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Abstract

A family F of k-sets on an n-set X is said to be an (s, t)-union intersecting family
if for any A1, . . . , As+t in this family, we have (∪s

i=1Ai) ∩
!
∪t
i=1Ai+s

"
∕= ∅. The

celebrated Erdős-Ko-Rado theorem determines the size and structure of the largest
intersecting (or (1, 1)-union intersecting) family. Also, the Hilton-Milner theorem
determines the size and structure of the second largest (1, 1)-union intersecting
family of k-sets. In this paper, for t ! s ! 1 and sufficiently large n, we find out the
size and structure of some large and maximal (s, t)-union intersecting families. Our
results are nontrivial extensions of some recent generalizations of the Erdős-Ko-Rado
theorem such as the Han and Kohayakawa theorem [Proc. Amer. Math. Soc. 145
(2017), pp. 73–87] which finds the structure of the third largest intersecting family,
the Kostochka and Mubayi theorem [Proc. Amer. Math. Soc. 145 (2017), pp. 2311–
2321], and the more recent Kupavskii’s theorem [arXiv:1810.009202018 (2018)]
whose both results determine the size and structure of the ith largest intersecting
family of k-sets for i " k + 1. In particular, when s = 1, we confirm a conjecture
of Alishahi and Taherkhani [J. Combin. Theory Ser. A 159 (2018), pp. 269–282].
As another consequence, our result provides some stability results related to the
famous Erdős matching conjecture.
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1 Introduction and Main Results

1.1 Erdős-Ko-Rado theorem and its generalization

Let n and k be two positive integers such that n ! k. The symbol [n] stands for the set
{1, . . . , n} and the symbol [k, n] stands for the set [n]\ [k−1]. The family of all k-element
subsets (or k-sets) of [n] is denoted by

!
[n]
k

"
. In this paper, we only consider families which

consist of k-sets on [n]. A family F is said to be intersecting if the intersection of every
two members of F is non-empty. If all members of F contain a fixed element of [n], then
it is clear that F is an intersecting family which is called a star or a trivial family. For

each i ∈ [n], the family S i
def
= {A ∈

!
[n]
k

"
|i ∈ A} is a maximal star. Also, the following

two families are well-known examples of intersecting families. Let B be a k-set of [n] such
that 1 ∕∈ B. Define

HM def
= {A| 1 ∈ A, A ∩B ∕= ∅} ∪ {B}

and
HM′ def

= {A| |A ∩ {1, 2, 3}| ! 2}.
Note that for 2 " k " 3, we have |HM| = |HM′ | and if n > 2k and k ! 4, then
|HM| > |HM′ |.

The well-known Erdős-Ko-Rado theorem [9] states that every intersecting family of!
[n]
k

"
has cardinality at most

!
n−1
k−1

"
provided that n ! 2k; moreover, if n > 2k, then the

only intersecting families of this cardinality are maximal stars.
As a generalization of the Erdős-Ko-Rado theorem, Hilton and Milner [24] proved a

useful and interesting stability result. They showed that for n > 2k the maximum possible
size of a nontrivial intersecting family F of

!
[n]
k

"
is

!
n−1
k−1

"
−

!
n−k−1
k−1

"
+ 1. Furthermore,

equality is possible only for a family F which is isomorphic to HM or HM′, the latter
can hold only for k " 3.

A family F is called a Hilton-Milner family if F is isomorphic to a subfamily of HM
for some k or it is isomorphic to a subfamily of HM′ for k ∈ {2, 3}.

There also exist some other interesting extensions of Erdős-Ko-Rado and Hilton-Milner
theorems in the literature (e.g. [1, 2, 5, 6, 12, 14, 15, 17, 19–23,27, 29, 31–33,35]).

Beyond the Hilton-Milner theorem, it was shown by Hilton and Milner [24] that the
maximum size of a nontrivial intersecting family which is not a Hilton-Milner family is at
most

!
n−1
k−1

"
−

!
n−k−1
k−1

"
−

!
n−k−2
k−2

"
+ 2. In fact they proved the following interesting result

(see [23, 24]).

Theorem A. [24] Let n, k, and s be positive integers with min{3, s} " k " n
2
and let

F = {A1, . . . , Am} be an intersecting family of k-sets on [n]. If for any S ⊂ [m] with
|S| > m− s, we have ∩i∈SAi = ∅, then

m "

#
$

%

!
n−1
k−1

"
−

!
n−k
k−1

"
+ n− k if 2 < k " s+ 2,

!
n−1
k−1

"
−

!
n−k
k−1

"
+
!
n−k−s
k−s−1

"
+ s if k " 2 or k ! s+ 2.

(1)

Moreover, the bounds in Inequality (1) are the best possible.
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Recently, Han and Kohayakawa [23] gave a different and simpler proof of Theorem A.
Moreover, they characterized all extremal families achieving the bounds in (1). In this
regard they introduced the following construction.

Definition 1. Let i be a nonnegative integer. For any (i+1)-set J ⊂ [n] with 1 ∈ J and
any (k − 1)-set E ⊂ [n] \ J , define the family J i as follows,

J i
def
= {A : E ⊂ A, A ∩ J ∕= ∅} ∪ {A : J ⊂ A} ∪ {A : 1 ∈ A, A ∩ E ∕= ∅}.

Note that J 0 = S1, J 1 = HM, | J i | =
!
n−1
k−1

"
−
!
n−k
k−1

"
+
!
n−k−i
k−i−1

"
+ i, and | J i \ S1 | = i.

Theorem B. [23] Let n, k be positive integers with 3 " k < n
2
and let F be an intersecting

family of k-sets on [n]. Assume that F is neither a star nor a Hilton-Milner family. Then
| F | " | J 2 |. Moreover, for k ! 5, equality holds if and only if F is isomorphic to J 2.

Definition 2. For i " k let us define the family F i of
!
[n]
k

"
as follows,

F i
def
= [2, k + 1] ∪ [i+ 1, k + i] ∪ {A : 1 ∈ A,A ∩ [2, k + 1] ∕= ∅, A ∩ [i+ 1, k + i] ∕= ∅}.

In [29], Kostochka and Mubayi proved that the size of an intersecting family which is
neither a star nor is contained in J i, for i ∈ {1, . . . , k − 1, n − k}, is at most | F3 | for
k ! 5 and sufficiently large n = n(k). Also, more recently Kupavskii [32] extended this
result and showed that the same result holds when 5 " k < n

2
.

Theorem C. [32] Let n, k be positive integers with 5 " k < n
2
and let F be an intersecting

family of k-sets on [n] with | F | > | F3 |. Then F ⊆ J i for i ∈ {0, 1, . . . k − 1, n− k}.

1.2 G-free subgraphs of Kneser graphs and (s, t)-union intersecting families

Let n ! 2k. The Kneser graph KGn,k is a graph whose vertex set is
!
[n]
k

"
where two

vertices are adjacent if their corresponding sets are disjoint. From another point of view,
the Erdős-Ko-Rado theorem [9] determines the maximum independent sets of Kneser
graphs. Recalling the fact that an independent set in a graph G is a subset of vertices
containing no subgraph isomorphic to K2, the following question was asked in [1].

“Given a graph G, how large a family F ⊆
!
[n]
k

"
must be chosen to guarantee that

KGn,k[F ] has some subgraph isomorphic to G? What is the structure of the largest subset

F ⊆
!
[n]
k

"
for which KGn,k[F ] has no subgraph isomorphic to G?”

This problem has already been investigated for some special cases. In particular, if
G = K2, the answer is the Erdős-Ko-Rado theorem and if G = K1,t or G = Ks,t, the
question has been studied in [1, 20] and [1, 28], respectively. If G = Kr+1, the question is
equivalent to the famous Erdős matching conjecture [7].

In [1], Alishahi and the author determined the size and structure of a family F of k-sets
on [n] with maximum size such that the induced subgraph KGn,k[F ] is G-free provided
that n is sufficiently large. They showed that

| F | "
&
n

k

'
−

&
n− χ(G) + 1

k

'
+ η(G)− 1.
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where χ(G) is the chromatic number and η(G) is the minimum possible size of a color
class of G over all possible proper χ(G)-colorings of G.

