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Abstract

A family F of k-sets on an n-set X is said to be an (s, t)-union intersecting family
if for any Aj,..., Ast+ in this family, we have (U_;4;) N (U§:1Ai+s) % . The
celebrated Erd6s-Ko-Rado theorem determines the size and structure of the largest
intersecting (or (1,1)-union intersecting) family. Also, the Hilton-Milner theorem
determines the size and structure of the second largest (1,1)-union intersecting
family of k-sets. In this paper, for ¢ > s > 1 and sufficiently large n, we find out the
size and structure of some large and maximal (s,¢)-union intersecting families. Our
results are nontrivial extensions of some recent generalizations of the Erdés-Ko-Rado
theorem such as the Han and Kohayakawa theorem [Proc. Amer. Math. Soc. 145
(2017), pp. 73-87] which finds the structure of the third largest intersecting family,
the Kostochka and Mubayi theorem [Proc. Amer. Math. Soc. 145 (2017), pp. 2311-
2321], and the more recent Kupavskii’s theorem [arXiv:1810.009202018 (2018)]
whose both results determine the size and structure of the ¢th largest intersecting
family of k-sets for i < k4 1. In particular, when s = 1, we confirm a conjecture
of Alishahi and Taherkhani [J. Combin. Theory Ser. A 159 (2018), pp. 269-282].
As another consequence, our result provides some stability results related to the
famous Erd6s matching conjecture.

Mathematics Subject Classifications: 05D05
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1 Introduction and Main Results

1.1 Erdés-Ko-Rado theorem and its generalization

Let n and k be two positive integers such that n > k. The symbol [n] stands for the set
{1,...,n} and the symbol [k, n| stands for the set [n]\ [k — 1]. The family of all k-element
subsets (or k-sets) of [n] is denoted by ([Z]). In this paper, we only consider families which
consist of k-sets on [n]. A family F is said to be intersecting if the intersection of every
two members of F is non-empty. If all members of F contain a fixed element of [n], then
it is clear that JF is an intersecting family which is called a star or a trivial family. For
cach i € [n], the family S; & {A € ([Z})|z € A} is a maximal star. Also, the following
two families are well-known examples of intersecting families. Let B be a k-set of [n] such

that 1 ¢ B. Define

HM € {A|1€ A, ANB £ 2}U{B}

and
HM ¥ LA|AN{1,2,3}] > 2}.

Note that for 2 < k < 3, we have |HM | = |HM’'| and if n > 2k and k > 4, then
| HM | > | HM'|.

The well-known Erdés-Ko-Rado theorem [9] states that every intersecting family of
([Z]) has cardinality at most (Zj) provided that n > 2k; moreover, if n > 2k, then the
only intersecting families of this cardinality are maximal stars.

As a generalization of the Erdds-Ko-Rado theorem, Hilton and Milner [24] proved a
useful and interesting stability result. They showed that for n > 2k the maximum possible
size of a nontrivial intersecting family F of ([Z]) is (Zj) - (";ﬁl) + 1. Furthermore,
equality is possible only for a family F which is isomorphic to HM or HM', the latter
can hold only for £ < 3.

A family F is called a Hilton-Milner family if F is isomorphic to a subfamily of HM
for some k or it is isomorphic to a subfamily of HM' for k € {2, 3}.

There also exist some other interesting extensions of Erdos-Ko-Rado and Hilton-Milner
theorems in the literature (e.g. [1,2,5,6,12,14,15,17,19-23,27,29, 31-33, 35]).

Beyond the Hilton-Milner theorem, it was shown by Hilton and Milner [24] that the
maximum size of a nontrivial intersecting family which is not a Hilton-Milner family is at
most (”_1) — ("_k_l) — (”_k_Q) + 2. In fact they proved the following interesting result

k-1 k—1 k=2
(see [23,24]).

Theorem A. [24] Let n,k, and s be positive integers with min{3,s} < k < § and let
F ={Ay,...,An} be an intersecting family of k-sets on [n]. If for any S C [m] with
|S| > m — s, we have NiegA; = @, then

(o) — (G +n—k if2<k<s+2,
ms (1)
(D) - (D) + () +s ifk<2ork>s+2

Moreover, the bounds in Inequality (1) are the best possible.
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Recently, Han and Kohayakawa [23] gave a different and simpler proof of Theorem A.
Moreover, they characterized all extremal families achieving the bounds in (1). In this
regard they introduced the following construction.

Definition 1. Let ¢ be a nonnegative integer. For any (i + 1)-set J C [n] with 1 € J and
any (k —1)-set E C [n]\ J, define the family J; as follows,

Ji YA ECA AnJ£2YU{A: JCAYU{A:1€ A, ANE + o).

Note that Jo = 81, J1 = HM, | Ti| = (3=1) = () + (=) +i, and [ T\ 81| = i

Theorem B. [23] Let n, k be positive integers with 3 < k < § and let F be an intersecting
family of k-sets on [n]. Assume that F is neither a star nor a Hilton-Milner family. Then
| F| < |TJ2|. Moreover, for k > 5, equality holds if and only if F is isomorphic to Js.

Definition 2. For ¢ < k let us define the family F; of ([Z]) as follows,

Fi Y2 k+ Ui+ 1L, k+iU{A: 1€ A AN k+1]£2,AN[i+ 1, k+i] # o).
In [29], Kostochka and Mubayi proved that the size of an intersecting family which is
neither a star nor is contained in J;, for ¢ € {1,...,k — 1,n — k}, is at most | F3| for
k > 5 and sufficiently large n = n(k). Also, more recently Kupavskii [32] extended this
result and showed that the same result holds when 5 <k < 7.

Theorem C. [32] Let n, k be positive integers with 5 < k < § and let F be an intersecting
family of k-sets on [n] with | F| > |Fs|. Then F C J; forie {0,1,...k—1,n—k}.

1.2  G-free subgraphs of Kneser graphs and (s, t)-union intersecting families

Let n > 2k. The Kneser graph KG, ; is a graph whose vertex set is ([Z]) where two
vertices are adjacent if their corresponding sets are disjoint. From another point of view,
the Erdés-Ko-Rado theorem [9] determines the maximum independent sets of Kneser
graphs. Recalling the fact that an independent set in a graph G is a subset of vertices
containing no subgraph isomorphic to K, the following question was asked in [1].

