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©Tássio Naia. Released under the CC BY-ND license (International 4.0).

Abstract

For every graph G, let t(G) denote the largest integer t such that every oriented
tree of order t appears in every orientation of G. In 1980, Burr conjectured that
t(G) ⩾ 1 + χ(G)/2 for all G, and showed that t(G) ⩾ 1 + ⌊

√
χ(G)⌋; this bound

remains the state of the art, apart from the multiplicative constant. We present
an elementary argument that improves this bound whenever G has somewhat large
chromatic number, showing that t(G) ⩾ ⌊χ(G)/ log2 v(G)⌋ for all G.

Mathematics Subject Classifications: 05C05, 05C20

1 Introduction

If G is a graph and D is an oriented graph, we write G → D to mean that every orientation
of G contains D, and write t(G) to denote the largest integer t such that G → T for every
oriented tree T of order t. Note that t(G) is at most the chromatic number χ(G), since
if we colour G properly with ‘colours’ {1, . . . , k}, then we may direct each edge towards
its endvertex of greater colour, obtaining an orientation of G in which each directed path
v1 → · · · → vt contains at most one vertex of each colour, so t ⩽ k. Over forty years ago,
Burr [4] proved that t(G) ⩾ 1+ ⌊

√
χ(G)⌋ for every graph G. He conjectured the following.

Conjecture 1 ([4]). If G is a graph, then t(G) ⩾ 1 + χ(G)/2.

The current best lower bound for Conjecture 1, which improves Burr’s result by a mul-
tiplicative constant, was obtained by Addario-Berry, Havet, Reed, Sales and Thomassé [1].

Theorem 2 ([1]). If G is a graph, then t(G) ⩾ 1/2 +
√

2χ(G)− 7/4.
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We establish a lower bound for t(G) in terms of both the chromatic number χ(H) and
the order v(H) of H ⊆ G. Our bound supersedes Theorem 2 when χ(G) > (2 log2 v(G))2,
which is the case for many graphs (see Section 3). Our proof is inductive, and was inspired
by an argument of Wormald [16] (the strategy was also explicitly suggested in [1]). We
define e(G) := |E(G)|.

Theorem 3. If G is a graph and e(G) > 0, then t(G) ⩾ max
H⊆G

e(H)>0

⌊
χ(H)

log2 v(H)

⌋
.

2 Proofs

All digraphs we consider are oriented graphs, i.e., they are obtained replacing each edge of
an undirected simple graph by precisely one arc (ordered pair) with the same elements. For
every digraph D and every S ⊆ V (D), we call N−

D (S) := {x : (x, s) ∈ E(D), s ∈ S} the set
of inneighbours of S; the set of outneighbours of S is N+

D (S) := {x : (s, x) ∈ E(D), s ∈ S}.
We call S dominating if S ∪N+

D (S) = V (D), and anti-dominating if S ∪N−
D (S) = V (D).

If v ∈ V (D), we write N−
D(v) and N+

D(v) to denote N−
D({v}) and N+

D({v}), respectively.
We omit subscripts when they are clear from context. We call S stable if the digraph D[S]
induced by S contains no arcs. An in-leaf is a vertex with precisely one outneighbour and
no inneighbours; an out-leaf is defined analogously.

Theorem 3 follows from two simple lemmas.

Lemma 4. Each oriented graph D has a stable set S such that
∣∣N+(S)

∣∣ ⩾ ∣∣V (D) \ S
∣∣/2.

Proof. Let D1 := D. For each i = 1, 2, . . . proceed as follows. Fix vi ∈ V (Di) such that∣∣N+
Di
(vi)

∣∣ ⩾ ∣∣N−
Di
(vi)

∣∣ (1)

(such vi exists by averaging), and form Di+1 := Di −
(
{vi} ∪N−

Di
(vi) ∪N+

Di
(vi)

)
from Di

by removing vi and its neighbours. Note that Si := {v1, v2, . . . , vi} is a stable set of D,
and v(D1), v(D2), . . . strictly decreases until v(Dm) = 0 for some integer m. By (1), we
may take S := Sm−1.

Applying Lemma 4 repeatedly, we obtain the next result. The chromatic number of
a digraph is the chromatic number of its underlying (undirected) graph.

Lemma 5. Each oriented graph D with e(D) > 0 contains a dominating set S such that
D[S] is acyclic and χ

(
D[S]

)
⩽ log2 v(D).

Proof. We argue by induction on the order n of D. The result is trivial if n = 2, so we
may suppose n > 2. By Lemma 4, there exists a maximal stable set I ⊆ V (D) such
that |N−(I) \ N+(I)| ⩽ (n − |I|)/2. Let D′ := D −

(
I ∪ N+(I)

)
= D

[
N−(I) \ N+(I)

]
.

By induction, there exists a dominating set S ′ ⊆ V (D′) of D′ such that D[S ′] is acyclic
and χ(D[S ′]) = χ(D′[S ′]) ⩽ log2(v(D

′)) ⩽ log2(n/2).
Let S := D[I ∪ S ′]. Clearly χ(D[S]) ⩽ 1 + χ(D[S ′]) ⩽ log2 n and S is a dominating set

of D. Note that S ′ ⊆ V (D′) = N−(I) \N+(I), so each edge between S ′ and I is directed
from S ′ to I. We conclude that D[S] is acyclic (since D[S ′] is acyclic and I is stable).
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Note that Lemma 5 holds if we replace dominating by anti-dominating.