Let s and t be two positive integers such that t ! s. A family F of k-sets on [n] is
said to be an (s, t)-union intersecting family if for any subfamily {A1, A2, . . . , As+t} of F ,

(
s)

i=1

Ai

*
∩
(

t)

i=1

As+i

*
∕= ∅.

It is straightforward to see that a family F is an (s, t)-union intersecting family if and
only if KGn,k[F ] is Ks,t-free. As a generalization of the Erdős-Ko-Rado theorem Katona
and Nagy [28] showed that for sufficiently large n, any (s, t)-union intersecting family
has cardinality at most

!
n−1
k−1

"
+ s − 1. Alishahi and the author improved this result,

and moreover, characterized the extremal cases in [1]. Also, in [1] an asymptotic Hilton-
Milner-type stability theorem was proved for an (s, t)-union intersecting family of k-sets
on [n]. More recently, an explicit extension of this result is proved by Gerbner, Methuku,
Nagy, Patkós, and Vizer [21]. They show that for 2 " s " t, the size of an (s, t)-union
intersecting family of k-sets on [n], which is not isomorphic to a subfamily of

S1 ∪{Fj| 1 " j " s− 1, 1 ∕∈ Fj}

for some F1, . . . , Fs−1, is at most
!
n−1
k−1

"
−
!
n−sk−1
k−1

"
+ s+ t− 1 and characterize the largest

one. In fact, they prove that a Hilton-Milner-type theorem for an (s, t)-union intersecting
family is true when t ! s ! 2 and n is sufficiently large.

Note that the first largest (s, t)-union intersecting family is the union of the star S1

and s − 1 other k-sets. For i ! 2, we say F is the ith largest (s, t)-union intersecting
family, if F is a maximal (s, t)-union intersecting subfamily of

!
[n]
k

"
and is not contained

in the jth largest (s, t)-union intersecting family for every j " i − 1. The Hilton-Milner
theorem determines the size and structure of the second (1, 1)-union intersecting family.
Also, Han and Kohayakawa in [23] characterize the size and structure of the third (1, 1)-
union intersecting family. For sufficiently large n, Kostochka and Mubayi in [29] and
Kupavskii in [32] find the size and structure of the ith (1, 1)-union intersecting family
when i " k + 1. In this regard, for sufficiently large n, Gerbner et al. in [21] determine
the size and structure of the second largest (s, t)-union intersecting family when t ! s ! 2.
Motivated by the mentioned results, one may naturally ask the following question.

Question 3. What are the size and structure of the ith largest (s, t)-union intersecting
family?

For a family F and an integer r ! 2, let ℓr(F) denote the minimum number m such
that by removing m sets from F , the resulting family has no r pairwise disjoint sets. For

simplicity of notation, let ℓ(F)
def
= ℓ2(F). Also, Question 3 has a close relationship with

the next question.

Question 4. What are the size and structure of the largest (s, t)-union intersecting family
with ℓ(F) ! s+ β?
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It is worth mentioning that each family F with ℓ(F) " s−1 is (s, t)-union intersecting
and the largest (s, t)-union intersecting family

F def
= S1 ∪{Ai| 1 " i " s− 1, 1 /∈ Ai}

has ℓ(F) = s − 1. Gerbner et al. in [21], as their main result, determine the size and
structure of the largest (s, t)-union intersecting family with ℓ(F) ! s, when t ! s ! 2
and n is sufficiently large. By using the Hilton-Milner theorem and their result, one can
verify that the second largest (s, t)-union intersecting family must have ℓ(F) ! s. In fact,
the next theorem determines the second largest (s, t)-union intersecting family.

Theorem D. [21] For any 2 " s " t and k there exists N = N(s, t, k) such that if
n ! N and F is a family with ℓ(F) ! s and KGn,k[F ] is Ks,t-free, then we have

| F | "
&
n− 1

k − 1

'
−

&
n− sk − 1

k − 1

'
+ s+ t− 1.

Moreover, equality holds if and only if F is isomorphic to some F s,t which is defined as
follows,

F s,t
def
= {A : 1 ∈ A,A ∩ [2, sk + 1] ∕= ∅} ∪ {A1, . . . , As} ∪ {F1, . . . , Ft−1}

where Ai
def
= [(i − 1)k + 2, ik + 1] for each 1 " i " s, and for each j " t − 1, we have

1 ∈ Fj and Fj ∩ [2, sk + 1] = ∅.

Motivated by the mentioned results and questions, in this paper, we try to determine
the structure and size of an (s, t)-union intersecting family with maximum size when
ℓ(F) ! s+ β and n is sufficiently large. To state our main results, we need the following
definitions.

Definition 5. Let n, k, s, and β be fixed nonnegative integers. Let A1, . . . , As+β be s+β

pairwise distinct k-sets on [n] such that 1 ∕∈ ∪s+β
i=1Ai. Define S1(A1, . . . , As+β : s) as follows

S1(A1, . . . , As+β : s)
def
= {A ∈ S1 |A is disjoint from atmost s− 1 of Ai’s}.

Also, define

T (A1, . . . , As+β : s)
def
= {x| there exist distinct i1, i2, . . . , iβ+1 such that x ∈ ∩β+1

j=1Aij}.

Note that when β = 0, we have T (A1, . . . , As : s) = ∪s
i=1Ai and S1(A1, . . . , As : s) is

equal to S1 \{A : A∩ (∪s
i=1Ai) = ∅}. Also, when s = 1 the family S1(A1, . . . , A1+β : 1) is

equal to S1 \{A|A ∩Ai = ∅ for some 1 " i " β + 1} and T (A1, . . . , A1+β : 1) = ∩1+β
i=1 Ai.

Definition 6. Let k, s, and β be fixed nonnegative integers. If ⌊ (s+β)k
β+1

⌋ > k, de-

fine β̂
def
= β̂(k, s, β) as the largest positive integer such that ⌊ (s+β)k

β+1
⌋ = ⌊ (s+β̂)k

β̂+1
⌋; else if

⌊ (s+β)k
β+1

⌋ = k, define β̂
def
= β.
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Now, we are in a position to state our first result.

Theorem 7. For any nonnegative integers k ! 3, t ! s ! 1, and β, there exists
n(s, t, k, β) such that for all n ! n(s, t, k, β) we have the following: if F is an (s, t)-
union intersecting family on [n] such that ℓ(F) ! s+ β, then

| F | "
&
n− 1

k − 1

'
−

&
n− ⌊ (s+β)k

β+1
⌋ − 1

k − 1

'
+ s+ t+ β̂ − 1.

Equality holds if and only if there exist pairwise distinct k-sets A1, . . . , As+β̂ and
F1, . . . , Ft−1 such that

1. 1 /∈
s+β̂+
i=1

Ai,

2. |T (A1, . . . , As+β̂ : s)| = ⌊ (s+β)k
β+1

⌋,

3. for each i " t− 1, Fi ∈ S1 \ S1(A1, . . . , As+β̂ : s), and

4. the family {A1, . . . , As+β̂, F1, . . . , Ft−1} is an (s, t)-union intersecting family

and F is isomorphic to S1(A1, . . . , As+β̂ : s) ∪ {A1, . . . , As+β̂} ∪ {F1, . . . , Ft−1}.

It is worth mentioning that Theorem D follows from Theorem 7 by choosing β = 0 and
s ! 2. By applying the previous theorem and using some properties of T (A1, . . . , As+β : s),
we can find out the jth largest (s, t)-union intersecting family for some j’s. We provide a
more detailed analysis in our remarks proceeding the proof of Theorem 7.

