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Abstract

We give a proof of the Stanley-Stembridge conjecture on chromatic symmetric
functions for the class of all unit interval graphs with independence number 3. That
is, we show that the chromatic symmetric function of the incomparability graph of a
unit interval order in which the length of a chain is at most 3 is positively expanded
as a linear sum of elementary symmetric functions.

Mathematics Subject Classifications: 05E05, 05C15, 05C25

1 Introduction

A chromatic symmetric function Xg(x) of a finite simple graph G with vertex set V' is
defined in a natural way to generalize the chromatic polynomials;

X =3 (H W) ,

K veV

where the sum is over all proper colorings xk : V — P of G with the set of positive
integers P. Since chromatic symmetric functions were introduced by Stanley in 1995 [12],
they have become an important area of research in the relations to many different fields
including combinatorics, representation theory and algebraic geometry.
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The Stanley-Stembridge conjecture [13, 12] is a well known open conjecture on chro-
matic symmetric functions which states that chromatic symmetric functions of the incom-
parability graph of a (3+1)-free poset can be positively expanded as a sum of elementary
symmetric functions, i.e. is e-positive.

Gasharov [4] proved that the chromatic symmetric functions in the Stanley-Stembridge
conjecture can be positively expanded as a sum of Schur functions by constructing com-
binatorial objects called P-tableaux, that is a weaker result than the conjecture since
elementary symmetric functions are positively expanded as a sum of Schur functions.
The conjecture itself was proved for some special classes of graphs including the comple-
ment of a bipartite graph that was considered in [12] and recently in [2, 8]; see Remark
2.18 in [2] for a list of graphs with which the conjecture has been proved to be true. An
important result concerning the Stanley-Stembridge conjecture due to Guay-Paquet [6]
is that it is enough to prove the conjecture for all posets that are both (3 4 1)-free and
(2 + 2)-free. This reduces the class of objects we have to consider for the proof of the
conjecture down to the posets of unit interval orders.

The maximum length of possible chains in a unit interval order plays an important
role in understanding the e-expansion of the corresponding chromatic symmetric function,
and we prove the Stanley-Stembridge conjecture for the unit interval orders in which the
maximum length of chains is at most 3. We note that the chains in the corresponding
unit interval orders of the complements of bipartite graphs, in which the conjecture was
proved to be true as stated above, have length at most 2. We also note that the Stanley-
Stembridge conjecture was proved only for a few special cases when the longest chain in
the unit interval poset has length 3 in [2]. We follow and generalize the basic idea in [2] to
use Gasharov’s P-tableaux for the Schur expansion of the chromatic symmetric functions
and Jacobi-Trudi identity for the proof of the main theorem of the current paper. We
write the coefficients in the e-expansion of the chromatic symmetric functions as a sum
of signed sets of P-tableaux of possible shapes that correspond to permutations in the
symmetric group G3. Then we construct injective maps from negative sets to positive
sets to complete the proof. Our work to write the coefficients as a sum of signed sets can
be extended to the general case, while the construction of injective maps needs more fine
work with insight.

Shareshian and Wachs [11] defined a quasisymmetric refinement of chromatic sym-
metric functions and introduced the natural unit interval orders as (naturally labeled)
representatives of the classes of equivalent unit interval orders. Then, in terms of natural
unit interval orders they derived a refined Gasharov’s result, generalized the Stanley-
Stembridge conjecture to its quasi form, and made a conjecture that their chromatic
quasisymmetric functions, after we apply the usual involution w on symmetric functions,
are the Frobenius characteristics of the symmetric group representations derived from the
Tymoczko’s dot action [15, 14] on the cohomology of Hessenberg varieties of type A.

It is remarkable that the Shareshian-Wachs conjecture was proved to be true indepen-
dently by Brosnan and Chow [1], and Guay-Paquet [7]. This enables one to understand
the e-positivity conjecture by Stanley-Stembridge as the h-positivity, where h stands for
the homogeneous symmetric functions, of the symmetric group representation on the co-
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homology of Hessenberg varieties. We also have to note that the notion of natural unit
interval orders is closely related with Hessenberg varieties through the Hessenberg func-
tions or equivalently the Dyck paths.

With all of these profound theories developed so far on the chromatic symmetric func-
tions, especially on the conjecture by Stanley-Stembridge, we could describe the conjecture
in terms of Hessenberg functions. In the rest of this section, starting with a definition of
Hessenberg functions we proceed to state the Stanley-Stembridge conjecture in Conjec-
ture 6 and 7 and finally give a statement of our main theorem, Theorem 8. We adopt
the h-positivity statement of the conjecture for our argument since that makes it easier
to handle Gasharov’s P-tableaux for the proof of the main theorem.

Definition 1. For a positive integer n, a non-decreasing function f : [n] — [n] is called
a Hessenberg function if i < f(i) for all i € [n] where [n] is the set {1,2,...,n}.

Definition 2. Let f : [n] — [n] be a Hessenberg function for a positive integer n.

e The natural unit interval order P(f) associated with f is the poset on [n] with the
order relation < defined by

i <y j if and only if f(i) < j.

e The natural unit interval graph G(f) associated with f is the graph on the vertex
set [n] where

{i,j},i < j, is an edge of G(f) if and only if i A j or equivalently f(i) > j.

e The Hessenberg variety H(f,s) associated with f and a linear transformation s :
C™ — C™ is the set of complete flags defined as follows;

H(f,s)={Fy CF, C--- CF,=C"|dimF, =1, sF; C Fyy for alli c [n]}.

It is well known that unit interval orders are characterized as (3 + 1)-free and (2 + 2)-
free posets and the number of isomorphism classes of unit interval orders is the Catalan
number. The poset P(f) in Definition 2 are naturally labeled unit interval orders, which
are representatives of the isomorphism classes of unit interval orders. (See Section 4 of
[11] and the references therein for a detailed explanation on unit interval orders.) We
also note that the natural interval graph G(f) is the incomparability graph of the natural
unit interval order P(f), and therefore the independence number (the maximum size of
an induced subgraph that has no edge), of G(f) coincides with the length of the longest
chain of P(f).

There are many equivalent descriptions to define natural unit interval orders and the
following proposition is from one of them.
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Proposition 3 (Proposition 4.1 in [11]). Let f : [n] — [n]| be a Hessenberg function.

1. If i <y j then i < j in the natural order on the integers.

2. If the direct sum(disjoint union) {i <; k}+{j} is an induced subposet of P(f) then
1 < 7 < k in the natural order on the integers.

We fix a set of infinitely many variables x = (z1,z,...) and consider the algebra of
symmetric functions A(x) over a field. For a given positive integer k, the kth elementary
symmetric function e, and the kth homogeneous symmetric function hy are defined as

e = g Ty cox,  and  hy = E Tiy Ty,
i1 <--<ip (IS

A non-increasing sequence of positive integers A = (A1, ..., \¢) is a partition of n =3, A,
whose length ¢(\) is £, and we use A - n to denote that A is a partition of n. We use
N = (N},...,Ap) for the conjugate of X = (A\1,...,\¢) F n, that is X; = [{j|\; > ¢}] for
each i. For a partition A = (A\1,..., \¢), we let

ex = ey, - €y, , the elementary symmetric function, (1)
hy = hy, -+ - hy,, the homogeneous symmetric function, (2)
sy = det(ex _iyj)oxe = det(hy,—itj)exe, the Schur function, (3)

where e and h with negative subscripts are 0 and eqg = hg = 1.

Then {e,|pn F n}, {hy|p = n} and {s,|p = n} are well known bases of the space
A"(x) of symmetric functions of degree n. The above definitions of Schur functions are
known as Jacobi-Trudi identities. The algebra involution w is defined by w(e;) = h;
or equivalently by w(sy) = sy on A(x), which explains the equivalence of two kinds
of Jacobi-Trudi identities for sy. The Frobenius characteristic ch is the map from the
space of representations of &, to the space A™(x) of symmetric functions sending the
natural permutation representation corresponding to a partition A to the homogeneous
symmetric function hy. For more details on symmetric functions and the representation
of the symmetric group, the readers are referred to [10].

We let P be the set of positive integers. For a graph G = (V| E) with vertex set V' and
edge set E, a proper coloring of G is a map k : V. — P such that k(i) # k(j) whenever
{i,j} € E. The chromatic symmetric function of a graph G was defined by Stanley in
[12] and its refinement by Shareshian-Wachs in [11].

Definition 4 ([12, 11]). When G = ([n], E) is a graph on the vertex set [n], the chromatic

quasisymmetric function of G is

XG’(X7 t) = Z taSC(H) Xk s

K

where the sum is over all proper colorings of G, asc(k) = |{{i,j} € E|i < j and k(i) <
r(7)} and x. = T2y @u)-
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We remark that X (x, 1) is Stanley’s chromatic symmetric function X¢(x). Moreover,
Xa(x,t) is not a symmetric function in general while Shareshian and Wachs showed that
the chromatic quasisymmetric function X¢ (s (x,t) of a natural unit interval graph G(f) is
a symmetric function in x = (z1, xa, ... ). Shareshian and Wachs conjectured the following

n [11], which has been proved by Brosnan-Chow [1] and Guay-Paquet [7] independently.

Proposition 5. Let f : [n] — [n] be a Hessenberg function and s : C* — C" be a linear
transformation with n distinct eigenvalues, then

D chHY(H(f, )t = wXep(x,1).

A long standing conjecture on chromatic (quasi)symmetric function is about positivity,
whose proof is known only for some special cases; see [2, 3, 5, 8].