“Given a graph G, how large a family F C ([Z]) must be chosen to guarantee that
KG,, x[F] has some subgraph isomorphic to G? What is the structure of the largest subset
FC ([Z]) for which KG,, x[F] has no subgraph isomorphic to G?”

This problem has already been investigated for some special cases. In particular, if
G = K, the answer is the Erdds-Ko-Rado theorem and if G = K;; or G = K, the
question has been studied in [1,20] and [1, 28], respectively. If G = K1, the question is
equivalent to the famous Erdés matching conjecture [7].

In [1], Alishahi and the author determined the size and structure of a family F of k-sets
on [n] with maximum size such that the induced subgraph KG,, x[F] is G-free provided
that n is sufficiently large. They showed that

F< () - (" ve -1
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where x(G) is the chromatic number and 7(G) is the minimum possible size of a color
class of G over all possible proper x(G)-colorings of G.

Let s and t be two positive integers such that ¢ > s. A family F of k-sets on [n] is
said to be an (s,t)-union intersecting family if for any subfamily {A;, Ao, ..., As1¢} of F,

()] <2

It is straightforward to see that a family F is an (s,t)-union intersecting family if and
only if KG,, x[F] is K,free. As a generalization of the Erdés-Ko-Rado theorem Katona
and Nagy [28] showed that for sufficiently large n, any (s,¢)-union intersecting family
has cardinality at most (Zj) + s — 1. Alishahi and the author improved this result,
and moreover, characterized the extremal cases in [1]. Also, in [1] an asymptotic Hilton-
Milner-type stability theorem was proved for an (s,t)-union intersecting family of k-sets
on [n]. More recently, an explicit extension of this result is proved by Gerbner, Methuku,
Nagy, Patkds, and Vizer [21]. They show that for 2 < s < ¢, the size of an (s, ¢)-union

intersecting family of k-sets on [n], which is not isomorphic to a subfamily of

SIU{F;|1<j<s—1, 1¢F;}

for some Fi,..., F,_q, is at most (Zj) — ("_ksfl_l) + s+t — 1 and characterize the largest

one. In fact, they prove that a Hilton-Milner-type theorem for an (s, ¢)-union intersecting
family is true when ¢t > s > 2 and n is sufficiently large.

Note that the first largest (s,?)-union intersecting family is the union of the star S
and s — 1 other k-sets. For ¢ > 2, we say F is the ¢th largest gs,t)—union intersecting
family, if F is a maximal (s, t)-union intersecting subfamily of ([Z) and is not contained
in the jth largest (s,t)-union intersecting family for every j < ¢ — 1. The Hilton-Milner
theorem determines the size and structure of the second (1, 1)-union intersecting family.
Also, Han and Kohayakawa in [23] characterize the size and structure of the third (1, 1)-
union intersecting family. For sufficiently large n, Kostochka and Mubayi in [29] and
Kupavskii in [32] find the size and structure of the ith (1,1)-union intersecting family
when i < k + 1. In this regard, for sufficiently large n, Gerbner et al. in [21] determine
the size and structure of the second largest (s, ¢)-union intersecting family when t > s > 2.
Motivated by the mentioned results, one may naturally ask the following question.

Question 3. What are the size and structure of the ith largest (s,t)-union intersecting
family?

For a family F and an integer r > 2, let ¢,.(F) denote the minimum number m such

that by removing m sets from JF, the resulting family has no r pairwise disjoint sets. For

simplicity of notation, let ¢(F) o l5(F). Also, Question 3 has a close relationship with

the next question.

Question 4. What are the size and structure of the largest (s, t)-union intersecting family
with ((F) > s + 7?
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It is worth mentioning that each family F with ¢(F) < s—1is (s, ¢)-union intersecting
and the largest (s,t)-union intersecting family

FESUA1<i<s—1,1¢A;}

has ((F) = s — 1. Gerbner et al. in [21], as their main result, determine the size and
structure of the largest (s,t)-union intersecting family with ¢(F) > s, when t > s > 2
and n is sufficiently large. By using the Hilton-Milner theorem and their result, one can
verify that the second largest (s,t)-union intersecting family must have ¢(F) > s. In fact,
the next theorem determines the second largest (s,¢)-union intersecting family.

Theorem D. [21] For any 2 < s < t and k there exists N = N(s,t,k) such that if
n = N and F is a family with ((F) > s and KG,, x[F] is Ks4-free, then we have

n—1 n—sk—1
< — —1.
|]—‘|\<k_1) ( P )+s+t 1

Moreover, equality holds if and only if F is isomorphic to some Fg,; which is defined as
follows,

For C{A:1€ A AN, sk+1]# @} U{Ar,..., A U{F,... . Fi_i}

where A; < (i — 1Dk + 2, zk+ 1] for each 1 < i < s, and for each j < t — 1, we have

1€ Fjand F;N[2,sk+1] =

Motivated by the mentioned results and questions, in this paper, we try to determine
the structure and size of an (s,t)-union intersecting family with maximum size when
U(F) > s+ [ and n is sufficiently large. To state our main results, we need the following
definitions.

Definition 5. Let n, k, s, and § be fixed nonnegative integers. Let A;,..., Ay be s+
pairwise distinct k-sets on [n] such that 1 ¢ U7 A;. Define Sy (Ay, ..., Aspp : s) as follows

S1(A1,..., Asip:9) o {A € §,| Aisdisjoint from at most s — 1 of A;’s}.

Also, define

T(Ay, ..., Axp 0 8) def {z| there exist distinct ¢y, i, ..., 7341 such that = € O*BHAIJ}.

Note that when 8 = 0, we have T'(A;,...,As 1 s) = Ui A; and S1(Ay,..., A5 9) is
equal to S1\{A4: AN (U;_,A4;) = @}. Also, when s = 1 the family S1(Ay,..., A14p:1)is
equal to S;\{A| AN A; = @ forsome 1 <i<fB+1}and T(Ay, ..., Az 1) =NET A,

Definition 6. Let k,s, and  be fixed nonnegative integers. If [S; fl | > k, de-

fine 8 = def 5(k s, ) as the largest positive integer such that L(S,B—"fl) I = L(SﬁJﬁ)k

|SHE | = &, define = 5.

|; else if

THE ELECTRONIC JOURNAL OF COMBINATORICS 29(2) (2022), #P2.25 5



Now, we are in a position to state our first result.