In [1], it was shown that if F is a (1, t)-union intersecting family of
!
[n]
k

"
with at least!

n−1
k−1

"
−

!
n−k−1
k−1

"
+ (t − 1)

!
2k−1
k−1

"
+ t members, then it is contained in some star S i for

sufficiently large n. Moreover, as an extension of the Hilton-Milner theorem, it is posed
as a conjecture in [1] that for sufficiently large n one can replace the term (t−1)

!
2k−1
k−1

"
by

1. This conjecture is one of our motivations for this study. The conjecture follows from
Theorem 7 by choosing s = 1 and β = 0.

Concerning our next result when s = 1, t ! 1, and β " k−3, motivated by Theorems B
and C and the mentioned conjecture, we determine the maximum size and structure of a
(1, t)-union intersecting family F with ℓ(F) ! 1 + β. Note that when s = 1 and β ! 1,
Theorem 7 does not give a sharp bound for maximum size of (1, t)-union intersecting
families. This result leads us to determine the ith largest (1, t)-union intersecting families
where i " k − 2.

Before stating the next result we need to introduce the following construction.

Definition 8. Let i " k−1 be a nonnegative integer. For any (i+1)-set J = {1, x1, . . . , xi}
of [n] and any (k − 1)-set E ⊂ [n] \ J . Let A1, . . . , Ai be i pairwise distinct k-subsets on
[n] \ {1} such that ∩i

j=1Aj = E and Aj \ E = {xj} for each j " i define J 1,t
i as follows

J 1,t
i

def
= S1(A1, . . . , Ai : 1) ∪ {A1, . . . , Ai} ∪ B1 ∪ · · · ∪ Bi,
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where Bj, for j " i, defined as follows

Bj
def
= {Bp : p ∈ [t− 1], |Bp| = k,Bp ∩ E = ∅, J \Bp = {xj}}.

Notice that J 1,1
i isomorphic to J i and J i = S1(A1, . . . , Ai : 1) ∪ {A1, . . . , Ai}. Since

Bj’s in the definition of J 1,t
i are pairwise disjoint. Therefore, | J 1,t

i | = | J i |+ i(t− 1).
For s = 1 we can state a strong improvement of Theorem 7 as follows.

Theorem 9. For any nonnegative integers k ! 5, t ! 1, and γ = 1 + β " k − 2, there
exists n(k, t, γ) such that for all n ! n(k, t, γ) we have the following: if F is a (1, t)-union
intersecting family on [n] such that ℓ(F) ! γ, then

| F | "
&
n− 1

k − 1

'
−

&
n− k

k − 1

'
+

&
n− k − γ

k − γ − 1

'
+ γt.

Equality holds if and only if F is isomorphic to J 1,t
γ .

1.3 Stability results for the Erdős matching conjecture and its generalization

The Erdős matching conjecture is one of the famous open problems in extremal set the-
ory. It states that for n ! (r + 1)k, the size of the largest subset F ⊆

!
[n]
k

"
for which

KGn,k[F ] has no copy of Kr+1 is max{
!
(r+1)k−1

k

"
,
!
n
k

"
−
!
n−r
k

"
}. In recent years, this conjec-

ture has received considerable attention (e.g. [4, 7, 8, 16,19,25,34]). Improving the earlier
results, Frankl [15] confirmed the conjecture for n ! (2r + 1)k − r; moreover, he de-
termined the structure of the extremal cases in this range. Frankl and Kupavskii [18]
proved a Hilton-Milner-type stability theorem for the Erdős matching conjecture for
n ! (2 + or(1))(r + 1)k as a significant improvement of a classical result due to Bol-
lobás, Daykin and Erdős [4].

Hereafter, we will focus on complete multipartite graphs Ks1,s2,··· ,sr+1 as a forbidden
subgraph. We show that the previous results for (s, t)-union intersecting family can be
extended to Ks1,s2,··· ,sr+1-free subgraph of Kneser graphs instead of Ks,t-free subgraphs of
Kneser graphs as nontrivial extensions of the Erdős matching conjecture. In this regard,
Gerbner et al. [21] show that a generalization of Theorem D holds when KGn,k[F ] is
Ks1,s2,··· ,sr+1-free when s1 ! · · · ! sr+1 ! 2. They determine the size and structure of the
second largest family F on [n] such that KGn,k[F ] is Ks1,s2,...,sr+1-free, where sr+1 ! 2 for
sufficiently large n. Before stating their result, we need an extension of the construction
of Definition 5.

Definition 10. Let n, k, s, and β be positive integers. Let A1, . . . , As+β be s+β pairwise

distinct k-sets on [n] such that [r]
,
(∪s+β

i=1Ai) = ∅. Define S [r−1]
r (A1, . . . , As+β : s) as

follows

{A ∈ Sr |A ∩ [r − 1] = ∅ andA is disjoint from atmost s− 1 of Ai’s}.

Note that the family Sr(A1, . . . , As+β : s) in Definition 5 is a special case of Defini-
tion 10 when r = 1.

We are able to prove an analog of the previous theorem by using the Erdős-Stone-
Simonovits theorem and Theorem 7.
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Theorem 11. For any nonnegative integers k ! 3, s1 ! · · · ! sr+1 ! 1, and β, there
exists n(s1, . . . , sr+1, k, β) such that for all n ! n(s1, . . . , sr+1, k, β) we have the following:
if KGn,k[F ] is K(s1,...,sr+1)-free such that ℓr+1(F) ! sr+1 + β, then

| F | "
&
n

k

'
−

&
n− r

k

'
−

&
n− ⌊ (sr+1+β)k

β+1
⌋ − r

k − 1

'
+ sr + sr+1 + β̂ − 1.

Equality holds if and only if there exist sr+1 + β̂ pairwise distinct k-sets A1, . . . , Asr+1+β̂

such that

• [r]
,
(
sr+1+β̂+
i=1

Ai) = ∅,

• |T (A1, . . . , Asr+1+β̂ : sr+1)| = ⌊ (sr+1+β)k
β+1

⌋,

• for each i " sr−1, Fi ∈ Sr \ S [r−1]
r (A1, . . . , Asr+1+β̂ : sr+1) and Fi∩ [r−1] = ∅, and

• the family {A1, . . . , Asr+1+β̂, F1, . . . , Fsr−1} is an (sr+1, sr)-union intersecting family
and

F is isomorphic to
r−1)

i=1

S i ∪S [r−1]
r (A1, . . . , Asr+1+β̂ : sr+1) ∪ {A1, . . . , Asr+1+β̂} ∪ {F1, . . . , Fsr−1}.

When sr+1 = 1 same as Theorem 9 we are able to prove a stronger result than Theo-
rem 11, which yields a new stability result for Erdős matching conjecture for sufficiently
large n.

Definition 12. Let i " k − 1 be a nonnegative integer. For any (i + r)-set J =
{1, . . . , r, x1, . . . , xi} of [n] and any (k − 1)-set E ⊂ [n] \ J . Let A1, . . . , Ai be i pair-
wise distinct k-subsets on [n] \ [r] such that ∩i

j=1Aj = E and Aj \E = {xj} for each j " i

define J 1,t
i,r as follows

J 1,t
i,r

def
=

r−1)

q=1

Sq ∪S [r−1]
r (A1, . . . , Ai : 1) ∪ B1 ∪ · · · ∪ Bi

where Bj, for j " i defined as follows,

Bj
def
= {Bp : p ∈ [t− 1], |Bp| = k,Bp ∩ E = ∅, J \Bp = {1, . . . , r − 1, xj}}.

Notice that J 1,t
i,1 is isomorphic to J 1,t

i . Now we are in a position to state a stability
result related to Erdős matching conjecture provided that n is sufficiently large.

Theorem 13. For any nonnegative integers k ! 5, s1 ! · · · ! sr ! 1, and γ(= 1 + β) "
k − 2, there exists n(s1, . . . , sr, k, γ) such that for all n ! n(s1, . . . , sr, k, γ) we have the
following: if KGn,k[F ] is K(s1,...,sr,1)-free such that ℓr+1(F) ! γ, then

| F | "
&
n

k

'
−

&
n− r

k

'
−

&
n− k − r + 1

k − 1

'
+

&
n− k − r − γ + 1

k − γ − 1

'
+ γt.

