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Abstract

Motivated by Stanley’s conjecture on the multiplication of Jack symmetric func-
tions, we prove a couple of identities showing that skew Jack symmetric functions
are semi-invariant up to translation and rotation of a π angle of the skew diagram.
It follows that, in some special cases, the coefficients of the skew Jack symmet-
ric functions with respect to the basis of the monomial symmetric functions are
polynomials with nonnegative integer coefficients.

Mathematics Subject Classifications: 05E05

1 Introduction

Jack symmetric functions Jλ(x;α) form a basis of the ring of symmetric functions in the
infinite (countable) set of indeterminates x = (x1, x2, . . .) with coefficients in the fraction
field Q(α), as λ = (λ1,λ2, . . .) varies in the set of (integer) partitions. We recall here some
notation and basic facts from [5, 8, 4].

The symmetric functions Jλ = Jλ(x;α) are uniquely defined by the following proper-
ties:

1. they are pairwise orthogonal, that is, 〈Jλ, Jµ〉 = 0 for all λ ∕= µ;

2. triangular with respect to the monomial symmetric functions mλ(x), that is,

Jλ(x;α) =
!

µ!λ

vλ,µ(α)mµ(x);

3. normalized as vλ,(1n)(α) = n! if |λ| = n.
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The partial ordering among partitions is the usual dominance order. The scalar product
is uniquely defined by the following properties: the power sum symmetric functions pλ(x)
are pairwise orthogonal and

〈pλ(x), pλ(x)〉 = zλα
ℓ(λ),

where zλ = (1k12k2 · · · )(k1!k2! · · · ) if ki = ki(λ) denotes the number of parts of λ equal to i,
and ℓ(λ) is the length of λ (the number of nonzero parts of λ). Notice that specializing α =
1 one has the usual scalar product on symmetric functions, therefore the Jack symmetric
functions specialize to scalar multiples of the Schur symmetric functions sλ(x).

As conjectured by I.G. Macdonald ([5, VI (10.26?)], [8, Conjecture 8.1]) and proved
by F. Knop and S. Sahi [4], the above functions vλ,µ(α) are polynomials in α with non-
negative integer coefficients. Furthermore, Knop and Sahi have found an explicit integral
combinatorial formula for vλ,µ(α) in terms of certain admissible fillings of weight µ of the
Young diagram of λ.

As for skew Schur symmetric functions, skew Jack symmetric functions Jλ/µ(x;α) are
defined by the following identities, for all partitions ν:

〈Jλ/µ, Jν〉 = 〈Jλ, JµJν〉.

Therefore,

Jλ/µ =
!

ν

〈Jλ, JµJν〉
〈Jν , Jν〉

Jν ,

the sum is clearly finite as the coefficient of Jν can be nonzero only if |ν| = |λ|− |µ|.
For a partition λ, set uλ =

"
i"1 ki!, where ki denotes the number of parts of λ which

are equal to i as above.
Let

Jλ/µ(x;α) =
!

ν

vλ/µ, ν(α)mν(x)

and let ṽλ/µ, ν(α) = u−1
ν vλ/µ, ν(α). As far as we know the following was never considered.

Main Question. Are the ṽλ/µ, ν(α) polynomials with nonnegative integer coefficients?

By explicit computation with SageMath [7] we know the answer is affirmative for
|λ| ! 10.

A complete affirmative answer to the above question and especially an explicit integral
combinatorial interpretation of the functions vλ/µ, ν(α) could be seen as a first step toward
a possible proof of the following interesting and still open conjecture made by R. Stanley.

Stanley’s Conjecture ([8, Conjecture 8.3]). The functions 〈Jλ, JµJν〉 are polynomials
with nonnegative integer coefficients.

It is already known that the functions gλµ,ν(α) := 〈Jλ, JµJν〉 are polynomials in α with
integer coefficients, this follows from the fact that the vλ,µ(α) are polynomials with integer
coefficients. We will refer to the gλµ,ν(α) as the Stanley g-polynomials.
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Let us briefly comment on Stanley’s conjecture. For any couple of partitions µ and ν
we clearly have

Jµ Jν =
!

λ

〈Jλ, JµJν〉
〈Jλ, Jλ〉

Jλ.

The squared norm of Jλ, denoted by jλ(α), is known to be a polynomial with nonnegative
integer coefficients, see Theorem 2 below. Therefore, from Stanley’s conjecture we would
have that the nonvanishing of the Littlewood-Richardson coefficient cλµ,ν in

sµ sν =
!

λ

cλµ,νsλ

implies the nonvanishing of the coefficient gλµ,ν/jλ in

Jµ Jν =
!

λ

gλµ,ν
jλ

Jλ

for all α > 0. This would provide a quite complete information on the multiplication of
spherical functions of certain symmetric spaces. Indeed, for certain values of α > 0, such
as α = 1/2 or α = 2, Jack symmetric functions specialize to certain (restricted) spherical
functions, such as the so-called zonal polynomials. For further details in this direction see
[3, 1].

Our main results, which are contained in Section 2, are the formulas of Theorem 10 and
Theorem 15 which allow to affirmatively answer in some special cases to the main question
above, see Corollary 11 and Corollary 16. Proposition 23 also provides affirmative answer
to the main question in another special case.

Notice that Theorem 10 and Theorem 15 are derived from a combinatorial formula
due to Stanley [8, Theorem 6.3] (see Theorem 4) which readily generalizes to the two
parameter Macdonald symmetric functions (see [5, VI (7.13) and (8.3)]). It is easy to see,
as explained in Remark 13 and Remark 21, that our formulas generalize to the Macdonald
symmetric functions, too.

In Section 3 we provide some remarks directly on the Stanley g-polynomials which
under some special hypotheses are conjectured to be product of linear factors.

In Section 4 we formulate a combinatorial conjecture on the lowest coefficient of the
skew Jack symmetric functions which could be the first step toward a generalization of
Knop and Sahi’s combinatorial formula to the skew case.