Conjecture 6 ([12, 11]). For a given Hessenberg function f : [n] — [n], X¢()(x, 1) is
e-positive. That is, if we write Xq(p)(x,t) = >, ba(t)ea(x), then by(t) is a polynomial of
nonnegative integer coefficients.

Conjecture 6 on e-positivity of X¢ (s (x,1) is equivalent to h-positivity of wXe (s (x,1).

Conjecture 7 ([12, 11]). For a given Hessenberg function f : [n] — [n], wX¢(s)(x,t) is
h-positive. That is, if we write wX¢(p)(x,1) = >, ex(t)ha(x), then c)(t) is a polynomial
of nonnegative integer coefficients.

Our main work in the present paper is to give a proof of Conjecture 7 when ¢ = 1 and
P(f) does not have a chain with 4 elements.

Theorem 8. For a given Hessenberg function f : [n] — [n] such that a longest chain in
the poset P(f) has 3 elements, wX¢(p)(x) is h-positive. That is, if we write wXq(f)(x) =
Yoy eha(x), then cy is a nonnegative integer.

The rest of this paper is organized as follows. We introduce Gasharov’s result on
the Schur-expansion of chromatic symmetric functions of (3 + 1)-free posets as well as
important properties of the corresponding natural unit interval orders in Section 2. In
Section 3 we work on the h-expansion of the dual chromatic symmetric functions to
recognize each coefficient as a signed sum of numbers of dual P-tableaux of certain types.
In Section 4 we prove the main theorem by constructing sign reversing injections from
the negative sets to positive ones, while some technical proofs are done in Section 5.

2 Preliminaries

There is important work concerning Conjecture 6 by Gasharov, which shows that X¢ (s (x)
is expanded with nonnegative coefficients in terms of Schur functions. Note that this is
a consequence of Conjecture 6 since ey is Schur positive. We state Gasharov’s result in

its dual form by taking the conjugates, so the following definition is the dual notion of
P-tableau of Gasharov [4].
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Definition 9. For a Hessenberg function f : [n] — [n] and A F n, an f-tableau of shape
A is a filling of the diagram of A with 1,2,...,n such that

i) each column is strictly increasing in terms of the ordering <,

ii) if 7 and j are adjacent in a row so that j is to the right of ¢, then i % j.
We let T,(f) be the set of all f-tableaux of shape A and d)(f) = |TA(f)|-

Definition 10. For a Hessenberg function f : [n] — [n], a partition A = m < n, and
a subset A C [n] of size m, a partial f-tableau of shape A with content A is a filling of

the diagram of A with elements in A satisfying two conditions for f-tableaux given in
Definition 9.

Proposition 11 ([4]). For a Hessenberg function f : [n] — [n],

wXa(p)(x) = Z dr(f)sr(x) . (4)

Example 12. Let f : [4] — [4] be a function given by (f(1), f(2), f(3), f(4)) = (2,3,4,4)
so that 1 <5 3,1 <y 4, and 2 <; 4. Then, there are eight f-tableaux of shape (4), four
and two f-tableaux of shape (3,1) and (2,2), respectively. See Figure 1. Examples of

. . 1] 2 2 | 4
‘partial’ f-tableaux include and
4
1|2]3]4 1]2)4]3 1|3 ]2]4 1]4|3]2
21|34 2|1 ]4]3 31214 a3 ]2t
124 132 123 2 (1|3 1] 2 2 |1
3 4 4 4 3|4 4|3

Figure 1: f-tableaux for f = (2,3,4,4).
Hence, we have wXq(y)(x) = 854y + 45(3,1) + 25(2,2)-

Hessenberg functions correspond to Dyck paths in a natural way, and we define the
bounce number of a Hessenberg function as a statistic of the bounce path of the corre-
sponding Dyck path: (See [9] for example.)

Definition 13. For a Hessenberg function f : [n] — [n], define a sequence as z; = f(1)
and ;1 = f(zy+ 1) for i =1,2,... as long as z; < n.

1. The Dyck path of f is the path from (0,0) to (n,n) such that n east steps are from
(t— 1, f(i)) to (¢, f(3)) for i = 1,2,...,n.

2. The bounce path of f is the path connecting the points (0,0), (0,z1), (z1,21),
(x1,m9), (22, 22), (w2, 23), ..., (n,n), vertically and horizontally alternatingly.
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3. The bounce number b(f) of f is the number of points the bounce path of f hits the
diagonal line y = z, except the initial point (0,0), i.e. the & such that x; = n.

4. We let P(f) = {1+ 1,...,2y} for [ = 1,...,b(f) where we set o = 0, so that
Pi(f), Pa(f), ..., Pyy(f) form a set partition of [n].

5. We call the unit square box {(z,y)|i—1<z <i,j—1<y<j}forl<i<j<n,
(i, 7)-square.

Example 14. If f is given by (f(1), f(2), f(3), f(4)) = (2,3,4,4), then z; = 2, 25 =
f(3) = 4 hence the bounce number b(f) of f is 2 and P(f) = {1,2}, P(f) = {3,4}. The
paths from (0,0) to (4,4) drawn as solid line and dashed line are the Dyck path of f and
the bounce path of f, respectively in Figure 2. The (i, j)-squares are indicated in the
figure also.

(1,4) = (2,4) | (3,4)

w
—~
N
w

Figure 2: The Dyck path and the bounce path of f = (2,3,4,4).

Lemma 15. Let f be a Hessenberg function.

1. i < j are incomparable with respect to the order <y if and only if (i, j)-square is
below the Dyck path of f.

2. Ifb<ycin P(f) and a < b, ¢ < d, then a <y c and b < d.
3. Two elements a,b in P/(f) are incomparable with respect to the order <y for all l.
4. Let ax <y ag <y -+ <y ax be a chain in P(f) with a; € Py (f), i=1,...,k. Then

1(i) <Ui+1) fori <k—1, and k <b(f). Moreover, if a1 <y as <y -+ <y apy is
a chain, then a; € P/(f) for alll =1,2,...,b(f).

5. [(341)-free condition] For a chain a; <5 as <y as and an element b of P(f), if
a; A5 b then b <y as and if b A5 ag then a; <y b.

Proof. Statements 1, 2, 3 are immediate from the definition of the order relation <, and
the fourth follows from the second and the third statements. Suppose that a; <y as <y as
and a; A¢ b. Then b < ap must hold, for otherwise we have a; <y b. This, with the
condition a; <; as implies b < a3, completing the proof of a part of the (3+1)-free
condition. A similar argument works for the other part of statement 5. O
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Remark 16. For a given Hessenberg function f : [n] — [n], the bounce number b(f) is the
same as the independence number of G(f) and the length of the longest chain in P(f).

The following lemma is immediate from Lemma 15, yet plays an important role in the
subsequent arguments.

Lemma 17 (Lemma 2.15 in [2]). Let wXq(p)(x) = D, dr(f)sa(x) = >, ea(f)ha(x) for a
Hessenberg function f. Then, dy(f) = 0 for a partition X\ with {(X\) > b(f) and therefore
ex(f) =0 for a partition X with £(X) > b(f).

Proof. There cannot be a chain longer than the bounce number of f due to part 4 of
Lemma 15, and there is no f-tableau of shape A if £(\) > b(f). Hence, by Proposition 11
we can conclude that dy(f) = 0 if £(\) > b(f). The Jacobi-Trudi identity (3) completes
the proof since h, appears in the expansion of sy only when £(p) < ¢()). O

With the notion of bounce number, the main theorem (Theorem 8) of the current
paper can be stated as follows.

Main Theorem. For a given Hessenberg function f : [n] — [n] with b(f) = 3,
wXq()(x) is h-positive.

3 h-expansion of wXg(r)(x) when b(f) =3

Let us fix a positive integer n and a Hessenberg function f : [n] — [n] with b(f) = 3 and
consider the expansion of wX¢(s)(x) into the sum of homogeneous symmetric functions
h,. We use Par(n, < 3) to denote the set of all partitions of n with length at most 3.

If A = (A1, A2, A3) € Par(n, < 3) is a partition of n with length at most 3, allowing 0
for Ay and A3, then Jacobi-Trudi identity (3) becomes

h‘)\l h’>\1+1 h‘/\1+2
S\ — det h)\2,1 h)\Q h,\2+1 . (5)
hag—2 hag—1 hyg

We define two (signed) sets associated with A = (A1, A2, A3):

S ={(A, A2, A3) T, (A, A+ 1,03 — 1),
M+ —1,0) ", (A +1,+ 1, —2)",
()\1 + 2, )\2 — 1, )\3 — 1)+, ()\1 + 2, )\2, )\3 — 2)7}, and

SA) ={ala e SN},

where & is obtained by rearranging the parts of « so that the parts are non-increasing
and the sign of a is the same as the sign of a.

Then we let _
S= |J SN and S= ] SO.

AePar(n,<3) AePar(n,<3)
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We use sgn(a, \) for the sign of a € S(A), which we write to the upper right of
« for convenience in the definition of S(A). Remember that h, = ha,ha,ha, for each
a = (ag,a9,a3) € S, where hg = 1 and h_j = 0 for k a positive integer.