Equality holds if and only if F is isomorphic to J 1,sr
γ,r
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2 Proofs

Before the proof of Theorem 7, let us state an interesting lemma from [21]. Here we show
that a strong generalization of Lemma A is true.

Lemma A. [21] Let s " t and let A1, A2, . . . , As+1 be k-sets on [n] such that 1 ∕∈ ∪s+1
i=1Ai.

Suppose that F ′ is a subfamily of S1 such that for F = F ′ ∪{A1, A2, . . . , As+1} the induced
subgraph of KGn,k[F ] is Ks,t-free. There exists n0 = n(k, s, t) such that if n ! n0 holds,
then we have

| F | "
&
n− 1

k − 1

'
−

&
n− ⌊ (s+1)k

2
⌋ − 1

k − 1

'
+ (s+ 1)t.

The next lemma provides an interesting and useful generalization of Lemma A. I be-
lieve that Lemma 14 independently will be a useful result and will have more applications.

Lemma 14. Let k, s, and β be fixed nonnegative integers. Let A1, A2, . . . , As+β be pairwise

distinct k-sets on [n] such that 1 ∕∈ ∪s+β
i=1Ai. Then, there exists n(k, s, β) such that for all

n ! n(k, s, β) we have the following:

(a)
!
n−1
k−1

"
−

!
n−|T (A1,...,As+β :s)|−1

k−1

"
" | S1(A1, . . . , As+β : s)|.

(b) | S1(A1, . . . , As+β : s)| "
!
n−1
k−1

"
−

!n−⌊ (s+β)k
β+1

⌋−1

k−1

"
and equality holds if and only if

|T (A1, . . . , As+β : s)| = ⌊(s+ β)k

β + 1
⌋.

In particular, if |T (A1, . . . , As+β : s)| < ⌊ (s+β)k
β+1

⌋, then | S1(A1, . . . , As+β : s)| is at
most
!
n− 1

k − 1

"
−
!
n− |T (A1, . . . , As+β : s)|− 1

k − 1

"
+

!
s+ β

1 + β

"
2k(β+1)

!
n− |T (A1, . . . , As+β : s)|− 3

k − 3

"
.

(c) For s = 1, we have | S1(A1, . . . , A1+β : 1)| "
!
n−1
k−1

"
−

!
n−k
k−1

"
+

!
n−k−β−1
k−β−2

"
. Moreover

for β ! 1, equality holds if and only if |T (A1, . . . , A1+β : 1)| = k − 1.

In particular, if |T (A1, . . . , A1+β : 1)| < k−1, then | S1(A1, . . . , A1+β : 1)| is at most
!
n− 1

k − 1

"
−
!
n− |T (A1, . . . , A1+β : 1)|− 1

k − 1

"
+ 2k(β+1)

!
n− |T (A1, . . . , A1+β : 1)|− 3

k − 3

"
.

Proof. For abbreviation, let T (A1, . . . , As+β : s) = Tβ. For the proof of (a), let 1 ∈ A. If
A ∩ Tβ ∕= ∅, then A is disjoint from at most s − 1 sets of A1, A2, . . . , As+β. Therefore,!
n−1
k−1

"
−

!
n−|Tβ |−1

k−1

"
" | S1(A1, . . . , As+β : s)|.

Now we prove (b). One can check that |Tβ| " ⌊ (s+β)k
β+1

⌋. Assume that |Tβ| < ⌊ (s+β)k
β+1

⌋.
Let A ∈ S1(A1, . . . , As+β : s). Therefore, A intersects at least β + 1 of A1, . . . , As+β.
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We have two possibilities for A. Either A ∩ Tβ ∕= ∅ or A ∩ Tβ = ∅ and A intersects at
least β + 1 of A1, . . . , As+β. The number of members in S1 which meet Tβ is equal to!
n−1
k−1

"
−
!
n−|Tβ |−1

k−1

"
. The number of k-sets in S1, which intersect at least β+1 of A1, . . . , As+β

and have no common element with Tβ, is at most

-

i1,...,iβ+1∈[s+β]

-

∅ ∕=B1⊆Ai1
\Tβ

· · ·
-

∅ ∕=Bβ+1⊆Aiβ+1
\Tβ

&
n− |Tβ|− | ∪β+1

i=1 Bi|− 1

k − | ∪β+1
i=1 Bi|− 1

'
(2)

which is at most

-

i1,...,iβ+1∈[s+β]

β+1.

j=1

2|Aij
\Tβ |

&
n− |Tβ|− 3

k − 3

'

"
&
s+ β

1 + β

'
2k(β+1)

&
n− |Tβ|− 3

k − 3

'

if β ! 1 and is 0 if β = 0. Therefore, if β = 0, then

| S1(A1, . . . , As+β : s)| "
&
n− 1

k − 1

'
−

&
n− |Tβ|− 1

k − 1

'
(3)

and if β ! 1, then

| S1(A1, . . . , As+β : s)| "
&
n− 1

k − 1

'
−

&
n− |Tβ|− 1

k − 1

'
+

&
s+ β

1 + β

'
2k(β+1)

&
n− |Tβ|− 3

k − 3

'
.

Then, | S1(A1, . . . , As+β : s)| is at most

&
n− 1

k − 1

'
−

&
n− ⌊ (s+β)k

β+1
⌋ − 1

k − 1

'
−

⌊ (s+β)k
β+1

⌋-

i=|Tβ |+1

&
n− i− 1

k − 2

'
+

&
s+ β

1 + β

'
2k(β+1)

&
n− |Tβ|− 3

k − 3

'

<

&
n− 1

k − 1

'
−

&
n− ⌊ (s+β)k

β+1
⌋ − 1

k − 1

'
,

provided that n is sufficiently large.

Now assume that we have the equality | S1(A1, . . . , As+β : s)| =
!
n−1
k−1

"
−
!n−⌊ (s+β)k

β+1
⌋−1

k−1

"
.

By contradiction assume that |Tβ| < ⌊ (s+β)k
β+1

⌋. Using the same reasoning one may verify

that when n is sufficiently large, then | S1(A1, . . . , As+β : s)| is less than
!
n−1
k−1

"
−

!n−⌊ (s+β)k
β+1

⌋−1

k−1

"
which is not possible.

Now suppose that |Tβ| = ⌊ (s+β)k
β+1

⌋. To prove the last part of (b), it suffices to show
that

S1 \ S1(A1, . . . , As+β : s) = {A|1 ∈ A, A ∩ Tβ = ∅}.

From the division algorithm, we know that (s+β)k = ⌊ (s+β)k
β+1

⌋(β+1)+r where 0 " r " β.

Since |Tβ| = ⌊ (s+β)k
β+1

⌋, there are at most r " β elements in ∪i∈[s+β]Ai which are not in
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Tβ. Therefore, there exist 1 " i1 < . . . < is " s + β such that Ai1 ∪ · · · ∪ Ais ⊆ Tβ.
On the other hand, for every 1 " j1 < . . . < js " s + β, we have Tβ ⊆ Aj1 ∪ · · · ∪ Ajs .
Therefore, Tβ = Ai1 ∪ · · · ∪ Ais . Assume that 1 ∈ A and A ∩ Tβ = ∅. Hence, A ∩ (Ai1 ∪
Ai2 ∪ · · · ∪Ais) = ∅. Therefore, A is disjoint from at least s sets of A1, A2, . . . , As+β and
consequently A ∈ S1 \ S1(A1, . . . , As+β : s). If 1 ∈ A and A is disjoint from at least s sets
of A1, A2, . . . , As+β, then it is clear that each element of A appears in at most β of Ai’s
and hence we have A ∩ Tβ = ∅.

For the proof of (c), if |Tβ| " k − 2, then the proof is the same as the first part of

(b). Hence, we may assume that |Tβ| is k − 1 or k. Note that when s = 1, Tβ = ∩1+β
i=1 Ai.

If |Tβ| = k, then β must be equal to 0 and consequently | S1(A1 : 1)| =
!
n−1
k−1

"
−

!
n−k−1
k−1

"
.