2 Remarks and partial answers to the main question

2.1 The squared norm

Let us fix some more notation. If λ is a partition, by s ∈ λ we mean that s is a box in
the diagram of λ. For all s ∈ λ we set

cλ, s = cλ, s(α) = aλ, s α + ℓλ, s + 1, c′λ, s = c′λ, s(α) = (aλ, s + 1)α + ℓλ, s,
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where aλ, s is the arm of s in λ (the number of boxes on the same row of s, on the right
of s) and ℓλ, s is the leg of s in λ (the number of boxes on the same column of s, below
s). We will use also the following notation

cλ = cλ(α) =
#

s∈λ

cλ, s(α), c′λ = c′λ(α) =
#

s∈λ

c′λ, s(α).

Example 1. For λ = (5, 4, 2)

we have cλ,(1,1) = 4α + 3, c′λ,(1,1) = 5α + 2, and totally

cλ = (4α + 3)(3α + 3)(3α + 2)(2α + 2)2(α + 2)(α + 1)2,

c′λ = (5α + 2)(4α + 2)(4α + 1)(3α + 1)2(2α + 1)(2α)2α3.

Notice that for all partitions λ we have c′λ(α) = α|λ| cλ′(α−1), where λ′ is the conjugate
of λ, that is, the partition obtained by interchanging rows and columns of λ.

Let us denote by jλ = jλ(α) the squared norm of Jλ(x;α) and notice that jλ(α) =
vλ/λ,∅(α).

Theorem 2 ([8, Theorem 5.8]). For all partitions λ,

jλ = cλ c
′
λ.

2.2 Stanley’s combinatorial formula

A (rational) combinatorial formula for the function vλ/µ, ν(α) has already been found by
Stanley.

Recall that a skew partition λ/µ is called a horizontal strip if the corresponding skew
diagram contains at most one box in every column.

A tableau T of shape λ/µ is called semi-standard if it is nondecreasing along rows and
strictly increasing along columns. This is equivalent to require that by deleting the boxes
labelled with j > i one gets the diagram of a skew partition λ(i)/µ such that, for all i > 1,
the skew partition λ(i)/λ(i−1) is a horizontal strip.

For all semi-standard tableaux T of shape λ/µ set

wT = wT (α) =
jµ

"
i

"
s∈λ(i) Bλ(i)/λ(i−1), s"

i

"
s∈λ(i−1) Cλ(i)/λ(i−1), s

where

Bλ(i)/λ(i−1), s =

$
cλ(i), s if λ(i)/λ(i−1) has a box in the same column as s
c′
λ(i), s

otherwise
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Cλ(i)/λ(i−1), s =

$
cλ(i−1), s if λ(i)/λ(i−1) has a box in the same column as s
c′
λ(i−1), s

otherwise

Notice that the above product is finite since
"

s∈λ(i) Bλ(i)/λ(i−1), s"
s∈λ(i−1) Cλ(i)/λ(i−1), s

is definitely equal to 1 for i >> 0.
When λ/µ is a horizontal strip, we will also use the compact notations

Bλ/µ =
#

s∈λ

Bλ/µ, s, Cλ/µ =
#

s∈µ
Cλ/µ, s.

In particular, if λ/µ is a horizontal strip and T is the skew tableau of shape λ/µ obtained
by filling all the boxes with the same label, then

wT =
jµBλ/µ

Cλ/µ

.

Example 3. Let λ = (4, 3, 1), µ = (2) and T as follows.

" " 1 2
1 2 2
3

We have Cλ(1)/µ,(1,1) = α+ 1, Bλ(1)/µ,(1,1) = 2α+ 2, Cλ(2)/λ(1),(1,1) = 3α+ 1, Bλ(2)/λ(1),(1,1) =
4α + 1 and so on, obtaining

jµ = (α + 1)(2α)α, Cλ(1)/µ = (α + 1)α,

Bλ(1)/µ = (2α + 2)(2α), Cλ(2)/λ(1) = (3α + 1)(α + 1)α,

Bλ(2)/λ(1) = (4α + 1)(3α)(2α + 2)(α + 2)(α + 1),

Cλ(3)/λ(2) = (3α + 2)(3α + 1)(2α + 1)2(2α)α2,

Bλ(3)/λ(2) = (3α + 3)(3α + 1)(2α + 2)(2α + 1)(2α)α2.

Thus, after some cancellations,

wT =
(4α + 1)(3α + 3)(3α)(2α + 2)3(2α)2(α + 2)

(3α + 2)(3α + 1)(2α + 1)α

=
1152α8 + 7200α7 + 17856α6 + 22464α5 + 14976α4 + 4896α3 + 576α2

18α3 + 27α2 + 13α + 2

Denoting as usual by xT the product of the xki
i ’s where ki is the number of labels of

T equal to i, one has

Theorem 4 ([8, Theorem 6.3]). For all skew partitions λ/µ,

Jλ/µ(x;α) =
!

T semi-standard
of shape λ/µ

wT (α)x
T .
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2.3 The leading coefficient

Let us first recall the formula for the leading coefficient in

Jλ(x;α) =
!

µ

vλ, µ(α)mµ(x).

Theorem 5 ([8, Theorem 5.6]). For all partitions λ,

vλ,λ = cλ.

The following is a generalization of the above formula, consequence of Theorem 4 and
actually a reformulation of Proposition 8.6 in [8].

Consider the semi-standard skew tableau T0 of shape λ/µ obtained by labelling the
boxes along every column with consecutive integers, that is, the boxes in column j are
labelled with the integers 1, . . . , cj. Set also cj = 0 if no label appears on column j.
Similarly, let ri be the rightmost label in row i, and set ri = 0 if no label appears on the
row i.

Let ν0 be the weight of the above defined tableau T0, then ν ! ν0 for all partitions ν
with vλ/µ, ν ∕= 0, that is vλ/µ, ν0 is the leading coefficient in

Jλ/µ(x;α) =
!

