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Abstract

Let G and H be disjoint embeddings of complete graphs Km and Kn in R3 such
that some cycle in G links a cycle in H with non-zero linking number. We say that
G and H are weakly linked if the absolute value of the linking number of any cycle
in G with a cycle in H is 0 or 1. Our main result is an algebraic characterisation of
when a pair of disjointly embedded complete graphs is weakly linked.

As a step towards this result, we show that if G and H are weakly linked, then
each contains either a vertex common to all triangles linking the other or a triangle
which shares an edge with all triangles linking the other. All families of weakly
linked pairs of embedded complete graphs are then characterised by which of these
two cases holds in each complete graph.

Mathematics Subject Classifications: 57M15, 57K10
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1 Introduction

The study of linked cycles within an embedded graph began in 1983 with Conway and
Gordon’s [1] and Sachs’ [8] result that every embedding of K6 in R3 contains a pair
of triangles with non-zero linking number. Any graph with this property is said to be
intrinsically linked. In the same paper, Sachs showed that each of the seven graphs in the
Petersen family is intrinsically linked and no minor of any of them is intrinsically linked.
Then, in 1995, Robertson, Seymour, and Thomas [7] proved that these seven graphs are
the only graphs which are minor minimal with respect to being intrinsically linked. Since
then, many results have been obtained about intrinsic linking of graphs.

In this paper, we explore how pairs of cycles in disjointly embedded complete graphs
in R3 can be linked. We consider linking from a purely algebraic point of view. Thus
we say that disjoint simple closed curves C and D are linked if and only if their pairwise
linking number Lk(C,D) is non-zero. We introduce the following definitions.

Definition 1. We say that disjointly embedded simple closed curves C and D in R3 are
strongly linked if |Lk(C,D)| ! 2, and weakly linked if |Lk(C,D)| = 1.

Definition 2. We say that disjointly embedded graphs G and H in R3 are strongly linked
if some cycle in G strongly links a cycle in H; and weakly linked if some cycle in G links
a cycle in H, but no cycle in G strongly links any cycle in H.

Our main result is a characterisation of all weakly linked embeddings of G ∼= Km and
H ∼= Kn in terms of the pairwise linking numbers between triangles in G and triangles
in H. Since any cycle in a complete graph can be decomposed as a sum of triangles, this
completely determines all pairwise linking numbers between cycles in G and cycles in H.

We build our results in stages as follows. In Section 2, we prove Theorem 6, which
characterises weak linking between a simple closed curve and an embedded complete graph
Kn. Since the complete graph K3 is a cycle, this also characterises weak linking of Km

and Kn when min{m,n} = 3. In Section 3, we prove Theorem 14, which characterises
weak linking between a theta curve (i.e., a graph with two vertices joined by three edges,
homeomorphic to the Greek letter Θ) and a complete graph Kn. Next, in Section 4, we
prove Theorem 16, which characterises weak linking ofK4 andKn, for n ! 4. In Section 5,
we prove Theorem 20, which is a technical result needed for our characterisation of weakly
linked embeddings of Km and Kn. Finally in Section 6, we prove the following dichotomy.

Theorem 3 (Theorem 23 paraphrased). Let m ! 5 and n ! 4, and suppose that G ∼= Km

and H ∼= Kn are weakly linked in R3. Then exactly one of the following holds:

1. There is a vertex p of G common to all triangles of G linking H (“G contains a
common vertex”).

2. There is a triangle T ∗ in G such that a triangle T ∕= T ∗ of G links H if and only if
it shares an edge with T ∗ (“G contains a common triangle”).
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Figure 1: An embedding of K6 = 〈p, q0, q1, r0, r1, r2〉 and a curve C such that C links K6

in the star p|q0q1|r0r1r2.

