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Abstract

A graph G is said to be k-subspace choosable over a field F if for every assign-
ment of k-dimensional subspaces of some finite-dimensional vector space over F to
the vertices of G, it is possible to choose for each vertex a nonzero vector from
its subspace so that adjacent vertices receive orthogonal vectors over F. The sub-
space choice number of G over F is the smallest integer k for which G is k-subspace
choosable over F. This graph parameter, introduced by Haynes, Park, Schaeffer,
Webster, and Mitchell (Electron. J. Comb., 2010), is inspired by well-studied vari-
ants of the chromatic number of graphs, such as the (color) choice number and the
orthogonality dimension.

We study the subspace choice number of graphs over various fields. We first
prove that the subspace choice number of every graph with average degree d is at
least Ω(

!
d/ ln d) over any field. We then focus on bipartite graphs and consider

the problem of estimating, for a given integer k, the smallest integer m for which
the subspace choice number of the complete bipartite graph Kk,m over a field F
exceeds k. We prove upper and lower bounds on this quantity as well as for several
extensions of this problem. Our results imply a substantial difference between the
behavior of the choice number and that of the subspace choice number. We also
consider the computational aspect of the subspace choice number, and show that
for every k ! 3 it is NP-hard to decide whether the subspace choice number of a
given bipartite graph over F is at most k, provided that F is either the real field or
any finite field.

Mathematics Subject Classifications: 05C15, 05C50, 05C62
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1 Introduction

Graph coloring is the problem of minimizing the number of colors in a vertex coloring of
a graph G where adjacent vertices receive distinct colors. This minimum is known as the
chromatic number of G and is denoted by χ(G). Being one of the most popular topics
in graph theory, the graph coloring problem was extended and generalized over the years
in various ways. One classical variant, initiated independently by Vizing in 1976 [19]
and by Erdős, Rubin, and Taylor in 1979 [8], is that of choosability, also known as list
coloring, which deals with vertex colorings with some restrictions on the colors available
to each vertex. A graph G = (V,E) is said to be k-choosable if for every assignment of
a set Sv of k colors to each vertex v ∈ V , there exists a choice of colors cv ∈ Sv that
form a proper coloring of G (that is, cv ∕= cv′ whenever v and v′ are adjacent in G).
The choice number of a graph G, denoted ch(G), is the smallest integer k for which G
is k-choosable. It is well known that the choice number ch(G) behaves quite differently
from the standard chromatic number χ(G). In particular, it can be arbitrarily large even
for bipartite graphs (see, e.g., [8]). The choice number of graphs enjoys an intensive study
in graph theory involving combinatorial, algebraic, and probabilistic tools (see, e.g., [1]).
The computational decision problem associated with the choice number is unlikely to be
tractable, because it is known to be complete for the complexity class Π2 of the second
level of the polynomial-time hierarchy even for bipartite planar graphs [8, 10, 11].

Another interesting variant of graph coloring, introduced by Lovász [14] in the study
of Shannon capacity of graphs, is that of orthogonal representations, where the vertices of
the graph do not receive colors but vectors from some given vector space. A t-dimensional
orthogonal representation of a graph G = (V,E) over R is an assignment of a nonzero vec-
tor xv ∈ Rt to every vertex v ∈ V , such that 〈xv, xv′〉 = 0 whenever v and v′ are adjacent
in G.1 The orthogonality dimension of a graph G over R is the smallest integer t for which
there exists a t-dimensional orthogonal representation of G over R. The orthogonality di-
mension parameter is closely related to several other well-studied graph parameters, and
in particular, for every graph G it is bounded from above by the chromatic number χ(G).
The orthogonality dimension of graphs and its extensions to fields other than the reals
have found a variety of applications in combinatorics, information theory, and theoretical
computer science (see, e.g., [15, Chapter 10] and [12]). As for the computational aspect,
the decision problem associated with the orthogonality dimension of graphs is known to
be NP-hard over every field [16] (see also [9]).

In 2010, Haynes, Park, Schaeffer, Webster, and Mitchell [13] introduced another vari-
ant of the chromatic number of graphs that captures both the choice number and the
orthogonality dimension. In this setting, which we refer to as subspace choosability, each
vertex of a graph G is assigned a k-dimensional subspace of some finite-dimensional vec-
tor space, and the goal is to choose for each vertex a nonzero vector from its subspace so
that adjacent vertices receive orthogonal vectors. The smallest integer k for which such a

1Orthogonal representations of graphs are sometimes defined in the literature as orthogonal represen-
tations of the complement, namely, the definition requires vectors associated with non-adjacent vertices
to be orthogonal.
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choice is guaranteed to exist for all possible subspace assignments is called the subspace
choice number of the graph G, formally defined as follows.

Definition 1. For a graph G = (V,E) and a function f : V → N, G is f -subspace
choosable over a field F if for every integer t and for every assignment of subspaces Wv ⊆
Ft with dim(Wv) = f(v) to the vertices v ∈ V (which we refer to as an f -subspace
assignment), there exists a choice of a nonzero vector xv ∈ Wv for each vertex v ∈ V , such
that 〈xv, xv′〉 = 0 whenever v and v′ are adjacent in G. For an integer k, the graph G is
k-subspace choosable over F if it is f -subspace choosable over F for the constant function
f defined by f(v) = k. The subspace choice number of G over F, denoted ch-s(G,F), is
the smallest k for which G is k-subspace choosable over F.

Here and throughout the paper, we associate with the real field R and with every finite
field F the inner product defined by 〈x, y〉 =

!
xiyi, whereas for the complex field C we

consider, as usual, the one defined by 〈x, y〉 =
!

xiyi.
The work [13] has initiated the study of the subspace choice number of graphs over

the real and complex fields. Among other things, it was shown there that a graph is
2-subspace choosable over R if and only if it contains no cycles. We note that this is in
contrast to the characterization given in [8] for the (chromatic) 2-choosable graphs, which
include additional graphs such as even cycles. This implies that the choice number and the
subspace choice number do not coincide even on the 4-cycle graph. Over the complex field
C, however, it was shown in [13] that a graph is 2-subspace choosable if and only if it either
contains no cycles or contains only one cycle and that cycle is even. This demonstrates
the possible effect of the field on the subspace choice number. It further follows from [13]
that for every graph G and every field F, it holds that ch-s(G,F) ! ∆(G)+1 where ∆(G)
stands for the maximum degree in G. In fact, a similar argument shows that ∆(G) can
be replaced in this bound by the degeneracy of G (i.e., the smallest integer k for which
every subgraph of G contains a vertex of degree at most k).

1.1 Our Contribution

The current work studies the subspace choice number of graphs over various fields. Our
first result provides a lower bound on the subspace choice number of a general graph over
any field in terms of its average degree.

Theorem 2. There exists a constant c > 0 such that for every graph G with average
degree d > 1 and for every field F,

ch-s(G,F) > c ·
"

d

ln d
.

The proof of Theorem 2 is based on a probabilistic argument. For certain graphs, we
provide an improved lower bound on the subspace choice number, avoiding the logarithmic
term (see Theorem 16). This improvement relies on an explicit construction of finite
projective planes.
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We note that a result of Saxton and Thomason [17], improving on a result of Alon [2],
asserts that for every graphG with average degree d, it holds that ch(G) " (1+o(1))·log2 d,
where the o(1) term tends to 0 when d tends to infinity. Erdős et al. [8] proved that the
choice number of the complete bipartite graph Kn,n satisfies ch(Kn,n) = (1+ o(1)) · log2 n,
hence the lower bound of [17] is tight on these graphs. Theorem 2 thus shows a substantial
difference between the behavior of the subspace choice number and that of the standard
choice number in terms of the average degree.

For the complete graph Kn, it is easy to see that ch-s(Kn,F) = n whenever F is a
field over which no nonzero vector is self-orthogonal, such as R and C. For finite fields,
however, we show that the subspace choice number of Kn is strictly smaller than n for
every sufficiently large n. This in particular shows that the subspace choice number over
finite fields can be smaller than the choice number.

Theorem 3. There exists a constant c > 0 such that for every sufficiently large integer
n and for every finite field F,

ch-s(Kn,F) ! n− c ·
√
n.

We next put our focus on complete bipartite graphs. For the color choosability prob-
lem, it was observed in [8] that the graph Kk,m is k-choosable for every m < kk whereas
ch(Kk,m) = k + 1 for every m " kk. Considering the subspace choice number of these
graphs, for every field F it holds that ch-s(Kk,m,F) ! k+1, because Kk,m is k-degenerate.
We consider here the problem of identifying the values of m for which this k + 1 upper
bound is tight. Namely, for an integer k and a field F, let m(k,F) denote the smallest
integer m for which it holds that ch-s(Kk,m,F) = k + 1. We provide the following lower
bound.

Theorem 4. For every integer k and for every field F,

m(k,F) >
k−1#

i=1

$k − 1

i

%
.

In particular, for every field F it holds that m(k,F) = Ω(k · log k).

We next provide a general approach for proving upper bounds on m(k,F). The follow-
ing theorem reduces this challenge to constructing families of vectors with certain linear
independence constraints.

Theorem 5. If there exists a collection of m = k · (t − 1) + 1 nonzero vectors in Fk

satisfying that every t of them span the entire space Fk, then m(k,F) ! m.

The above theorem allows us to derive upper bounds on m(k,F) for various fields F.

Corollary 6. Let k be an integer and let F be a field.

1. If |F| " k2 − k + 1 then m(k,F) ! k2 − k + 1.
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2. If F is a finite field of size q " k then m(k,F) ! k · qk−1−1
q−1

+ 1.