ν

vλ/µ, ν(α)mν(x).

Proposition 6 ([8, Proposition 8.6]). The leading coefficient vλ/µ, ν0 of Jλ/µ is equal to

#

(i,j)∈λ
ri!cj

cλ,(i,j)
#

(i,j)∈λ
ri>cj

c′λ,(i,j)
#

(i,j)∈µ
ri+cj

>cj

cµ,(i,j)
#

(i,j)∈µ
ri+cj

!cj

c′µ,(i,j).

Remark 7. It follows that ṽλ/µ, ν0 is a polynomial with nonnegative integer coefficients.
If indeed (i, j) is the rightmost box of T0 labelled by n, then by construction (i, j) is
the last box in its row and ri = n ! cj. Therefore, in the first factor of the formula of
Proposition 6, the entry (i, j) gives a contribution of cλ,(i,j) = ℓλ,(i,j) + 1. On the other
hand, if (ν0)n = (ν0)n+1, then every box in T0 labeled by n lies above a box labeled by
n+1, and if the box above is the last one in its row then the box below is the last one in
its row as well.

Suppose now that k is the number of parts of ν0 which are equal to m and let (ν0)n be
the first part of ν0 equal to m. Suppose that (i, j) is the rightmost box of T0 labelled by n,
then by the previous discussion the boxes (i, j), (i+1, j) . . . , (i+ k− 1, j) are respectively
labeled by n, n + 1, . . . , n + k − 1, and in the formula of Proposition 6 they give a total
contibution of

(ℓλ,(i,j) + 1) · ℓλ,(i,j) · . . . · (ℓλ,(i,j) − k + 2),

which is divisible by k!, since ℓλ,(i,j) + 1 # k. Therefore, k! divides vλ/µ, ν0 .

the electronic journal of combinatorics 29(2) (2022), #P2.24 6



Figure 1:

" " " " " " "
" " " " " "
" " "
" " "
" " "
" " "
"
"
"

λ/µ

" "
" "
"
"

λ̃/µ̃

Example 8. Let λ = (3, 2, 2, 2, 2, 2) and µ = (2, 1), then ν0 = (3, 2, 2, 2, 1) with T0 as
follows.

" " 1
" 1
1 2
2 3
3 4
4 5

Letm = 2. In the notation of the previous remark we have k = 3, n = 2 and (i, j) = (3, 2).

2.4 Translation of the skew diagram

Another consequence of Theorem 4 is the following.
Given the diagram of a partition λ, we will say that a box is extremal if it appears in

position (i, j) = (λ′
j,λi). Given the diagram of a skew-partition λ/µ, we will say that a

box is black if it belongs to µ; with the same terminology, we will also speak of black rows
when λi = µi and black columns when λ′

j = µ′
j.

Let λ/µ and λ̃/µ̃ be skew partitions, we say that the corresponding diagrams coincide
up to translation if the diagram of λ̃/µ̃ can be obtained from the diagram of λ/µ by
adding and/or removing black rows to/from the top of the diagram, and/or black columns
to/from the leftmost part of the diagram, and/or by recursively adding and/or removing
black extremal boxes.

Fix a skew partition λ/µ. Notice that there exists a unique minimal skew partition
λ̃/µ̃ whose diagram coincides with that of λ/µ up to translation (see Figure 1 for an
example).

For all s ∈ µ set

cµ,λ, s = cµ,λ, s(α) = aµ, sα + ℓλ, s + 1, c′λ,µ, s = c′λ,µ, s(α) = (aλ, s + 1)α + ℓµ, s,

and set also
cµ,λ = cµ,λ(α) =

#

s∈µ
cµ,λ, s, c′λ,µ = c′λ,µ(α) =

#

s∈µ
c′λ,µ, s.
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Example 9. For the skew partition λ̃/µ̃ given in Figure 1 we have

cµ̃,λ̃ = (α + 6)(α + 5) 4!, c′
λ̃,µ̃

= (5α + 3)(4α + 1)(3α + 2)(2α)(α + 1)α.

Notice that for all skew partitions λ/µ we have c′λ,µ(α) = α|µ| cµ′,λ′(α−1).

Theorem 10. If the diagrams of λ/µ and λ̃/µ̃ coincide up to translation, then

cµ,λ c
′
λ,µ Jλ̃/µ̃ = cµ̃,λ̃ c

′
λ̃,µ̃

Jλ/µ

As a consequence of the previous formula, by [4] we get

Corollary 11. Let λ/µ be a skew partition, and suppose that the diagram λ/µ coincides
up to translation with that of a partition λ̃ = λ̃/∅. Then

Jλ/µ = cµ,λ c
′
λ,µ Jλ̃

In particular, ṽλ/µ, ν(α) is a polynomial with nonnegative integer coefficients, for all par-
titions ν. Furthermore, we have

gλ
µ,λ̃

= cµ,λ c
′
λ,µ cλ̃ c

′
λ̃
.

Thanks to Theorem 4, the previous theorem follows from

Proposition 12. Suppose that the diagrams of λ/µ and λ̃/µ̃ coincide up to translation.
Let T and T̃ be semi-standard tableaux respectively of shape λ/µ and λ̃/µ̃ arising from a
same filling. Then

cµ,λ c
′
λ,µ wT̃ = cµ̃,λ̃ c

′
λ̃,µ̃

wT

Proof. We can assume that λ̃/µ̃ is the minimal skew partition having the same diagram
of λ/µ up to translation.

Let s ∈ λ. We analyse the contribution of s in wT by distinguishing three different
cases.

1. Suppose that both the row and the column of s meet λ/µ. Then s corresponds to
a box s̃ ∈ λ̃. If s ∈ µ, then we have cµ,λ, s = cµ̃,λ̃, s̃, c

′
λ,µ, s = c′

λ̃,µ̃, s̃
, cµ, s = cµ̃, s̃,

c′µ, s = c′µ̃, s̃, and if moreover s ∈ λ(i) (resp. s ∈ λ(i−1)) then we also have

Bλ(i)/λ(i−1), s = Bλ̃(i)/λ̃(i−1), s̃

Cλ(i)/λ(i−1), s = Cλ̃(i)/λ̃(i−1), s̃ .