Then in Theorem 24, we characterise weak linking between G and H when at least
one of G and H contains no vertex common to all triangles linking the other; while in
Theorem 26, we characterise weak linking when both G and H contain a vertex common
to all triangles linking the other. We conclude the paper with a brief discussion of the
problem of determing the least n such that every embedding of Kn in R3 contains a pair
of disjoint cycles that are strong linked.

The concept of a star (defined below) will play a key role in our results.

Definition 4. Let
!
{p}, O, I

"
be an ordered partition of the vertices of Kn, where O =

{q1, . . . , qk} and I = {r1, . . . , rℓ}. The star pOI consists of all oriented triangles of the
form pqr, where q ∈ O and r ∈ I. We also express the star pOI as p|q1 · · · qk|r1 · · · rℓ.

The vertex p is said to be the apex of the star. A star pOI is proper if neither O nor
I is a singleton, and improper otherwise. Note that the improper stars p{q}I and qI{p}
are equal. We also refer to an improper star p{q}I as a fan with axis pq.

If Σ = pOI is a star, then we define −Σ to be the star −Σ = pIO. We say that −Σ
is obtained by reversing the orientation of Σ.

Definition 5. Let n ! 3, and let C be an oriented simple closed curve disjoint from
an embedding of Kn in R3. We say that C links Kn in the star pOI if for all oriented
triangles T of Kn we have

Lk(C, T ) =

#
$%

$&

+1 if T is a triangle of the star pOI,

−1 if −T is a triangle of the star pOI,

0 otherwise.

Figure 1 shows an example of an embedding of K6 = 〈p, q0, q1, r0, r1, r2〉 and a curve
C which links K6 in the star p|q0q1|r0r1r2. The vertex p together with all incident edges
(shown in blue) form a star, hence the name.

Unoriented stars with min{|O|, |I|} " 2 were previously used by Flapan, Naimi, and
Pommersheim [4] and Drummond-Cole and O’Donnol [2] to study intrinsically n-linked
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graphs. In particular, a graph G is said to be intrinsically n-linked or InL if every em-
bedding of G in R3 contains a non-split link of n-components. Flapan, Naimi, and Pom-
mersheim used stars to prove that K10 is I3L; and then Drummond-Cole and O’Donnol
used them to show that for every n ! 2, K⌊ 7

2
n⌋ is InL.

2 Weak linking of a simple closed curve with Kn

The main result of this section is the following theorem, which shows that weak linking
between a simple closed curve and a complete graph can be characterised in terms of
stars.

Theorem 6. Let n ! 3, and let C be an oriented simple closed curve disjoint from an
embedding of Kn in R3 such that C links some cycle of Kn. Then C weakly links Kn if
and only if C links Kn in a star.

The case n = 3 is immediate, using any vertex as the apex and the remaining two
vertices as O and I. For n ! 4 we prove Theorem 6 as a series of lemmas, beginning with
the “if” direction in Lemma 7:

Lemma 7. Let C be an oriented cycle disjoint from an embedding of Kn in R3. If C links
Kn in a star, then C weakly links Kn.

Proof. Suppose that C links the star pOI in Kn, and let D = v0v1 · · · vk−1 be a k-cycle in
Kn. We first show that if D does not contain p, then D does not link C.

To do this, decompose D as the sum of the triangles Ti = v0vivi+1, for 1 " i " k − 2,
so that in the homology group H1(R3 − C) we have

[D] =
k−2'

i=1

[Ti].

Then since C links Kn in the star pOI, and D does not contain p, we have [Ti] = 0 for
all i. Therefore [D] = 0, showing that D does not link C.

Suppose now that D does contain p. Since C links Kn in the star pOI, C does not
strongly link any triangle in Kn. Thus we may assume that k ! 4. Assume without loss of
generality that v0 = p, and let T = v0v1vk−1 and D′ = v1v2 · · · vk−1. Then T is a triangle,
D′ is a (k − 1)-cycle, and D = T +D′ as 1-chains in Kn. The cycle D′ does not contain
p so by the previous paragraph, in H1(R3 − C) we have

[D] = [T ] + [D′] = [T ] ∈ {0,±1}.