From Proposition 11 and the Jacobi-Trudi identity, we have

wXon(0) = D d(fsx) = Y () D senlas M. (

aeS(X)

Now, we let
C,={aeS|a=pu} for p € Par(n,< 3), and

Ko={)€Par(n,<3)|ae S\)} foraeS.
Then (6) becomes

wXaip(x) = > > sen(a, A da(f) | by (7)

wePar(n,<3) \acl, AeKay

Lemma 18. For any p = (u1, pe, p3) € Par(n, < 3),

{1, a2, p13) } if po # p2+ 1 and pg # ps+1,
C, = L, pay p3), (p2, g, p13) } if = po +1 and po # pz +1,
L, p2, 1), (g, s, p12) if jn # pa+1 and pg = pz + 1,
{1y pi2, p3), (b2, prns ps), (ps pas pi2) b if g = po + 1 and po = pz + 1.

Proof. We first remark that, for a partition A € Par(n, < 3) the only elements of S(\)
that can be a non-partition are (A, Ao + 1, A3 — 1) and (A; + 1, Ay — 1, A3). Moreover,
(A1, Aa+ 1, A3 — 1) is not a partition if and only if A\; = Ay and (A + 1, Ay — 1, A3) is not a
partition if and only if Ay = A3. For a = (p1, po, 3) € Par(n, < 3), a = (a1, ag, a3) € C,,
if and only if @ = p and o € S(\) for some A € Par(n, < 3).

Let a = (o1, ag, a3) be an element of C, where a € S(A) for A € Par(n, < 3). Then,
one of the following cases happens:

L. a= (/\1,/\2,/\3) = W.

. a= (/\1,/\2—|— 1,)\3 - 1)

(:ula Ha, ,US) Zf )\1 > )\2,
(MZ, Hi, ILL?)) 'Lf )\1 = )\2.

(M17M27M3) if Ao > A,
iii. a=N+1L,—1X3) = )
h ? ) {(Ml,u&ﬂz) if Ao = As.

iV. Oé:(>\1+1,)\2+1,>\3—2):u.
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v.a=(M+2, -1 A—-1)=pu.
vi. a = (A 42,9, A3 — 2) = L.

Therefore, we can conclude that v = (pq, pio, 13) is an element of C,, for all p € Par(n, <
3), o = (pa2, 1, pi3) is an element of C,, if g = po + 1, and (g, ps, pt2) is an element of C,
if 10 = piz + 1. 0

Lemma 19. For a = (ay,a9,a3) € S, let

T(a) = {(1 — 2,0, 3 +2), (1 — 2,0 + 1,3 + 1),
((1/1 — 1,0(2 — 1,0[3 + 2), (Oél — 1,042 + 1,053),

(ar, a0 — Laz + 1), (a1, a2, 03) } -
Then, K, = T'(a) N Par(n, < 3).
N

Proof. For any A € T'(a) N Par(n,< 3), A € K, due to the way how T'(«) is defined.
Hence, we have T'(«) N Par(n, < 3) C K,. Now, let A € Par(n, < 3) be an element of £,
so that & € S(A). Then, by the definitions of S(\) and T'(«), A must be in T'(«). O

Since we have Lemma 18 and Lemma 19, we are ready to analyse the coefficient

Cp = Z Z sgn(a, )‘) dA(f) (8)

aECu )\GICC!

of h, in the expansion of wX¢(s)(x), given in (7).
There are four cases to be considered according to Lemma 18. In each case, we draw
a diagram of Uyec, Ko in which two partitions &, 7 € Uaec, Ko are connected by an arrow,

ok
E S npforl1 <i<j<3andk e {1,2},if n is obtained from £ by subtracting £ from
the jth part of £ and adding k to the ith part of £. We write sgn(a, \) to the upper right
of each A\ € K,. We remark that some elements in the diagram can be obsolete, i.e. can

be a non-partition, depending on the given partition p. Moreover, if 1 is not a partition
k

where & L 1 in the diagram, then £ is not a partition either.

CaseI If jiy # po+1 and po # ps+1, then C, = {o = (11, 2, p3) } and the diagram
of K, is given in Figure 3.

Case II If g = po+1 and po # pz+1, then C, = {a = (1, pi2, p13), B = (p2, pi1, p13) }-
In this case, (p1 — 2, 2, pi3 +2), (1 — 2, ppo + 1, u3 + 1), (1 — 1, o + 1, p3) € T'(«) are not
partitions, and only (p1 — 1, o + 1, pt3) is a partition in 7°(8). Hence K, N Kz = @, and
the signs with A in the diagram are for either sgn(a, \) or sgn(5,\) depending whether
A€ Ky or A € K. The elements of K, are colored in red and the ones in Kz are colored
in blue. Again, note that some element in the diagram can be obsolete depending on the
given p. See Figure 4. We remark that f itself is not an element of K, U KCs since it is
not a partition.
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0'1
(lul - 27:“27,“3 + 2)7 ﬁ) (Ml - 27:“’2 + 1,/13 + 1)+

1 2
021 031 021
2

932

” (Nl - 17/'L2 + 17“3)_

Ka=" (=1, —1, s +2)*

1
931

~ 1

(1o o — Lopg +1)7 —2 a = (u, pia, p1)*

Figure 3: The diagram of Usecc, Ko when g # po + 1 and py # p3 + 1.

O'l
(1 — Lo — 13 +2)0 28 (g — 1, gy 3 +1)7 - (5 = (u1 — 1,2 + 1,,u3))
Ko UKg = 751 01 ol |
2,1 i
ol ¥

(1 p2 — 1+ 1) —2 = (1, p2, )+
Figure 4: The diagram of Usec, Ko When i1 = pp + 1 and puy %+ ug + 1.

Case IIT If ;4 # po+ 1 and py = pz + 1, then C, = {a = (w1, p2, p13), 7 =
(p1, ps, p12)}. It is easy to show that K, N K, = @ and the diagram of K, U K, is
given in Figure 5. The elements of K, are colored red and the ones in K, are colored in
blue. Note that ~ itself is not an element of K, U K, since it is not a partition.

Case IV If iy = po+ 1 and po = pg + 1, then C, = {o = (p1, o, 13), 5 =
(H2, i1, p3),y = (p, ps, pi2) }. In this case, Kg = Ky = {(1n1 — 1, p2, s + 1)7} and Ky =
{a}. Hence we draw a diagram for K,UKzUK, as in Figure 6 where 2(p1 — 1, pio, 13 +1)~
means (p1 — 1, 1o, 13 + 1)~ appears in both Kz and K, with negative signs. In this case,
neither § nor v is contained in K, U Kg U K, since they are not partitions.

4 Proof of h-positivity when b(f) = 3

In this section we prove Theorem 8, that is the Stanley-Stembridge conjecture is true
when f has bounce number 3. We cancel the negative terms in (8) with positive terms so
that the remaining terms have positive signs.
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(1 — 2,0+ 1, s + 1)F

ol
1 3,1
921
CER

}C(XUIC’Y - (ILLl - 1?#27#3_}—1)7 E— (/Ll - 17/1/24*17/1/3)7

| p

I 3,1 N

i 92,1

!

(7: (NI’MQ_LMS"_U) ------ > = (1, pho, pg) "

Figure 5: The diagram of Usec, Ko when g # po + 1 and py = p3 + 1.

201 — 1, poy i3 + 1) ------- » (5 = (1 — 1, o + 1#3))

KaUKs UK, = | |
v i

(7 = (pa, o — 1, piz + 1)) --------- > o= (i, po, p3) ™

Figure 6: The diagram of Usec, Ko when py = po + 1 and pp = p3 + 1.

Since

wXa(p)(x) = Z Z Z sgn(o, A) da(f) | hu = Z Cu oy (9)

pePar(n,<3) \acC, AeKy pePar(n,<3)

and we classified C,, and U,ec, K depending on the given u in Section 3, we consider each
of the four cases I - IV separately and show that every negative term in

cu=>_ Y sen(a,\)dx(f) (10)

OAECM )\GICCX

can be canceled with a positive term.

Remember that dx(f) = |7A(f)| is the number of f-tableaux of shape A\. We fix a
positive integer n and a Hessenberg function f : [n] — [n] with bounce number b(f) = 3,
and we use T (), d(A\), P and P, [ = 1,2,3, instead of Tx(f), dx(f), P(f) and P,(f),
respectively for convenience. We also use a < b instead of a <y b for the order relation in
P=P UPRPUP;.
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ok
The basic idea is to use the relation {& —= 7 in the diagram of Uyce, Ko to define

an injective map from each negative 7 () to a positive 7 (n), where the sign of T () for
A € Uqee, Ky is the sign sgn(a, A) of A for a corresponding a € C,,.

Definition 20. Let £ = (£1,&2,&3) be a partition and 7" be a tableau of shape . For
given 1, 7 such that 1 <7 < j < 3,

1. if & > 1, we define 0%,,(T) to be the tableau obtained by moving the rightmost

J—t

entry of the jth row of T" to the end of the ith row.

2. if & > 2, we define 655,(T) to be the tableau obtained by moving two rightmost

J—

entries of the jth row of T to the end of the ith row.

We need to mention that o7_,;, * € {0,3}, does not necessarily send an f-tableau

to an f-tableau, but ¢3_,; always does.
Lemma 21. Let & = (&,&,&3) be a partition and T be an f-tableau in T (&).

1. If& > 1 then 05, (T) is an f-tableaw in T (& +1,&,& —1). Hence, 05, is a map
from T (&1,&9,&3) to T (&1 + 1,&,& — 1) and it is injective.

2. If & = 2 then 055, (T) is an f-tableau in T (& +2,&2,& —2). Hence, 055, is a map
from T (&1, &2,8&3) to T (&1 +2,&,& — 2) and it is injective.