2. Suppose that s ∈ µ and that the corresponding column in λ does not meet λ/µ,
namely ℓλ, s = ℓµ, s. Then cµ,λ, s = cµ, s and c′λ,µ, s = c′λ, s, and

Bλ(i)/λ(i−1), s = c′λ(i), s

Cλ(i)/λ(i−1), s = c′λ(i−1), s
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for all i. Thus

cµ, s c
′
µ, s

#

i

Bλ(i)/λ(i−1), s

Cλ(i)/λ(i−1), s

= cµ, s c
′
µ, s

c′λ, s
c′µ, s

= cµ,λ, s c
′
λ,µ, s .

If s corresponds to a box in λ̃, then the same is true for s̃:

cµ̃, s̃ c
′
µ̃, s̃

#

i

Bλ̃(i)/λ̃(i−1), s̃

Cλ̃(i)/λ̃(i−1), s̃

= cµ̃,λ̃, s̃ c
′
λ̃,µ̃, s̃

.

3. Suppose now that s ∈ µ and that the corresponding row in λ does not meet λ/µ,
namely aλ, s = aµ, s. Then cµ,λ, s = cλ, s and c′λ,µ, s = c′µ, s. Denote p = ℓλ,s − ℓµ,s and
assume p > 0. Let i1 < i2 < . . . < ip be the entries of T appearing in the column of
s, and set i0 = 0. Then

Bλ(i)/λ(i−1), s =

$
(aλ, s + 1)α + ℓµ, s + k if ik < i < ik+1

aλ, s α + ℓµ, s + k + 1 if i = ik

Cλ(i)/λ(i−1), s =

$
(aλ, s + 1)α + ℓµ, s + k if ik < i < ik+1

aλ, s α + ℓµ, s + k if i = ik

Thus we obtain

cµ, sc
′
µ, s

#

i

Bλ(i)/λ(i−1), s

Cλ(i)/λ(i−1), s

= cµ, sc
′
µ, s

cλ, s
cµ, s

= cµ,λ, sc
′
λ,µ, s .

If s corresponds to a box s̃ ∈ λ̃, then a similar equality holds for s̃.

By the definition of wT , it follows that the only boxes of λ which give a contribution in
the product wT/(cµ,λc

′
λ,µ) are those of the first kind. The claim follows.

Remark 13. The statement of Theorem 10 actually holds also for the integral version of
the two parameter Macdonald symmetric functions.

Let indeed Pλ/µ(x; q, t) and Qλ/µ(x; q, t) be the symmetric functions defined in [5, VI
§7]. Replace cλ, s and c′λ, s with their (q, t)-analogues

cλ, s(q, t) = 1− qaλ,stℓλ,s+1, c′λ, s(q, t) = 1− qaλ,s+1tℓλ,s ,

and set
Jλ/µ(x; q, t) := cλc

′
µPλ/µ = c′λcµQλ/µ.

The formula appearing in Theorem 4 can be easily derived from [5, VI (7.13)].
Setting similarly

cµ,λ, s(q, t) = 1− qaµ,stℓλ,s+1, c′λ,µ, s(q, t) = 1− qaλ,s+1tℓµ,s ,

we can deduce exactly the same formula as in Theorem 10. Indeed our proof is only
based on the combinatorics of arms and legs in partition diagrams, and involves only
multiplication and division among factors of type cν and c′ν . So it generalizes verbatim to
the two parameter case as well.
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2.5 Rotation of the skew diagram

From Theorem 4 we obtain also the following.
Fix β = (bh) a rectangular partition. Let λ be a partition contained in β, that is,

λ1 ! b and ℓ(λ) ! h. We denote here by λ̂ the rotated complement of λ in β

λ̂ = (b− λh, b− λh−1, . . . , b− λ1).

If µ ⊂ λ ⊂ β, then the diagram of the skew partition µ̂/λ̂ coincides with that of λ/µ up
to a rotation.

Example 14. For µ = (3, 1), λ = (5, 4, 2, 2) and β = (6, 6, 6, 6), we have the following
diagrams.

" " "
"

" " " "
" " " "
" "
"

µ ⊂ λ ⊂ β λ̂ ⊂ µ̂ ⊂ β

Theorem 15. Let µ ⊂ λ be partitions and let λ̂ ⊂ µ̂ be the respective rotated complements
in a rectangular partition containing λ. Then

cµ,λ c
′
λ,µ Jµ̂/λ̂ = cλ̂,µ̂ c

′
µ̂,λ̂

Jλ/µ

As a consequence of the previous formula, thanks to [4] we get

Corollary 16. Let λ/µ be a skew partition with λ rectangular. Let µ̂ be the rotated
complement of µ in λ, then

Jλ/µ = cµ,λ c
′
λ,µ Jµ̂.

In particular ṽλ/µ, ν(α) is a polynomial with nonnegative integer coefficients, for all parti-
tions ν. Furthermore, we have

gλµ,µ̂ = cµ,λ c
′
λ,µ cµ̂ c

′
µ̂ = cµ̂,λ c

′
λ,µ̂ cµ c

′
µ.

Remark 17. The fact that for a rectangular partition λ the functions Jλ/µ and Jµ̂ are
proportional was known thanks to a result by T.W. Cai and N. Jing [2, Theorem 4.7].
They proved that if λ is rectangular and µ ⊂ λ, then gλµ,ν ∕= 0 if and only if ν equals µ̂,
the rotated complement of µ in λ, which is equivalent to say that Jλ/µ and Jµ̂ differ for
the rational factor gλµ,µ̂/jµ̂. They gave also a formula expressing gλµ,µ̂ as a product of linear
factors, however the polinomiality of the rational factor is not evident from their formula.