Therefore D does not strongly link C. Since C links Kn, it follows that C weakly links
Kn, as required.

In order to prove the “only if” direction of Theorem 6, we first prove the case n = 4
in Lemma 8; then we use Lemma 8 to prove the case n = 5 in Lemma 9; then finally we
use Lemma 9 to prove the case n ! 6 in Lemma 10.
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Lemma 8. Let C be an oriented simple closed curve which weakly links an embedding of
K4 in R3. Then C links K4 in a fan.

Proof. Let K4 = 〈v0, v1, v2, v3〉, and let

C0 = v1v2v3, C1 = v3v2v0,

C2 = v0v1v3, C3 = v2v1v0.

Then as 1-chains in K4 we have

C0 + C1 + C2 + C3 = 0,

and for i ∕= j the sum Ci + Cj is a 4-cycle in K4.
In the homology group H1(R3 − C) we have

[C0] + [C1] + [C2] + [C3] = 0,

with each [Ci] ∈ {0,±1} and some [Ci] ∕= 0. If there exist i ∕= j such that [Ci] = [Cj] ∕= 0,
then [Ci + Cj] = 2[Ci] ∕= 0, and C strongly links the four cycle Ci + Cj, contrary to
hypothesis. So it must be the case that one term is equal to +1, one term is equal to −1,
and the other two are zero. After relabelling the vertices and reorienting C (if necessary),
we may assume that

[C0] = [C1] = 0, [C2] = −[C3] = 1.

Thus we let O = {v1}, I = {v2, v3}, and see that C links K4 in the fan v0{v1}I.

Lemma 9. Let C be an oriented simple closed curve which weakly links an embedding of
K5 in R3. Then C links K5 in a star.

Proof. Since any cycle that links C can be broken into triangles, there must be at least
one triangle in K5 that links C. First we suppose that there is some edge pq common to
all triangles which link C. Let K5 = 〈p, q, r0, r1, r2〉, and assume without loss of generality
that Lk(C, pqr0) = +1. We claim that C links K5 in the star p|q|r0r1r2.

To see this, we apply Lemma 8 to K4 = 〈p, q, r0, ri〉 for i = 1, 2. By Lemma 8, C links
K4 in a star. This star must be the fan with axis pq because we know Lk(C, pqr0) = +1
and pq is common to all triangles in K5 linking C. Therefore for i = 1, 2, the triangle
pqri in K4 = 〈p, q, r0, ri〉 links C with linking number +1. Thus every triangle in the star
p|q|r0r1r2 in K5 links C positively; every triangle in the star q|p|r0r1r2 links C negatively;
and since every triangle that links C contains pq, no other triangle can link C. It follows
that C links K5 in the star p|q|r0r1r2 as claimed, completing the proof in this case.

Suppose now that there is no edge of K5 common to all triangles linking C. Since
any two triangles in K5 must share at least one vertex, this implies there exist triangles
T0 = pq0r0 and T1 = pq1r1 such that T0 ∩ T1 = {p} and Lk(C, T0) = Lk(C, T1) = +1. We
show that C links K5 in the star Σ = p|q0q1|r0r1.
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In what follows homology classes are taken with respect to H1(R3−C), and subscripts
are taken modulo 2. We begin by showing that the two remaining triangles pq0r1 and
pq1r0 of Σ link C with linking number +1. To see that [pqiri+1] = +1 for i = 0, 1 consider
the 5-cycle D = priqiri+1qi+1. We have

[D] = [priqiri+1qi+1] = [priqi] + [pqiri+1] + [pri+1qi+1]

= [pqiri+1]− 2,

so we must have [pqiri+1] = +1 because otherwise either D or pqiri+1 would strongly link
C.