Proof. For T € T (&,&2,&3), the entries in the third row of T are in P3 and if a € P
then z # a for any x. Hence o3 ,,(T) must be an f-tableau in T (& + 1,&,& — 1). The
injectivity of 05, is immediate from the definition. Almost the same argument works for
the second part. O

Example 22. Let f : [8] — [8] be a Hessenberg function given by
(f(1), £(2), F(3), f(4), F(5), f(6), £(7), f(8)) = (2,3,5,6,7,8,8,8)

so that the bounce number b(f) of fis 3 and P, = {1,2}, P, = {3,4,5}, P; = {6,7,8}. If
we let 7' be an f-tableau of shape £ = (4,2,2) given as

2 1 5|6

T —

413

8|17

then

o (M) =21 T eT(5,2,1)

and

oSBT =21 P L0 LB T e 7(6,2,0).
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We note that, since 7 and 8 are elements of P3, 6 % 7 and 6 % 8. On the contrary,

U?AQ(T) = ’ ' ° ‘ ¢ T(47 37 1) )

since 5 £ 7.

Lemma 23. For a Hessenberg function f : [n] — [n], let R be a partial f-tableau of shape
(m, m,m) with content A C [n] and S be a partial f-tableau of shape X = (A1, Ao, A3) with
content [n] — A. Then the tableau T := RU S of shape (m + A1, m + Ag, m + A\3) obtained
by concatenating R and S so that the first m columns of T is R and the rest is the same
as S, is an f-tableau.

Proof. We only need to check the conditions between the mth column and the (m + 1)th
column of T'; that is, r; # s; for [ = 1,2, 3, where r, s; are the [th entry of the last column
of R and the first column of S, respectively. We remark that S can be a tableau with one
or two rows, in which case we need to check only one or two relations. Since Lemma 15
(4) implies that r, € P, for | = 1,2,3, and s; is in Py for I’ > [, we can conclude that
r ¥ s forl=1,2,3. O

In the rest of this section, we prove that ¢, = > o D ek, sgn(e, A)d(A) is nonnega-
tive for any partition u by injectively mapping the elements of negative 7T () into positive
T (n) for £,1 € Uaec, Ko We consider four separate cases as we did in Section 3 depending
on the conditions that a given partition g = (uq, o, t3) satisfy. We use A ~ B when two
sets A and B are in bijection.

4.1 Casel

Assume that gy # ps + 1 and pe # p3 + 1. Then from the diagram, Figure 3, of K,
we can see that we need to define an injective map

from T (p1 — 2, pig, pi3 +2)" UT (pn — 1, ppg + 1, p3)” UT (pa, p2 — Lz + 1)

into T (g — 2, p2 + L ps + 1) UT (pn — 1, g — 1, a3 4+ 2)" U T (pa, oz, pis) ™

We first use o;_,,’s that were shown to be injective in Lemma 21:
We have, as one can see in Figure 7,

T(:ul - 2a Ha, 13 + 2)_ = 0'3‘:51(7—(,1,&1 - 27 M2, U3 + 2 ) g T(:ula :u27lu’3)+

) ,
T =1 =1, ps+2)" ~ o5 (T =1, po—1, p3+2)") C Ty, po—1,u3+1)", and
T =224+ Lps+ 1)~ oy (T — 2,2+ Lpus +1)%) S T(pa — 1 pg + 1, p3) ™

Therefore, if we let

T (1, i, p3)™ = T (pas po, p)t — 0551 (T (1 — 2, i, pt3 +2)7)
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T(/'Ll _2?/JJ27/*L3+2)_ T(:u’l _27u2+1au3+1)+

O
0351

T (=1L — 1, p3+2)F T — 1 pe+1,03)"

9351

I
I
I
I
I
I
I
<+

T(:ula Ho — ]-7 M3 + 1)_ _______ e T(/'Lla M2, :u3)+

Figure 7: Case L.

T(HIHMQ - 17:“’3 + 1)_ = T(MDMQ - 17”3 + 1)_ - 0-3[]—>1(T(/L1 - ]-’/1“2 - 17[,63 + 2)+> )

T =1 o+ 1, 3)" = T (= Lo+ 1, p15) " = 055, (T (i — 2,10 + 1, pg + 1)),

we are left to define an injection
¢ T (i — L+ 1, p13) " UT (pa o — Lopis + 1) — T (pia, 2 1)

Note that if p; = po then ;7:(,“1 — 1, e+ 1, u3)” = @, and if py = pg then %(ul, o —
1, us+1)” = @, and these cases will be covered as special cases of the case p; > po+1 and
po > p3 + 1, respectively. We thus assume that py > po + 1 and pp > pz + 1. A tableau
T in T(up — 1,2 + 1, u3)" can be written as T = RU S where R € T (us, j13, p3) and
S e T(u—ps—1, pe — pus+1,0); see Lemma 23. Since py > ps +1 > ps + 2 and we will
manipulate S only to define the image ¢(T") of T', we may assume that (u;—1, po+1, pu3) =
(m+k,m,0) for m > 3 and k > 0, and therefore (p1, o —1, u3+1) = (m+k+1,m—21)
for m > 3 and k > 0. We remark that this process works as required as long as ¢(.5) is
an f-tableau due to Lemma 23.

Proof of Theorem 8 in Case I. In what follows, to prove Theorem 8, we will do the
following steps. See Figure 8.

1. We modify o5',, and 0., to define injections
52D—>1 :’7’(m+k,m,0)* — %(m+k+1,m— 1,0)*, and
Tao %(m—i—k—i—l,m—Q,l)* —>'7-(M+k+1,m— 1,0)*.

2. We then modify 55, to define ¢y : T (m+k+1,m—2,1)" — T (m~+k+1,m—1,0)" so
that the map ¢ : T (m+k,m,0)"UT (m+k+1,m—2,1)" — T (m+k+1,m—1,0)"
defined by ¢|f(m+k’m’0), =0y, == ¢; and ¢|,7(m+k+17m_271), = ¢9 is an injection;
that is, ¢ (T (m +k,m,0) ) Ngo(T(m+k+1,m—21)")=02.
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In this subsection we will only give the definition of the maps 65 ,;, 75 ., and ¢
in Definition 24, Definition 27 and Definition 33, respectively, and the proofs that they
satisfy the desired properties will be done later in a new section. The proofs of Lemmas
29 through 32 and Proposition 34, that are rather technical will be done in Section 5.

T(m+k,m,0)"
¢1:52DA>1

Tm+k+1,m—21)" (M>’7~‘(m-l—k:-l—1,m—1,O)Jr

Figure 8: Reduced Case I.

Definition 24. Let m > 3 and k > 0 be integers. Then we define

Gl T (m+km0)” > T(m+k+1,m—1,0)7"

091 -
as follows. Let
ar I e R0 | b | e gL a® ) |
T =
as bém73) bg) bg) b2 ()

be an f-tableau in T (m-+k,m,0)~ . Then ay £ dy since T & o5 (T (m+k—1,m,1)")

(1) When d; # co, move ¢ to the end of the first row;

dgk_l) . dgz) dgl) dq Cc2

al bgm—:‘) e ng) bgl) bl c1

52D—>1 (T) =

a bgm*:”) . bgz) b;D b2

(2) When d; > ¢, we consider two sequences of entries from 7™

d§°) = dy, dgl), de), cee dgkil) ,dgk) := ¢y of length k, in the first row and

B =, b o= by, B, - Y7 = 4y of length m — 1 in the second row:

16
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(2-i) If there is 0 < ¢ < min(k — 1,m — 2) such that dgjﬂ) - bgj) for all j
—1,0,...,i— 1 but d"™ £ b’ then we exchange (i + 1) entries in the tail
of the first row and (i 4 2) entries in the tail of the second row of T' to obtain

(T):

~0

091

(2-00) Otherwise, in which case we have m —2 < k — 1 and dgjﬂ) - bgj) for all
I2]—>1 (T) to be

j=0,...,m—2, we define o

Remark 25. In Definition 24 (2), if m —2 > k — 1 then (2-i) (0 < i < k — 1) is always
the case. That is because ¢; € P, U P, and bgj) e PBLUP;for j =0,...,m— 2 due to

Lemma 15, and hence we have ¢; = dgk) o bgj ) for all 7.

Remark 26. If T is of type (2-00), then ¢y < di’”‘”. For, from as 4 d; that is because
T & o (T(m+k—1,m,1)"), and ay = b{"? < d"" it follows that d; < d"".

Since ¢y < dyi, we have ¢y < d

(m—1)
1 .

Definition 27. Let m > 3 and k£ > 0 be integers. Then we define

as follows. Let

) Tm+k+1,m—21)" =T (m+k+1,m—10)"

S:

al

b

b\?

b\Y

by

C1

k-1
)|

2
at?

1
att

dy

€1

az

bém73)

by

b3V

as

be an f-tableau in 7 (m + k + 1,m — 2,1)~. Then, since S & o5, (T (m + k — 2,m, 2)")
we have b £ e;.