Fix β = (bh) a rectangular partition, let µ ⊂ λ ⊂ β and let λ̂ ⊂ µ̂ ⊂ β be the respective
rotated complements in β. If T is a semi-standard tableau of shape λ/µ with labels in
{1, . . . , r}, we denote by T̂ the semi-standard tableau of shape µ̂/λ̂ arising from the same
filling, after rotating the diagram and reversing the labels xî = xr+1−i for all i = 1, . . . , r.

Thanks to Theorem 4, Theorem 15 is an immediate consequence of the following
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Proposition 18. In the previous notation, we have

cµ,λ c
′
λ,µ wT̂ = cλ̂,µ̂ c

′
µ̂,λ̂

wT

We split the proof of Proposition 18 in a few lemmas. The proof will be by induction
on the number r of labels. The base step r = 1, treated in the following lemma, is the
case of the horizontal strips with all boxes filled with the same label.

Lemma 19. Let λ/µ be a horizontal strip, then

cµ c
′
µ Bλ/µ

cµ,λ c′λ,µ Cλ/µ

=
cλ̂ c

′
λ̂
Bµ̂/λ̂

cλ̂,µ̂ c
′
µ̂,λ̂

Cµ̂/λ̂

Proof. Let us denote by i1 < . . . < iℓ the indices of the nonempty rows of λ/µ, we must
have for all j = 1, . . . , ℓ− 1

λij > µij # λij+1
> µij+1

.

We analyze separately the contribution of the boxes s ∈ λ in the expressions appearing
in the statement, respectively written as products of factors indexed by s ∈ λ on the left
hand side, and by s ∈ µ̂ on the right hand side.

Case 1. Let s be a box in λ/µ, then s gives a contribution cλ, s on the left hand side.

Similarly, the corresponding box in µ̂/λ̂ gives a contribution cµ̂, s on the right hand side.
Thus the product of the factors on the left hand side coming from the boxes in the ij-th
row of λ/µ gives

(1)(α + 1)(2α + 1) · · · ((λij − µij − 1)α + 1),

and the same contribution arises on the right hand side from the boxes in the correspond-
ing row of µ̂/λ̂.

Case 2. Suppose that s ∈ µ lies in a column which does not meet λ/µ: then

cµ,λ, s = cµ, s

Bλ/µ, s = c′λ, s = c′λ,µ, s

Cλ/µ, s = c′µ, s

and the contribution of s to the left hand side equals 1. The same holds on the right hand
side for the boxes in λ̂ whose column does not meet µ̂/λ̂.

Case 3. Suppose that s ∈ µ lies in a row which does not meet λ/µ: then

c′λ,µ s = c′µ, s

Bλ/µ, s = cλ, s = cµ,λ, s

Cλ/µ, s = cµ, s

and the contribution of s to the left hand side equals 1. The same holds on the right hand
side for the boxes in λ̂ whose row does not meet µ̂/λ̂.
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Case 4. We are left with the boxes s ∈ µ (resp. s ∈ λ̂) such that both the column
and the row of s meet λ/µ (resp. s ∈ µ̂/λ̂).

By definition, if s ∈ µ (resp. s ∈ λ̂) is a box as above, then Bλ/µ,s = cλ,s and
Cλ/µ,s = cµ,s (resp. Bµ̂/λ̂,s = cµ̂,s and Cµ̂/λ̂,s = cλ̂,s). Thus the claim follows if we show
that, for all j, k with 1 ! j < k ! ℓ, the next equality holds:

λik#

q=µik
+1

c′µ,(ij ,q) cλ,(ij ,q)

cµ,λ,(ij ,q) c
′
λ,µ,(ij ,q)

=

µ̂h+1−ij#

q=λ̂h+1−ij
+1

c′
λ̂,(h+1−ik,q)

cµ̂,(h+1−ik,q)

cλ̂,µ̂,(h+1−ik,q)
c′
µ̂,λ̂,(h+1−ik,q)

.

In the first term we have

λik#

q=µik
+1

c′µ,(ij ,q)

c′λ,µ,(ij ,q)
=

λik#

q=µik
+1

(µij + 1− q)α + ik − ij − 1

(λij + 1− q)α + ik − ij − 1
,

λik#

q=µik
+1

cλ,(ij ,q)

cµ,λ,(ij ,q)
=

λik#

q=µik
+1

(λij − q)α + ik − ij + 1

(µij − q)α + ik − ij + 1
.

In the second term we have

µ̂h+1−ij#

q=λ̂h+1−ij
+1

c′
λ̂,(h+1−ik,q)

c′
µ̂,λ̂,(h+1−ik,q)

=

λij#

p=µij
+1

(p− λik)α + ik − ij − 1

(p− µik)α + ik − ij − 1
,

µ̂h+1−ij#

q=λ̂h+1−ij
+1

cµ̂,(h+1−ik,q)

cλ̂,µ̂,(h+1−ik,q)

=

λij#

p=µij
+1

(p− µik − 1)α + ik − ij + 1

(p− λik − 1)α + ik − ij + 1
.

To compare the terms of the stated equality, we compare the above factors separately.
By symmetry we can assume that the difference d := (λik−µik)−(λij−µij) is nonnegative.

First we prove the equality

λik#

q=µik
+1

(µij + 1− q)α + ik − ij − 1

(λij + 1− q)α + ik − ij − 1
=

λij#

p=µij
+1

(p− λik)α + ik − ij − 1

(p− µik)α + ik − ij − 1
.

By the assumption on d, notice that the numerator of the right hand side divides that of
the left hand side, and similarly for the denominators. Thus dividing the first hand side
by the second hand side we get

"µik
+d

q=µik
+1(µij + 1− q)α + ik − ij − 1

"λik
q=λik

−d+1(λij + 1− q)α + ik − ij − 1
= 1 ,

which shows the equality.

the electronic journal of combinatorics 29(2) (2022), #P2.24 12



The second equality

λik#

q=µik
+1

(λij − q)α + ik − ij + 1

(µij − q)α + ik − ij + 1
=

λij#

p=µij
+1

(p− µik − 1)α + ik − ij + 1

(p− λik − 1)α + ik − ij + 1

is proved by arguing in a similar way.