We next show that [pq0q1] = [pr0r1] = 0. Recall that qi and ri were chosen so that
[pq0r0] = +1 and [pq1r1] = +1. Suppose that [pqiqi+1] = +1 for some i ∈ {0, 1}. Then
letting D = pqiqi+1ri+1 we have

[D] = [pqiqi+1ri+1] = [pqiqi+1] + [pqi+1ri+1] = +2.

Similarly, if [priri+1] = +1 for some i, then letting D = pqiriri+1 we have

[D] = [pqiriri+1] = [pqiri] + [priri+1] = +2.

In either case, some cycle in K5 would strongly link C, contrary to hypothesis. Since i
can be either 0 or 1, we must have [pq0q1] = [pr0r1] = 0.

To complete the proof that C links K5 in the star Σ = p|q0q1|r0r1, it remains to show
that C links no triangle in K4 = 〈q0, q1, r0, r1〉. Suppose to the contrary that it does.
Then it must positively link some triangle of the form qiqi+1rj or qirjrj+1. In the first
case, letting D = qiqi+1rjp we have

[D] = [qiqi+1rjp] = [qiqi+1rj] + [qi+1rjp] = +2;

and in the second, letting D = qirjrj+1p we similarly get

[D] = [qirjrj+1p] = [qirjrj+1] + [qirj+1p] = +2.

In either case some cycle in K5 strongly links C, contrary to hypothesis. So no triangle in
K4 = 〈q0, q1, r0, r1〉 can link C, and we conclude that C linksK5 in the star Σ = p|q0q1|r0r1.
This completes the proof.

Lemma 10. Let n ! 6, and let C be an oriented simple closed curve which weakly links
an embedding of Kn in R3. Then C links Kn in a star.

To prove Lemma 10 we will use Lemma 11, which is a special case of a lemma proved
in Flapan [3].

Lemma 11 (Triple link implies strong link). Let L ∪ Z ∪ W be a 3-component link in
R3, such that Z and W are cycles belonging to an embedding of Kn in R3. Suppose that
Lk(L,Z) ∕= 0 ∕= Lk(L,W ). Then Kn contains a cycle which strongly links L.
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Figure 2: Three triangles p0p1q2, p0q1p2, q0p1p2 that pairwise intersect but share no com-
mon vertex.

Proof. In Lemma 1 of [3] the component L is also assumed to be a cycle belonging to
Kn, but this hypothesis plays no role in the proof and can be omitted. If either Z or
W strongly links L then we are done. Otherwise, we may orient Z and W such that
Lk(L,Z) = Lk(L,W ) = 1, and apply [3, Lemma 1] to obtain a cycle J in Kn with at least
6 vertices such that for some orientation of J , we have Lk(L, J) ! 2.

Proof of Lemma 10. Since C links some cycle of Kn, it links some triangle. Since n > 5,
this triangle lies in a K5 subgraph which links C. Thus by Lemma 9, C links a star in
this K5. It follows that C links at least three triangles in Kn. If there are two disjoint
triangles in Kn which link C, then by Lemma 11 C strongly links some cycle of Kn. So
we assume that no pair of triangles that link C are disjoint.

Now we show that there is a vertex p in Kn such that every triangle in Kn that links
C contains p. Suppose this is not the case. Since no pair of triangles that link C are
disjoint, there must exist three triangles linking C which pairwise intersect but don’t all
share a common vertex. We know by Lemma 9 that the set of triangles in a K5 which link
C must all share at least one common vertex. Thus the three triangles which pairwise
intersect but don’t have a common vertex must use at least 6 vertices. If any pair of them
shared a common edge, it would only require 5 vertices; and if they used more than 6
vertices, there would be a pair that did not share a vertex. Thus we have the situation
illustrated in Figure 2, with C linking the triangles p0p1q2, p0q1p2, and q0p1p2.

