (A1, A)E

+
3 (A2, U) ≲ |A|5|U |2 . (11)

Equation (11) is a consequence of using Lemma 12 in place of Lemma 13 in the proof of
Corollary 16.

4The result of Roche-Newton and Rudnev is that the number of solutions to the equation

a1 − a2
a3 − a4

=
a5 − a6
a7 − a8

with each ai ∈ A is at most O(|A|6 log |A|).
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We now apply Proposition 17 to the set A2, writing E+
2 (A2) ∼ |D|t2 and taking

C = λA2 for λ ∕= 0. Note that E+
k (A2, X) = E+

k (λA2,λ
−1X) for any set X and any k $ 1.

From Proposition 17, (11), and the inclusions A2 ⊆ A1 ⊆ A we obtain

|D|7t12 ≲ |A+ λA|10
|A|9

%
E+
3 (A2)

|A|2

&12
E+
3 (A2, D)

|D|2

%
E+
3 (A2,λ

−1A+ A

|A+ λA|2

&2

≲ |A+ λA|10
|A|9

|A|45

E×
3 (A1, A)9

. (12)

We have

|D|t3 ! E+
3 (A2) ≲

|A|7

E×
3 (A1, A)

=⇒ t ≲ |A|7

E×
3 (A1, A)E

+
2 (A2)

,

and so multiplying (12) by t2 and applying the Cauchy-Schwarz energy bound

|A2|4
|A2 + λA2|

! E(A2,λA2) ! E(A2)

we conclude that

|A+ λA|19 ≳ E×
3 (A1, A)

11

|A|14 . (13)

4.3 Proof of Theorem 11 - Conclusion

Combining the bounds of the previous section we obtain

|A+BA| ≳ max

,
E×
3 (A,A1)

11
19

|A| 1419
,

|A| 136
E×
3 (A,A1)

1
6

-

where the first bound has instead been applied to the set A1 given above, making use of
the inequalities |A| ≪ |A1| ≪ |A| and E+

3 (A1) ! E+
3 (A,A1). In the worst possible case,

both maximands are equal. This happens if

E+
3 (A1, A) = |A| 33185

and so we shall assume that this is indeed the case. We then obtain

|A+BA| ≳ |A| 12985 = |A| 32+ 3
170

as required.
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Appendix - Proof of Proposition 15

We present the proof of Proposition 15 in this section.

Proposition 20. Let k > 1 be a given real number. Fix c1 ∈ (0, 1), and let A, V be finite
subsets of R. Then there are sets B,C with C ⊆ B ⊆ A and |C| ≳k,c1 |B| $ (1− c1)|A|,
such that the following property holds: there is a number 1 ! t ! |B| and a set Dt = {x ∈
B − V : t ! rB−V (x) < 2t} such that

|Dt|tk ! E+
k (B, V ) ! 2k|Dt|tk log(|B|)

and

rDt+V (c) ∈
.

|Dt|t
2k+1|B| ,

2|Dt|t
|B|

k2k log2 |A|
c1

/

for any c ∈ C.

Here, the subscripts in ≳k, ≫k or ≈k means that the implied constant may depend
on k.

Proof. The proof of this lemma is two-fold: first we will refine the set A iteratively
according to a map Rε for a fixed ε > 0. This yields a set B ⊆ A so that |B| $ (1−ε)|A|.
We then choose C ⊆ Rε(B) and argue that the iteration process guarantees that C has
the desired properties.

Let us first describe the map applied to a dummy set Ã. We begin by dyadically
decomposing Ã − V to obtain Dt ⊆ Ã − V and a number 1 ! t ! min(|Ã|, |V |) so that
|Dt|tk ! E+

k (Ã, V ) ! log(min(|Ã|, |V |))|Dt|tk and rÃ−V (d) ∈ [t, 2t) for any d ∈ Dt. That
is, we perform a dyadic decomposition argument according to the kth energy. We also
define the set

PÃ :=
0
(a, v) ∈ Ã× V : a− v ∈ Dt

1
,

which is the set of points of Ã× V supported on lines with slope in Dt. By construction,
we have that |PÃ| ∈ [|Dt|t, 2|Dt|t). Now, with ε > 0 a parameter, define a subset

Rε(Ã) :=

#
a ∈ Ã : rDt+V (a) !

|PÃ|
ε|Ã|

$
.