Thus, we may assume that |Tβ| = | ∩1+β
i=1 Ai| = k − 1 and β ! 1. Then, there exist β + 1

elements in [n], say x1, . . . , xβ+1, such that Aj \ Tβ = {xj}. Let A ∈ S1(A1, . . . , A1+β : 1).
Therefore, A intersects each of A1, . . . , A1+β. We have two possibilities for A. Either
A ∩ Tβ ∕= ∅ or A ∩ Tβ = ∅ and A intersects all of A1, . . . , A1+β. There are

!
n−1
k−1

"
−
!
n−k
k−1

"

members in S1 such that A ∩ Tβ ∕= ∅. The number of k-sets in S1, which intersect all of
A1, . . . , A1+β and have no common element with Tβ, is equal to

!
n−k−β−1
k−β−2

"
. Therefore,

| S1(A1, . . . , A1+β : 1)| =
&
n− 1

k − 1

'
−

&
n− |Tβ|− 1

k − 1

'
+

&
n− k − β − 1

k − β − 2

'
.

Note that when β ! k − 1, we have
!
n−k−β−1
k−β−2

"
= 0. #

In the proof of Theorem 7 in addition to Lemma 14, we will use the following two
results. The first one is a result on the number of edges of a Ks,t-free graph, which is
a classical theorem by Kővari, Sós, and Turán [30]. The second one is a result on the
number of disjoint pairs in a family F of k-sets by Balogh, Bollobás, and Narayanan [2].

Theorem E. [30] For any two positive integers s " t, if G is a Ks,t-free graph with n

vertices, then the number of edges of G is at most (1
2
+ o(1))(t− 1)

1
sn2− 1

s .

Lemma B. [2] Let F be a family k-sets on [n]. Then the number of disjoint pairs in F
is at least ℓ(F)2

2(2kk )
.

For an intersecting family F ′ on [n], its maximum degree∆(F ′) is the maximum number of

elements of F ′ containing any particular element of [n], i.e., ∆(F ′)
def
= maxi∈[n] | F ′ ∩S i |.

Proof of Theorem 7. Let F be an (s, t)-union intersecting family of
!
[n]
k

"
with ℓ(F) ! s+β

and cardinality

M
def
=

&
n− 1

k − 1

'
−

&
n− ⌊ (s+β)k

β+1
⌋ − 1

k − 1

'
+ t− 1 + s+ β̂.

We consider the following three cases.
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(i) ℓ(F) = s+ β′ where β " β′ " β̂.

This implies that there exist A1, . . . , As+β′ in F such that F ′ = F \{A1, . . . , As+β′}
is an intersecting family. Without loss of generality assume that ∆(F ′) has the
maximum possible value and also ∆(F ′) = | F ′ ∩S1 |. Therefore, | F ′ | is equal to

&
n− 1

k − 1

'
−

&
n− ⌊ (s+β)k

β+1
⌋ − 1

k − 1

'
+ t− 1 + β̂ − β′.

First we show that for each i " s+β′, 1 ∕∈ Ai. If F ′ ⊆ S1, then by the minimality of
ℓ(F), each Ai must be disjoint from at least one member of F ′ ⊆ S1, so 1 ∕∈ ∪s+β′

i=1 Ai.
If F ′ ∕⊆ S1, then by the Hilton-Milner theorem, we conclude that | F ′ | =

!
n−1
k−1

"
−!

n−k−1
k−1

"
+ 1. Consequently, there exists a unique B ∈ F ′ such that F ′ \{B} ⊆ S1

and moreover, we must have t = 2, ⌊ (s+β′)k
β′+1

⌋ = k and β′ = β̂. If there is Ai such

that 1 ∈ Ai, by the minimality of ℓ(F), Ai must be disjoint from B. Define F ′′ =
(F ′ \{B}) ∪ {Ai}. Hence, | F ′ | = | F ′′ | and ∆(F ′′) = ∆(F ′) + 1 which contradicts

with the fact that ∆(F ′) has the maximum possible value. Then, 1 ∕∈ ∪s+β′

i=1 Ai. We
now consider the following three subcases.

(a) F ′ ⊆ S1 and |T (A1, A2, . . . , As+β′ : s)| = ⌊ (s+β′)k
β′+1

⌋.
Since β " β′ " β̂, by the definition of β̂ we have ⌊ (s+β′)k

β′+1
⌋ = ⌊ (s+β)k

β+1
⌋. In view of

the last part of the proof of Lemma 14 (b), there are 1 " i1 < . . . < is " s+β′

such that T (A1, . . . , As+β′ : s) = Ai1 ∪ · · · ∪ Ais . Also, note that for every
1 " j1 < . . . < js " s+ β′, we have

Ai1 ∪ · · · ∪ Ais = T (A1, . . . , As+β′ : s) ⊆ Aj1 ∪ · · · ∪ Ajs .

From this fact and since F is an (s, t)-union intersecting family, the number
of elements of F ′ which can be disjoint from ∪s

ℓ=1Ajℓ for some s sets such
as Aj1 , . . . , Ajs of Ai’s is at most t − 1, say F1, . . . , Ft−1. Therefore, F ′ ⊆
S1(A1, . . . , As+β′ : s) ∪ {F1, . . . , Ft−1}. Thus, by applying Lemma 14 (b), we
obtain

| F ′ | "
&
n− 1

k − 1

'
−

&
n− ⌊ (s+β′)k

β′+1
⌋ − 1

k − 1

'
+ t− 1

and consequently β′ = β̂. Therefore,

| F | "
&
n− 1

k − 1

'
−

&
n− ⌊ (s+β)k

β+1
⌋ − 1

k − 1

'
+ t− 1 + s+ β′

and equality holds if and only if F is isomorphic to

S1(A1, . . . , As+β′ : s) ∪ {A1, . . . , As+β′} ∪ {F1, . . . , Ft−1}

such that |T (A1, . . . , As+β′ : s)| = ⌊ (s+β′)k
β′+1

⌋, Fi ∈ S1 \ S1(A1, . . . , As+β′ : s),

and the family {A1, . . . , As+β′ , F1, . . . , Ft−1} is an (s, t)-union intersecting fam-
ily.
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(b) F ′ ∕⊆ S1 and |T (A1, A2, . . . , As+β′ : s)| = ⌊ (s+β′)k
β′+1

⌋.
As F ′ ∕⊆ S1, there exists a k-set B ∈ F ′ such that F ′ \{B} ⊆ S1 and we

have t = 2, ⌊ (s+β′)k
β′+1

⌋ = k, and β′ = β̂. Since |T (A1, A2, . . . , As+β′ : s)| =

⌊ (s+β′)k
β′+1

⌋ = k, in view of the last part of the proof of Lemma 14 (b), there are

1 " i1 < . . . < is " s+β′ such that T (A1, . . . , As+β′ : s) = Ai1∪Ai2∪· · ·∪Ais .As
|T (A1, . . . , As+β′ : s)| = k, s must be equal to 1. Therefore |T (A1, . . . , A1+β′ :

1)| = k. Since T (A1, . . . , A1+β′ : 1) = ∩1+β′

i=1 Ai, we obtain β′ = 0. As t = 2,
s = 1, and F is (s, t)-union intersecting, there is a unique B1 ∈ F ′ that
A1 ∩ B1 = ∅. One can check that F ′ \{B,B1} ⊆ S1(A1, B : 1). Therefore,
| F ′ | "

!
n−1
k−1

"
−

!
n−k−1
k−1

"
−

!
n−k−2
k−2

"
+ 2, a contradiction.

(c) |T (A1, . . . , As+β′ : s)| < ⌊ (s+β)k
β+1

⌋.
There is at most one member B ∈ F ′ such that F ′ \{B} ⊆ S1 . Since F is
an (s, t)-union intersecting family, every s sets of Ai’s such as Ai1 , . . . , Ais are
disjoint from at most t− 1 elemnts in F ′. Therefore,

| F ′ \{B}| " | S1(A1, . . . , As+β′ : s)|+
&
s+ β′

s

'
(t− 1).