Suppose without loss of generality that Lk(C, p0p1q2) = +1 (re-orienting C, if neces-
sary), and consider the K5-subgraph H = 〈p0, p1, p2, q1, q2〉. Since p0p1q2 and p0q1p2 both
link C and are contained in H, C must link H in a proper star with apex p0. This star
must be either p0|p1q1|p2q2 (if Lk(C, p0q1p2) = +1), or p0|p1p2|q1q2 (if Lk(C, p0q1p2) = −1).
Hence either p0p1p2 and p0q1q2 both link C, or p0p1q1 and p0p2q2 both link C.

If p0p1p2 and p0q1q2 both link C, then the triangles p0q1q2 and q0p1p2 in Kn would
be disjoint triangles which both link C. Hence by Lemma 11, there would be a cycle in
Kn strongly linking C. As this is contrary to hypothesis, we must have both p0p1q1 and
p0p2q2 linking C instead. Then in the K5-subgraph H ′ = 〈p0, p1, p2, q0, q1〉 we have at
least the three triangles p0q1p2, q0p1p2, and p0p1q1 linking C. But this is impossible by
Lemma 9 since C must link H ′ in a star, which means that there is a vertex common to
all triangles in H ′ which link C. Thus, in fact, there must be some vertex p in Kn such
that every triangle in Kn that links C contains p.
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We next show that every vertex s of Kn belongs to some triangle in Kn linking C.
Indeed, let pqr be a triangle in Kn linking C, and consider the K4-subgraph 〈p, q, r, s〉.
By Lemma 8 this K4-subgraph must link C in a fan, so either pqs or prs must link C.

We’re now ready to partition the vertices of Kn − {p} into sets O and I as required
by the theorem. Let

O = {q ∈ Kn : [pqr] = 1 for some r ∈ Kn},
I = {r ∈ Kn : [pqr] = 1 for some q ∈ Kn},

where homology classes are taken with respect to H1(R3−C). By the previous paragraph
every vertex of Kn − {p} belongs to O ∪ I. We claim that moreover O ∩ I = ∅, so that
{O, I} is in fact a partition of the vertices of Kn−{p}. To see this, suppose that r ∈ O∩I.
Then there are vertices q and s such that [pqr] = [prs] = 1. But this would imply that

[pqrs] = [pqr] + [prs] = 2,

and hence the square pqrs would strongly link C. Thus O ∩ I = ∅.
Given q ∈ O and r ∈ I, we must show that C links pqr. Now by definition of O and

I, there are vertices s ∈ I and t ∈ O such that [pqs] = [ptr] = 1. If s = r or t = q, then
C does link pqr as required. Otherwise p, q, r, s, t are all distinct so H = 〈p, q, r, s, t〉 is
a K5-subgraph. By Lemma 9, C must link H in the star p|qt|rs, and so [pqr] = 1, as
required.

Finally, to show that C only links triangles of the form pqr with q ∈ O and r ∈ I,
we consider triangles in Kn which are not of this form. Since

(
{p}, O, I

)
partitions the

vertices of Kn, such a triangle must have one of the following forms:

• pq1q2 with q1, q2 ∈ O, which cannot link C since that would imply that q1 or q2
belongs to O ∩ I.

• pr1r2 with r1, r2 ∈ I, which cannot link C since that would imply that r1 or r2
belongs to O ∩ I.

• xyz with p /∈ {x, y, z}, which cannot link C because we showed that every triangle
that links C contains p.

So we are done.

Taken together, Lemmas 8, 9, and 10 complete the proof of Theorem 6. By Lemma 11,
if a cycle C weakly links a complete graph Kn then any two cycles in Kn that link C must
intersect. We extend this result to a pair of weakly linked complete graphs as follows.

Theorem 12. Let m,n ! 3, and suppose that G ∼= Km and H ∼= Kn are weakly linked
graphs in R3. If C1 and C2 are cycles in G that link H, then there is a vertex p of G that
belongs to both C1 and C2.