The induction step in the proof of Proposition 18 will follow from

Lemma 20. Let β = (bh) be a rectangular partition. Let µ ⊂ λ ⊂ β and let λ̂ ⊂ µ̂ ⊂ β
be the respective rotated complements in β, then

cµ,λ
cµ,β

=
cλ̂,µ̂
cλ̂,β

and
c′λ,µ
c′β,µ

=
c′
µ̂,λ̂

c′
β,λ̂

Proof. Notice that the two identities are equivalent, up to taking the conjugate partitions.
So it is enough to prove the first one.

We proceed by induction on the size of the partitions µ and λ̂. If µ = ∅ and λ = β
the identity is obvious.

Assume the identity holds for µ ⊂ λ ⊂ β. Provided |λ| > |µ|, we have to prove that
the identity holds for the partitions obtained by adding a box of λ\µ to µ, or by removing
a box of λ \ µ from λ (that is, adding a box of µ̂ \ λ̂ to λ̂). Notice that the identity is
symmetric up to taking the rotated complement in β, so it is enough to consider the first
case.

Let (i, j) ∈ λ \ µ and let µ+ ⊂ λ be the partition obtained by adding the box (i, j) to
µ. We claim that

cµ+,λ

cµ,λ
=

cλ̂,µ̂+
cµ+,β

cλ̂,µ̂ cµ,β
,

which implies the statement thanks to the induction hypothesis.
Notice that by construction we have µi−1 # µi + 1 = j and λ̂k # b+ 1− j > λ̂k+1 for

some k ! h− i (see Figure 2 for an example).
On the left hand side, all the factors of the numerator and of the denominator cancel

out except for those coming from the boxes in the i-th row of µ and µ+. Setting λ̂0 = b,
it follows that the left hand side equals

"k−1
ℓ=0

%"j−(b+1−λ̂ℓ)

p=j−(b−λ̂ℓ+1)
(pα + h+ 1− i− ℓ)

& "j−(b+1−λ̂k)
p=0 (pα + h+ 1− i− k)

"k−1
ℓ=0

%"(j−1)−(b+1−λ̂ℓ)

p=(j−1)−(b−λ̂ℓ+1)
(pα + h+ 1− i− ℓ)

& "(j−1)−(b+1−λ̂k)
p=0 (pα + h+ 1− i− k)

,

namely "k
ℓ=0((λ̂ℓ − b− 1 + j)α + h+ 1− i− ℓ)

"k
ℓ=1((λ̂ℓ − b− 1 + j)α + h+ 2− i− ℓ)

.
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Figure 2:

" " " " " " " " " "
" " " " " " " " "
" " " " " " " ∗
" " " " " " "
" " " "
"

i

j

h+1−k

On the right hand side, all the factors of cλ̂,µ̂+
and of cλ̂,µ̂ cancel out except for those

coming from the boxes in the (b+ 1− j)-th column of λ̂: therefore

cλ̂,µ̂+

cλ̂,µ̂
=

"k
ℓ=1((λ̂ℓ − b− 1 + j)α + h+ 1− i− ℓ)

"k
ℓ=1((λ̂ℓ − b− 1 + j)α + h+ 2− i− ℓ)

.

The factors of cµ+,β and cµ,β also cancel out, except for those coming from the i-th row
of µ and µ+. Thus we get

cµ+,β

cµ,β
=

"j−1
p=0(pα + h+ 1− i)

"j−2
p=0(pα + h+ 1− i)

= (j − 1)α + h+ 1− i

and the claim follows.

Proof of Proposition 18. We proceed by induction on r, the number of indeterminates.
The base step is Lemma 19.

Suppose now that r > 1 and let T be a semi-standard tableau of shape λ/µ with r
labels: thus we have an increasing sequence of partitions

µ = λ(0) ⊂ λ(1) ⊂ . . . ⊂ λ(r−1) ⊂ λ(r) = λ

such that λ(i)/λ(i−1) is a horizontal strip for all i = 1, . . . , r. Let us split the tableau T in
two semi-standard tableaux, the tableau S of shape λ(r−1)/µ and the horizontal strip R
of shape λ/λ(r−1). Set λ− = λ(r−1) and notice that

wT

cµ c′µ
=

wS

cµ c′µ

wR

cλ− c′λ−

.

Assume by the induction that the statement of the proposition holds for S. Then
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using Lemma 19 and writing wT̂ in terms of wR̂ and wŜ we get

wT

cµ,λ c′λ,µ
=

wS

cµ,λ c′λ,µ

wR

cλ− c′λ−

=
cµ,λ− c′λ−,µ

cµ,λ c′λ,µ

wŜ

cλ̂−,µ̂ c
′
µ̂,λ̂−

cλ−,λ c
′
λ,λ−

cλ− c′λ−

wR̂

cλ̂,λ̂−
c′
λ̂−,λ̂

=
cµ,λ− c′λ−,µ

cµ,λ c′λ,µ

cλ̂−
c′
λ̂−

cλ̂−,µ̂ c
′
µ̂,λ̂−

cλ−,λ c
′
λ,λ−

cλ− c′λ−

wT̂

cλ̂,λ̂−
c′
λ̂−,λ̂

.

On the other hand by Lemma 20 we have the equalities

cµ,λ−

cλ̂−,µ̂

cλ−,λ

cλ̂,λ̂−

cλ̂,µ̂
cµ,λ

cλ̂−

cλ−

=
c′λ−,µ

c′
µ̂,λ̂−

c′λ,λ−

c′
λ̂−,λ̂

c′
µ̂,λ̂

c′λ,µ

c′
λ̂−

c′λ−

= 1 ,

and the claim follows.