We remark that the first item of Corollary 6 is obtained by applying Theorem 5 with
collections of vectors that form the columns of Vandermonde matrices. It implies that
m(k,F) = O(k2) whenever the field F is infinite or sufficiently large as a function of k,
leaving us with a nearly quadratic gap from the lower bound given in Theorem 4. This
again demonstrates a significant difference between the behavior of the choice number
and that of the subspace choice number.

In fact, Theorems 4 and 5 are proved in a more general form with respect to asym-
metric subspace assignments, where the left and right vertices of the complete bipartite
graphs might be assigned subspaces of different dimensions. For the precise generalized
statements, see Theorems 26 and 29. We note that this is analogous to the asymmetric
setting of color choosability that was recently studied by Alon, Cambie, and Kang [3].

We particularly consider the bipartite graph K2,m whose left side consists of only two
vertices. For an integer n, we say that K2,m is (n; 2, 2)-subspace choosable over a field F if
it is f -subspace choosable over F for the function f that assigns the integer n to one vertex
of the left side and the integer 2 to each of the other vertices. We consider the problem
of determining, for a given integer n, the smallest m for which K2,m is (n; 2, 2)-subspace
choosable over a given field F, and prove the following.

Theorem 7. For every integer n " 1 the following holds.

1. The graph K2,n−1 is (n; 2, 2)-subspace choosable over every field F.

2. The graph K2,n is (n; 2, 2)-subspace choosable over C.

3. The graph K2,n is (n; 2, 2)-subspace choosable over R if and only if n is odd.

We finally consider the computational aspect of the subspace choice number and prove
the following hardness result.

Theorem 8. Let k " 3 be an integer and let F be either R or some finite field. Then, the
problem of deciding whether a given bipartite graph G satisfies ch-s(G,F) ! k is NP-hard.

The proof of Theorem 8 is inspired by the approach taken in a proof due to Rubin [8] for the
Π2-hardness of the decision problem associated with the (color) choice number. His proof
involves a delicate construction of several gadget graphs used to efficiently map an instance
of the Π2-variant of the satisfiability problem to an instance of the color choosability
problem. These gadgets, however, do not fit the setting of subspace choosability. In fact,
the characterization of 2-subspace choosable graphs over the reals, given in [13], implies
that the instances produced by the reduction of [8] are never subspace choosable over this
field. To overcome this difficulty, we construct and analyze a different gadget graph that
allows us, combined with ideas of Gutner and Tarsi [10, 11], to obtain the NP-hardness
result stated in Theorem 8. Our analysis involves a characterization, stated below, of
the 2-subspace choosable graphs over finite fields, extending the characterizations given
in [13] for the real and complex fields.
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Proposition 9. For every finite field F, a graph is 2-subspace choosable over F if and
only if it contains no cycles.

While Theorem 8 indicates the hardness of efficiently determining the subspace choice
number of bipartite graphs, it would be natural to expect the stronger notion of Π2-
hardness to hold for this problem.

1.2 Outline

The rest of the paper is organized as follows. In Section 2, we prove Theorem 2, relating
the subspace choice number of a graph over a general field to its average degree. We also
prove there an improved bound for certain graphs and discuss a limitation of our approach.
In section 3, we prove the upper bound on the subspace choice number of complete graphs
over finite fields given in Theorem 3. In Section 4, we prove the characterization of 2-
subspace choosable graphs over finite fields given in Proposition 9, which will be used
in the following sections. In Section 5, we prove several upper and lower bounds on
the subspace choosability of complete bipartite graphs in the asymmetric setting, and in
particular confirm Theorems 4, 5, and 7. Finally, in Section 6, we prove our hardness
result given in Theorem 8.

2 Subspace Choosability and Average Degree

In this section we relate the subspace choice number of a graph over a general field to
its average degree and prove Theorem 2. We start with the following definition of k-
partitioned graphs (for an example, see Lemma 15).

Definition 10. Let G = (V,E) be a graph. For every vertex v ∈ V , let Ev ⊆ E denote
the set of edges of G that are incident with v. We say that the graph G is k-partitioned
if it is possible to partition every set Ev, v ∈ V , into k sets E

(1)
v , . . . , E

(k)
v (some of which

may be empty), such that for every function g : V → [k] there exist two adjacent vertices

v1, v2 ∈ V such that {v1, v2} ∈ E
(g(v1))
v1 ∩ E

(g(v2))
v2 .

The following theorem shows that the subspace choice number of a k-partitioned graph
exceeds k over any field.

Theorem 11. For every k-partitioned graph G and for every field F, ch-s(G,F) > k.

Proof. Fix an arbitrary field F. Let G = (V,E) be a k-partitioned graph, and for every

vertex v ∈ V , let Ev = E
(1)
v ∪· · ·∪E(k)

v be the corresponding partition of the edges incident
with v, as in Definition 10. We use these partitions to define a k-subspace assignment over
F to the vertices of G involving vectors from the space F|E|, where each entry corresponds
to an edge e ∈ E. To a vertex v ∈ V we assign the subspace Wv spanned by the k vectors
w

(1)
v , . . . , w

(k)
v , where w

(i)
v is the 0, 1 indicator vector of the subset E

(i)
v of E. In fact, some

of the sets E
(i)
v might be empty, and thus some of the vectors w

(i)
v might be zeros, resulting

in subspaces Wv of dimension smaller than k. To fix it, one can increase the length of the
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vectors from |E| to |E| + k · |V | and to add to each of the k · |V | vectors w(i)
v a nonzero

entry in a coordinate on which all the others have zeros. These entries ensure that the
dimension of every subspace Wv is precisely k. For simplicity of notation, we refer from
now on to these modified vectors as w

(i)
v .

We show now that no choice of nonzero vectors from these subspaces satisfies that every
two adjacent vertices receive orthogonal vectors over F. To see this, consider some choice
of a nonzero vector xv ∈ Wv for each vertex v ∈ V . We define a function g : V → [k] as

follows. For every v ∈ V , xv is a nonzero linear combination of the vectors w
(1)
v , . . . , w

(k)
v ,

hence there exists some jv ∈ [k] for which the coefficient of w
(jv)
v in this linear combination

is nonzero. We define g(v) to be such an index jv. By assumption, there exist two adjacent

vertices v1, v2 ∈ V such that {v1, v2} ∈ E
(g(v1))
v1 ∩E

(g(v2))
v2 . This implies that the entry that

corresponds to the edge {v1, v2} ofG is nonzero in both xv1 and xv2 . However, the supports
of the subspaces Wv1 and Wv2 intersect at this single entry, implying that the vectors xv1

and xv2 are not orthogonal over F. This implies that there exists a k-subspace assignment
over F to the vertices of G with no appropriate choice of nonzero vectors, yielding that
ch-s(G,F) > k, as required.

Theorem 11 motivates the problem of determining the largest integer k for which a
given graph is k-partitioned. The following lemma uses a probabilistic argument to prove
a lower bound on this quantity in terms of the average degree.

Lemma 12. There exists a constant c > 0 such that every graph with average degree

d > 1 is k-partitioned for some k " c ·
&

d
ln d

.

Proof. Let G = (V,E) be a graph with average degree d > 1. Note that 2 · |E| = |V | · d.
Let k be the largest integer satisfying

d > 2k2 · ln k. (1)

Observe that for an appropriate choice of the constant c, it holds that k " c ·
&

d
ln d

.

We prove that G is k-partitioned by a probabilistic argument. For every vertex v ∈ V ,
we define a random partition of the set Ev of the edges incident with v, into k sets
E

(1)
v , . . . , E

(k)
v (some of which may be empty) as follows. For each edge e ∈ Ev, we pick at

random, uniformly and independently, some j ∈ [k], and put e in E
(j)
v . We claim that the

obtained partitions satisfy with positive probability the condition given in Definition 10,
namely, that for every function g : V → [k] there exist two adjacent vertices v1, v2 ∈ V
such that

{v1, v2} ∈ E(g(v1))
v1

∩ E(g(v2))
v2

. (2)

Indeed, for every fixed function g : V → [k] and for every edge {v1, v2} ∈ E, the probability
that the event (2) occurs is 1/k2. Hence, the probability that for all edges of E this event
does not occur is (1 − 1/k2)|E|. By the union bound, the probability that there exists a
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function g : V → [k] such that for all edges of E the event (2) does not occur is at most

k|V | ·
'
1− 1

k2

(|E|

! k|V | · e−|E|/k2 =
)
eln k−d/(2k2)

*|V |
.

By (1), the above is smaller than 1, hence with positive probability the random partition
satisfies the required condition, and thus G is k-partitioned

Combining Theorem 11 and Lemma 12 completes the proof of Theorem 2.
It is natural to ask whether Theorem 11 can be used to obtain better lower bounds on

the subspace choice number of graphs than the one achieved by Theorem 2. The following
lemma shows that for graphs with similar average and maximum degrees, Lemma 12 is
tight up to the logarithmic term. Hence, the approach suggested by Theorem 11 cannot
yield significantly better bounds for such graphs.

Lemma 13. There exists a constant c > 0 such that every graph with maximum degree
D is not k-partitioned whenever k " c ·

√
D.

The proof of Lemma 13 uses the Lovász local lemma stated below (see, e.g., [4, Chap-
ter 5]).

Lemma 14 (Lovász Local Lemma). Let E be a collection of events such that for each
A ∈ E , it holds that Pr [A] ! p < 1 and that A is mutually independent of a set of all but
at most d of the other events of E . If e · p · (d+1) ! 1, then with positive probability none
of the events of E occurs.