Theorem 7. For any nonnegative integers k > 3,t > s > 1, and B, there exists
n(s,t,k,B) such that for all n > n(s,t,k,3) we have the following: if F is an (s,t)-
union intersecting family on [n] such that ((F) > s+ (3, then

. | (s+P)k 1 R
yf|<(” 1)—(” ey )+s+t+6—1.

kE—1 kE—1

Equality holds if and only if there exist pairwise distinct k-sets Ay,..., A 5 and
Fi, ..., F,_1 such that

s+B

1. 1¢ U A
=1

2 |T(Ar,.. . A0 8) = |52E],

3. foreachi<t—1, F; € S1\S1(A1,..., A, 5:5), and

4. the family {Ay,...,A_ 5 Fi,...,Fi_1} is an (s,t)-union intersecting family

546
and F is isomorphic to S1(A, ... A g s)U{Ay,... ’As+é} U{F,...,Fi1}.

It is worth mentioning that Theorem D follows from Theorem 7 by choosing f = 0 and
s > 2. By applying the previous theorem and using some properties of T'(Ay, ..., Asip : 5),
we can find out the jth largest (s, t)-union intersecting family for some j’s. We provide a
more detailed analysis in our remarks proceeding the proof of Theorem 7.

In [1], it was shown that if F is a (1,¢)-union intersecting family of ([Z]) with at least
(Zj) — (";El) + (t — 1)(2kk:11) + t members, then it is contained in some star S; for
sufficiently large n. Moreover, as an extension of the Hilton-Milner theorem, it is posed
as a conjecture in [1] that for sufficiently large n one can replace the term (¢ —1) (2::11) by
1. This conjecture is one of our motivations for this study. The conjecture follows from
Theorem 7 by choosing s =1 and 3 = 0.

Concerning our next result when s = 1,¢ > 1, and 8 < k—3, motivated by Theorems B
and C and the mentioned conjecture, we determine the maximum size and structure of a
(1,%)-union intersecting family F with ¢(F) > 1+ . Note that when s = 1 and 8 > 1,
Theorem 7 does not give a sharp bound for maximum size of (1,¢)-union intersecting
families. This result leads us to determine the ith largest (1,¢)-union intersecting families
where 1 < k — 2.

Before stating the next result we need to introduce the following construction.

Definition 8. Let i < k—1 be a nonnegative integer. For any (i+1)-set J = {1, 21,...,2;}

of [n] and any (k — 1)-set E C [n]\ J. Let Ay,..., A; be i pairwise distinct k-subsets on

[n] \ {1} such that N’_A; = F and A; \ E = {;} for each j < i define T as follows
T S (A A D) U{ALL. LAY UBLU- - U B,
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where B;, for j < i, defined as follows
ef
B; €{B,:pelt—1],|B| =k B,NE=2, J\B,={z;}}.

Notice that j;’l isomorphic to J; and J; = S1(Ay, ..., A; : 1) U{Ay,..., A;}. Since
B,’s in the definition of 7" are pairwise disjoint. Therefore, | 7| = | ;| 4+ i(t — 1).
For s = 1 we can state a strong improvement of Theorem 7 as follows.

Theorem 9. For any nonnegative integers k > 5,t > 1, and v = 1+ < k — 2, there
exists n(k,t,vy) such that for alln = n(k,t,~) we have the following: if F is a (1,t)-union
intersecting family on [n] such that ((F) > =, then

n—1 n—~k n—k—-y
< — .
|]:’\(k_1) <k_1)+(k_7_1>+’yt
Equality holds if and only if F is isomorphic to j#t.

1.3  Stability results for the Erd6s matching conjecture and its generalization

The Erdés matching conjecture is one of the famous open problems in extremal set the-
ory. It states that for n > (r 4+ 1)k, the size of the largest subset F C ([Z]) for which

KG,, x[F] has no copy of K, is max{((”lk)k_l), ()= (".")}- In recent years, this conjec-
ture has received considerable attention (e.g. [4,7,8,16,19,25,34]). Improving the earlier
results, Frankl [15] confirmed the conjecture for n > (2r + 1)k — r; moreover, he de-
termined the structure of the extremal cases in this range. Frankl and Kupavskii [18]
proved a Hilton-Milner-type stability theorem for the Erdos matching conjecture for
n = (2+ 0.(1))(r + 1)k as a significant improvement of a classical result due to Bol-
lobés, Daykin and Erdds [4].

Hereafter, we will focus on complete multipartite graphs Ky, s, .. s, as a forbidden
subgraph. We show that the previous results for (s,t)-union intersecting family can be
extended to K, ,.... s,.,-free subgraph of Kneser graphs instead of K ;-free subgraphs of
Kneser graphs as nontrivial extensions of the Erdés matching conjecture. In this regard,
Gerbner et al. [21] show that a generalization of Theorem D holds when KG,, x[F] is
Ky, sy, s,,-free when s; > -+ > 5,41 > 2. They determine the size and structure of the
second largest family F on [n] such that KG,, x[F] is K, s,....s,..,-free, where 5,41 > 2 for
sufficiently large n. Before stating their result, we need an extension of the construction
of Definition 5.

Definition 10. Let n, k, s, and 3 be positive integers. Let Ay, ..., As i3 be s+ [ pairwise
distinct k-sets on [n] such that [r]((UZPA;) = @. Define SIU(Ay, ... Ayrp @ s) as
follows

{Ae S, |AN[r—1] = @and Aisdisjoint from at most s — 1 of A;’s}.

Note that the family S,(Ai,...,As1p : s) in Definition 5 is a special case of Defini-
tion 10 when r = 1.

We are able to prove an analog of the previous theorem by using the Erdds-Stone-
Simonovits theorem and Theorem 7.
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Theorem 11. For any nonnegative integers k > 3,81 = -+ = S,41 = 1, and B, there
exists n(sy, ..., Sp41, k, B) such that for alln > n(sy, ..., s.41,k, ) we have the following:
if KGp i F| is K(s,,.. s, -free such that {1 (F) = s,41 + B, then

_ G tBk .
|f|<(2)—<nkr)—(n kaflJ T)+sr+sr+1+6—1.