(1) When b; < as, we let

53?—)2(3) :

al

b

b{?)

biH

by

C1

k—1
|

2
d®

1
aM

dy

€1

a2

bémfli)

by

by"

a3
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(2) When b; £ a3 and by 3 b5 we let

T ] E R O I I e ] IRTR O IF O I e

5?—)2(‘3) =

bl bgn*?’) - bg2> bél) as

(3) When b; 4 a3 and by = b"™,

(3-1) if e; £ as or (e; < az and ay < d;), then we define 75’,,(S) as

al bgm*3) ng) bgl) as c1 dgkfl) d§2) d51> d1 bl
e 3| | | D | as

(3-2) if e; < ag and as 4 di, then we consider two sequences of entries from S:

A7 =6y, =y, dV, d?, o dFY @ = ¢ of length k + 2, and
B = by, b, b2 B = a4y of length m — 1.
ar B e D b | e @Y @ dD | d | e
77 as (BB | el | b
as

Let 7 be the smallest such that dgi) A bgi“), then we exchange the tails of
length (i 4 2) of two sequences (in the tableau) and move a3 to the second row

to obtain 75 ,,(9);

a b5¢+2) dgz‘) d(10) o o d§i+1) bgz‘ﬂ) b§1> by

as b;i+2) bgi+1) b;l) as

Remark 28. We note that the smallest ¢ such that dgi) A bgi”) exists in case (3-2) of
Definition 27: Since a; < ay < ag is a chain we know that a; € P, and this implies
dgj) £ bgme) = q; for all —1 < j < k. Moreover, since b§m*3> =< bémfg) < by is a chain we
know that b; € P3, and this implies that ¢; is in P, U P53 because by % ¢;. Now we can
conclude that dgk) =c A bgj) forall 0 <7< m—2.

Proofs of the following lemmas are given in Section 5.

Lemma 29. 55, : T(m+k,m,0)” = T (m+k-+1,m—1,0)" is a well defined injective
map.
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Lemma 30. 53 ,, : Tn+k+1,m—21)" = T(m+k+1,m—1,0" is a well defined
mjective map.

We now have two injective maps G, T(m4k,m,0) — %(m—i—k%—L m—1,0)" and
050 T(m+k+1,m—=2,1)" = T(m+k+1,m—1,0)". However, 55, (T (m+k,m,0)")
and EE%Q(T(mij—i;l, m—2,1)") may intersect. We hence let ¢ := o5, and then modify
05, to define ¢g : T(m+k+1,m—2,1)" = T(m+k+1,m—1,0)" so that

o (T(m+k,m,0) ) Neo(Tim+k+1,m—21))=a.

We give the definition of ¢y in Definition 33 after we do some necessary background
work. B
We divide ¢ (7 (m + k,m,0)”) into two parts according to the properties of the pre-
images: When we adopt the names for the entries of T' € T ((m + k,m,0)”) as in Defini-
tion 24, let N B
T ={61(T)|dy # coin T € T((m+k,m,0)7)},

T2 ={u(T)|di = ¢ in T € T((m+ k,m,0)7)}
be the images of the sets of tableaux satisfying the conditions (1) and (2) in Definition 24,
respectively. We also let for 0 < i < min(k — 1,m — 2),

TH2 = Lo (T) € TH? V™ = b5 for all j = —1,...,i—1, but & 3 by in T},

and T2 .= {p(T) e TH2|dV™ = by for all j =0,...,m —2, in T}

be the images of the sets of tableaux satisfying the conditions (2-i) and (2-00) in Defini-
tion 24, respectively.

Then, we have the following lemmas whose proofs are given in Section 5.
Lemma 31. The image 35,,(T (m +k+1,m —2,1)7) of 35, is disjoint from T 2.
Lemma 32. The image of 05, restricted to the case (3) in Definition 27 is disjoint from
7o
Definition 33. We define ¢ : %(m +k+1m—21)" = %(m +k+1,m—1,0)" for
two integers m > 3 and k > 0 as follows: Let

al bg”m*?’) e bg2> b§1> bl c1 dgkfl) e d<12) dgl) dl el

S:

as b(2m—3) L b(22) bél)

as

be an f-tableau in T (m +k +1,m —2,1)~
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(1) When b; < a3, set

Ry:= G5 ,5(S)=

a b(lm—d)

b(12) bgl)

b1

Cc1

d(lk—l)

a?

aM

d1

€1

as bémfli)

bé2> bél)

as

o If Ry & T+, then we let ¢5(S) = Ry.

o If Ry € T+, then set

R12

~IfR & T+2. then we let 2(S) = Ry.

ai

b3

b(?

AR

Cc1

d(lk—l)

a?

att

di a2

el

b gmf 3)

by

bV | a3

—If Ry € TH2® for some 0 < i < m — 2, then we let ¢(5) be, where

0) _ 0) _
by’ = as,dy’ = di,
a b§i+1) bgi) b§1) by e d§i+1) béz}) b§1) as el
a2z béiJrl) dii) dgl) dy
— If Ry € TH20m=2) then we let ¢5(S5) be
a1 bgm—s) bgl) by 1 dgm) dg'm—l) e bgnfg) bg) a3 dgnz,—Q)
as dganiB) dgl) dy
— If Ry € TH°) then we let ¢(S) be
a1 bg’mfii) bgl) b1 c1 dg’m) as e1 bgnf‘g%) bgl) d<17n71) dg’n72>
as dgmfzs) dgl) dy
-3
(2) When b; £ az and by # b, set
—3 2 1 . k—1 2 1
P I i el I I o el Kl o el
0= 03,9 -
(m—3 2 1
by b b2 | ol | as

o If Qo & 7~’+’1, then we let ¢5(S) = Q.
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o If Q) € %J“l, then we let

al b(lm'_g) e b(12) bgl) ag c1 dgk_l) e dgz) dgl) d1 bl

¢2(S) =

el bgn—?)) béz) bél) a3

(3) When by 4 az and by = 65" then we let ¢o(S) = 75 ,5(9).

A proof of the following proposition is given in Section 5.

Proposition 34. The map ¢y : T(m +k+1,m—2,1)" — T(m+k+1,m —1,0)" in
Definition 33 is a well defined injective map and satisfies the following property;

¢1(’7'(m +k,m,0)7) N ¢2(7-(m +k+1,m—-21))=9,

where ¢ is the injective map 35,1 : T(m + k,m,0)” = T(m+k+1,m —1,0)" defined
in Definition 24.

Now, if we define the map
¢ T(m+km,0)" UT(m+k+1,m—21)" = T(m+k+1,m—10)7

by
O Fmikmoy- =1 Ad Ol iy moa1)- = P2,
then ¢ is an injective map. This completes a proof of Theorem 8 in Case 1. O

We close this subsection(Case I) with an example that illustrates the definitions of
maps ¢ and ¢s.

Example 35. Let f = (2,3,5,6,7,8,8,8) be the Hessenberg function we considered in
Example 22. We let m = 3 and k = 2 in Case I, whose diagrams are given in Figure 9.

T(4,2,2)" T(4,3,1)F

7(5,3,0)"
T(5,3,0)" $1=55

T(6,1,1)~ 22720 76,2, 00+

R

T(6,1,1)" --» 7(6,2,0)"

Figure 9: An example of Case I.
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113]12]6]5 113 (2 (8]7 3 (2117|838
We let T1: ,TQZ ,and T3:

487 5064 6145
be f-tableaux in ’7‘(5, 3,0)". Note that T}, i = 1,2,3, are not in 7 (4, 3,1)" because 4 £ 5,
5 A 7,6 A8, respectively.

Then,

o T is of type (1) and ¢y (T1) = |2 1> 1 1° 1 7 | since 5 £ 7.

o Ty is type (2-0) and ¢y (To) = 1> 12 [® 11" | since 4 < 7 but 6 £ 8.

ot

e Tyis type (2-1) and ¢, (T3) = 302 |1]6]4
7|8

since 5 < 8 and 4 < 7but 6 £ 1.

It is easy to check that ¢(T;) & o55,(7(4,2,2)7) for i = 1,2,3. Note that type (2-00)
does not occur because m —2=1=k — 1.

1]3|2]5]8]6s 1|3 |2]6]5]|7

We let S) = , Sy = , and
4 4
7 8

be f-tableaux in 7(6,1,1)~. Then

113125 ]|8]6

e S is of type (1) and 75 .,,(S;) = = Ry. We can check that

4 |7

Ry & T+ since 4 < 8; if Ry = ¢1(T) = 55.,,(T) then T must be in T(4,3,1)*.
Hence ¢2(S1) = Ry.

o Sy is of type (1) and 55,,(Ss) = [ * [ 21 1° 17" = Ry. Then Ry = ¢, (T})
1|8
for T7 € ’7#(5,3,0)* given above. Hence we set R := b I M I , and
7|8
R, ¢ T+2 because 3 £ 5. Therefore ¢o(S1) = Ry.
o Sy is of type (2) and o5,,(S5) =L 1> 12 1% ]® = Qy. Then we can check

517

that Qp € T since Qy = o1 (T) for T = S M I N I = '7‘(5,3,0)_. Thus

THE ELECTRONIC JOURNAL OF COMBINATORICS 29(2) (2022), #P2.19 22




we let ng(Sg) =

4.2 Case I1

Assume that p11 = po +1 and g9 # pg3+ 1. Then from the diagram, Figure 4, of K, U Kg,
we need to injectively map the f-tableaux in T (g — 1, o, 3 + 1) U T (g, 2 — 1, ug + 1)
into T (g — 1, po — 1, 3 +2) UT (1, 2, pi3). Note that, if po = pg then (uq, pa, pg) is the
only partition in the diagram of K, U Kg and ¢, is nonnegative. Thus we assume that

po > pg + 1.

T(:ul - 17,UQ - 17N3 + 2)+ T(:ul - 17,U27,U3 + 1)_

Uilijﬁl 9351
T(:ulv M2 — 1a M3 + 1)7 _____ ” T(M17M27H3)+

Figure 10: Case II.