Proof of Lemma 13. Let G = (V,E) be a graph with maximum degree D, and let k "
c ·

√
D be an integer for some constant c to be determined. We prove that G is not

k-partitioned by a probabilistic argument. For every vertex v ∈ V , consider a partition
Ev = E

(1)
v ∪ · · · ∪E

(k)
v of the set of the edges incident with v into k sets (some of the sets

may be empty). We claim that there exists a function g : V → [k] such that no edge

{v1, v2} of G satisfies {v1, v2} ∈ E
(g(v1))
v1 ∩E

(g(v2))
v2 . To prove it, consider a random function

g : V → [k] such that each value g(v) for v ∈ V is chosen uniformly and independently
at random from [k]. For every edge e = {v1, v2} ∈ E, let Ae denote the event that

e ∈ E
(g(v1))
v1 ∩E

(g(v2))
v2 . The probability of each event Ae is clearly 1/k2. In addition, every

event Ae is mutually independent of the set of all the other events Ae′ but those satisfying
e∩ e′ ∕= ∅, whose number is at most 2 · (D− 1). By the Lovász local lemma (Lemma 14),
it follows that if

e · 1
k2

· (2D − 1) ! 1

then with positive probability no event Ae occurs. This implies that for an appropriate
choice of the constant c, there exists a function g with the required property. Since
this holds for all possible partitions of the sets Ev into k sets, it follows that G is not
k-partitioned, and we are done.
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We end this section by proving that for certain graphs, the logarithmic term in
Lemma 12 can be avoided. Here, the proof does not use a probabilistic construction
of partitions, but an explicit one, based on finite projective planes.

Lemma 15. For a prime power q, let H be the (q + 1)-partite graph with q vertices in
every part. Let G be a graph obtained from H by removing at most q − 1 of its vertices.
Then, G is q-partitioned.

Proof. The proof is based on a well-known construction of projective planes, some of
whose properties are described next (see, e.g., [6, Chapter 9]). For every prime power q,
there exists a collection of n = q2 + q + 1 elements called points, and n sets of points,
called lines, satisfying that every two lines intersect at a single point, every two points
belong together to a single line, every point belongs to precisely q + 1 of the lines, and
every line includes precisely q+1 of the points. Fix some point p, let L1, . . . , Lq+1 be the
q + 1 lines that include p, and put L′

i = Li \ {p} for every i ∈ [q + 1]. Note that the sets
L′
i are pairwise disjoint. We view the graph H as the graph on the vertex set ∪i∈[q+1]L

′
i

in which two vertices are adjacent if they belong to distinct sets L′
i. Observe that every

two vertices of H are adjacent if and only if the line that includes their points does not
include p.

Let G = (V,E) be some subgraph of H obtained by removing at most q − 1 of its
vertices, and observe that the number of its vertices satisfies

|V | " (q + 1) · q − (q − 1) = q2 + 1.

We show that G is q-partitioned. To do so, we assign to every edge of the graph G
the line that includes the points represented by its vertices. This assignment induces for
every vertex v ∈ V a partition of the set Ev of the edges incident with v in G, where the
sets of the partition correspond to the lines associated with the edges. Observe that this
partition of Ev consists of at most q sets. Indeed, the vertex v represents a point that
belongs to q+1 lines, but no edge of Ev is assigned the line that includes the point p and
the point of v.

In order to show that these partitions satisfy the condition of Definition 10, we shall
verify that if one chooses for every point represented by a vertex in G a line that corre-
sponds to an edge incident with it, then there exist two adjacent vertices in G for which
the same line was chosen. This indeed follows from the fact that no edge of G corresponds
to a line that includes p, hence the total number of lines associated with the edges of G
is at most q2. Since the number of vertices in G exceeds q2, it follows that two vertices
are assigned the same line. Since this line does not include p, the two vertices must be
adjacent in G, completing the proof.

Note that the graph H from Lemma 15 is regular with degree q2, hence the minimum
degree of its subgraph G is at least q2 − q + 1, and yet G is q-partitioned. This shows
that the logarithmic term from Lemma 12 is not needed for G. By combining Lemma 15
with Theorem 11, we derive the following.
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Theorem 16. For a prime power q, let H be the (q + 1)-partite graph with q vertices in
every part. Let G be a graph obtained from H by removing at most q − 1 of its vertices.
Then, for every field F, ch-s(G,F) > q.

3 Subspace Choosability in Complete Graphs over Finite Fields

In this section we prove Theorem 3, which provides an upper bound on the subspace
choice number of complete graphs over finite fields. We start with two useful lemmas.

Lemma 17. For a finite field F and an integer t, let w1, w2, w3 and z1, z2, z3 be two triples
of vectors in Ft. Then, there exist α1,α2,α3 ∈ F, not all zeros, such that

+#

i∈[3]

αi · wi,
#

i∈[3]

αi · zi
,
= 0.

Proof. Consider the function f : F3 → F defined by

f(α1,α2,α3) =
+#

i∈[3]

αi · wi,
#

i∈[3]

αi · zi
,
.

The function f is a degree 2 polynomial on 3 variables over F, and (0, 0, 0) forms a root
of f . The Chevalley theorem (see, e.g., [18, Chapter IV, Theorem 1D]) implies that f has
another root, as required.

Lemma 18. For a finite field F and an integer t, let U1, U2, U3 be three subspaces of Ft

whose dimensions satisfy

dim(U1) " 2, dim(U2) " 2, and dim(U1) + dim(U2)− dim(U3) " 5.

Then, there exist nonzero vectors x1 ∈ U1 and x2 ∈ U2 such that 〈x1, x2〉 = 0 and

dim(U3 ∩ (x1)
⊥ ∩ (x2)

⊥) " dim(U3)− 1.

Proof. Let U1, U2, U3 ⊆ Ft be three subspaces as in the statement of the lemma.
Assume first that dim(U1∩U2) " 3. In this case, there exist three linearly independent

vectors in U1∩U2. By Lemma 17, there exists a nonzero self-orthogonal linear combination
of them. By choosing x1 and x2 to be this vector, it obviously holds that 〈x1, x2〉 = 0 and
that

dim(U3 ∩ (x1)
⊥ ∩ (x2)

⊥) = dim(U3 ∩ (x1)
⊥) " dim(U3)− 1,

as required.
Assume next that dim(U1 ∩ U⊥

3 ) " 1. Here, x1 can be chosen as an arbitrary nonzero
vector of U1 ∩ U⊥

3 , and x2 as an arbitrary nonzero vector of U2 satisfying 〈x1, x2〉 = 0.
Such a vector exists because dim(U2) " 2. By x1 ∈ U⊥

3 , it follows that

dim(U3 ∩ (x1)
⊥ ∩ (x2)

⊥) = dim(U3 ∩ (x2)
⊥) " dim(U3)− 1.
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The case dim(U2 ∩ U⊥
3 ) " 1 is handled similarly.

Otherwise, we have dim(U1 ∩ U2) ! 2 and dim(U1 ∩ U⊥
3 ) = dim(U2 ∩ U⊥

3 ) = 0. This
implies that

dim(U1 + U2) = dim(U1) + dim(U2)− dim(U1 ∩ U2)

" dim(U1) + dim(U2)− 2 " dim(U3) + 3,

where for the last inequality we have used the assumption

dim(U1) + dim(U2)− dim(U3) " 5.

It thus follows that

dim((U1 + U2) ∩ U⊥
3 ) = dim(U1 + U2) + dim(U⊥

3 )− dim(U1 + U2 + U⊥
3 )

" dim(U1 + U2) + (t− dim(U3))− t " 3.

Hence, there exist vectors w1, w2, w3 ∈ U1 and z1, z2, z3 ∈ U2 for which the three sums

w1 + z1, w2 + z2, w3 + z3

are linearly independent vectors that belong to U⊥
3 . By Lemma 17, there exist α1,α2,α3 ∈

F, not all zeros, such that the vectors x1 =
!

i∈[3] αi · wi and x2 =
!

i∈[3] αi · zi satisfy
〈x1, x2〉 = 0. These vectors further satisfy that

x1 + x2 =
#

i∈[3]

αi · (wi + zi) ∈ U⊥
3 .

It follows that x1 + x2 is nonzero, because the vectors wi + zi are linearly independent.
Observe that x1 belongs to U1 and that it is nonzero, because otherwise the vector x2

would be a nonzero vector that belongs to U2∩U⊥
3 , in contradiction to dim(U2∩U⊥

3 ) = 0.
By the same reasoning, x2 is a nonzero vector of U2. Finally, notice that for every vector
u ∈ U3 such that 〈u, x1〉 = 0, it also holds that 〈u, x2〉 = 0, and thus

dim(U3 ∩ (x1)
⊥ ∩ (x2)

⊥) = dim(U3 ∩ (x1)
⊥) " dim(U3)− 1,

so we are done.

Remark 19. It can be shown that for the binary field F2, the third condition of Lemma 18
can be slightly weakened to dim(U1) + dim(U2)− dim(U3) " 4.

We are ready to prove the following result, which implies Theorem 3.

Theorem 20. For an integer k " 1, put n = k2 + 2k + 3. Then, for every finite field F,

ch-s(Kn,F) ! n− k.
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Proof. For an integer k " 1 and a finite field F, consider the complete graph Kn on
n = k2 + 2k + 3 vertices. Let V = A ∪ B ∪ C be the vertex set of the graph, where
A = {v1, . . . , vk} is a set of k vertices, B is a set of k2 + k vertices, and C consists of
the three remaining vertices. To prove that ch-s(Kn,F) ! n − k, suppose that for some
integer t, we are given a subspace Uv ⊆ Ft with dim(Uv) = n − k for every v ∈ V . Our
goal is to show that there exist pairwise orthogonal nonzero vectors xv ∈ Uv for v ∈ V .
We describe now a process with several steps for choosing the vectors. Throughout the
process we maintain for every vertex v ∈ V a subspace U ′

v defined as the subspace of the
vectors currently available to the vertex v. Namely, for every partial choice of vectors, U ′

v

is the subspace of Uv that consists of all the vectors of Uv that are orthogonal to all the
previously chosen vectors. Initially, we have U ′

v = Uv for every v ∈ V .
Consider some partition of the set B into k sets, B = B1∪· · ·∪Bk, where |Bi| = 2·(k−

i+1) for every i ∈ [k]. Note that this is possible, because |B| = k2+k = 2·
!k

i=1(k − i+ 1).
Our process starts with k initial steps, where the role of the ith step (i ∈ [k]) is to choose
vectors for the vertices of Bi in a way that poses only k − i+ 1 linear constraints on the
choice of the vector for vi. Note that for the other vertices, the choice of the vectors for
the vertices of Bi might pose twice this number of linear constraints.

