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Abstract

We analyse an extremal question on the degrees of the link graphs of a finite
regular graph, that is, the subgraphs induced by non-trivial spheres. We show that
if G is d-regular and connected but not complete then some link graph of G has
minimum degree at most ⌊2d/3⌋ − 1, and if G is sufficiently large in terms of d
then some link graph has minimum degree at most ⌊d/2⌋− 1; both bounds are best
possible. We also give the corresponding best-possible result for the corresponding
problem where subgraphs induced by balls, rather than spheres, are considered.

We motivate these questions by posing a conjecture concerning expansion of
link graphs in large bounded-degree graphs, together with a heuristic justification
thereof.

Mathematics Subject Classifications: 05C07, 05C35

1 Link graphs with large degrees

For a graph G, radius r > 0 and vertex v, the sphere of radius r about v, which we
denote Sr(v), is the set of vertices at distance exactly r from v, i.e. Sr(v) := {w ∈ V (G) :
d(v, w) = r}. If Sr(v) ∕= ∅, the r-link graph of v, which we denote Lr(v), is the induced
subgraph G[Sr(v)]. The graph L1(e), where G is a Cayley graph of a finitely-generated
group, was used in [8] to give a sufficient condition for property (T).

Suppose that G is a d-regular graph other than Kd+1. Can we choose G in such a way
as to ensure that each of the link graphs has large minimum degree? In other words, we
wish to find the maximum value of minv,r δ(Lr(v)) over all non-complete d-regular graphs.
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Theorem 1. If G is a non-complete connected d-regular graph then

min
v,r

δ(Lr(v)) ! ⌊2d/3⌋ − 1,

and this bound can be attained for any d ≡ 2 (mod 3).

Proof. We verify the second statement first. Fix d = 3k− 1, so that ⌊2d/3⌋− 1 = 2k− 2,
and let G be the graph obtained by blowing up each vertex of C5 to a clique of order k.
Then G is (3k − 1)-regular and vertex-transitive with diameter 2. For each v, the link
graph L1(v) consists of three cliques of order k, k − 1 and k, with all vertices between
the clique of order k − 1 and the other two cliques, so has minimum degree 2k − 2.
Furthermore, L2(v) ∼= K2k and has minimum degree 2k − 1.

Next we prove the upper bound. Let G be any non-complete d-regular graph, and
note that this implies G has no universal vertex. Suppose that every link graph of G
has minimum degree at least m. For any vertex v, any vertex in S1(v) has at least m
neighbours within S1(v) (and is a neighbour of v), so has at most d −m − 1 neighbours
in S2(v). Choose x ∈ S2(v) and w ∈ S1(v) ∩ S1(x). Now we must have degL1(x)(w) " m.
Since w has at most d−m−1 neighbours in S2(v), one of which is x, it has at most d−m−2
neighbours in S2(v) ∩ S1(x). Consequently, w has at least m− (d−m− 2) = 2m+ 2− d
neighbours in S1(v) ∩ S1(x), and it follows that x has at least 2m + 3 − d neighbours in
S1(v). However, considering degL2(v)(x), it also has at least m neighbours in S2(v). Since
degG(x) = d, we must have 3m+ 3− d ! d, i.e. m ! 2d/3− 1 and m is an integer.

Note that the example constructed to show that the bound of Theorem 1 is tight is
small relative to d, and has diameter 2. We can do better if we exclude such examples.

Theorem 2. For each r " 3, if G is a connected d-regular graph with diameter at least
r then

min
v,r

δ(Lr(v)) ! ⌊rd/(2r − 1)⌋ − 1.

Proof. Suppose G is such a graph and every link graph has minimum degree at least m.
Fix a vertex v such that Sr(v) ∕= ∅. We claim that for each 2 ! j ! r every vertex in
Sj(v) has at least (2j − 2)m − (j − 1)d + 2j − 1 neighbours in Sj−1(v). The result will
follow from the case j = r of the claim, since any vertex in Sr(v) also has at least m
neighbours in Sr(v), and so (2j−1)m− (j−1)d+2j−1 ! d, giving m ! jd/(2j−1)−1.