Equality holds if and only if there exist s, +B patrwise distinct k-sets Ay, ..., A
such that

Sr41 +B

Sr+41 +B

[ ]
=
—~
=
S—

I
Q

” k
|T<A1, c. ,Asr+1+/3, . 37‘-{-1)’ - L(SE%MJ7

for eachi < s, —1, F; € S, \SIrY(4,,... A 1 Sen) and F0[r—1] = @, and

the family {A;,..., A
and

sroatpr F1o s Fs, 1} is an (Sp41, p)-union intersecting family

F is isomorphic to
r—1
U S; US,[T_”(AD c ’A8r+1+[§ : 5r+1) U {Al, o 7A5T+1+B} U {Fl, e 7FsT—1}-
i=1
When s,1; = 1 same as Theorem 9 we are able to prove a stronger result than Theo-
rem 11, which yields a new stability result for Erdés matching conjecture for sufficiently
large n.

Definition 12. Let ¢ < k — 1 be a nonnegative integer. For any (i 4+ r)-set J =
{1,...,rx1,...,2;} of [n] and any (k — 1)-set £ C [n]\ J. Let A;y,..., A; be i pair-
wise distinct k-subsets on [n] \ [r] such that Ni_; A; = E and A;\ E = {z;} for each j <1
define J }: as follows

r—1
TS S uSiT AL A ) UBU-- U B
q=1
where B;, for j < ¢ defined as follows,
B ©{B,:pelt—1),|B|=k.B,nE=2, J\By={1,....,r —1,2;}}.
Notice that J lllt is isomorphic to 7;". Now we are in a position to state a stability
result related to Erdos matching conjecture provided that n is sufficiently large.

Theorem 13. For any nonnegative integers k > 5,81 > -+ > s, =2 1, and y(= 1+ ) <
k — 2, there exists n(sy, ..., Sy k,7) such that for all n > n(sy,..., s, k,v) we have the
following: if KG,, [ F] is K. s 1)-free such that €, .1(F) =, then

n n—r n—k—r+1 n—k—r—vy+1
< _ — t.
7 (k) <k> ( k—1 >+( k—vy-1 >+7
Equality holds if and only iof F is isomorphic to j}y’j’
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2 Proofs

Before the proof of Theorem 7, let us state an interesting lemma from [21]. Here we show
that a strong generalization of Lemma A is true.

Lemma A. [21] Let s <t and let Ay, Ay, ..., Asrq be k-sets on [n] such that 1 & Ui A;.
Suppose that F' is a subfamily of Sy such that for F = F' U{Ay, As, ..., Agi1} the induced
subgraph of KG,, x| F] is Ky -free. There exists ng = n(k,s,t) such that if n > ng holds,

then we have (e 1)k
n—1 n— |2 -1
< — 2 .
|J-“\\<k_1> ( b1 >+(s—|—1)t

The next lemma provides an interesting and useful generalization of Lemma A. I be-
lieve that Lemma 14 independently will be a useful result and will have more applications.

Lemma 14. Let k, s, and 3 be fized nonnegative integers. Let Ay, Ao, ..., Asip be pairwise
distinct k-sets on [n] such that 1 & UStP A;. Then, there exists n(k, s, 3) such that for all
n = n(k, s, ) we have the following:

(@) (171) — (T ATl IS (AL Ages s 8)].

k—1
n—1 n— L(S+[3)kJ_ ) ) )
(b) |S1(As, ..., Asip:s)| < (k_l) — ( g ) and equality holds if and only if
+ Bk
T(An . A )] = 208

B+1

In particular, if |T(Ay,..., Asip @ s)| < L(ngl |, then |S1(Ay, ..., Asip : s)| is at
most

n—1\ (n—[T(A1,...,Agp:8) -1 n s+ 0 ok(p+1) (T —|T(A1,...,As4p5:5)| —3
k-1 k-1 1+8 k-3 '

(¢) For s =1, we have |S1(Ay, ..., A145: 1) < (Zj) — (Z:’f) + (”;ﬁgf;l) Moreover

for B > 1, equality holds if and only if |T(Ay, ..., A14p: 1) =k — 1.
In particular, if |T(Ay, ..., A1yp 1) < k—1, then |S1(Ay, ..., A1y : 1)| is at most

n—1\ n—|T(A1,...,A145:1)| -1 L 9k(8+D) n—|T(A,...,A145:1)[—3
k—1 k-1 k—3 '

Proof. For abbreviation, let T'(Ay, ..., Asip : s) = Tps. For the proof of (a), let 1 € A. If

ANTs # @, then A is disjoint from at most s — 1 sets of Ay, Ag,..., As13. Therefore,
(Z:i) ( ITﬁl 1) | 81(A17 s 7A5+5 : S>|

Now we prove (b). One can check that |T3| < | sgfl |. Assume that |T3| < | sgfl)kj
Let A € S1(Ay,...,As1p : s). Therefore, A intersects at least § + 1 of Ay,..., Asip.
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We have two possibilities for A. Either ANTz # @ or ANTp = & and A intersects at
least 5 + 1 of Ay,...,As1p. The number of members in §; which meet Tp is equal to

(Zj) — (”_Bal'_l). The number of k-sets in Sp, which intersect at least 541 of Ay, ..., Asip

and have no common element with 7}, is at most
n—|T5|—|U5“B|—1
> > > (2)
— U B -1
11,501 1€[s+8] @#B1CA; \Tp 2#Bg1CAig, 1 \Tp
which is at most

B+1
S L (n 3
k—3

T genes i5+1€[s+5] j=1

S+6 (B+1) TL—|T5|—3
<G ()

if > 1 and is 0 if 8 = 0. Therefore, if § = 0, then

n—1 n—|Ts| -1
()OI e

and if § > 1, then

n—1 n—|Tsl—1 s+ B grepny (1~ [Tl =3
1) < - '
| S1(Ay, , Ast s)| < (k_l) ( k—1 >+ <1+6>2 k-3

Then, | Si(Ay,...,As1p 1 s)| is at most

3 k
L(5+5) ]

n—1 n— |8k _q — [(n—i—1 S+ B\ okt (70— | Tsl — 3
(k—l)_( o1 )_,Z (k—? )+<1+5)2 +< k-3 )

:|Tg|+1
(s+B)k
- n—1\ —Lﬁﬂj—l
k—1 E—1 7
provided that n is sufficiently large.
(s+B)k

Now assume that we have the equality | S1(Ay,..., A 8)| = (Z_i) (" ~er [ 1= 1)
By contradiction assume that [Tj| < | Sg fl |. Using the same reasoning one may verify
that when n is sufficiently large, then |S1(Ay,...,Axs : s)| is less than

(s+8)k | _

G : B J ) which is not possible.