By Lemma 21, we have
T(:ul — 17“27 M3 + 1)_ = 0-3D~>1(T<:u1 - 17 Mo, 3 + 1)_) g T(:ula H2, :U’3)+7 and
T = Lopg = Lps +2)" =05 (T(a = 1 = 1ps +2)7) C T, o — Lips +1)7,
as described in Figure 10. Hence, we are left to define an injection ¢

from T (pua, pto — 1, i + 1) ™ = T (pa, pro — L, s + 1) — 05y (T (pa — 1,0 — 1, 13+ 2)7)

to T(Ml?ﬂ@a M3)+ - T(:ula H2, :u3)+ - O-E—)l<7'(/“L1 — 17:“27:“3 + 1)_) .

Note that, a tableau T in T (p1, o — 1, 43 + 1)~ can be written as T = R U S where
R € T (us, p3, pg) and S € T (g — s, pro — i3 — 1,1). Since pg — 1 = py — 2, and we will
manipulate only S to define the image ¢(T') of T', we may assume that (pq, o —1, uz+1) =
(m+2,m,1) for m > 1.

Proof of Theorem 8 in Case II.  We first give a definition of ¢ : ’7'(m +2,m,1)” —

T(m+2,m+1,0)", with the reasoning stated in parentheses that the given tableaux are
contained in 7 (m+2,m+1,0)".

ai | by C1 dq €1

Let S = be an element of T (m +2,m,1)" .

az | by | -+ | c2

as

Then, note that by 4 e; since S & o5, (T (m +1,m,2)).
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(1) When d; < as,
(1-1) if ag & ey, then let

qb(S): ai | by c1 |dy | el ,and
a2 | bo c2 | a3
(1-2) if ay < ey, then let
a b1 c1 di | a2
o(S) ==
el | bg cg | a3

(Since di € PLLUP, and ay € PQ, we have d; ?‘ CLQ.)

(2) When d; 4 az and d; % by, (In this case we have a; < dy because a; < ay < az and

€1

, and

a2 | dq

di A az.)
(2-1) if dy £ ey, then let
¢(S) _ ai | by c | a2
di | b2 c2 | a3
(2-2) if dy < ey, then let
o) = -
€1 bo Cc2

a3

(Since d; £ as and dy < ey, d; € P, and thus ay ¥ d;.)

(3) When d; £ a3 and dy > bs,

(3-1) if a3 < ey, then let

¢(S) _ ai by c1 | a2 | dy 7 and
er | by c2 | as
(3-2) if a; & ey, then let
a1 | by c1|er | dy
3(S) =1
az | by c2 | a3

(Since a1 < as < az and a; 4 e;, we have e; < ag. Since by < by < dy, we
have d; € P3. Since e; < ag and dy # e;, we have e; € P,. Thus ¢; # e; and

€1 ?L dl)
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We defined a map ¢ : 7~'(m +2,m,1)” — ’?V'(m +2,m+1,0)" and we now check that
¢ is injective: In each case (1-1) through (3-2), it is clear that ¢ is injective. We hence
show that the image sets of ¢ for different cases are disjoint.

The image of S of type (1) or of type (2) (respectively, of type (3)) is contained in the
set of f-tableaux

ar [ By | |7 |1 | €@

as | By | |12 | 6o

such that 5y £ €1 (respectively, 5y < €1).
The image of S of type (3-1) (respectively, of type (3-2)) is contained in the set of
f-tableaux

ar | B | - | |6 | e

az [ Bo | = |72 | 62

such that oy < d; (respectively, a; 4 d7).
The image of S of type (1-1) (respectively, of type (1-2) or of type (2)) is contained
in the set of f-tableaux

ar [ By | |7 |1 | €@

az [ Ba | |72 | 62

such that as < dy (respectively, as 4 d2).
The image of S of type (1-2) or of type (2-2) (respectively, of type (2-1)) is contained
in the set of f-tableaux

ar | B | - |6 | e

az [ Bo | = |72 | 62

such that as = €; (respectively, ay ¥ €).
The image of S of type (1-2) (respectively, of type (2-2)) is contained in the set of
f-tableaux

ar | B | |76 | e

az [ B | |72 | 62

such that do > €1 (respectively, da ¥ €1).
This completes our proof of Theorem 8 in Case II. O

4.3 Case III

Assume that p; # ps + 1 and pe = pz + 1. Then, as in Case 1II it is enough to define an
injective map ¢

from :7:(:“1 — 1, pe + 1, /‘L3)_ = T(/Ll — 1, e+ 17:u3)_ - U?—H(T(Ml — 2,10+ 1, i3 + 1)+)

to %(M17ﬂ27ﬂ3)+ = T(ﬂ17ﬂ27/‘3)+ - U?I):|—>1(T(:u1 — L, prg, ps + 1)_) )

as one can see in Figure 11. Also note that we may assume (1 —1, po+1, u3) = (2+k%,2,0)
for k > 1.
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T(/’[’l - 27:“2 + 17;“/3 + 1)+

O
0351

T (1 — 1, o, s + 1) T — 1, e + 1, 13)"

O
9351

N2

T(Ml? H2, /~L3)+

Figure 11: Case III.

Proof of Theorem § in Case III.  We first give a definition of ¢ : %(2 + k,2,0)” —

T(3 + k,1,0)", with the reasoning stated in parentheses that the given tableaux are

contained in 7 (3 + k,1,0)".

Let T =" 1" [“ 1" 1] be an element of T(2+k,2,0).

az | bo

That is, T' is an f-tableau and as 4 d;.
<1> When dl ?é bg,
(1-1) if agy A by, then let

ay | by C1 ol dy | be

o(T) = , and

a2

(Since dy 3 by and ay £ by, we have ¢(T) € T (3 + k,1,0).)
(1-2) if as < by, then let

ai | by | a1 el dy | a2

¢(T) =

ba

(Since a1 < ag < by and ay £ di, ¢(T) is an f-tableau.)
(2) When d; > by, (then, since a; % by and by > by, we have a; < by and thus a; < dy)

(2-1) if a1 £ by and ay ¥ c1, then let

¢(T>= by a1 |c1 | - |dy | a2 7

b

(Since by < by, we have by < a;.)
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(2-2) if a; £ by and a; > ¢1, then let

air [ by [ c1 | - | a2 | by

o(T) = , and

dy

(Since ¢; < a; < ag, we have ay € P3)
(2-3) if a; < by, then let

aip | by e |- [di | a2

¢(T) =

bo

Then ¢ is a map from 7 (2+k,2,0) to T (34k, 1,0). It remains to show that ¢ is injective.
The image of T of type (1) or of type (2-2) (respectively, of type (2-1) or of type (2-3))
is contained in the set of f-tableaux

ap | B || |61 | €r

a2

such that ay £ &1 (respectively, ag < 01). (If T' is of type (2-2), then both §; and s are
elements of P and thus §; £ as)

The image of T of type (1-1) (respectively, of type (1-2) or of type (2-2)) is contained
in the set of f-tableaux

ai | B |m ST €1

a2

such that s % €; (respectively, as > €1).
The image of T' of type (1-2) (respectively, of type (2-2)) is contained in the set of
f-tableaux

ar | B || |6 |ea

a2

such that oy < €1 (respectively, a; % €).
The image of T of type (2-1) (respectively, of type (2-3)) is contained in the set of
f-tableaux

ar | B || |6 e

a2

such that as ¥ [ (respectively, ag > 61).~ _
Therefore, ¢ is an injective map from 7 (2 + k,2,0) to T (3 + k, 1,0). ]
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27—(:“1 - 17,“27,“3 + 1)_

T(#h M2, Hz)+

Figure 12: Case IV.

4.4 Case IV

Assume p; = po + 1 and py = pg + 1. Then we have the diagram given in Figure 12,
where 27 (11 — 1, po, 13 + 1)~ means two copies of the set T (g — 1, po, ps + 1)

Proof of Theorem 8 in Case I'V.  Since 2(u; — 1, o, ps + 1) have negative sign and
(p1, pr2, p13) have positive sign in the diagram of Uaec, Ko, We need to show that

2d(,ul - 1,,U2,IU3 + 1) < d(ﬂfla“%“?})?

where d(\) is the number of f-tableaux of shape A. We define two injective maps from
T (1 — 1, po, i3 + 1) to T (p1, 2, pu3) so that the image sets are disjoint. Note that
1 — 1 = pg = pz + 1. Hence if T is an f-tableau in 7 (1 — 1, pa, i3 + 1) then the last

C1

column of 7" must have length 3, say such that ¢; < ¢o < 3.

Cc2

c3

We let ¢1(T'), ¢2(T') be the tableaux of shape (p1, u2, pi3) such that the first py — 1

columns are the same as the ones of 7' and the last two columns are | |~ Jand |~ | ,
c3 c2
respectively.
Then it is easy to check that ¢1(T), ¢o(T') are f-tableaux in T (1, po, 13) and ¢; and
¢o are injective with disjoint image sets. O]

5 Proofs of Lemmas and a Proposition in Section 4.1

In this section, we prove Lemma 29, Lemma 30, Lemma 31, Lemma 32 and Proposition
34, stated in Section 4.
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Proof of Lemma 29. Let

al bg”n*?’) - ng) b?) bl c1 dgkfl) . d<2) dgl) dl

T —

as bgn_?’) - b(22) b(21) b2 co

be an f-tableau in %(m + k,m,0)” . Here, a; = bgm_2), ag = bgm_g) and ¢; = dgk). Then

as A dy since T & o5, ((T(m+k—1,m,1)T).