For i ∈ [k], the ith step is performed as follows. Consider an arbitrary partition of the
set Bi into k−i+1 pairs, denoted by (a1, b1), . . . , (ak−i+1, bk−i+1). For every j ∈ [k−i+1],
we choose two nonzero vectors uaj ∈ U ′

aj
and ubj ∈ U ′

bj
such that 〈uaj , ubj〉 = 0 and

dim(U ′
vi
∩ (uaj)

⊥ ∩ (ubj)
⊥) " dim(U ′

vi
)− 1.

Observe that such a choice, if it exists, satisfies that uaj and ubj are nonzero vectors that
belong to the subspaces of the vertices aj and bj respectively, they are orthogonal to all
the previously chosen vectors and to one another, and in addition, their choice reduces the
dimension of U ′

vi
by at most 1. To prove the existence of such a choice we apply Lemma 18.

The number of vectors chosen before the (i, j) iteration is
!i−1

l=1 |Bl|+2(j−1), hence each
of dim(U ′

aj
) and dim(U ′

bj
) is at least

(n− k)−
i−1#

l=1

|Bl|− 2(j − 1).

Additionally, since the 2(j−1) already chosen vectors of the ith step reduce the dimension
of U ′

vi
by at most j − 1, it can be assumed that

dim(U ′
vi
) = (n− k)−

i−1#

l=1

|Bl|− (j − 1).

It thus follows that in the (i, j) iteration, it holds that

dim(U ′
aj
) + dim(U ′

bj
)− dim(U ′

vi
) " (n− k)−

i−1#

l=1

|Bl|− 3(j − 1)
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=
k#

l=i

|Bl|+ 3− 3(j − 1)

= (k − i+ 1)(k − i+ 2)− 3j + 6

" (k − i+ 1)(k − i+ 2)− 3(k − i+ 1) + 6

" (k − i+ 1)(k − i− 1) + 6 = (k − i)2 + 5 " 5,

where for the first equality we use the fact that n = |B| + k + 3, and for the second
inequality we use the fact j ! k − i + 1. The above bound, which also implies that
dim(Uaj) " 2 and that dim(Ubj) " 2, allows us to apply Lemma 18 and to obtain the
required vectors uaj and ubj .

We next show that given the above choice for the vertices of B, one can choose vectors
for the vertices of A ∪ C to obtain the required pairwise orthogonal vectors. First, for
the three vertices of C, choose arbitrary pairwise orthogonal nonzero vectors from the
currently available subspaces. This is indeed possible, because so far we chose n− (k+3)
vectors, so the dimension of the subspace available to each of them is at least 3. The
choice for the first one leaves the available subspaces of the other two with dimension at
least 2, and the choice of the second one leaves the available subspace of the third with
dimension at least 1, allowing us to choose its nonzero vector.

Finally, we choose the vectors for the vertices of A. For each i ∈ [k], among the
n− k vectors chosen so far, there are k − i+ 1 pairs of vectors whose choice reduced the
dimension of U ′

vi
by at most 1. This implies that we currently have

dim(U ′
vi
) " (n− k)− ((n− k)− (k − i+ 1)) = k − i+ 1.

This allows us to go over the vertices vk, vk−1, . . . , v1, in this order, and to choose a nonzero
vector from the subspace currently available to each of them, completing the proof.

Remark 21. For the binary field F2, it can be shown that ch-s(Kn,F2) ! n − k for
n = k2 + 2k + 2. This follows by applying the above proof with the version of Lemma 18
mentioned in Remark 19.

4 Characterization of 2-Subspace Choosable Graphs

In this section we prove Proposition 9, which asserts that for every finite field F and for
every graph G, ch-s(G,F) ! 2 if and only if G contains no cycles.

Proof of Proposition 9. If G contains no cycles then it is 1-degenerate, implying that it
is 2-subspace choosable over every field F. To complete the proof, we fix some finite field
F and turn to show that for every ℓ " 3, the ℓ-cycle Cℓ satisfies ch-s(Cℓ,F) > 2. We first
prove it for ℓ = 3 and for ℓ = 4.

• For ℓ = 3, assign to the vertices of the cycle C3 the subspaces of F3 defined by

U1 = span(e1, e2), U2 = span(e1, e2 + e3), and U3 = span(e1 + α · e3, e2),
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where α ∈ F is some field element to be determined. We claim that for some α ∈ F
it is impossible to choose three pairwise orthogonal nonzero vectors xi ∈ Ui (i ∈ [3]).
Indeed, it is easy to verify that x1 cannot be chosen as a scalar multiple of e1 nor of
e2. So assume without loss of generality that x1 is proportional to e1+z ·e2 for some
z ∕= 0. If x1 is orthogonal to x2 and to x3, then x2 is proportional to z · e1 − e2 − e3
and x3 is proportional to z · e1 + αz · e3 − e2. However, the inner product of the
latter two is z2 − α · z + 1, so it suffices to show that there exists α ∈ F for which
this quadratic polynomial has no root. Notice that in case that z2 − α · z + 1 has a
root, it can be written as (z − γ) · (z − γ−1) for some γ ∕= 0. Since the number of
possible values of α is larger than the number of possible invertible values of γ, it
follows that the required α exists.

• For ℓ = 4, suppose first that the field F is of characteristic larger than 2, and assign
to the vertices along the cycle C4 the subspaces of F4 defined by

U1 = U2 = span(e1, e2), U3 = span(e1+e4, e2+e3), and U4 = span(e1+α·e3, e2+e4),

where α ∈ F is some nonzero field element to be determined. We claim that for some
α ∕= 0 it is impossible to choose four nonzero vectors xi ∈ Ui (i ∈ [4]) that form a
valid choice for C4. By α ∕= 0, it is easy to verify, as before, that x1 cannot be chosen
as a scalar multiple of e1 nor of e2, so it can be assumed that it is proportional to
e1 + z · e2 for some z ∕= 0. If the vectors xi form a valid choice for C4, then x2 is
proportional to z · e1− e2, thus x3 is proportional to e1+ e4+ z · e2+ z · e3, and x4 is
proportional to z · e1+αz · e3− e2− e4. However, the inner product of the latter two
is α · z2 − 1, so it suffices to show that there exists α ∕= 0 for which α · z2 ∕= 1 for all
values of z. Since F is of characteristic larger than 2, it has a non-square element,
whose choice for α completes the argument.

If, however, F is of characteristic 2, one can consider the subspaces of F5 defined by
U1 = U2 = span(e1, e2), U3 = span(e1 + e4, e2 + e3 + e5), U4 = span(e1 + e3, e2 +
α · e4 + e5), where α ∈ F is some nonzero field element for which z2 + z ∕= α for
all values of z. Notice that such an α exists because the function z -→ z2 + z maps
both 0 and 1 to 0, so some nonzero element does not belong to its image. It can
be verified that for the above subspace assignment, no valid choice of vectors for C4

exists.

Finally, observe that for every odd ℓ > 3, one can extend the above subspace assignment
for C3 by adding ℓ − 3 copies of the subspace span(e1, e2) between U1 and U2 to get a
subspace assignment showing that ch-s(Cℓ,F) > 2. Similarly, for every even ℓ > 4, one
can extend the above subspace assignment for C4 by adding ℓ− 4 copies of the subspace
span(e1, e2) between U1 and U2.

Remark 22. As shown in [13], the characterization given in Proposition 9 for finite fields
holds for the real field R too. In particular, for every integer ℓ " 3, it holds that
ch-s(Cℓ,R) > 2. For an odd ℓ, this simply follows by assigning R2 to every vertex.
For an even ℓ, this follows from the construction given above in the proof for fields of
characteristic larger than 2, taking α to be some non-square over R.
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5 Subspace Choosability in Complete Bipartite Graphs

In this section we prove our results on subspace choosability in complete bipartite graphs.

5.1 Complete Balanced Bipartite Graphs

Erdős et al. [8] proved that the choice number of the complete balanced bipartite graph
Km,m exceeds k for m =

)
2k−1
k

*
. We provide here a quick proof for an analogue result

for subspace choosability. Note, however, that when the number of vertices is sufficiently
large, the lower bound given by Theorem 2 is significantly better.

Proposition 23. For an integer k and a field F, ch-s(Km,m,F) > k for m =
)
2k−1
k

*
.

Proof. Let k be an integer and let F be a field. Consider the graph Km,m for m =
)
2k−1
k

*
,

and associate with the vertices of every side of the graph all the k-subsets of [2k − 1].
For a vertex associated with a k-subset A of [2k − 1] we assign the k-subspace of F2k−1

spanned by the vectors ei with i ∈ A, where ei stands for the vector of F2k−1 with 1 on
the ith entry and 0 everywhere else. We claim that there is no choice of nonzero vectors
from these subspaces such that the vectors of the left side are orthogonal to those of the
right side. To see this, suppose in contradiction that such a choice exists, and denote by
x1, . . . , xm and y1, . . . , ym the vectors chosen for the vertices of the left and right sides
respectively. Letting U = span(x1, . . . , xm) and V = span(y1, . . . , ym), it follows that
V ⊆ U⊥, and thus

dim(U) + dim(V ) ! dim(U) + dim(U⊥) = 2k − 1,

implying that at least one of U and V has dimension at most k − 1. Without loss of
generality, assume that dim(U) ! k − 1. Put ℓ = dim(U), fix some ℓ vectors from
x1, . . . , xm that span U , and consider the (2k − 1) × ℓ matrix whose columns are these
vectors. Since the dimension of the subspace spanned by the rows of U is also ℓ, it follows
that there exists a set B ⊆ [2k − 1] of ℓ indices whose rows are linearly independent. It
follows that the only vector in U with zeros in all entries of B is the zero vector. However,
by |B| = ℓ ! k − 1, there exists a k-subset A of [2k − 1] disjoint from B, so the vertex
associated with this A in the left side of the graph cannot receive any nonzero vector of
U . This gives us the required contradiction and completes the proof.