Remark 21. The same formula as in Theorem 15 holds also for the integral version of the
two parameter Macdonald symmetric functions, see Remark 13. Indeed, also in this case
the proof is only based on the combinatorics of arms and legs in partition diagrams, and
involves only multiplication and division among factors of type cν and c′ν . So it generalizes
verbatim to the two parameter case as well.

2.6 The case ℓ(µ) = 1

Recall the following expansion of Jack symmetric functions

Proposition 22 ([8, Proposition 4.2]). Let x = (x1, x2, . . .) and y = (y1, y2, . . .) be two
sets of indeterminates. If λ/µ is a skew partition, then

Jλ/µ(x, y;α) =
!

ν

jν(α)
−1Jλ/ν(x;α)Jν/µ(y;α).

This has the following easy consequence for Jλ/µ(x;α), under some strong assumption
on µ which holds in particular when µ has only one row or is a prefix of λ (the latter case
is also contained in Theorem 10).

Proposition 23. Let λ/µ be a skew partition and suppose that µi = λi for all i < ℓ(µ).
Then

vλ/µ, ν(α) = c′µ(α) vλ, µ∪ν(α).

In particular ṽλ/µ, ν(α) is a polynomial with nonnegative integer coefficients.

Proof. Write

Jλ(x, y;α) =
!

ν

jν(α)
−1Jλ/ν(x;α)Jν(y;α).
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Denote r = ℓ(µ). By the assumption on µ, the unique partition ν ⊂ λ such that µ ! ν is
µ itself. Taking the coefficient of yµ1

1 · · · yµr
r in the previous expansion we get then

[yµ1

1 · · · yµr
r ]Jλ(x, y;α) =

vµ,µ(α)

jµ(α)
Jλ/µ(x;α).

Thus the first claim follows by Theorem 2, and from [4] we get the second one.

3 Remarks on the factorizability of Stanley g-polynomials

3.1 Reflection of the skew diagram

Let ω− 1
α
: Λ⊗Q(α) → Λ⊗Q(α) be the Q(α)-algebra automorphism defined by ω− 1

α
(pr) =

− 1
α
pr, for r # 1.
In [8, Theorem 3.3], a duality formula relating Jλ′ and Jλ was given. More generally,

as an easy consequence we have the following formula relating Jλ′/µ′ and Jλ/µ (see also [5,
VI (10.19)]).

Proposition 24. Given a skew partition λ/µ, we have

Jλ′/µ′(x;α) = (−α)|λ|+|µ| ω− 1
α

'
Jλ/µ(x; 1/α)

(

Moreover, for all partitions ν it holds

jν′(α) = α2|ν| jν(1/α) and gλ
′

µ′,ν′(α) = α2|λ| gλµ,ν(1/α).

3.2 Factorizability of Stanley g-polynomials under special hypotheses

In [8] the following conjecture has been made. Let cλµ,ν denote the Littlewood-Richardson
coefficient associated to the triple λ, µ, ν.

Conjecture 25 ([8, Conjecture 8.5]). Suppose that cλµ,ν = 1. Then gλµ,ν is a product of
linear factors. Moreover, we have

gλµ,ν =
%#

s∈λ

c∗λ,s
&%#

s∈µ
c∗µ,s

&%#

s∈ν
c∗ν,s

&

where for π = λ, µ, ν and s ∈ π it holds either c∗π,s = cπ,s or c∗π,s = c′π,s, and totally the
two choices occur both |λ| times.

When ν is the highest partition occurring in Jλ/µ, the conjecture is true thanks to
Proposition 6. Indeed in that case we have

gλµ,ν =
vλ/µ,ν jν
vν,ν

= vλ/µ,ν c′ν .

Thus Proposition 6 yields the following description.
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Proposition 26 ([8, Proposition 8.6]). Suppose that ν is the shape of the maximal filling
of λ/µ. For (i, j) ∈ λ denote ri = i− µ′

λi
and cj = λ′

j − µ′
j. Then

gλµ,ν =
#

(i,j)∈λ
ri!cj

cλ,(i,j)
#

(i,j)∈λ
ri>cj

c′λ,(i,j)
#

(i,j)∈µ
ri+cj

>cj

cµ,(i,j)
#

(i,j)∈µ
ri+cj

!cj

c′µ,(i,j)
#

s∈ν
c′ν,s

In particular, Conjecture 25 holds true in this case.

In the notation of Proposition 6, the last statement follows by considering the map
(i, j) *→ (i+ cj, j), which defines a bijection between the boxes of µ and the boxes of λ/ν.

By duality, we get a similar formula also for gλ
′

µ′,ν′(α) = α2|λ| gλµ,ν(
1
α
). Notice that ν is

the weight of the highest filling of λ/µ if and only if λ′ = µ′+ σ(ν ′) for some permutation
σ of the rows of ν ′.

Proposition 27. Suppose that λ = µ+ σ(ν), where σ is a permutation of the rows of ν.
For (i, j) ∈ λ denote ri = νσ−1(i) and cj = j − µλ′

j
. Then

gλµ,ν =
#

(i,j)∈λ
cj!ri

c′λ,(i,j)
#

(i,j)∈λ
cj>ri

cλ,(i,j)
#

(i,j)∈µ
cj+ri

>ri

c′µ,(i,j)
#

(i,j)∈µ
cj+ri

!ri

cµ,(i,j)
#

s∈ν
cν,s

In particular, Conjecture 25 holds true in this case.

In the notation of the previous proposition, notice that if (i, j) ∈ λ and cj > ri then
i < λ′

j is an inversion of σ−1.
The previous formula for gλµ,ν can also be deduced by a more general result of Ruiten-

burg [6, Appendix], which holds for Jacobi polynomials for arbitrary root systems.