We prove the claim by induction. The case j = 2 was shown in the proof of Theorem
1. For j > 2, let x be a vertex in Sj(v) and w be a vertex in Sj−1(v)∩S1(x). Since w has
at least (2j − 4)m− (j − 2)d+ 2j − 3 neighbours in Sj−2(v) by the induction hypothesis,
and at least m neighbours in Sj−1(v), it has at most (j − 1)d − (2j − 3)m − 2j + 2
neighbours in Sj(v) \ {x}. Since w has at least m neighbours in S1(x), it must have at
least (2j − 2)m− (j − 1)d+ 2j − 2 neighbours in S1(x) ∩ Sj−1(v), so |S1(x) ∩ Sj−1(v)| "
(2j − 2)m− (j − 1)d+ 2j − 1, as required.

From Theorem 2 it follows that if diam(G) is sufficiently large in terms of d (in par-
ticular, is at least (d+1)/2), and consequently whenever |G| is sufficiently large in terms
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of d, then
min
v,r

δ(Lr(v)) ! ⌊d/2⌋ − 1.

In fact this bound is best possible.

Proposition 3. For each even d there exist connected d-regular graphs of arbitrarily large
diameter satisfying minv,r δ(Lr(v)) = d/2− 1.

Proof. Set k = d/2 and choose any n satisfying n − 1 ≡ a (mod 2k) for some a ∈
{k, . . . , 2k}. Consider the kth power of the n-cycle, Ck

n. This is 2k-regular, and has
diameter s := ⌈(n− 1)/(2k)⌉, which may be made arbitrarily large. Every link graph
of radius strictly smaller than s consists of two cliques of order k with possibly some
edges in between, so has minimum degree at least k − 1. A sphere of radius s is a set of
b := n− 1− 2k(s− 1) consecutive vertices; since this value is congruent to n− 1 modulo
2k, positive and at most 2k, we have b = a " k. Consequently Ls(v) will have minimum
degree k − 1.

In this example, the diameter grows linearly with the order of the graph. It is natural to
ask about large graphs which are well-connected, having diameter growing logarithmically
with their order. In this case it is still possible for all link degrees to be linear in d. For
example, start from a large cubic graph with logarithmic diameter and blow up each
vertex to a clique of order (d + 1)/4, where d is fixed. The graph obtained is d-regular,
and retains logarithmic diameter. Each link graph consists of some cliques, possibly with
edges between them, and has minimum degree at least (d − 3)/4. However, we do not
know whether the constant 1/4 in this example can be improved.

Additionally, in the example of Proposition 3, almost all links are (d/2 − 1)-regular.
We might ask whether this is a necessary feature; in particular, do there exist d-regular
graphs of large diameter for which all links have average degree greater than d/2? Note
that in general there exist examples where all links have average degree significantly higher
than the minimum degree over all links. For example, take the Cartesian product of a
triangle and a long odd cycle, and blow up all vertices to cliques of order (d+ 1)/5. The
average degree of each link is at least (3d − 7)/10, but most links have minimum degree
(d − 4)/5. However, we do not know of a similar example where the minimum degree is
close to d/2.

2 Induced subgraphs on balls

In this section we consider a natural extension, replacing link graphs with the subgraphs
induced by balls, i.e. we consider induced subgraphs of the form Lr(v) := G[Br(v)] where
Br(v) := {w ∈ V (G) : d(v, w) ! r}. In this case we can easily have all minimum degrees
of such graphs close to d by taking G to have only slightly more than d + 1 vertices;
for example, if d is even then taking G to be Kd+2 minus a perfect matching ensures
minv,r δ(Lr(v)) = d− 2.

However, again such graphs have diameter 2, and if we require greater diameter we
obtain non-trivial (and in fact tight) bounds.
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Theorem 4. If G is a connected d-regular graph with diameter at least 3 then

min
v,r

δ(Lr(v)) ! ⌊(2d− 1)/3⌋,

and this bound can be attained for any d ≡ 2 (mod 3) and arbitrarily large diameter.

Proof. Fix d = 3k − 1, so that ⌊2d/3⌋ − 1 = 2k − 2, choose n " 6 arbitrarily, and let G
be the graph obtained by blowing up each vertex of Cn to a clique of order k. Then G
is (3k − 1)-regular and vertex-transitive with diameter ⌊n/2⌋ " 3. For each v and r, the
graph Lr(v) consists of the cliques corresponding to min{2r + 1, n} consecutive vertices
of the cycle, and so has minimum degree at least 2k − 1 = (2d− 1)/3.