5.2 Asymmetric Subspace Choosability in Complete Bipartite Graphs

We consider now complete bipartite graphs in the asymmetric setting, where the dimen-
sions of the subspaces assigned to the vertices of the right and left sides might be different.

Definition 24. The complete bipartite graph Kℓ1,ℓ2 with the vertex set A of size ℓ1
on the left side and the vertex set B of size ℓ2 on the right side is said to be (k1, k2)-
subspace choosable over a field F if it is f -subspace choosable over F for the function
f : A∪B → {k1, k2} defined by f(u) = k1 for every u ∈ A and f(u) = k2 for every u ∈ B.
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In what follows, we provide several conditions that imply subspace choosability and sub-
space non-choosability in complete bipartite graphs, and in particular prove Theorems 4, 5,
and 7.

5.2.1 Upper Bounds

We start with the following simple statement.

Proposition 25. For every field F, the graph Kℓ1,ℓ2 is (k1, k2)-subspace choosable over F
whenever ℓ1 < k2 or ℓ2 < k1.

Proof. Suppose that ℓ1 < k2, and let U1, . . . , Uℓ1 and V1, . . . , Vℓ2 be k1-subspaces and k2-
subspaces, respectively, of Ft for some integer t. Choose an arbitrary nonzero vector from
each Ui for i ∈ [ℓ1]. Such a choice poses at most ℓ1 linear constraints on the choice of
a vector from each Vj, and since the dimension of those subspaces is k2 > ℓ1, a nonzero
choice exists, resulting in a valid choice for the whole graph. By symmetry, the result
holds for the case ℓ2 < k1 as well.

We next prove the following result, which confirms Theorem 4.

Theorem 26. For every two integers k and n and for every field F, the graph Kk,m is

(n, k)-subspace choosable over F for m =
!k−1

i=0 ⌊n−1
k−i

⌋.

We need the following lemma.

Lemma 27. Let W be a k-subspace of some finite-dimensional vector space over a field
F, let W1, . . . ,Wt be r-subspaces of W , and suppose that t ! k−1

k−r
. Then, there exists a

nonzero vector in the intersection
-

i∈[t] Wi.

Proof. Using the standard equality dim(V1 ∩ V2) = dim(V1) + dim(V2) − dim(V1 + V2),
observe that

dim
. /

i∈[t]

Wi

0
= dim(W1) + dim

./

i!2

Wi

0
− dim

.
W1 +

/

i!2

Wi

0

" dim(W1) + dim
./

i!2

Wi

0
− dim(W ).

By repeatedly applying this inequality we obtain that

dim
. /

i∈[t]

Wi

0
"

#

i∈[t]

dim(Wi)− (t− 1) · dim(W ) = t · r − (t− 1) · k " 1,

hence there exists a nonzero vector in
-

i∈[t] Wi, as required.

We are ready to prove Theorem 26.
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Proof of Theorem 26. For integers k and n, put m =
!k−1

i=0 ⌊n−1
k−i

⌋. We show that the
graph Kk,m is (n, k)-subspace choosable over every field F. Denote the left and right
vertices of the graph by u1, . . . , uk and v1, . . . , vm respectively, and consider an arbitrary
assignment of n-subspaces and k-subspaces of Ft to the left and right vertices, respectively,
for some integer t. For every i ∈ [k] let Ui be the subspace assigned to ui, and for every
j ∈ [m] let Vj be the subspace assigned to vj. We will show that it is possible to choose
nonzero vectors from these subspaces such that the vectors of the left side are orthogonal
over F to those of the right side.

We first describe how the vectors x1, . . . , xk of the left vertices u1, . . . , uk are chosen.
We choose them one by one, and to do so we maintain a set J ⊆ [m] and some subspaces
L1, . . . , Lm of Ft. Initially, we define J = [m] and Lj = V ⊥

j for all j ∈ [m]. Note that
dim(Lj) = t− k. Then, for every i ∈ [k] we act as follows.

• Pick some set J ′ ⊆ J of size |J ′| = ⌊ n−1
k−(i−1)

⌋.

• Let J ′′ ⊆ J ′ be the set of indices j ∈ J ′ satisfying dim(Lj) = t− k + (i− 1).

• Choose xi to be some nonzero vector of Ui that belongs to the intersection
-

j∈J ′′ Lj.

• Add the vector xi to every subspace Lj, that is, update every subspace Lj to be the
subspace Lj + span(xi).

• Remove the elements of J ′ from J .

Observe that the number of elements removed from J during the above k iterations is!k
i=1 ⌊ n−1

k−(i−1)
⌋. Since the latter coincides with our definition of m, it follows that after

the kth iteration the set J is empty.
We show now that the vectors xi are well defined, in the sense that in the ith iteration

there exists a nonzero vector that belongs to Ui and to the intersection
-

j∈J ′′ Lj. To see
this, put W = Ui and consider its subspaces Wj = Lj ∩W for j ∈ J ′′. By the definition
of J ′′, for every j ∈ J ′′ it holds that dim(Lj) = t− k + (i− 1), hence, using dim(W ) = n,
it follows that

dim(Wj) = dim(Lj) + dim(W )− dim(Lj +W )

" t− k + (i− 1) + n− t = n− k + i− 1.

By Lemma 27 applied to W and to its subspaces Wj, using the fact that |J ′′| ! ⌊ n−1
k−(i−1)

⌋,
the required vector xi is guaranteed to exist.

We finally show that the above choice of vectors for the left vertices can be extended
to a valid choice of vectors for the whole graph. Fix some j ∈ [m] and observe that if
the subspace Lj obtained at the end of the kth iteration has dimension strictly smaller
than t then it is possible to choose an appropriate vector yj for the vertex vj. Indeed,
yj can be chosen as any nonzero vector orthogonal to this Lj, because such a vector is
orthogonal to V ⊥

j , hence belongs to Vj, and is orthogonal to all the vectors x1, . . . , xk that
were chosen for the left vertices and were added to Lj during the k iterations. Since the
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initial dimension of Lj is t− k it suffices to show that in at least one of the k iterations,
the chosen vector xi was already inside Lj. So suppose that the set J ′ includes j in the ith
iteration. If j ∈ J ′′ then the vector xi chosen in this iteration belongs to the current Lj.
Otherwise, the dimension of Lj in this iteration is smaller than t− k + (i− 1), implying
that in one of the previous i−1 iterations a vector that already belongs to Lj was chosen,
so we are done.

5.2.2 Lower Bounds

We start with the following simple statement.

Proposition 28. For every two integers n, k " 2 and for every field F, the graph Kk,nk

is not (n, k)-subspace choosable over F.

Proof. Denote the vertices of the left side of Kk,nk by u1, . . . , uk. For every i ∈ [k], assign
to the vertex ui the n-subspace of Fnk spanned by the vectors ei with i ∈ [(i−1)·n+1, i·n],
where ei stands for the vector in Fnk with 1 on the ith entry and 0 everywhere else. Then,
associate with each of the nk vertices of the right side a distinct k-tuple (a1, . . . , ak) ∈ [n]k,
and assign to it the k-subspace of Fnk spanned by the vectors e(i−1)n+ai for i ∈ [k].

We claim that there is no choice of nonzero vectors from these subspaces such that
the vectors of the left side are orthogonal over F to those of the right side. To see this,
consider any choice of a nonzero vector xi for each vertex ui for i ∈ [k]. For every i ∈ [k],
consider the restriction 1xi ∈ Fn of the vector xi to the support of its subspace, that is, to
the entries with indices in [(i− 1) · n + 1, i · n]. Since xi is nonzero, it follows that there
exists some ai ∈ [n] such that the vector 1xi is nonzero in its aith entry. However, the
only vector in the subspace of the vertex (a1, . . . , ak) of the right side which is orthogonal
to all the vectors xi (i ∈ [k]) is the zero vector. This implies that no choice of nonzero
vectors for the left side can be extended to a valid choice of vectors for the whole graph,
so we are done.

We next prove the following result.

Theorem 29. For every integers n, t, k and for every field F, the following holds. If
there exists a collection of m = k · (t− 1) + 1 nonzero vectors in Fn satisfying that every
t of them span the entire space Fn, then the graph Kk,m is not (n, k)-subspace choosable
over F.

Proof. Suppose that there exists a collection of m = k · (t − 1) + 1 nonzero vectors
b1, . . . , bm in Fn satisfying that every t of them span the space Fn. To prove that Kk,m is
not (n, k)-subspace choosable, we have to show that it is possible to assign n-subspaces
and k-subspaces over F to the left and right vertices of the graph Kk,m respectively, so
that no choice of a nonzero vector from each subspace satisfies that the vectors of the left
vertices are orthogonal over F to the vectors of the right vertices.