Now suppose that |13| = [(Sg fl |. To prove the last part of (b), it suffices to show
that

81\81<A1,... As+g : S) = {A|1 S A AﬂTﬁ = @}

From the division algorithm, we know that (s+g)k = | ngl J(B41)+7r where 0 < r < .
Since |T3| = [(S; fl |, there are at most r <  elements in Uje[s45A4; which are not in
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Ts. Therefore, there exist 1 < 43 < ... < iy < s+ [ such that 4, U---U A, C Tp.
On the other hand, for every 1 < j; < ... < js < s+ f, we have Ty C A; U---UA; .
Therefore, Tg = A;, U--- U A,;,. Assume that 1 € A and ANTz = @. Hence, AN (A;, U
A, U---UA,; ) = @. Therefore, A is disjoint from at least s sets of A, Ay, ..., As45 and
consequently A € S1\ S1(Ay, ..., Asip:8). If 1 € A and A is disjoint from at least s sets
of Ay, Ay, ..., Asip, then it is clear that each element of A appears in at most 8 of A;’s
and hence we have ANTs = @.

For the proof of (c), if |T3| < k — 2, then the proof is the same as the first part of
(b). Hence, we may assume that |Tj| is k — 1 or k. Note that when s = 1, T = N} A,.
If |Tjs| = k, then 3 must be equal to 0 and consequently | Sy(4; : 1)] = (}7]) — (”;ﬁl)
Thus, we may assume that || = | ﬂllilﬁ A;jl =k —1and § > 1. Then, there exist § + 1
elements in [n], say x1,...,2s.1, such that A;\ T = {z;}. Let A€ S1(Ay,..., A5 1).
Therefore, A intersects each of A;,..., A113. We have two possibilities for A. Either
ANTs # @ or ANTs = @ and A intersects all of Ay, ..., A11p. There are (Z’:i) — (Z:’f)
members in &y such that ANTj # &. The number of k-sets in Sy, which intersect all of

Ay, ..., A1 and have no common element with 7}, is equal to (”;fgf;l) Therefore,

N e AR A VT n—k—pg-1
|31<A17--~’A1+6-1)|—(k_l) < E—1 >+( k—pB3—2 )

Note that when > k — 1, we have (”;ﬁgfgl) = 0. ]

In the proof of Theorem 7 in addition to Lemma 14, we will use the following two
results. The first one is a result on the number of edges of a K -free graph, which is
a classical theorem by Ko6vari, S6s, and Turdn [30]. The second one is a result on the
number of disjoint pairs in a family F of k-sets by Balogh, Bollobas, and Narayanan [2].

Theorem E. [30] For any two positive integers s < t, if G is a Kyy-free graph with n
vertices, then the number of edges of G is at most (5 + o(1))(t — 1)sn2s.

Lemma B. [2] Let F be a family k-sets on [n]. Then the number of disjoint pairs in F

, oF)?
18 at least 2()

k

For an intersecting family F' on [n], its maximum degree A(F") is the maximum number of

elements of F’ containing any particular element of [n], i.e., A(F') & max;ef, | F NS;|.

Proof of Theorem 7. Let F be an (s, t)-union intersecting family of ([Z}) with ((F) > s+0
and cardinality

(s+B)k
e —1 - -1 A
M (Z_J-(" LkﬁﬂlJ >+t—1+s+5.

We consider the following three cases.
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(i) ((F) = s+ B where B < B < .
This implies that there exist Ay, ..., Ag g in F such that F' = F\{Ay,..., Ag 5}
is an intersecting family. Without loss of generality assume that A(F’) has the
maximum possible value and also A(F’) = | F' NSy |. Therefore, | F'| is equal to

n—1 n— |k _q L
() (Y s

First we show that for each i < s+ ', 1 € A;. If 7/ C Sy, then by the minimality of
((F), each A; must be disjoint from at least one member of F' C Sy, s0 1 ¢ USP A,

If 7/ ¢ Sy, then by the Hilton-Milner theorem, we conclude that | F'| = (Z i) —

(".F71) + 1. Consequently, there exists a unique B € F' such that F'\{B} C S,

and moreover, we must have t = 2, | S;J'Brl | = k and 8 = . If there is A; such
that 1 € A;, by the minimality of ¢(F), A; must be disjoint from B. Define F"’ =
(F'\{B}) U{A;}. Hence, | F'| = |F"| and A(F") = A(F') + 1 which contradicts
with the fact that A(F’) has the maximum possible value. Then, 1 ¢ U’ "A;. We
now consider the following three subcases.
(a) F' C Sy and |T(Ay, Ay, Aup + 5)] = 2],
Since 5 < 8 < 3, by the definition of 3 we have | s;il | = L%J In view of
the last part of the proof of Lemma 14 (b), there are 1 <i; < ... < i, < s+ /[
such that T(Al, ooy Asyp ts) = A, U--- U A, Also, note that for every

1< <...<js < s+, we have
AZ‘IU"'UAZ'S:T(Al,...,AS+I3/ZS)QA]‘IU"'UAJ‘S.