Suppose G is d-regular with diameter at least 3 and satisfies minv,r δ(Lr(v)) = m.
Choose vertices v, y with dG(v, y) = 3, and let vwxy be a shortest path between them.
Since w has at least m neighbours in B1(v), it has at most d − m neighbours in S2(v).
Since w also has at least m neighbours in B1(x), it has at least 2m − d neighbours in
B1(x) \ S2(v), which must all be in S1(v). It follows that x has at least 2m − d + 1
neighbours in S1(v). However, x also has at least m neighbours in B1(y), which is disjoint
from S1(v). Thus 3m− d+ 1 ! deg(x) ! d, and so m ! (2d− 1)/3.

3 A conjecture

The results in Section 1 are in spirit indicating that spheres are not “too connected”. In
this section we give a conjecture regarding r-links of infinite graphs in the same spirit.

A finite graph G is said to have expansion h for

h = inf
S⊂VG: 0<|S|!|G|/2

|∂S|
|S| ,

where VG are the vertices of G and ∂S is the outer vertex boundary of S.
An expander family is a sequence of graphs such that, for some h > 0, all graphs in

the sequence have expansion at least h.

Conjecture 5. There is no sequence of bounded-degree finite graphs, with size growing
to infinity, such that all links in all the graphs form an expander family.

Note that size growing to infinity is equivalent to diameter growing to infinity. In
the extremal examples discussed in Section 1 (other than the example with diameter 2),
the link graphs do not expand, since they are disconnected (and for the example with
logarithmic diameter, typically have many components).

In what follows, we provide some heuristic support for Conjecture 5. Recall that an
infinite graph G is said to be amenable if

inf
S⊂VG: 0<|S|<∞

|∂S|
|S| = 0.

the electronic journal of combinatorics 29(2) (2022), #P2.23 4



Lemma 6. Assume G is an infinite graph, and all the r-links of G form an expander
family. Then G is non-amenable.

Proof. First we show that, for any vertex v, the size of Sr(v) grows to infinity with r.
Indeed, if there is some a for which |Sr(v)| ! a infinitely often, there is in particular some
r > a with this property, and Sr(v) is a cutset separating Br−1(v) from infinity. Let w be
a vertex which lies on an infinite ray proceeding from v, at distance s > r. Now there are
r > a distances in the set {s− r + 1, . . . , s}, and so at least one of Ss−r+1(w), . . . ,Ss(w)
must fail to intersect Sr(v). Since each of these spheres intersects both Br−1(v) and its
complement, at least one is disconnected and so not an expander.

Let S be a finite set of vertices in G. Pick a vertex v in G far enough from S, such
that the r-links around v that intersect S have size larger than 2|S|. By uniform expansion
of the r-links, in each r-link that intersects S, the intersection of S with the r-link has
proportional boundary, and as the radius of the spheres varies they give a disjoint cover
of S. Thus every finite set of vertices in G has proportional boundary and thus G is
non-amenable.

The heuristic for Conjecture 5 follows the strategy of Salez [7]. By Lemma 6, the
BS limit of graphs in which all links are expanders with expansion bounded away from
zero is a.s. non-amenable. A simple random walk on a non-amenable graph has positive
linear speed. The BS limit is a unimodular random graph (see [1, 5] for definitions) in
which all the r-links of the root are an expander family. In [4] it was proved that if
you add edges so that the vertices of each of the levels of a binary tree (i.e. each of the
links of the root) form a sequence of uniform expanders, then the resulting graph has no
non-constant bounded harmonic functions. We believe, (but cannot prove) that the same
holds for unimodular random graphs, i.e. if the links of the root of a unimodular random
graph form an expander family then it has no non-constant bounded harmonic functions.
Since this is equivalent to having zero speed [3], it would lead to a contradiction.

Our result in Section 2 equally relates to a similar question. In [2] it was asked: Is
there is a sequence of finite bounded-degree graphs growing in size to infinity, so that all
the induced balls in all the graphs in the sequence form an expander family? For related
results on heat kernel supports see [6].
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