Let u1, . . . , uk be the vertices of the left side, and let v1, . . . , vm be the vertices of the
right side. For every i ∈ [k], we assign to the vertex ui the subspace Ui of Fkn that includes
all the vectors whose support is contained in the entries indexed by [(i− 1) · n+ 1, i · n].
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In other words, viewing the vectors of Fkn as a concatenation of k parts of length n, Ui is
the n-subspace of all the vectors that have zeros in all the parts but the ith one. Then,
for every j ∈ [m], we assign to the vertex vj the subspace Vj spanned by the k vectors
e1⊗ bj, . . . , ek ⊗ bj of Fkn. Here, ei stands for the vector in Fk with 1 on the ith entry and
0 everywhere else, and ⊗ stands for the tensor product operation of vectors. Hence, Vj

is the k-subspace of all the vectors in Fkn consisting of k parts, each of which is equal to
the vector bj multiplied by some element of F.

Assume for the sake of contradiction that there exist nonzero vectors xi ∈ Ui (i ∈ [k])
and yj ∈ Vj (j ∈ [m]) such that 〈xi, yj〉 = 0 for all i and j. For any i ∈ [k], let x̃i ∈ Fn

be the (nonzero) restriction of the vector xi to the ith part. For any j ∈ [m], write
yj =

!
i∈[k] αi,j · ei ⊗ bj for some coefficients αi,j ∈ F. Since all the vectors yj are nonzero,

it clearly follows that at least m of the coefficients αi,j are nonzero. Now, observe that for
all i ∈ [k] and j ∈ [m], 〈xi, yj〉 = 0 implies that 〈x̃i,αi,j · bj〉 = 0. However, combining the
facts that x̃i is nonzero and that every t vectors among b1, . . . , bm span Fn, it follows that
for every i ∈ [k], at most t−1 of the coefficients αi,j with j ∈ [m] are nonzero. This yields
that the total number of nonzero coefficients αi,j is at most k · (t− 1) < m, providing the
desired contradiction.

We derive the following.

Corollary 30. Let k be an integer, and let F be a field.

1. For an integer n, set m = k · (n − 1) + 1. If |F| " m then the graph Kk,m is not
(n, k)-subspace choosable over F.

2. For integers n and q, set m = k · qn−1−1
q−1

+ 1. If F is a finite field of size q " k then

the graph Kk,m is not (n, k)-subspace choosable over F.

Proof. For Item 1, set m = k · (n− 1)+ 1, and let γ1, . . . , γm be some distinct elements of
the field F. For each i ∈ [m], let bi be the vector in Fn defined by bi = (1, γi, γ

2
i , . . . , γ

n−1
i ).

As follows from standard properties of the Vandermonde matrix, every n of the vectors
b1, . . . , bm are linearly independent and thus span the space Fn. By Theorem 29 applied
to these vectors with t = n, it follows that Kk,m is not (n, k)-subspace choosable over F,
as required.

For Item 2, set t = qn−1−1
q−1

+1 and m = k · (t−1)+1. Consider the equivalence relation
on the nonzero vectors of Fn defined by calling two vectors equivalent if one is a multiple
of the other by an element of F. Let B be a collection of vectors in Fn that consists of
one vector from every equivalence class, and note that |B| = qn−1

q−1
. We observe that every

t vectors of B span the space Fn. Indeed, every strict subspace of Fn has dimension at
most n−1, so it includes at most qn−1−1 nonzero vectors, and thus at most t−1 vectors
that represent different equivalence classes. The assumption q " k implies that

m = k · q
n−1 − 1

q − 1
+ 1 ! qn − 1

q − 1
= |B|,

so by applying Theorem 29 tom of the vectors of B, we get thatKk,m is not (n, k)-subspace
choosable over F, and we are done.
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Theorem 5 and Corollary 6 follow, respectively, from Theorem 29 and Corollary 30.
We note that the approach proposed by Theorem 29 for proving subspace non-choosability

results seems to be more beneficial for large fields. This is justified by the following lemma
that relates the size of the collection needed in Theorem 29 to the size of the field. Its
proof is inspired by an argument given in [5].

Lemma 31. Let F be a finite field of size q, and let m " t " n be integers. If there exists
a collection of m nonzero vectors in Fn satisfying that every t of them span the space Fn,
then

m ! n− 2 + (q + 1) · (t− n+ 1).

Proof. Let S ⊆ Fn be a set of m nonzero vectors in Fn satisfying that every t of them
span the space Fn. Let x1, . . . , xn−2 be n − 2 linearly independent vectors of S, and
consider all the (n − 1)-subspaces of Fn that include all of these vectors. Observe that
the number of such subspaces is q+1, and that these subspaces cover together the entire
space Fn. Since every t vectors of S span Fn, it follows that each of these q+1 subspaces
includes less than t− (n− 2) of the vectors of S \ {x1, . . . , xn−2}. We thus conclude that
m = |S| ! (n− 2) + (q + 1) · (t− (n− 2)− 1), and we are done.

5.2.3 Two Vertices on the Left Side

We next consider the particular case of the complete bipartite graphK2,m with two vertices
on the left side and m vertices on the right side. It will be convenient to use the following
definition.

Definition 32. The complete bipartite graph K2,m with the vertex set A = {u1, u2} on
the left side and the vertex set B of size m on the right side is said to be (k1; k2, k3)-
subspace choosable over a field F if it is f -subspace choosable over F for the function
f : A∪B → {k1, k2, k3} defined by f(u1) = k1, f(u2) = k2 and f(u) = k3 for every u ∈ B.

In what follows, we prove Theorem 7. We start with its first item, restated and proved
below.

Proposition 33. For every integer n and for every field F, the graph K2,n−1 is (n; 2, 2)-
subspace choosable over F.

Proof. For an integer n, consider the graph K2,n−1. To prove that it is (n; 2, 2)-subspace
choosable over a field F, consider for some integer t arbitrary subspaces U1, U2 and
V1, . . . , Vn−1 of Ft whose dimensions satisfy dim(U1) = n, dim(U2) = 2, and dim(Vj) = 2
for j ∈ [n − 1]. Choose an arbitrary nonzero vector x2 ∈ U2, and for every j ∈ [n − 1]
choose a nonzero vector yj ∈ Vj such that 〈x2, yj〉 = 0. Note that this is possible since
dim(Vj) = 2. Finally, choose a vector x1 ∈ U1 satisfying 〈x1, yj〉 = 0 for all j ∈ [n − 1],
which is possible by dim(U1) = n. This gives us the required choice of vectors.

By the above proposition, K2,n−1 is (n; 2, 2)-subspace choosable over every field. We
consider the question of whether this holds even after adding another vertex to the right
side of the graph. Under certain conditions the answer is positive, as shown by the
following result, confirming Item 2 and the “if” part of Item 3 in Theorem 7.
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Proposition 34. The graph K2,n is (n; 2, 2)-subspace choosable for every integer n over
C and for every odd integer n over R.

We need the following lemma, which is essentially given in [13].

Lemma 35 ([13, Lemma 2.9]). Let t " 2 be an integer, and let F be either R or C. Let
U, V be two 2-subspaces of Ft such that for every nonzero vector x ∈ U there exists a
nonzero vector y ∈ V such that 〈x, y〉 ∕= 0. Then, for every basis u(1), u(2) of U satisfying
〈u(i), u(j)〉 ∕= 0 if and only if i = j, there exists a basis v(1), v(2) of V satisfying 〈v(i), v(j)〉 ∕=
0 if and only if i = j and, in addition, 〈u(i), v(j)〉 = 0 if and only if i = j.

Proof of Proposition 34. Let n be an integer, and let F be either R or C. Consider the
graph K2,n with the vertex set A = {u1, u2} on the left side and the vertex set B =
{v1, . . . , vn} on the right side. To prove that the graph is (n; 2, 2)-subspace choosable over
F, consider some subspaces U1, U2, V1, . . . , Vn of Ft for some integer t, where dim(U1) = 2,
dim(U2) = n, and dim(Vj) = 2 for all j ∈ [n]. We will show now that there exist nonzero
vectors xi ∈ Ui (i ∈ [2]) and yj ∈ Vj (j ∈ [n]) such that 〈xi, yj〉 = 0 over F for all i and j.

Suppose first that there exists a nonzero vector x1 ∈ U1 such that x1 is orthogonal to
the subspace Vj′ for some j′ ∈ [n]. In this case, choose x1 for the vertex u1, and for every
j ∈ [n] \ {j′} let yj ∈ Vj be a nonzero choice for the vertex vj satisfying 〈x1, yj〉 = 0. Note
that such a choice exists because dim(Vj) = 2. These choices pose at most n − 1 linear
constraints on the choice for u2, so by dim(U2) = n, there exists a nonzero vector x2 ∈ U2

that is orthogonal to all the vectors yj with j ∈ [n] \ {j′}. Finally, choose yj′ ∈ Vj′ as
a nonzero vector orthogonal to x2, whose existence is guaranteed by dim(Vj′) = 2. The
assumption on x1 implies that 〈x1, yj′〉 = 0, so we obtain the required choice of vectors.

Otherwise, let u
(1)
1 , u

(2)
1 be a basis of U1 satisfying 〈u(i)

1 , u
(j)
1 〉 ∕= 0 if and only if i = j.

Since no nonzero vector of U1 is orthogonal to some Vj, we can apply Lemma 35 to obtain

for every j ∈ [n] a basis v
(1)
j , v

(2)
j of Vj that satisfies the assertion of the lemma. Note that

it can be assumed that 〈u(1)
1 , v

(2)
j 〉 = 〈u(2)

1 , v
(1)
j 〉 = 1 for all j ∈ [n]. Let M1 and M2 be the

n× t matrices over F whose jth rows are v
(1)
j and v

(2)
j respectively.