We claim that |Rε(Ã)| $ (1− ε)|Ã|. Indeed, writing Ã′ = Rε(Ã), we have

|Ã \ Ã′| |PÃ|
ε|Ã|

! |{(a, v) ∈ PÃ : a /∈ Ã′}| ! |PÃ|

and it follows that |Ã′| > (1− ε)|Ã|.
We now describe the iteration scheme in the proof using the notation introduced above:

let A0 = A and for i $ 0 define

Gi := PAi
∩ (Rε(Ai)× V ) = {(a, v) ∈ Rε(Ai)× V : a− v ∈ Dt(Ai)}
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where Dt(Ai) ⊆ Ai−V is the set supporting the kth energy E+
k (Ai, V ). If |Gi| < 2−k|PAi

|
then set Ai+1 = Rε(Ai). Otherwise we terminate the process and set B = Ai and C ′ =
Rε(Ai). Note that |Ai| $ (1−ε)i|A| $ (1−iε)|A|. We remark that the stopping condition
of this algorithmic procedure differs from the stopping condition in Proposition 17. We
claim that this process must terminate in fewer than I = c1ε

−1 steps. For ease of notation,
let us suppose that c1ε

−1 ∈ N. Indeed, suppose for contradiction that we are in the Ith
step of the process. Then we have a set AI ⊆ A so that |AI | $ (1 − c1)|A| and for each
0 ! i ! I we have |Gi| < 2−k|PAi

|.
Let us writeDi to meanDt(Ai) - that is PAi

= {(a, v) ∈ Ai×V : a−v ∈ Di}. Similarly,
let us write the t corresponding to Di as ti so that E+

k (Ai, V ) ∈ [|Di|tki , 2k|Di|tki log(|Ai|)).
Since we have not terminated the iteration procedure, we obtain for each 0 ! i ! I−1

that
!

x∈Di

rkRε(Ai)−V (x) ! (2ti)
k−1 |PAi

∩ (Rε(Ai)× V )| = (2ti)
k−1|Gi|

< 2−k(2ti)
k−1|PAi

| = tk−1
i |PAi

|/2

Let us now consider the number of terms in the support of the energy that we discard
during the iteration process:

|{((a1, v1), . . . , (ak, vk)) ∈ (PAi
\Gi)

k : a1 − v1 = · · · = ak − vk}|

=
!

x∈Di

rkAi−V (x)−
!

x∈Di

rkRε(Ai)−V (x)

$ tk−1
i |PAi

|/2
$ |Di|tki
$ 2−kE+

k (Ai, V ) log(|Ai|)−1

We emphasise that any discarded energy-term ((a1, v1), . . . , (ak, vk)) has at least one
component (aj, vj) with abscissa not in Rε(Ai). So the energy-terms counted by
E+
k (Rε(Ai), V ) all remain. We deduce that

E+
k (Ai+1, V ) = E+

k (Rε(Ai), V )

! (1− 2−k log(|Ai|)−1)E+
k (Ai, V )

! (1− 2−k log(|A|)−1)E+
k (Ai, V )

for all 0 ! i ! I − 1.
Using the trivial bounds |A||V | ! E+

k (A, V ) ! |A|k|V | we obtain the bound

(1− c1)|A||V | ! |AI ||V | ! E+
k (AI , V )

and similarly

E+
k (AI , V ) ! (1− 2−k log(|A|)−1)E+

k (AI−1, V )

! (1− 2−k log(|A|)−1)IE+
k (A, V )

! (1− 2−k log(|A|)−1)I |A|k|V | .
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Thus we have the estimate

(1− c1) < (1− 2−k log(|A|)−1)I |A|k−1 ! e
−c1

ε2k log |A| |A|k−1 = e
−c1

ε2k log |A|
+ln(2)(k−1) log |A|

Let us choose ε so that

(1− c1) = e
−c1

ε2k log |A|
+ln(2)(k−1) log |A|

to obtain a contradiction. That is, let us take

ε =
c1

2k ln(2)(k − 1) log2 |A|− 2k log |A| ln(1− c1)
.

With this choice of ε, the process must terminate in at most I = c1ε
−1 steps.

Having argued that this algorithmic procedure must indeed terminate after say N ! I
steps, let us set B = AN and C ′ = Rε(B). We have that |B| $ (1− c1)|A|. Set

C = {x ∈ C ′ : rDI+V (a) $ |PB|/(2k+1|B|)}.

Then

|{(a, v) ∈ PB : a ∈ C ′ \ C}| ! |PB|
2k+1|B| |C

′| ! |PB|
2k+1

.

Thus we obtain

|{(a, v) ∈ PB : a ∈ C ′ \ C}| $ |GN |−
|PB|
2k+1

$ |PB|
2k

− |PB|
2k+1

=
|PB|
2k+1

,

where the second inequality is a consequence of the termination condition.
On the other hand, since C ⊆ C ′, recalling the definition of C ′, we have

|{(a, v) ∈ PB : a ∈ C}| ! |C| |PB|
ε|B| .

Hence |C| $ ε2−(k+1)|B|. With the explicit choice of ε together with the bound on |B|
this means that

|C| $ c1(1− c1)

22k+1 ln(2)(k − 1) log2 |A|− 22k+1 log |A| ln(1− c1)
|A| $ c1(1− c1)

22k+1 ln(2)(k − 1)

|A|
log2 |A|

Note that for any c ∈ C we have

rP+V (c) ∈
.

|Dt|t
2k+1|B| ,

2|Dt|t
|B|

2k ln(2)(k − 1) log2 |A|− 2k log |A| ln(1− c1)

c1

/
.

The upper bound is certainly less than

2|Dt|t
|B|

k2k log2 |A|
c1

,

the bound that appears in the statement of the proposition. This completes the proof.
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