If T is of type (1), then &5,,(T) is an f-tableau and, furthermore, is an element of
T(m+k+1,m—1,0)" because ag £ d;.

If T is of type (2-i), then, since d; = ¢ > ¢; and by % ¢;, we have dy > by. Similarly,
dgjﬂ) - bgjﬂ) for all j = —1,0,...,72 — 1. From dgi) € Py and ¢; € Py, it follows that
552,,(T) is an f-tableau. Since ¢ € Py, 55.,,(T) is an element of T (m+k+1,m—1,0)*.

If T is of type (2-00), then, since d; % as and d\™ " = ay, we have d\™ " > d; and
thus by < d/™ " and ¢ < d™ . Hence 55, (T) is an element of T (m+k+1,m—1,0)*.

The image of T of type (1) (respectively, of type (2)) is contained in the set of tableaux

an g3 | g® | g | g | o [0l | 5@ | s | s | e

as ém*S) ... 52) Bél) B

such that 5y ¥ € (respectively, Bs = €1).
If T is of type (2-i), i.e., there is i < min(k — 1, m — 2) such that dgﬁl) - bgj) for all
j=-1,0,...,2—1but d§’+” Va bg), then 5., (7)) is contained in the set of tableaux

[e%1 Eij) - /852) §1> ﬁl Y1 5%19*1) . 6§2) 5%1) o1 €1

ar [gm9)| o | g® | a0 | g

such that ﬁéjﬂ) - 59) forall j =0,...,2—1 and Béiﬂ) s 69. Therefore, o5 ,, restricted
to the set of tableau T of type (2-7) is injective.

To show that the map 5., is injective, it suffices to show that the image of 75 .,
restricted to the set of tableau of type (2-i) with ¢ = (m — 2) is disjoint of the image of
o5, restricted to the set of tableau of type (2-00). The first is of the form

aq e B?) 59) 51 Y1 ce 55””) 6?"*1) B;””*Q) . Bgo) Y2

5%77172) . 5%2) 6;1) 5

with &, ¥ 55’”‘2) = (9, and the second is of the form

al ce 5£2> 6§1> 51 Y1 ce 5§m) o1 “83”*2) C ﬁé“) Y2

55}71—2) 552) 5&1) 6§m—1)
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with 5§m71) - ﬁémd) = ay. Consequently, 75 ,, is injective. O

Proof of Lemma 30. Let

ar P3| o L@ e b | e ] | a® [0 | a | oe
S =

as b;m73) . b;2> béU

as

be an f-tableau in 7 (m+k—+1,m—2,1). Here, a; = b/ and as = b\ and ¢; = d\.
Then, since S & o5, (T(m + k — 2,m,2)") we have b" % £ ¢;.
Claim. If b; £ ag, then a; < b; and as ¥ ¢;.
Proof of Claim. If by £ a3, then, from ay < az and by £ ag, it follows that as < b; and
thus a; < by (This is essentially the (3 + 1)-free condition). Since ay < b; and bgl) ¥ b,
we have as # ¢;. B O
If S is of type (1), then 65,,(S) is an element of T (m +k +1,m — 1,0)".
If S is of type (2), then by Claim. together with the property as € Py, 55 ,,(5) is an
element, of 7 (m 4k +1,m — 1,0)*.
If S is of type (3), Le., by £ az and by = ™. then by € P; and thus ¢; € P, U Py.
Assume that S is of type (3) and e; £ ag or as < d;. Then a; < e;. To see this, use
a; < az < az and e; £ az or a; < ay < d; and e; £ d;. Thus, if S is of type (3-1), then
52.,(S) is an element of T (m + k +1,m — 1,0)7.
Now assume that S is of type (3) and e; < ag. If bgl) % eq, then

al bg’n_:s) . b§2) b%l) el c1 dgk_l) e de) dgl) dl bl

az || | b® | ) | as

is an element of %(m +k+1,m—1,0)". Here, e; % ¢; follows from the property that
et € LUP and01€P2UP3.

b)) = e; = d™ and 82 = dy = d\”, then, from b" = b = ¢, and dy ¥ ey, it
follows that b{" > d; and thus d; < b5 and d{") 3£ ", Therefore,

al bgm'_s) . b§2) dl el c1 dgk_l) e dg2) dgl) b<11> bl

as bém—S) béz) bél) a3

is an element of ’7'(m +k+1,m—1,0)". Similarly, if bgl) - e = dgfl),b?) - dﬁ") =
dy, .. B e @D B ) e

al . b§i+2) dg” . d(l(]) el c1 o d§i+1) bi'LJFl) - b(ll) bl

as . béH—Q) b;’i"’l) . bgl) as
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is an element of 7 (m + k4 1,m — 1,0)*. Thus, if S is of type (3-2), then 05 ,,(9) is an
element of T(m +k+1,m —1,0)*.

The image of S of type (1) or of type (2) (respectively, of type (3)) is contained in the
set of tableaux

N ] I O B I I T B ] I I O P T P

s 837173) . /852) él) B2

such that 8™ 4 €, (respectively, 8" < ¢;).
The image of S of type (1) (respectively, of type (2)) is contained in the set of tableaux

aq ﬂimﬁS) ... :852) BEU B1 o1 5%’@*1) ... 5£2> 5%1) 51 €1

oz [ge3)| o | g® | a0 | g

such that ag < By (respectively, ag £ (s).
The proof for the injectivity of 75 ,, restricted to the set of f-tableaux S of type (3)
is similar to the previous cases and we omit the proof. O

Proof of Lemma 31. Any f-tableaux

o O A T ] IR PO I (O I o

(%) /83”*3) e 5£2> Bél) 62

in 720 satisfies a A B2y 11 < €1, B2 - € and ﬁf” = 5§j) = Béjﬂ) for j=0,...,1 -1,

where (550) := §;. Moreover, ﬁ}i) < 5@ A Béiﬂ) and 5%“1) a Béi).
Any f-tableaux

(a1 5£ ~3)| ... 5£2) 59) ﬁl 71 5§k*1) . 6§2) 5§1) 51 €1

as ém—fi) £2) 51) 8o

in 72 satisfies oy A Ba, 11 < € and ij) < 5§j) < 59“) for 5 =0,...,m — 2, where
(5§O) =0y, and B < 5§m71). Furthermore, 35 = ¢; by Remark 26.
Therefore, the set 72 is contained in the set of f-tableaux

aq §m73) - §2> B§1> 61 71 6§k*1) . 5§2) 6§1) 51 €1
(e D] Bém_g') . BéQ) Bél) ﬁ2

such that as £ B2 and 1 < €1 and [y > €.
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The image 75 ,,(S) of S of type (1) and (3-2) (respectively, of type (3-1)) in Defini-
tion 27 is an f-tableau

o 65 —3)| ... B§2> 59) ﬁl Y1 5§k*1) . 5§2) 5§1) 51 €1

as £m73) £2> 51) 8o

satisfying ay < (s (respectively, 71 £ €1). Thus they are not contained in T2,
Suppose that the image

al bgnl_?’) PR b?) b(11> a9 c1 dgk_l) PRI d§2) dgl) d1 el

55—)2(‘9) =

bl bg’"*?’) . b;2> b<21) as

of S of type (2) in Definition 27 is contained in T+2. Then cp < e < azand by £ a3
must hold, which implies that ¢; < b; by (3+1)-free condition in Lemma 15. This is
a contradiction since b; % c¢; in S. Therefore, the image 75 ,,(S) is not contained in

T+2, 0

Proof of Lemma 32. The set 7! consists of f-tableaux

o @ g0 | gy | D | 6@ | 50| s o

(%) gm*?’) e £2> 6(1) 62

such that 1 < €1, B2 # €1 and ay A d1; where the last condition is from the fact that the
f-tableaux in 7! are 65, (T) for T & T(m +k —1,m,1)". The image 55',,(S) of S of
type (3) is an f-tableau

I L N IS I IO BT ] IR (S SO B PR
a2 Bé ~3)| ... B£2) 551) 52
satisfying v; 4 €;. m

Proof of Proposition 34. Let

al bg”m*'?’) e bg2> b§1> bl c1 dgkfl) e de) dgl) dl el
S =

as b(2m—3) .. b(22) bél)

as

be an f-tableau in 7 (m +k + 1,m — 2,1). Then b{" > £ e; and here, a; = ™" and
(m—2)
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(1) When b; < a3, we set

(m—3 2 1 k—1 2 1
. o) al b<1 )] b<1) bg) b1 1 d% )N ... dg) d§> di el
3%2( )_

as bgn—3) b;2) bél) as

Then by Lemma 31, Ry & T 2.

o If Ry & T+, then we let ¢o(S) = Ry.

o If Ry € %J“l, ie. c; < ey, az ¥ e; and as £ di, then we set

ar fpm B B LR b | e gl ) [ al) | dn | a2
Rl =
e 3| | | D | as

Then R; is an f-tableau (because az # e1, as A d; and b(2m_3) £ e1), and is
not contained in 7! (because az > as), and is not of the form Ry (because

e1 A ag).

~If R & T2

then we let ¢5(S) = Ry.