Now, to obtain the required choice of nonzero vectors, let x1 = α ·u(1)
1 +β ·u(2)

1 be our
nonzero choice for the vertex u1 for some α, β ∈ F to be determined. Observe that this
choice forces us to choose, up to a multiplicative constant, the vector yj = α ·v(1)j −β ·v(2)j

for the vertex vj for each j ∈ [n]. For the vertex u2, let U ∈ Ft×n denote a matrix whose
columns form a basis of the subspace U2, and denote its choice by x2 = U · γ for γ ∈ Fn.
We consider the question of whether there exist α, β as above and a nonzero γ such that
〈x2, yj〉 = 0 for all j ∈ [n]. Observe that this condition is equivalent to

(α ·M1 − β ·M2) · (U · γ) = 0.

Letting M ′
1 and M ′

2 be the n× n matrices defined by M ′
1 = M1 · U and M ′

2 = M2 · U , we
ask whether there exist α, β ∈ F, that are not both zeros, and a nonzero vector γ ∈ Fn

satisfying
(α ·M ′

1 − β ·M ′
2) · γ = 0.
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If det(M ′
1) = 0 then we can take α = 1 and β = 0, for which a nonzero γ is guaranteed

to exist. Otherwise, if det(M ′
1) ∕= 0, we take, say, β = −1, and show that for some α ∈ F,

the matrix α ·M ′
1 +M ′

2 is singular, implying the existence of the required vector γ. To
see this, observe that α ·M ′

1 +M ′
2 is singular if and only if α · In +N is singular as well,

where N = M ′
2 · (M ′

1)
−1. This reduces our question to whether for some α ∈ F it holds

that det(α · In +N) = 0 . This determinant is a degree n polynomial in α. Over F = C,
this polynomial clearly has a root, and over F = R, assuming that n is odd, it has a root
as well. This completes the proof.

We end this section by proving that adding a vertex to the right side of K2,n−1 for an
even integer n results in a graph which is no longer (n; 2, 2)-subspace choosable over the
real field R and over every finite field. This, in particular, gives us the “only if” part of
Item 3 of Theorem 7.

Proposition 36. Let F be either R or any finite field. Then, for every even integer n,
the graph K2,n is not (n; 2, 2)-subspace choosable over F.

Proof. For a field F as above, Proposition 9 and Remark 22 imply that ch-s(K2,2,F) > 2.
Hence, for some integer t, there exist 2-subspaces L1, L2, R1, R2 ⊆ Ft such that no choice
of nonzero vectors 1xi ∈ Li and 1yj ∈ Rj for i, j ∈ [2] satisfies 〈1xi, 1yj〉 = 0 for all i, j.

For an even integer n = 2k, we define a subspace assignment to the vertices of K2,n

that lies in the vector space Ft·k as follows. To the left vertices we assign the subspaces
U1, U2 ⊆ Ft·k defined by

U1 = span(e1 ⊗ L1, . . . , ek ⊗ L1) and U2 =
. k#

i=1

ei

0
⊗ L2,

and to the right vertices we assign the subspaces V1, . . . , Vn ⊆ Ft·k, defined by

V2j−1 = ej ⊗R1 and V2j = ej ⊗R2

for each j ∈ [k]. Note that dim(U1) = n, dim(U2) = 2, and dim(Vj) = 2 for all
j ∈ [n]. Intuitively, the assignment is designed so that the t-dimensional restriction
of U1, U2, V2j−1, V2j to the jth block is the assignment L1, L2, R1, R2.

To complete the proof, we show that there is no choice of nonzero vectors xi ∈ Ui

and yj ∈ Vj for i ∈ [2] and j ∈ [n] that satisfies 〈xi, yj〉 = 0 for all i, j. So suppose
for contradiction that such a choice exists, and let j ∈ [k] be an integer for which the
restriction of x1 to the jth block is nonzero. Denote by 1x1, 1x2, 1y1, 1y2 the restrictions of
the vectors x1, x2, y2j−1, y2j to the jth block. Observe that these are nonzero vectors that
satisfy 1xi ∈ Li, 1yj ∈ Rj, and 〈1xi, 1yj〉 = 0 for all i, j ∈ [2], in contradiction.

6 Hardness Result

In this section we prove our hardness result, given in Theorem 8. We start by presenting
a gadget graph that will be used in the proof.
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6.1 Gadget Graph

The main component of our hardness proof is the ∃-graph defined as follows.

Definition 37 (∃-graph). For any integers n1, n2, define the ∃-graph H = Hn1,n2 and the
function fH : V (H) → {2, 3} as follows. The graph consists of a vertex labelled IN with
degree 2, whose two neighbors serve as the starting points of two subgraphs to which we
will refer as the top and bottom branches. Each branch is composed of a sequence of
4-cycles connected by edges, as described in the figure below. In each branch, the vertex
of largest distance from IN in every 4-cycle but the first has a neighbor labelled OUT and
another neighbor separating it from the next 4-cycle (except for the last 4-cycle). The
numbers of OUT vertices in the top and bottom branches are n1 and n2 respectively. The
function fH is defined on the vertices of H as indicated in the figure.
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2

3 3

2

2

3
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2 3
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3
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We need the following two claims.

Claim 38. Let F be any field. Let A denote a neighbor of IN in the ∃-graph, and let
B denote another vertex adjacent to A. Then, for every fH-subspace assignment for H
over F, there exists a choice of nonzero vectors for IN and B which poses a single linear
constraint on the choice for A.

Proof. Let WIN,WA,WB denote the subspaces assigned to the vertices IN, A,B respec-
tively, and recall that dim(WIN) = 2, dim(WA) = 3, and dim(WB) = 2. If there exists
some nonzero vector in WIN∩WB, then choosing it for both IN and B completes the proof.
Otherwise, it must hold that dim(WIN + WB) = 4 > dim(WA), hence there exists some
nonzero vector x ∈ (WIN + WB) ∩ W⊥

A . Write x = x1 + x2 for x1 ∈ WIN and x2 ∈ WB.
If both of x1 and x2 are nonzero, choose them for IN and B. Since every vector y ∈ WA

satisfies 〈y, x〉 = 0, it follows that if 〈y, x1〉 = 0 then 〈y, x2〉 = 0. This implies that the
only linear constraint that this choice poses on the vector of A is the orthogonality to x1.
If, however, x1 is zero, then we have that x2 ∈ W⊥

A , so one can choose an arbitrary nonzero
vector from WIN for IN and x2 for B. Similarly, if x2 is zero, we have that x1 ∈ W⊥

A , so
one can choose x1 for IN and an arbitrary nonzero vector from WB for B, completing the
proof.

Claim 39. Let F be either R or any finite field, and let x be either e6 or e7 in F7. Then,
there exists a subspace assignment W1, . . . ,W4 ⊆ F7 to the vertices u1, . . . , u4 of C4, with
dim(W1) = 3 and dim(Wi) = 2 for i ∈ {2, 3, 4}, for which any valid choice of vectors
assigns to u1 a vector proportional to x.
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Proof. The proof of Proposition 9 (see also Remark 22) describes for every field F as
above, a 2-subspace assignment for C4 in F5 that admits no valid choice of vectors. Let
W1, . . . ,W4 ⊆ F7 be the subspaces obtained from the subspaces of this assignment by
adding two additional entries with values zero to their vectors. Define W ′

1 = W1+span(x),
and observe that any valid choice of vectors from the subspace assignment W ′

1,W2,W3,W4

assigns to u1 a vector proportional to x, as otherwise, the restriction of such a choice to
the first five entries would provide a valid choice for the given 2-subspace assignment for
C4.

The following lemma summarizes some properties of the ∃-graph.

Lemma 40. The ∃-graph H and the function fH given in Definition 37 satisfy the fol-
lowing.

1. The graph H is bipartite, and every bipartition of H puts all OUT vertices in the
same part.

2. For every fH-subspace assignment for H over any field F, any choice of a nonzero
vector for IN can be extended to all vertices of each of the branches.

3. For every fH-subspace assignment for H over any field F and for each of the branches
of H, there exists a choice of a nonzero vector for IN which is compatible with any
choice of vectors for the OUT vertices of that branch.

4. Let F be either R or any finite field, and let t " 8 and j ∈ [t] be some integers.
Then, there exists an fH-subspace assignment for H in Ft such that for every valid
choice of vectors for H there exists a branch all of whose OUT vertices are assigned
vectors proportional to ej.

Proof. For Item 1, it can be easily seen that the graph defined in Definition 37 is bipartite.
Since the distance between every two OUT vertices is even, it follows that every bipartition
puts all of them in the same part.

For Item 2, consider some fH-subspace assignment for H over a field F, and notice
that any choice of a vector for IN reduces the dimension of the subspaces available to
its neighbors by at most 1. So given any choice for IN, one can choose, in each branch,
an available nonzero vector for IN’s neighbor, reducing the dimension of the subspaces
available to its other neighbors to not less than 1, allowing us to choose for them nonzero
vectors as well. Their common neighbor has a subspace of dimension 3, so the two chosen
vectors of its neighbors reduce the dimension of the subspace available to it to not less
than 1, again allowing us to choose a nonzero vector. Proceeding this way for vertices
with increasing distances from IN allows us to choose vectors for all vertices of each of the
branches of H.

For Item 3, consider some fH-subspace assignment forH over a field F and an arbitrary
branch of H. Let A denote the neighbor of IN in this branch, let B and C denote the
other neighbors of A, and let D denote the remaining vertex of their 4-cycle. By Claim 38,
there exists a choice of nonzero vectors for IN and B which poses a single linear constraint
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on the choice for A. We claim that this choice for IN and B is compatible with any choice
of vectors for the OUT vertices of that branch. To see this, consider an arbitrary choice
of nonzero vectors for these OUT vertices. The single neighbor of each OUT vertex is
assigned a 3-subspace, so having made our choice for the OUT vertices, each of these
must still have a 2-subspace from which its vector can be chosen. Starting from the
neighbor of the OUT vertex of largest distance from IN, we choose an arbitrary nonzero
vector from its available 2-subspace, allowing us to choose a nonzero vector for each of its
two neighbors. Their other common neighbor has a 3-subspace, so it includes a nonzero
vector orthogonal to the vectors chosen for its neighbors. We proceed this way along
the branch until we arrive to the 4-cycle closest to IN. Given the vectors chosen for the
previous 4-cycle and the choice for B, it is possible to choose from the 3-subspace of D
some nonzero vector orthogonal to the vectors already chosen for its neighbors. Given
this choice, we choose a nonzero vector orthogonal to it from the 2-subspace of C, and
since the choice for IN and B poses a single linear constraint on A, it is possible to choose
a nonzero vector for A from its 3-subspace. By Item 2 of the lemma, our choice can be
extended to the other branch, and we are done.