3.3 Skew diagram consisting of two connected components of nonskew type

Conjecture 28. Let µ be a rectangular partition and let λ ⊃ µ be a partition such
that λ/µ has two connected components given by the partitions φ and ψ. Let ν be such
that cλµ,ν = 1. Then the ratio gλµ,ν/g

ν
φ,ψ decomposes into linear factors compatibly with

Conjecture 25:
gλµ,ν
gνφ,ψ

=
#

s∈µ
c∗λ,sc

∗
µ,s

where for π = λ, µ and s ∈ µ it holds either c∗π,s = cπ,s or c
∗
π,s = c′π,s, and totally the two

choices occur both |µ| times.

Example 29. Let λ = (4, 3, 2, 1) and µ = (2, 2). Then λ/µ has two connected components
φ = ψ = (2, 1).

" "
" "
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Let ν = (3, 3). By computing with SageMath [7] we have that

gλµ,ν
gνφ,ψ

= (3α + 4)(3α + 2)(2α + 3)(2α + 1)(α + 2)4α2.

Proposition 30. Let µ be a rectangular partition and let λ ⊃ µ be a partition such that
λ/µ has two connected components given by the partitions φ and ψ. Then Conjecture 28
holds true for the partitions ν = φ+ ψ and φ ∪ ψ.

Proof. Assume that ν = φ+ ψ, the other case is treated similarly (or using the duality).
Assume that ℓ(φ) ! ℓ(ψ), and apply Proposition 27 to the triple {ν,φ,ψ}, with σ the
trivial permutation. Then we get

gνφ,ψ =
%#

s∈ν
c′ν,s

& %#

s∈φ

cφ,s
& %#

s∈ψ

cψ,s
&
.

On the other hand %#

s∈φ

cν1,s
& %#

s∈ψ

cν2,s
&
=

#

s∈λ/µ

cλ,s,

and with respect to the filling on λ/µ defined by ν we have ri ! cj for all (i, j) ∈ λ/µ.
Thus by Proposition 26 we see that gλµ,ν is divisible by gνφ,ψ, and their ratio is a product
of 2|µ| factors of the desired shape.

Remark 31. Let us here comment on Conjecture 28 in parallel with Theorem 10 and
Theorem 15.

First recall the invariance of skew Schur symmetric functions by translation and by
rotation of the skew diagram

sλ̃/µ̃ = sλ/µ and sλ̂/µ̂ = sλ/µ.

Theorem 10 and Theorem 15 generalize these identities by stating the semi-invariance of
skew Jack symmetric functions by translation and by rotation.

Recall now the equality of a skew Schur symmetric function sλ/µ with the product
of the skew Schur symmetric functions associated with the connected components of the
skew diagram of λ/µ. We can also restrict to the special case, as in Conjecture 28, of
a rectangular partition µ such that λ/µ has two connected components given by the
partitions φ and ψ, we have

sλ/µ = sφ sψ,

while in general the skew Jack symmetric function Jλ/µ is not proportional to the product
of the Jack symmetric functions Jφ Jψ. Conjecture 28 is a partial attempt to understand
the relation between Jλ/µ and Jφ Jψ.
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4 Looking for a generalization of Knop and Sahi’s combinatorial
formula

Let us recall the integral combinatorial formula due to Knop and Sahi [4] for the Jack
symmetric functions Jλ(x;α).

A (not necessarily semi-standard) tableau T of shape λ is called admissible if for all
boxes (i, j) ∈ λ:

• T (i, j) ∕= T (i′, j) for all i′ > i,

• T (i, j) ∕= T (i′, j − 1) for all i′ < i and j > 1.

A box (i, j) ∈ λ is called critical for T if j > 1 and T (i, j) = T (i, j − 1).
For s ∈ λ, set

dλ, s = dλ, s(α) = (aλ, s + 1)α + ℓλ, s + 1

and, for T tableau of shape λ, set

dT = dT (α) =
#

s critical

dλ, s(α) .

Theorem 32 ([4, Theorem 5.1]).

Jλ(x;α) =
!

T admissible

dT (α)x
T .

We are not able to formulate a conjecture for a generalization of Theorem 32 to
skew Jack symmetric functions. Here we just formulate a rather intricate combinatorial
conjecture only for the lowest coefficient.

4.1 The lowest coefficient

Let us look at the lowest coefficient of Jλ/µ(x) with respect to the monomial symmetric
functions, that is, the function vλ/µ, (1n)(α) where (1n) denotes the one column partition
(1, . . . , 1) of length n = |λ|− |µ|. From the definition we have

vλ/µ, (1n)(α)

n!
=

!

ν

〈Jλ(x), Jµ(x)Jν(x)〉
jν

.

A (finite) subset C of Z>0 × Z>0 will here be called a configuration. Generalizing
Young diagrams, we can think of a configuration as a set of boxes at integer positions in
the positive quadrant.

For any configuration C we define two partitions: ρ(C), the numbers ri(C) (i =
1, 2, . . .) of boxes of C in the i-th row rearranged in decreasing order, and γ(C), the
numbers cj(C) (j = 1, 2, . . .) of boxes of C in the j-th column rearranged in decreasing
order. A configuration (of |µ| boxes) will be called µ-admissible if it can be obtained from
the Young diagram of µ by a (possibly empty) sequence of moves of the following kinds:
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1. moving a box of the configuration C along the same row obtaining a new configu-
ration C ′ with γ(C ′) < γ(C),

2. moving a box of the configuration C along the same column obtaining a new con-
figuration C ′ with ρ(C ′) < ρ(C),

3. permuting the rows of the configuration,

4. permuting the columns of the configuration.

By explicit computations on small partitions we have observed the following

Conjecture 33. For all partitions µ and all µ-admissible configurations C there exist
(uniquely determined) polynomials π(µ,C)(α) with nonnegative integer coefficients, invari-
ant by row permutations and column permutations of C, such that for all partitions λ

vλ/µ, (1n)(α)

n!
=

!

C⊂λ

π(µ,C)(α)

with C varing among µ-admissible configurations included in the Young diagram of λ.
The polynomials do not depend on λ but only on µ and C.
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