Now by applying Lemma 14 (b), we obtain | F ′ | is at most
!
n− 1

k − 1

"
−
!
n− |T (A1, . . . , As+β′ : s)|− 1

k − 1

"
+

!
s+ β′

1 + β′

"
2k(β

′+1)

!
n− |T (A1, . . . , As+β′ : s)|− 3

k − 3

"
+

!
s+ β′

s

"
(t− 1) + 1.

Since |T (A1, . . . , As+β′ : s)| < ⌊ (s+β′)k
β′+1

⌋ and k ! 3, one can check that

| F | <
&
n− 1

k − 1

'
−

&
n− ⌊ (s+β′)k

β′+1
⌋ − 1

k − 1

'

provided that n is sufficiently large, which is not possible.

(ii) s+ β̂ + 1 " ℓ(F) " M1− 1
3s .

Let F ′ be a largest intersecting family of F . Hence, | F ′ | is at least
&
n− 1

k − 1

'
−

&
n− ⌊ (s+β)k

β+1
⌋ − 1

k − 1

'
−M1− 1

3s .

By the definition of M , we have M1− 1
3s = o(nk−2). Since ⌊ (s+β)k

β+1
⌋ ! k and M1− 1

3s =

o(nk−2), if n is sufficiently large, then we have

| F ′ | >
&
n− 1

k − 1

'
−

&
n− k − 1

k − 1

'
−

&
n− k − 2

k − 2

'
+ 2.
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By using Theorem B, F ′ is a star or a Hilton-Milner family. Therefore, without
loss of generality we may assume that there exists at most one B ∈ F ′ such that
F ′ \{B} is a subfamily S1.

First assume that ⌊ (s+β)k
β+1

⌋ ! k + 1. By applying Lemma 14 (b) for F ′ \{B} and

one of s+ β̂ + 1 sets of F \F ′, we obtain

| F ′ | "
&
n− 1

k − 1

'
−

&
n− ⌊ (s+β̂+1)k

β̂+2
⌋ − 1

k − 1

'
+

&
s+ β̂ + 1

s

'
(t− 1) + 1.

Hence,

| F | "
&
n− 1

k − 1

'
−

&
n− ⌊ (s+β̂+1)k

β̂+2
⌋ − 1

k − 1

'
+

&
s+ β̂ + 1

s

'
(t− 1) +M1− 1

3s + 1.

Note that
!n−⌊ (s+β̂+1)k

β̂+2
⌋−1

k−1

"
−
!n−⌊ (s+β̂)k

β̂+1
⌋−1

k−1

"
=

!n−⌊ (s+β̂)k

β̂+1
⌋−1

k−2

"
. Therefore, | F | is at most

&
n− 1

k − 1

'
−
&
n− ⌊ (s+β̂)k

β̂+1
⌋ − 1

k − 1

'
−
&
n− ⌊ (s+β̂)k

β̂+1
⌋ − 1

k − 2

'
+

&
s+ β̂ + 1

s

'
(t−1)+M1− 1

3s+1.

This concludes that for sufficiently large n, | F | is less than M , a contradiction.

Assume that ⌊ (s+β)k
β+1

⌋ = k. Therefore, β̂ = β and ⌊ (s+β+1)k
β+2

⌋ = k. TakeA1, . . . , As+β+1

in F \F ′. If we have |T (A1, . . . , As+β+1 : s)| < k, then by applying Lemma 14 (b),
we obtain | F ′ \{B}| is at most
!
n− 1

k − 1

"
−
!
n− k

k − 1

"
+

!
s+ β + 1

2 + β

"
2k(β+2)

!
n− |T (A1, . . . , As+β+1 : s)|− 3

k − 3

"
+

!
s+ β + 1

s

"
(t−1).

This implies that | F | is at most
!
n− 1

k − 1

"
−
!
n− k − 1

k − 1

"
−
!
n− k − 1

k − 2

"
+

!
s+ β + 1

2 + β

"
2k(β+2)

!
n− |T (A1, . . . , As+β+1 : s)|− 3

k − 3

"
+

!
s+ β + 1

s

"
(t− 1) + 1 +M1− 1

3s ,

which is less than M when n is sufficiently large, a contradiction.

Assume that |T (A1, . . . , As+β+1 : s)| = ⌊ (s+β+1)k
β+2

⌋ = k. In view of the last part of

the proof of Lemma 14 (b), there are 1 " i1 < . . . < is " s+ β + 1 such that

T (A1, . . . , As+β+1 : s) = Ai1 ∪ Ai2 ∪ · · · ∪ Ais .

This implies that s must be equal to 1. If s = 1, then we have T (A1, . . . , Aβ+2 :

1) = ∩β+2
i=1 Ai and hence |T (A1, . . . , Aβ+2 : 1)| = |∩β+2

i=1 Ai| " k− 1 which contradicts
with |T (A1, . . . , Aβ+2 : 1)| = k.
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(iii) ℓ(F) > M1− 1
3s .

By Lemma B, we have e(KGn,k[F ]) ! M2− 2
3s

2(2kk )
and by Theorem E, F contains a

subgraph which is isomorphic to Ks,t when n is sufficiently large. #

Note that perhaps for some k, s, and β there exist no pairwise distinct A1, . . . , As+β

satisfying Condition (2) in Theorem 7. For example, one may choose k = 3, s = 3, and

β = 5. Thus, we have ⌊ (s+β)k
β+1

⌋ = 4. Since ∪8
i=1Ai = T (A1, . . . , A8 : 3), if there exist

A1, . . . , A8 for which |T (A1, . . . , A8 : 3)| = 4, then at least two of Ai’s must be identical,
which is not possible. Therefore, for some k, s, and β there do not exist any A1, . . . , As+β

such that |T (A1, . . . , As+β : s)| = ⌊ (s+β)k
β+1

⌋. Consequently, as we showed in the proof of

Theorem 7, each (s, t)-union intersecting family F is of size less than
!
n−1
k−1

"
−
!n−⌊ (s+β)k

β+1
⌋−1

k−1

"
.

Here we intend to elaborate on the ith largest (s, t)-union intersecting families for some
i. Assume that n is sufficiently large. Let {A1, . . . , As} be s pairwise distinct k-subsets
of [n]. By Definition 5 we know that T (A1, . . . , As : s) = ∪s

i=1Ai. Define

L def
= S1(A1, . . . , As : s) ∪ {A1, . . . , As} ∪ {F1, . . . , Ft−1}

where Fi ∈ S1 \ S1(A1, . . . , As : s). By using Inequality (3), one can verify that | L | is
equal to &

n− 1

k − 1

'
−

&
n− |T (A1, . . . , As : s)|− 1

k − 1

'
+ s+ t− 1.

Let n = n(k, s) be sufficiently large and s ! 2. If ⌊ (s+1)k
2

⌋ < |T (A1, . . . , As : s)| " sk,
then by using Theorem 7, L is the ith largest (s, t)-union intersecting family, where
i = sk − |T (A1, . . . , As : s)|+ 2.

If |T (A1, . . . , As : s)| = ⌊ (s+1)k
2

⌋, then | L | is equal to
!
n−1
k−1

"
−

!
n−⌊ (s+1)k

2
⌋−1

k−1

"
+ s + t − 1.

Let {A′
1, . . . , A

′
s+1} be s + 1 pairwise distinct k-subsets of [n] such that T (A′

1, . . . , A
′
s+1 :

s) = ⌊ (s+1)k
2

⌋. Define

L′ def
= S1(A

′
1, . . . , A

′
s+1 : s) ∪ {A′

1, . . . , A
′
s+1} ∪ {F ′

1, . . . , F
′
t−1}.

We have | L′ | is equal to
!
n−1
k−1

"
−
!
n−⌊ (s+1)k

2
⌋−1

k−1

"
+s+t which is greater than | L |. Therefore,

L′ and L are the (⌊ (s−1)k
2

⌋ + 2)th and (⌊ (s−1)k
2

⌋ + 3)th largest (s, t)-union intersecting
families, respectively.