S IR € TH2D for some 0 < i < m — 2,

then we have (¢; < ag, by < dj, bgj) =< dgj) for j =0,...,7, and dgj) < bgjﬂ)
forj = —1,...,i—1, where d§°) = dy). Moreover, we have (bgﬂ) ¥ dgi) and
A £ b)) and we let ¢o(S) =: Ry be, where b " = a3 and d\” = dj,

al . b§i+1) bgl) - bgl) bl c1 . dgi"’l) bgl) e b(Ql) as €1

a2 - bgH—l) d(ll) e dil> dl

Then R is an f-tableau (because e; £ a3), and is contained neither in
T+ nor in T+?2 (because as < a3 and dy ¥ e1), and is not of the form Ry,
Ry (because ay A dy, di # e1).
~ If Ry € TH2m=2),
then we have (¢; < ag, by < dj, bgj) < dgj) for j = 1,...,m — 2, and
dgj) =< bgjﬂ) for j = 0,...,m — 4, where dgo) = dy). Moreover, we have
@™ < ey, az 3t d™P and d"V £ eq), and we let ¢5(S) =: Ry be

a1 | | | by a | e |l fard] e | [0 | as (gt

as d(lm,fi%) . d(ll) d
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Then Ry is an f-tableau (because both ay and dgmf?’) belong to P,), and

is contained neither in 7! nor in 7+2 (because as < az and d; 3 d™ >
for d; € P, and dgmfZ) € P, U P;), and is not of the form Ry, R; (because
er A dy, dy F 4",

— If Ry € TH29),
then we have (¢; < ag, by < dj, bgj) < dgj) for j = 1,...,m — 2, and
dgj) < bgﬂ) for j = 0,...,m — 4, where d§°> = dy). Moreover, we have
@™ < er, by <d™ Y ag = d™?, ag £ d™ and d" Y - ay), and we
let ¢2(S) =: Ry be

al bgmf‘3) . bgl) bl c1 . dgm) as el b(z’mfg) . b(21> dgmfl) dgmiQ)

as d(lm,—B) L d(ll) dl

Then R, is an f-tableau (because both az and dﬁ’"*” are elements of Pj),
and is contained neither in 7! nor in 7+? (because az < d\™ ", and
dy # dgme) for dl,dgmﬁ) € P,), and is not of the form Ry, R; (because

as 4 dy and dy ¥ dﬁm*” for both d; and dgmfZ) are contained in P,).

Furthermore, Ry’s are all different. For, if R; € T+26) for some 0 <i1<m—3,
then Ry is contained in the set of f-tableaux

aq L. ﬂ§i+1) By) - 651) B1 Y1 .. 5§i+1) 552) - 69) & €1

PO RPN FIC SNl IPTON NPV IO

such that ﬁ%j) < 59) for all 7 = 0,...,7, where 5§0) = 01, and Béj) < 59“) for
j=1,...,i—1, and g 4 50,

On the other hand, if R, € T+2m=2) (respectively, 7~'+’2(°°)), then R, is con-
tained in the set of f-tableaux

(e %1 L. B§i+l) il) . 651) B1 Y1 . 5§i+1) 651) . 651) o1 €1

PO RPN FIC SNl IPTON NP IO

such that B < 69" for all j =0,...,m —2, where 8, = d, and Y < 67"
for j = 1,...,m —4 and g™ < 6™ and 6™V % € (respectively,
(m—1)
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(2) When b; £ as and by 3 b we set

=3)[ ... 2) L)) . k=1)| ... 2 1
e [ I o T ol Kl el I
0-— U322 -
T ] ISP O IO I P

Then by Lemma 31, Qy & T2, and is not of the form Ry, Ry (because by # ¢1).

o If Qy & T, then we let ¢5(S) = Qo.
o If Qy € T+, then we let

al b(1mf3) ... b(12) bgl) as 1 dgkfl) ... de) dgl) dy by
¢2 (S): = Ql .
el bgn—3) ... b;Q) bél) as

Then @ is an f-tableau (because az ¥ e, bgm_?’) # ey and d; # by), that is
contained neither in 7! nor in 71?2 (because ¢; 4 b1), and is not of the form
Ry, Ry, Ry or Qg (because ey 4 as, as ¥ by, ¢1 £ by, and €1 > ¢).

(3) When b, £ a3 and by = b"™ | then we let ¢5(S5) = 55.,,(9).

Then by Lemma 31 and Lemma 32, ¢»(.S) is contained neither in T+1 nor in 72,
and is not of the form Ry, Ry or )7 (because ¢5(S) is an f-tableau

al bgm*3) - b(2) b<11) bl c1 dgkfl) - de) dgl) dl el

a2 b§m73) - b(2> bgl) b2

satisfying e; € P3, ¢; 4 e, and b;m_?’) < eq).

We proved that ¢,(S) is not an image of ¢; for any S, by considering all cases that
appear in the definition of ¢, Definition 33. This completes the proof of Proposition 34.
]

6 Concluding Remarks

We proved the Stanley-Stembridge conjecture for the natural unit interval orders corre-
sponding to the Hessenberg functions with bounce number 3 in the current paper. There
are a few concluding remarks.
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K, = 1 0

92,1 0251
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Figure 13: Diagrams for the case when bounce number is 2.

1. We can give a simple proof of the Stanley-Stembridge conjecture when the bounce
number b(f) of a given Hessenberg function f is 2: For any partition u = (1, o)
with two parts, we have C,, = {p} and IC,, = {((p1, o)™, (1 —1, 2+1)~}. Moreover,

o5, is an injection from T (py —1, ig+1)~ to T (11, p2) T, as one can see in Figure 13.

2. Our work done in Section 3 to write the coefficients in the h-expansion of the
chromatic symmetric functions as a signed sum of the number of dual P-tableaux
can be extended to the general cases with arbitrary bounce number. We, however,
were not able to extend the work to construct sign reversing involutions in Section 4
to general cases.

3. The injections defined for the proof of the h-positivity are not weight(ascent) pre-
serving. Hence our proof does not give a proof of the refined Stanley-Stembridge
conjecture: Conjecture 7. We think that it would be the case that weight preserv-
ing injections could be defined in a more natural way than the ones we defined for
non-refined cases.

Acknowledgements

The authors are grateful to the referee for careful reading of the paper and suggestions,
which let us improve the clarity of the paper. The most of the work on this paper was
done while the first named author was visiting Korea Institute for Advance Study(KIAS)
and the second named author was working there. The authors are grateful to KIAS for
the hospitality.

References

[1] P.Brosnan and T. Y. Chow, Unit interval orders and the dot action on the cohomology
of reqular semisimple Hessenberg varieties, Adv. Math. 329 (2018), 955-1001. MR
3783432

[2] S. Cho and J. Huh, On e-positivity and e-unimodality of chromatic quasi-symmetric
functions, SIAM J. Discrete Math. 33 (2019), no. 4, 2286-2315.

THE ELECTRONIC JOURNAL OF COMBINATORICS 29(2) (2022), #P2.19 36



[3] S. Dahlberg and S. van Willigenburg, Lollipop and lariat symmetric functions, STAM
J. Discrete Math. 32 (2018), no. 2, 1029-1039.

[4] V. Gasharov, Incomparability graphs of (3 4+ 1)-free posets are s-positive, Discrete
Math. 157 (1996), no. 1-3, 193-197.

[5] D. D. Gebhard and B. E. Sagan, A chromatic symmetric function in noncommuting
variables, J. Algebraic Combin. 13 (2001), no. 3, 227-255.

[6] M. Guay-Paquet, A modular law for the chromatic symmetric functions of (3+1)-free
posets, preprint, arXiv:1306.2400v1.

, A second proof of the Shareshian—Wachs conjecture, by way of a new Hopf
algebra, preprint, arXiv:1601.05498.

[8] M. Harada and M. E. Precup, The cohomology of abelian Hessenberg varieties and
the Stanley-Stembridge conjecture, Algebr. Comb. 2 (2019), no. 6, 1059-1108.

[9] N. A. Loehr, Conjectured statistics for the higher q,t-Catalan sequences, Electron. J.
Combin. 12 (2005), #R9, 54.

[10] I. G. Macdonald, Symmetric functions and Hall polynomials, second ed., Oxford
Mathematical Monographs, The Clarendon Press, Oxford University Press, New
York, 1995, With contributions by A. Zelevinsky, Oxford Science Publications.

[11] J. Shareshian and M. Wachs, Chromatic quasisymmetric functions, Adv. Math. 295
(2016), 497-551.

[12] R. P. Stanley, A symmetric function generalization of the chromatic polynomial of a
graph, Adv. Math. 111 (1995), no. 1, 166-194.

[13] R. P. Stanley and J. R. Stembridge, On immanants of Jacobi-Trudi matrices and
permutations with restricted position, J. Combin. Theory Ser. A 62 (1993), no. 2,
261-279.

[14] J. S. Tymoczko, Permutation actions on equivariant cohomology of flag varieties,
Toric topology, Contemp. Math., vol. 460, Amer. Math. Soc., Providence, RI, 2008,
pp. 365—384.

, Permutation representations on Schubert varieties, Amer. J. Math. 130
(2008), no. 5, 1171-1194.

[15]

THE ELECTRONIC JOURNAL OF COMBINATORICS 29(2) (2022), #P2.19 37


https://arxiv.org/abs/1306.2400v1
https://arxiv.org/abs/1601.05498

	Introduction
	Preliminaries
	h-expansion of XG(f)(x) when b(f)=3
	Proof of h-positivity when b(f)= 3
	Case I
	Case II
	Case III
	Case IV

	Proofs of Lemmas and a Proposition in Section 4.1
	Concluding Remarks