Proof of Theorem 3. Let D be an oriented graph and fix H ⊆ D attaining the maximum
value of t := ⌊χ(H)/ log2 v(H)⌋. Let n := v(H) and let T be an oriented tree of order t.
We will show that H contains a copy of T . The proof is by induction on t. Note that n ⩾ 2
and t ⩾ 1. If t ∈ {1, 2}, then the result follows trivially since χ(H) ⩾ t log2 n ⩾ t. For
the induction step, suppose that t ⩾ 3 and that T contains an out-leaf v (respectively,
in-leaf). By Lemma 5, H contains an anti-dominating set S (respectively, dominating)
such that χ(H[S]) ⩽ log2(n). Let H ′ := H − S and n′ := v(H ′) = n − |S|. Since t ⩾ 3,
we have χ(H) ⩾ 3 log2 n. Therefore n′ ⩾ χ(H ′) ⩾ χ(H) − χ(H[S]) ⩾ 2 log2 n ⩾ 2,
so e(H ′) > 0. By induction, H ′ contains every oriented tree of order⌊

χ(H ′)

log2(n
′)

⌋
⩾

⌊
χ(H)− log2 n

log2(n− |S|)

⌋
⩾

⌊
χ(H)− log2 n

log2 n

⌋
⩾ t− 1,

so H ′ contains a copy of T − v. Since each vertex of H ′ has an outneighbour (respectively,
inneighbour) in S, it follows that H contains a copy of T .

3 Concluding remarks

A simple first moment calculation (see, e.g., [12]) shows that for every positive ε and
sufficiently large k, a typical orientation of any k-chromatic graph G contains every oriented
tree of order (1− ε)k/ log k. In this note we improve this, showing that ‘typical’ can be
replaced by ‘every’ whenever χ(G) > v(G)1−ε, a condition that holds for many graphs.

Let n ∈ N and p ∈ (0, 1). The binomial random graph G(n, p) is obtained from the
complete graph Kn by independently deleting each of its edges with probability 1−p. Note,
for instance, that G(n, 1/2) is uniformly distributed over all labeled graphs of order n.
A celebrated result of Bollobás [3] implies that χ

(
G(n, 1/2)

)
=

(
1 + o(1)

)
n/2 log2 n with

probability 1− o(1) as n → ∞. Hence, by Theorem 3, almost every graph G satisfies

(
1− o(1)

) χ(G)

log2 χ(G)
⩽ t(G) ⩽ χ(G).

Question 6. What is the typical value t
(
G(n, 1/2)

)
?

We remark that embedding arbitrarily oriented oriented trees covering about half the
vertices of a tournament was a longstanding open problem, known as Sumner’s conjecture,
until Kühn, Mycroft and Osthus [10, 11] proved that K2n−2 → T for every oriented tree T
of order n (where n is sufficiently large). Together with Theorem 3, this suggests that the
difficult cases of Burr’s conjecture are graphs which are chromatically sparse (i.e., have low
chromatic number relative to their order, but contain no small subgraph which ‘witnesses’
the chromatic number).

It is natural to attempt to replace v(H) by some smaller function fG(H) in Theorem 3.
This would follow by improving the bound in Lemma 4.
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Question 7 ([1]). What is the largest integer f = f(k) such that for each digraph D
with χ(D) = k there is S ⊆ V (D) such that N := N+

D (S) \ S satisfies χ
(
D[N ]

)
⩾ f ?

We note that f(k) ⩾ k/2−1. Indeed, every acyclic digraph contains a stable dominating
set, and every oriented graph D can be decomposed into edge-disjoint acyclic digraphs A,B;
a stable dominating set S ′ of A is acyclic in D, and either χ(D − S ′) ⩾ k/2 (take S = S ′)
or χ(D[S ′]) ⩾ k/2 (take S to be a stable dominating set of D[S ′]).

We mention yet another direction of research. For each digraph H, let q(H) denote
the smallest integer q such that G → H for every graph G with χ(G) ⩾ q. Note that
q(H) < ∞ if and only if H is a forest, since, as shown by Erdős, there exist graphs
with arbitrarily large chromatic number and girth [6]. Conjecture 1 is equivalent to the
statement ‘q(T ) ⩽ 2v(T )− 2 for every oriented tree T ’. The value of q(T ) is only known
for stars [4], directed paths [7, 8, 13, 15] and paths formed by concatenating two directed
paths [2]. More precisely, q(S) is either 2v(S) − 3 or 2v(S) − 2 if S is an oriented star,
and q(P ) = v(P ) if P is the concatenation of two directed paths, where we consider paths
of order 3 as stars. For more about Conjecture 1, see, e.g., [2, 12, 14].

Question 8. What is the typical value of q(T ) if T is a labeled oriented tree of order t
chosen uniformly at random?

Dross and Havet proved that Kn → T for every oriented tree T of order t with k leaves,
where n = min{21v(T )/8− 47/16, v(T ) + 144k2 − 280k + 124} [5]. They also proposed
the following strengthening of Burr’s conjecture.

Conjecture 9 ([5]). If T is an oriented tree with k leaves, then q(T ) ⩽ v(T ) + k − 1.

Conjecture 9 generalizes an earlier analogous conjecture of Havet and Thomassé [9] in
the same way that Burr’s conjecture generalizes Sumner’s. These conjectures suggest that
arbitrary tournaments, in a sense, already exhibit all obstacles for embedding oriented
trees. We formalise this by making the following conjecture.

Conjecture 10. If T is an oriented tree, then q(T ) = min{n ∈ N : Kn → T}.

We note that conjectures 1, 9 and 10 hold for oriented stars [4] and also for paths
formed by concatenating (up to) two directed paths [2, 7, 8, 13, 15]. Note that the truth of
Conjecture 10 would immediately confirm Burr’s conjecture for every graph with sufficiently
large chromatic number, using the proof of Sumner’s conjecture for large tournaments.
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