Now assume that there are two families {A1, . . . , As} and {A′
1, . . . , A

′
s+1} such that

|T (A1, . . . , As : s)| = ⌊ (s+1)k
2

⌋ − 1 and |T (A′
1, . . . , A

′
s+1 : s)| = ⌊ (s+1)k

2
⌋ − 1. If (s + 1)k

is even, then 2|T (A′
1, . . . , A

′
s+1 : s)| = (s + 1)k − 2. Therefore, there are at most two

members in ∪s+1
i=1A

′
i such that each of them appears in one of A′

i’s. If for each i " s + 1
we have A′

i ⊂ T (A′
1, . . . , A

′
s+1 : s), in view of Expression (2), we obtain

| L′ | =
&
n− 1

k − 1

'
−

&
n− ⌊ (s+1)k

2
⌋

k − 1

'
+ s+ t.
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If for only one i " s + 1 we have A′
i ∕⊆ T (A′

1, . . . , A
′
s+1 : s), then one can construct an

(s, t)-union intersecting family L′
1 with ℓ(L′

1) = s+ 1 and

| L′
1 | =

&
n− 1

k − 1

'
−

&
n− ⌊ (s+1)k

2
⌋

k − 1

'
+ s+ t.

Now suppose that A′
i ∕⊆ T (A′

1, . . . , A
′
s+1 : s) and A′

j ∕⊆ T (A′
1, . . . , A

′
s+1 : s) for exactly two

1 " i ∕= j " s+ 1. In view of Expression (2), one easily sees that the number of elements
in S1 which has no common element with T (A′

1, . . . , A
′
s+1 : s) and intersects at least two

of A′
i’s is

!n−|T (A′
1,...,A

′
s+1:s)|−3

k−3

"
. Therefore, for 0 " m " t− 1, one can construct a maximal

(s, t)-union family L′
2,m with ℓ(L′

2,m) = s+ 1 and

| L′
2,m | =

&
n− 1

k − 1

'
−

&
n− ⌊ (s+1)k

2
⌋

k − 1

'
+

&
n− ⌊ (s+1)k

2
⌋ − 2

k − 3

'
+ s+ t+m.

Therefore, we have some different types (s, t)-union intersecting families with ℓ(F) = s+1,

|T (A′
1, . . . , A

′
s+1 : s)| = ⌊ (s+1)k

2
⌋ − 1, and different sizes and one type of (s, t)-union

intersecting families with ℓ(F) = s, |T (A1, . . . , As : s)| = ⌊ (s+1)k
2

⌋ − 1.
If (s + 1)k is odd, then 2|T (A′

1, . . . , A
′
s+1 : s)| = (s + 1)k − 3. Therefore, there are

at most three members in ∪s+1
i=1A

′
i such that each of them appears in one of A′

i’s. Using
the same discussion as above one can find some different types of (s, t)-union intersecting

families with ℓ(F) = s+ 1, |T (A′
1, . . . , A

′
s+1 : s)| = ⌊ (s+1)k

2
⌋ − 1, and different sizes.

In the proof of Theorem 9, we need the following theorem by Frankl [13] and indepen-
dently Kalai [26] which is a generalization of a classical result due to Bollobás [3].

Theorem F. [13,26] Let k and ℓ be two positive integers and let {(A1, B1), . . . , (Ah, Bh)}
be a family of pairs of subsets of an arbitrary set with |Ai| = k and |Bi| = ℓ for all
1 " i " h. If Ai ∩ Bi = ∅ for 1 " i " h and Ai ∩ Bj ∕= ∅ for 1 " i < j " h, then
h "

!
k+ℓ
k

"
.

For simplicity of notation, for each 1 " i " k− 1, define Ni
def
=

!
n−1
k−1

"
−
!
n−k
k−1

"
+
!
n−k−i
k−i−1

"

and for k define Nk
def
=

!
n−1
k−1

"
−

!
n−k
k−1

"
. Note that for 1 " i " k − 1, we have that

Ni−1 −Ni =
!
n−k−i
k−i

"
= Ω(nk−i).

Proof of Theorem 9. First we show that ℓ(F) "
!
2k−1
k−1

"
(t− 1). If t = 1, F is intersecting

and hence ℓ(F) = 0. Assume that t ! 2 and F is not intersecting. Therefore, there exists
some disjoint pair in F . For a k-set A, define N(A) = {B ∈

!
[n]
k

"
|A ∩ B = ∅}. Define

F1 = F . For each i ! 2, if there exists some disjoint pair in F i−1, choose Bi−1 ∈ F i−1

and Ci−1 ∈ N(Bi−1) ∩ F i−1 and define F i = F i−1 \(N(Bi−1). Let m be the largest index
i for which F i contains some disjoint pair. For m + 1 " j " 2m, set Bj = C2m−j+1

and Cj = B2m−j+1. One may check that the family{(B1, C1), . . . , (B2m,C2m)} satisfies the
condition of Theorem F for l = k and consequently m "

!
2k−1
k−1

"
. Let N be a subfamily of

F defined as follows

N =
/
F ∈ F |there is some i " m such that F ∩Bi = ∅

0
.
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Since F is (1, t)-union intersecting, one can verify that | N | " m(t − 1). Note that
Fm+1 is an intersecting family and F is disjoint union of Fm+1 and N . This yields
ℓ(F) " | N | "

!
2k−1
k−1

"
(t− 1).

Assume that | F | = Nγ + γt. Let F∗ be one of largest intersecting subfamilies of F
such that∆(F∗) has the maximum possible value. Assume that F \F∗ = {A1, . . . , Aℓ(F)}.
Therefore, | F∗ | = | F |− ℓ(F). Consider the following three cases.

1. ℓ(F) = γ and F∗ ⊆ S1.

We have | F∗ | = Nγ + γ(t− 1). Since ℓ(F) = γ and F = F∗ ∪{A1, . . . Aγ}, each Aj

is disjoint from at least one member of F∗ and hence 1 ∕∈ ∪γ
j=1Aj. Then

F∗ \(∪γ
j=1N(Aj)) ⊆ S1(A1, . . . , Aγ : 1).

Since γ " k− 2, by applying Lemma 14 (c), we conclude that | F∗ \(∪γ
j=1N(Aj))| "

Nγ. Since F is (1, t)-union intersecting, for each j, Aj is disjoint from at most t− 1
members of F . As for each j, |N(Aj) ∩ F | " t− 1, | F | = Nγ + γt, and

F = F∗ \(∪γ
j=1N(Aj)) ∪ (∪γ

j=1N(Aj) ∩ F) ∪ {A1, . . . , Aγ},

we have F is a disjoint union of

F∗ \(∪γ
j=1N(Aj)), N(A1) ∩ F , . . . , N(Aγ) ∩ F , and {A1, . . . , Aγ}.

Moroever, for each j, we have |N(Aj) ∩ F | = t − 1, N(Aj) ∩ F ⊆ F∗ ⊆ S1, and
| F∗ \(∪γ

j=1N(Aj))| = Nγ. From the last equality and by using Lemma 14 (c), we
obtain

F∗ \(∪γ
j=1N(Aj)) = S1(A1, . . . , Aγ : 1)

and | ∩γ
j=1 Aj| = k − 1. By taking E = ∩γ

j=1Aj and J = {1} ∪ (∪γ
j=1Aj \ E)

in Definition 1, one can see that F \(∪γ
j=1N(Aj)) is isomorphic to J γ. For each

j " β + 1, by taking Bj = N(Aj) ∩ F in Definition 8, one can check that F is
isomorphic to J 1,t

γ . By Theorem C, F∗ is either a star or isomorphic to a subfamily
J i where 0 " i " γ − 1.

2. γ + 1 " ℓ(F) "
!
2k−1
k−1

"
(t− 1) and F∗ ⊆ S1.