From this fact and since F is an (s,t)-union intersecting family, the number
of elements of F' which can be disjoint from Uj_;A;, for some s sets such
as Aj, ..., A;, of A’s is at most t — 1, say Fy,...,F,_;. Therefore, F' C
Si1(Ay, ..., Asip o s) U{F,...,Fi_1}. Thus, by applying Lemma 14 (b), we

obtain .
n—1 n— | -1
F'| < - At t—1
Py - ()
and consequently 3’ = B Therefore,

(s+B)k
—1 —[EEE]—-1
|f|<<2_1>—(n kaflJ )+t—1+s+6’

and equality holds if and only if F is isomorphic to
81<A1, . AS_,_ﬁ/ : 8) U {Al, . As+g/} U {Fl, - 7Ft—1}

such that [T(Ay, ..., Aup @ s)] = [S2E] F € S\ Si(Ar... Aup 1 9),
and the family {Ay, ..., Asyp, F1, ..., Fi_1} is an (s, t)-union intersecting fam-
ily.
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(b) F' L Sy and |T(A, A, A : )| = [55E].
As F' ¢ 8, there exists a k-set B € F' such that F'\{B} C S; and we

have/t = 2, L(s;il | =k, and B = B. Since |T(Ay, Ay, ..., Ayip = 5)| =
L(S;—il)kj = k, in view of the last part of the proof of Lemma 14 (b), there are

1<ip <...<is<s+f suchthat T(Ay,. .., Agrp o s) = Aj,UA,U---UA,; . As
|T(Ay, ..., Asip : s)| =k, s must be equal to 1. Therefore |T'(Ay,..., Ai11p :
1)| = k. Since T(Ay,..., Aiyp : 1) = ﬂ}ilﬁlAi, we obtain /' = 0. Ast = 2,
s = 1, and F is (s,t)-union intersecting, there is a unique B; € JF’ that
A; N By = @. One can check that F'\{B, B;} C 8;(A;, B : 1). Therefore,
| F'| < (Zj) — ("_k_l) — ("_k_2) + 2, a contradiction.

k-1 k—2
. (s+B)k
(C) ‘T(Ala'-->As+B’ )‘ < |_ B+1 J
There is at most one member B € F' such that F'\{B} C S;. Since F is
an (s,t)-union intersecting family, every s sets of A;’s such as A;,..., A;, are

disjoint from at most ¢t — 1 elemnts in F'. Therefore,
s+
| F\{B}| < |S1(A1,..., Asip : )| + ( Sﬁ>(t— 1).

Now by applying Lemma 14 (b), we obtain | F' | is at most

n—1\ (n—|T(A1,...,Axp :5)| -1 n
k—1 k-1

s+ BI k(B'+1) <n - ‘T(Ala v 7As+ﬁ’ : S)' - 3) (S + 6l> .
(1+ﬁ’>2 E_3 + . (t—1)+1.

Since |T(Ay, ..., Asrp 2 8)] < | Sgﬁfl | and k > 3, one can check that

e (L) (e L
k—1 k—1

provided that n is sufficiently large, which is not possible.

(i) s+B+1<UF) < M3,

Let F' be a largest intersecting family of F. Hence, | F'| is at least

n—1 . n_L(‘SB—"_Tﬁl)kJ_l Ml——
E—1 E—1 '

By the definition of M, we have M~3 = o(n¥~2). Since | 56—:-51 | > kand M'"3 =

o(n*=2), if n is sufficiently large, then we have

, n—1 n—k—1 n—k—2
‘F‘>Q—J_(k%1)_(k—2>+2
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By using Theorem B, F' is a star or a Hilton-Milner family. Therefore, without
loss of generality we may assume that there exists at most one B € F' such that
F'\{B} is a subfamily S;.

First assume that |“X2*| > k 4+ 1. By applying Lemma 14 (b) for 7' \{B} and
B+1

one of s+ [ + 1 sets of F\ F', we obtain

(s+B+1k 5
-1 — - -1 1
|f’|<(z_1)—<n LleJ )+<S+f+ )(t—1)+1.
Hence,

B DE A
|F|<<Z:1>—(n S 1>+(s+5+1>(t—1>+M1—§—s+1.

1 kE—1 S

(s4B+1)k (s+B)k (s+A)k | _
Note that (" -l 542 1= 1) (" e 41 1= 1) =(" -l g1 ] ) Therefore, | F | is at most
B YCeIL Y. YLy 3
(1) () B0 () b
k—1 k—1 k—2 s

This concludes that for sufficiently large n, | F| is less than M, a contradiction.

Assume that | &% | = k. Therefore, B = Band (HB+Dk | — k. Take A, . ..  Asir1
B+1 B+2 B

in F\F'. If we have |T'(Aq, ..., Asips1 : 8)| < k, then by applying Lemma 14 (b),
we obtain | F'\{B}| is at most

n—1 _ n—=k S+ﬁ+1 k(8+2) |T(A1,...,AS+5+1IS)|—3> <8+5+1> _
(k—1> (k—1>+< 2+ 8 )2 k-3 oy )
This implies that | F | is at most

n—1 n—k—1 _<nk’1 N

k-1) \ k-1 k-2

2+ p k—3 s

which is less than M when n is sufficiently large, a contradiction.

Assume that |T'(Ay, ..., Asipr1 2 8)| = | 8?:21 j = k. In view of the last part of

the proof of Lemma 14 (b), there are 1 < i1 < ... < i, < s+ [+ 1 such that
T(Al, Ce 7A3+B+1 . S) = A’h UAAl2 y--- UAZS

This implies that s must be equal to 1. If s = 1, then we have T(Ay, ..., Agia :
1) = N7*2A; and hence |T(Ay, ..., Agpo: 1) = | ﬂ6+2 A;| < k—1 which contradicts
with |T<A1, oo ,Aﬁ+2 : 1)| =k.
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(iii) £(F) > M5,

By Lemma B, we have e(KG, x[F]) > ]\gg;,f)_ and by Theorem E, F contains a

k
subgraph which is isomorphic to K, when n is sufficiently large. [ |

Note that perhaps for some k, s, and 3 there exist no pairwise distinct Ay, ..., Asip
satisfying Condition (2) in Theorem 7. For example, one may choose k = 3,s = 3, and
f = 5. Thus, we have Lsgfl | = 4. Since U}_;A; = T(Ay,..., Ag : 3), if there exist
Ay, ..., Ag for which |T(Ay,..., Ag : 3)| = 4, then at least two of A;’s must be identical,

which is not possible. Therefore, for some k, s, and [ there do not exist any A, ..., Asis

such that |T'(Ay,...,Asip : s)| = | sg fl |. Consequently, as we showed in the proof of
(s+B)k

Theorem 7, each (s, t)—umon intersecting family JF is of size less than (Zj) (" s o 1= 1).
Here we intend to elaborate on the ith largest (s, t)-union intersecting families for some
i. Assume that n is sufficiently large. Let {Aj,..., As} be s pairwise distinct k-subsets

of [n]. By Definition 5 we know that T'(A;, ..., As: s) = Ui_; A;. Define

LY S(A,. . A s)U{Ar,... A U{F, ... Fi_y}

where F; € §;\S1(Ay, ..., As 1 s). By using Inequality (3), one can verify that | L] is

equal to
n—1 n—|T(Ay,...,As:s)|—1
— -1
(o) ( o bort

Let n = n(k,s) be sufficiently large and s > 2. If L%j < |T(Aq,...,As : s)| < sk,
then by using Theorem 7, £ is the ith largest (s,¢)-union intersecting family, where
i:sk;—|T(A1,..., :s)| + 2.