For Item 4, let F be either R or any finite field, and let t " 8 and j ∈ [t] be some
integers. Assume without loss of generality that j " 8. We define an fH-subspace
assignment for H in Ft as follows. The vertex IN is assigned the subspace span(e6, e7). By
Claim 39, for x being either e6 or e7 in F7, there exists a subspace assignmentW1, . . . ,W4 ⊆
F7 to the vertices u1, . . . , u4 of C4, with dim(W1) = 3 and dim(Wi) = 2 for i ∈ {2, 3, 4}, for
which any valid choice of vectors assigns to u1 a vector proportional to x. By extending
these subspaces to Ft with zeros in the last t − 7 entries, one can get such a subspace
assignment in Ft. We put this subspace assignment with x = e6 on the 4-cycle closest to
IN in each branch, where the 3-subspace is assigned to the vertex with largest distance
from IN. To the subspace of the top neighbor of IN, we add the vector e6, and to the one
of the bottom, we add the vector e7. For all remaining 4-cycles in the graph, we assign
the subspaces of Ft given by Claim 39 with x = e7, again with the 3-subspace assigned to
the vertex of largest distance from IN, and add the vector e6 to the subspace of the vertex
closest to IN. Finally, to all OUT vertices we assign the subspace span(e7, ej), and to the
remaining vertices separating the 4-cycles, we assign the subspace span(e6, e7).

We claim that this fH-subspace assignment for H satisfies that for every valid choice of
vectors there exists a branch all of whose OUT vertices are assigned vectors proportional
to ej. To see this, consider such a valid choice of vectors, and recall that it assigns to IN
a nonzero vector from span(e6, e7). In such a vector, at least one of the sixth and seventh
entries is nonzero. We show that in the former case all the vectors of the OUT vertices of
the top branch are proportional to ej. A similar argument shows that in the latter case,
the same holds for the bottom branch. Our assumption on the vector of IN implies that
its neighbor in the top branch is orthogonal to e6. This essentially restricts its 4-cycle
to the subspace assignment given by Claim 39, thus ensuring that the vertex of largest
distance from IN in this 4-cycle is assigned a vector proportional to e6. Applying this
argument again to the next 4-cycle yields that its vertex of largest distance from IN is
assigned a vector proportional to e7. This ensures that the vector of its OUT neighbor
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is proportional to ej and that the vector of its neighbor that separates its cycle from the
next one is proportional to e6. By repeating this argument for all the following 4-cycles,
the proof is completed.

6.2 Proof of Theorem 8

To prove Theorem 8, we first prove the following.

Theorem 41. Let F be either R or any finite field. It is NP-hard to decide given a bipartite
graph G = (V,E) and a function f : V → {2, 3} whether G is f -subspace choosable over
F.

Proof. Let F be a field as in the statement of the theorem. Given a 3SAT formula φ
with clauses C1, . . . , Cm over the variables x1, . . . , xn, we efficiently construct a graph
Gφ = (V,E) and a function f : V → {2, 3} such that φ is satisfiable if and only if Gφ is
f -subspace choosable over F. Note that it can be assumed that each clause of φ contains
three literals involving three distinct variables.

First, for each variable xj, construct an ∃-graph Hn1,n2 (see Definition 37), where n1

and n2 are, respectively, the numbers of occurrences of the literals xj and xj in φ. Label
the OUT vertices of the top branch of Hn1,n2 by xj, and the OUT vertices of its bottom
branch by xj. Define the function f on the vertices of this graph as in Definition 37. Next,
for each clause Ci of φ, add a vertex representing Ci and define its f value to be 3. For
each literal xj occurring in a clause Ci, add an edge between the vertex representing Ci

and a previously unchosen vertex labelled xj, and likewise for the literals of the form xj.
Observe that Gφ is bipartite, as Item 1 of Lemma 40 implies that there exists a bipartition
placing all OUT vertices of all ∃-graphs in the same part, thus the clause vertices may
all belong to the opposite part. Note that Gφ can be constructed in polynomial running
time.

We prove now the correctness of the reduction. Suppose first that there exists a
satisfying assignment for φ, and consider an arbitrary f -subspace assignment for Gφ over
F. Then, for each variable xj with value True, choose for the IN vertex of its ∃-graph a
vector, promised by Item 3 of Lemma 40, which is compatible with any choice of vectors
for the OUT vertices labelled xj. If, however, xj has value False, choose instead a vector
for IN which is compatible with any choice of vectors for the OUT vertices labelled xj.
By Item 2 of the lemma, such a choice can be extended to all the vertices in the opposite
branch. Now, since every clause has at most two literals which evaluate to False under
the given satisfying assignment, we find that, so far, vectors have been chosen for at most
two of the neighbors of each clause vertex. Since each clause vertex has a subspace of
dimension 3, we can make a choice for it which is compatible with all of its neighbors
whose vectors have already been chosen. Observe that this choice can be extended to all
the OUT vertices for which no vectors have been chosen so far, because their subspaces
have dimension 2 whereas a vector has been chosen only for one of their neighbors. Finally,
by our choice of the vectors of the IN vertices, using Item 3 of Lemma 40, one can properly
choose vectors for the rest of the graph. This implies that Gφ is f -subspace choosable
over F.
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For the other direction, suppose that Gφ is f -subspace choosable over F. Put t =
n + 7, and apply Item 4 of Lemma 40 to obtain an fH-subspace assignment in Ft for
each ∃-gadget, such that, for each j ∈ [n], every valid choice of vectors assigns vectors
proportional to ej either to all vertices labelled xj or to all vertices labelled xj. Finally, to
the vertex of a clause Ci that involves the three variables xj1 , xj2 , xj3 , assign the subspace
spanned by ej1 , ej2 , ej3 . Since Gφ is f -subspace choosable over F, there exists a valid
choice for Gφ from these subspaces. By our definition of the subspace assignment, for
every j ∈ [n], this choice assigns vectors proportional to ej to all vertices labelled xj

or to all vertices labelled xj. In the former case assign xj to False, and in the latter to
True. We claim that this assignment satisfies φ. To see this, observe that each vertex
representing a clause Ci must have for some j ∈ [n] a neighbor labelled xj or xj whose
chosen vector is not proportional to ej. This neighbor corresponds to a literal whose value
is True according to our assignment, as desired.

We also need the following simple lemma, whose proof employs ideas from [11].

Lemma 42. For every field F and for every integer k " 3, the following holds. There
exists a polynomial-time reduction from the problem of deciding for a given input of a
bipartite graph G = (V,E) and a function f : V → {2, 3} whether G is f -subspace
choosable over F, to the problem of deciding whether a given bipartite graph is k-subspace
choosable over F.

Proof. We start by proving the statement of the lemma for k = 3. Given a bipartite
graph G = (V,E) with bipartition V = V1 ∪ V2 and given a function f : V → {2, 3},
consider the graph G′ that consists of nine copies of G, labelled Gi,j for i, j ∈ [3], and
two additional vertices v1, v2 such that, for each ℓ ∈ {1, 2}, the vertex vℓ is adjacent to all
vertices u with f(u) = 2 in the copies of Vℓ. It is easy to see that G′ is bipartite and that
it can be constructed in polynomial running time.

For correctness, suppose first that G is f -subspace choosable over F, and consider an
arbitrary assignment of 3-subspaces over F to the vertices of G′. Any choice of nonzero
vectors for v1 and v2 will reduce the dimensions of the subspaces of the vertices of the
graphs Gi,j to not less than their original values under f . Since each Gi,j is f -subspace
choosable over F, it follows that there exists a valid choice of vectors for the vertices of
G′, as required. For the other direction, suppose that for some integer t, there exists an
f -subspace assignment for G such that no choice of nonzero vectors from the subspaces is
valid. To the vertices of each subgraph Gi,j in G′ we assign the subspaces of Ft+3 obtained
by adding three zeros to the head of all vectors of those subspaces. To the subspaces of
dimension 2 in Gi,j, we add the vector ei for the vertices adjacent to v1 and the vector ej
for the vertices adjacent to v2. To each of the vertices v1 and v2 we assign the subspace of
Ft+3 spanned by e1, e2, e3. Now, for any choice of nonzero vectors for v1, v2, the subspaces
of at least one of the graphs Gi,j will be restricted to their initial f -subspace assignment,
and will thus admit no valid choice of vectors for its vertices.

It remains to consider the case of k > 3. It suffices to show a polynomial-time reduction
from the problem of deciding whether a given bipartite graph is (k−1)-subspace choosable
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over F to that of deciding whether a given bipartite graph is k-subspace choosable over
F. Here, given a bipartite graph G = (V,E) with bipartition V = V1 ∪ V2, consider the
bipartite graph that consists of k2 copies of G and two additional vertices v1, v2 such that,
for each ℓ ∈ {1, 2}, the vertex vℓ is adjacent to all the vertices in the copies of Vℓ. The
correctness proof is similar to the one given above, so we omit the details.

By combining Theorem 41 with Lemma 42, the proof of Theorem 8 is completed.
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