Let A1, . . . , Aγ+1 ∈ F \F∗ . By using minimality of ℓ(F), each Ai is disjoint from
at least one member of F∗. Therefore, 1 ∕∈ Ai for each i " γ + 1. Then

F∗ \((∪γ+1
i=1N(Ai)) ⊆ S1(A1, . . . , Aγ+1 : 1)

and by applying Lemma 14 (c), we obtain | F∗ \((∪γ+1
i=1N(Ai))| " Nγ+1. Since

F = (F∗ \(∪γ+1
j=1N(Aj)) ∪ (∪γ+1

i=1N(Ai) ∩ F) ∪ {A1, . . . , Aℓ(F)},

we have | F | " Nγ+1 + (γ + 1)(t− 1) + ℓ(F) < Nγ, which is not possible when n is
sufficiently large.
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3. γ " ℓ(F) "
!
2k−1
k−1

"
(t− 1) and F∗ is not a star.

By Theorem C, F∗ ⊆ J c for some 1 " c " β + 1. Then, for some b " c, there
exist B1, . . . , Bb ∈ F∗ such that F∗ \{B1, . . . , Bb} ⊆ S1 and Bj ∕∈ S1. At most
b − 1 of A1, . . . , Aγ contain 1; otherwise if for 1 " j1 " · · · " jb " γ we have
1 ∈ ∩b

i=1Aji , then F ′ = (F∗ \{B1, . . . , Bb})∪ {Aj1 , . . . , Ajb} is an intersecting family
with | F ′ | = | F∗ | and ∆(F ′) > ∆(F∗), which contradicts with the fact that ∆(F∗)
has the maximum possible value. Therefore, without loss of generality we can
assume that A1, . . . , Ab′ do not contain 1 for b′ = γ + 1− b. Hence,

F∗ \((∪b′

j=1N(Aj)) ∪ {B1, . . . , Bb}) ⊆ S1(A1, . . . , Ab′ , B1, . . . , Bb : 1)

and by Lemma 14 (c), we obtain | F∗ \((∪b′
j=1N(Aj))∪{B1, . . . , Bb})| " Nγ+1. Since

F = (F∗ \ ∪b′

j=1 N(Aj)) ∪ (∪b′

j=1N(Aj) ∩ F) ∪ {A1, . . . , Aℓ(F)},

we obtain | F | " Nγ+1 + b+ b′(t− 1) + ℓ(F) < Nγ, which is not possible when n is
sufficiently large. #

It can be seen that the next corollary is a direct consequence of Theorem 9. Notice
that we need to apply Theorem C to prove it.

Corollary 15. Let n, k ! 5, t ! 1, and γ " k − 2 be nonnegative integers such that
n = n(k, t, γ) is sufficiently large. Let F be a (1, t)-union intersecting family that is not
isomorphic to a subfamily of J i ∪B where B ⊆ S1 \J i and 0 " i " γ − 1. Then

| F | "
&
n− 1

k − 1

'
−

&
n− k

k − 1

'
+

&
n− k − γ

k − γ − 1

'
+ γt.

Equality holds if and only if F is isomorphic to some J 1,t
γ .

For the proof of Theorem 11 we need to use the well-known Erdős-Stone-Simonovits
theorem [10, 11]. For a given graph G, the Turán number ex(n,G) is defined to be the
maximum number of edges in a graph with n vertices containing no subgraph isomorphic
to G. The Erdős-Stone-Simonovits theorem asserts that for any graph G with χ(G) ! 2,
ex(G, n) = (1− 1

χ(G)−1
)
!
n
2

"
+ o(n2).

Proof of Theorem 11. The proof is by induction on r. By Theorem 7, the assertion is true
when r = 1. Let r ! 2. Suppose now that the assertion is true for r − 1. Also, without
loss of generality suppose that

| F | =
&
n

k

'
−

&
n− r

k

'
−

&
n− ⌊ (sr+1+β)k

β+1
⌋ − r

k − 1

'
+ sr + sr+1 + β̂ − 1.

Consider the following cases.
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1. maxi∈[n] | F ∩S i | "
!
n−1
k−1

"
−

!n−!r+1
j=2 sjk−1

k−1

"
+ s1.

Then the number of disjoint pair in F is at least
&
| F |
2

'
−

-

i∈[n]

&
| F ∩S i |

2

'
! (1− 1

r
)

&
| F |
2

'
+ o(| F |2)

provided that n is large enough. Hence, by the Erdős-Stone-Simonovits theorem
KGn,k[F ] contains some subgraph isomorphic to Ks1,s2,...,sr+1 provided that n is large
enough, which is a contradiction.

2. maxi∈[n] | F ∩S i | >
!
n−1
k−1

"
−

!n−!r+1
j=2 sjk−1

k−1

"
+ s1.

Without loss of generality assume that maxi∈[n] | F ∩S i | = | F ∩Sn |. If Sn ∕⊂ F ,
then | F ∩Sn | <

!
n−1
k−1

"
. Therefore,

| F \ Sn | !
&
n− 1

k

'
−

&
n− r

k

'
−

&
n− ⌊ (sr+1+β)k

β+1
⌋ − r

k − 1

'
+ sr + sr+1 + β̂.

By induction hypothesis KGn−1,k[F \Sn] contains a copy Ks2,...,sr+1 . As

| F ∩Sn | >
&
n− 1

k − 1

'
−

&
n−

1r+1
j=2 sjk − 1

k − 1

'
+ s1,

one can greedily pick s1 sets of Sn such that constructs a copy of Ks1,s2,...,sr+1 in
KGn,k[F ], a contradiction. Therefore, one can assume that Sn ⊂ F . Similarly
as before KGn−1,k[F \Sn] does not contain any copy of Ks2,...,sr+1 . Therefore, by
induction hypothesis, we have

| F \ Sn | "
&
n− 1

k

'
−

&
n− r

k

'
−

&
n− ⌊ (sr+1+β)k

β+1
⌋ − r

k − 1

'
+ sr + sr+1 + β̂ − 1,

and the equality holds if and only if F \Sn is isomorphic to

r−2#

i=1

(Si \ Sn) ∪ (S [r−2]
r−1 (A1, A2, . . . , Asr+1+β̂ : s) \ Sn) ∪ {A1, A2, . . . , Asr+1+β̂} ∪ {F1, . . . , Fsr−1}

such that

|T (A1, A2, . . . , Asr+1+β̂)| =
2
(sr+1 + β)k

β + 1

3
,

Fi ∈ Sr−1 \ S [r−2]
r−1 (A1, A2, . . . , As+β̂ : s), and Fi ∩ [r − 2] = ∅ for each i (Note that

in this step all families are subfamilies of
!
[n−1]

k

"
because we remove Sn from F so

we do not meet n.).

Thus,

| F | "
&
n

k

'
−

&
n− r

k

'
−

&
n− ⌊ (sr+1+β)k

β+1
⌋ − r

k − 1

'
+ sr + sr+1 + β̂ − 1,
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and the equality holds if and only if F is isomorphic to

r−1)

i=1

S i ∪S [r−1]
r (A1, A2, . . . , Asr+1+β̂ : s) ∪ {A1, A2, . . . , Asr+1+β̂} ∪ {F1, . . . , Fsr−1}

such that |T (A1, A2, . . . , Asr+1+β̂)| = ⌊ (sr+1+β)k
β+1

⌋, Fi ∈ Sr \ S [r−1]
r (A1, A2, . . . , As+β̂ :

s), and Fi ∩ [r − 1] = ∅ for each i. #

The proof of Theorem 13 is the same as the proof of Theorem 11.
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[17] P. Frankl and Z. Füredi. A new short proof of the EKR theorem. J. Combin. Theory
Ser. A, 119(6):1388 – 1390, 2012.

[18] P. Frankl and A. Kupavskii. Two problems on matchings in set families – in the
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[31] C. Y. Ku and I. Leader. An Erdős-Ko-Rado theorem for partial permutations. Dis-
crete Math., 306(1):74–86, 2006.

[32] A. Kupavskii. Structure and properties of large intersecting families.
arXiv:1810.00920, October 2018.
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