If [T(Ay, ..., Ay o s)| = |55 then | £] is equal to (071) — ("~ L(S+11)kJ D+s+t-1
Let {A],... S+1} be s+ 1 pairwise distinct k-subsets of [n] such that T'(A},... A, :
s) = |_(S+21 J Define

; def
L= Si(Ay,. . AL s)U{AL AL F UL, F )

(s+1)k

We have | £' | is equal to (}7]) — (n_L ) J_1) + s+t which is greater than | £ |. Therefore,

L' and L are the (|&=2E ) | 4+ 2)th and ([(S DR | 4 3)th largest (s,t)-union intersecting
families, respectively.

Now assume that there are two families {A;,..., A,} and {A,..., A, ;} such that
|T(Aq,...,As )\—Lij—land T(A}, ... At s )|—Ls+1 J L If (s+ 1)k
is even, then 2|T(A’1, AL o s)] = (s+ 1)k — 2. Therefore, there are at most two
members in U{*] A} such that each of them appears in one of A;’s. If for each i < s+ 1
we have A; C T(AY,..., AL, : s), in view of Expression (2), we obtain

_ _ | (s£Dk
|£’|=<Z_i>—(n k:t—i J)+s+t.
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If for only one i < s+ 1 we have A; € T'(A},..., A, : s), then one can construct an
(s,t)-union intersecting family £ with ¢(L£]) = s + 1 and

1 _ | (stDk
!5’1\=<Z_1>—(n kt_i J)+s+z&.

Now suppose that A} € T'(A},..., AL, s) and A} £ T(A},..., ALy, @ s) for exactly two
1<1# 7 < s+ 1. Inview of Expressmn (2), one easily sees that the number of elements
in Sy which has no common element with T'(Af,..., A, ; : s) and intersects at least two

. —|T(A%,...,A" 1 :8)|— .
of Al’sis (" I7¢ et o)l 3). Therefore, for 0 < m < t — 1, one can construct a maximal

s,t)-union family £, = with ¢(L, )= s+ 1 and
2,m 2,m

1 | (s+Dk Dk
|E/2,m|:(Z_1)—(n kL—i J)+<n LkigJ )+s+t+m.

Therefore, we have some different types (s, t)-union intersecting families with ¢(F) = s+1,

T(AY, ... AL - s)] = | SH)kJ — 1, and different sizes and one type of (s,t)-union
intersecting families with ((F) = s, [T(Ay, ..., Ay : s)| = [tk s“ k1.

If (s + 1)k is odd, then 2|T(A},... A : )\ = (s+ 1)k — 3. Therefore, there are
at most three members in Uit A’ such that each of them appears in one of A}’s. Using
the same discussion as above one can find some different types of (s,t)-union intersecting
families with ((F) = s+ 1, |[T'(A},..., A, :s)| = | (st Dk 5+1 %1 — 1, and different sizes.

In the proof of Theorem 9, we need the following theorem by Frankl [13] and indepen-
dently Kalai [26] which is a generalization of a classical result due to Bollobés [3].

Theorem F. [13,26] Let k and { be two positive integers and let {(Aq, B1), ..., (An, Bp)}
be a family of pairs of subsets of an arbitrary set with |A;| = k and |B;| = { for all
1<i<h IfAANB =@ forl <i<hand Ay;NBj # & for1 <i < j < h, then
h< (k+e)

For simplicity of notation, for each 1 <1i < k— 1, define N; o (Zj) — (Z:]f) + (Z:f__f)
and for k define N def (k 1) — (Z:’f) Note that for 1 < ¢ < k — 1, we have that
Nioy — Ny = ("577) = Q(nk~).

k—i

Proof of Theorem 9. First we show that ¢(F) < (Zk )t —1). If t = 1, F is intersecting
and hence ¢(F) = 0. Assume that ¢ > 2 and F is not intersecting. Therefore, there exists
some disjoint pair in F. For a k-set A, define N(A) = {B € ([Z])]A N B = @}. Define
F1 = F. For each i > 2, if there exists some disjoint pair in F;_;, choose B; 1 € F;_1
and C;_y € N(B;_1) N F;_y and define F; = F,_; \(N(B;_1). Let m be the largest index
i for which F; contains some disjoint pair. For m +1 < j < 2m, set B} = Copjp1
and C; = By,,—j11. One may check that the family{(B;,C1), ..., (Bam,Con) } satisfies the
condition of Theorem F for [ = k and consequently m < (2;__11). Let N be a subfamily of
F defined as follows

N = {F € F |there is some i < m such that F' N B; = @}‘
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Since F is (1,t)-union intersecting, one can verify that [N | < m(t — 1). Note that
Fms1 1s an intersecting family and F is disjoint union of F,,,; and N. This yields
(F) < IN|< () (-1

Assume that | F| = N, +~t. Let F* be one of largest intersecting subfamilies of F
such that A(F*) has the maximum possible value. Assume that 7\ F* = {A;,..., Ayn }.
Therefore, | F* | = | F | — £(F). Consider the following three cases.

1. U(F) =~ and F* C ;.
We have | F* | = N, +~(t —1). Since {(F) =y and F = F"U{A;,... A}, each A;
is disjoint from at least one member of F* and hence 1 ¢ U}zlAj. Then

F NN (4)) € Si(Ay, .. Ay ).

Since v < k — 2, by applying Lemma 14 (c), we conclude that | F*\(Uj_; N (4;))| <
N,. Since F is (1,t)-union intersecting, for each j, A; is disjoint from at most ¢t — 1
members of F. As for each j, |[N(A;))NF|<t—1,|F|=N,+n~t, and

F=F U N(4;)) U(U N(A) N F)U{A .. Ay
we have F is a disjoint union of
F N N(A))), N(A)NF,...,N(A,)NF, and {A;,..., A}

Moroever, for each j, we have [N(A;) N F|=t—1, N(4;)NF C F* C Sy, and
| F*\(Uj21N(A4;))| = N,. From the last equality and by using Lemma 14 (c), we
obtain
.F* \(U;yle(A])) = 81<A1, oo ,Afy . 1)

and | Nj_, Aj| = k — 1. By taking £ = Nj_jA; and J = {1} U (U], A4; \ E)
in Definition 1, one can see that F \(Uj_;N(A;)) is isomorphic to J,. For each
Jj < B+ 1, by taking B; = N(A;) N F in Definition 8, one can check that F is
isomorphic to J ;’t. By Theorem C, F* is either a star or isomorphic to a subfamily
Ji where 0 <@t < v—1.

2. y+1<UF) < (Pt -1) and F* C Sy

Let Ay,..., A4 € F\F". By using minimality of ¢(F), each A; is disjoint from
at least one member of F*. Therefore, 1 € A; for each ¢ < v+ 1. Then

FAN(UEIN(A)) C Si(Ar, o Ay 1)
and by applying Lemma 14 (c), we obtain | F*\((U7Z] N(4;))| < N,,. Since
F = (F\UZLIN(A)) U (VN (A) N F) U{Ar, .. Agn

we have | F| < Nyy1 + (y+1)(t = 1) + ¢(F) < N,, which is not possible when n is
sufficiently large.
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3. v < UF) < CFH(t—1) and F* is not a star.

By Theorem C, F* C 7. for some 1 < ¢ < 8+ 1. Then, for some b < ¢, there
exist By,...,B, € F* such that F*\{By,...,B,} C S; and B; ¢ S;. At most
b—1of Ay,..., A, contain 1; otherwise if for 1 < j; < .-+ < j, < v we have
1enb A, then F' = (F*\{By,...,By})U{4;,,..., A;,} is an intersecting family
with | F'| = | F*| and A(F") > A(F*), which contradicts with the fact that A(F™)
has the maximum possible value. Therefore, without loss of generality we can
assume that Ay, ..., Ay do not contain 1 for & = v+ 1 — b. Hence,

FN(SLNA)) U{By, ..., Bi}) € Si(Ar,... Ay, Bu,..., By 1 1)
and by Lemma 14 (c), we obtain | F*\((U_;N(A4;))U{Bx,..., By})| < Ny41. Since
F = (F\ ULy N(4)) U (UL N(A) NF)U{AL . An ),

we obtain | F | < Nyy1 +b+ b (t — 1)+ ¢(F) < N, which is not possible when n is
sufficiently large. [ |

It can be seen that the next corollary is a direct consequence of Theorem 9. Notice
that we need to apply Theorem C to prove it.

Corollary 15. Let n, k > 5, t > 1, and v < k — 2 be nonnegative integers such that
n = n(k,t,vy) is sufficiently large. Let F be a (1,t)-union intersecting family that is not
isomorphic to a subfamily of J;UB where B C S;\J; and 0 < i<y —1. Then

n—1 n—~k n—k—-y
< — .
#1e (o) - (o) + (25 00) e

Equality holds if and only if F is isomorphic to some j}f.

For the proof of Theorem 11 we need to use the well-known Erdos-Stone-Simonovits
theorem [10,11]. For a given graph G, the Turdn number ex(n,G) is defined to be the
maximum number of edges in a graph with n vertices containing no subgraph isomorphic
to G. The Erdés-Stone-Simonovits theorem asserts that for any graph G with y(G) > 2,

ex(G,n) = (1 — ﬁ)(g) + o(n?).

Proof of Theorem 11. The proof is by induction on r. By Theorem 7, the assertion is true
when r = 1. Let » > 2. Suppose now that the assertion is true for » — 1. Also, without
loss of generality suppose that

(sr41+B)k
n n—r n— —r X
|f|=(k>—( ! )—( Lkﬁfl : >+sr+sr+1+ﬁ—1-

Consider the following cases.
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L maxie | FNS;| < (371 = (TEEIY) 45,

Then the number of disjoint pair in F is at least
| | | F 0S| 1 F] 2

— > 1——
(] (75720 ) D

provided that n is large enough. Hence, by the Erdds-Stone-Simonovits theorem
KG,, x[F] contains some subgraph isomorphic to K, s, provided that n is large
enough, which is a contradiction.

9999 Sr+1

2. maxe) [ FNSi| > (2p) — (7 %-%Sjk_l) + s

Without loss of generality assume that max;cp | FNS;| = | FNS,|. If S, & F,
then | F NS, | < (}7]). Therefore,

(sr+1+B)k
—1 _ _ | Beat Bk .
stz () - - (T T ) e

By induction hypothesis KG,,_1 x[F \ S,] contains a copy K, . s .. As

~1 S sk —1
|J:ﬂ8n|><z_1>—(n ZI;:_Q? )+51,

one can greedily pick s; sets of S, such that constructs a copy of K, s, . 5., in
KG, x[F], a contradiction. Therefore, one can assume that S,, C F. Similarly
as before KG,,_1,[F\S,] does not contain any copy of Ky, .,. Therefore, by
induction hypothesis, we have

_ _ _ | raatBk )
|~F\Sn|< (nkl)_<nkr>_(n L kﬁ—_Hl J T)+Sr+5r+1+5_1a

and the equality holds if and only if F\ S,, is isomorphic to

r—2
U (81 \Sn) U (SLT—_12](A1a A27 veey A

i=1

such that

57-+1+£ . S) \Sn) U {A17A27""Asr+1+3}u {F17~-~7Fsv.—1}

p+1
orp ) and F; N [r —2] = @ for each i (Note that

in this step all families are subfamilies of ([”;1]) because we remove S, from F so
we do not meet n.).

Thus,
_ _ (57‘+1+B)k _ N
|f|<(Z)_<nk_r>_(n Lkﬁjll J r)+3r+3r+1+ﬁ_1a
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T(Ay, Ao, A, )] = {Hi |

F e 8 \S" (A, A, ... A

r



and the equality holds if and only if F is isomorphic to

r—1

USiusSI(A, Ay, A, 5 s) U{AL Ay A, Y ULEL, . Fy 1)
=1

such that |T'(Ay, Ay, ... A, o) = |08 | Fe S\ SI(A Ay, Ay

s), and F; N [r — 1] = & for each 7. |

The proof of Theorem 13 is the same as the proof of Theorem 11.
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