To prove Theorem 12, we first prove the following lemma.
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Lemma 13. Let C1 and C2 be oriented simple closed curves which weakly link an embed-
ding of Kn in R3. Then there is a cycle of length at most 4 in Kn that links both C1 and
C2.

Proof. By Theorem 6, C1 and C2 each link Kn in a star. Let q1O1I1 be the star that links
C1, and let q2O2I2 be the star that links C2. We show as follows that there is a cycle in
Kn that links both C1 and C2.

We first suppose that q1 ∕= q2. Since
(
{q1}, O1, I1

)
and

(
{q2}, O2, I2

)
each partition

Kn, we can switch the orientations on C1 and C2 (if necessary) so that q1 ∈ I2 and
q2 ∈ O1. Hence for all r ∈ I1, we have Lk(C1, rq1q2) = 1; and for every r ∈ O2, we have
Lk(C2, rq1q2) = 1. If there is some r ∈ I1 ∩O2, then the triangle q1q2r links both C1 and
C2.

So we assume that I1 ∩O2 = ∅. Since
(
{q1}, O1, I1

)
and

(
{q2}, O2, I2

)
are partitions

of Kn with q1 ∈ I2 and q2 ∈ O1, it follows that we must have O2 ⊆ O1 and I1 ⊆ I2. Let
x ∈ I1 ⊆ I2, y ∈ O2 ⊆ O1, and consider the square xq1q2y. In H1(R− C1) we have

[xq1q2y] = [xq1y] + [yq1q2] = 1 + 0 = 1,

because q2 ∈ O1; and in H1(R− C2) we have

[xq1q2y] = [xq1q2] + [xq2y] = 0 + 1 = 1,

because q1 ∈ I2. Thus C1 and C2 both link the square xq1q2y.
Next suppose that q1 = q2. If O2 ⊆ O1, then by analogy with our above argument

I1 ⊆ I2. In this case, if x ∈ O2 and y ∈ I1, then q1xy links both C1 and C2. Thus we
assume that O2 ∕⊆ O1, and similarly that O1 ∕⊆ O2. It follows that there is some vertex
x ∈ O2 ∩ I1 and some vertex y ∈ I2 ∩O1. But now xyq1 links both C1 and C2.

Proof of Theorem 12. By hypothesis C1 and C2 both weakly link H, so by Lemma 13
there is a cycle D in H which links both C1 and C2. Theorem 12 now follows from either
Lemma 11 or Theorem 6 applied to the cycle D and the complete graph G: for instance,
by Theorem 6 D links G in a star pOI, and then p must belong to Ci for i = 1, 2, because
otherwise Ci does not link D.

3 Weak linking of a Θ curve with Kn

Theorem 14. Let Θ be a theta curve with oriented cycles C1, C2, C3 such that

[C1] + [C2] + [C3] = 0

in H1(Θ). Let n ! 3, and suppose that Θ and Kn are weakly linked graphs in R3. Then
exactly one of the following cases holds:

(A1) There is a vertex p of Kn common to all triangles linking a curve in Θ. Then there
are pairwise disjoint sets I1, I2, I3 (at most one empty) such that I1 ∪ I2 ∪ I3 =
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Θ

Figure 3: Cases (A1) (left) and (A2) (right) of Theorem 14. The second vertex of Θ is
placed at infinity.

Kn − {p}, and after reversing the orientation of Θ (if necessary), each Ci links the
star pOiIi in Kn, where

O1 = I2 ∪ I3, O2 = I1 ∪ I3, O3 = I1 ∪ I2.

(A2) There is no vertex of Kn common to all triangles linking a curve in Θ. Then
n ! 5 and there are distinct vertices p1, p2, p3 in Kn such that, after reversing the
orientation of Θ (if necessary), each Ci links the star piOiI in Kn, where

O1 = {p2, p3}, O2 = {p1, p3}, O3 = {p1, p2},

and I = Kn − {p1, p2, p3}.

Figure 3 illustrates the two cases. The loops C1, C2 and C3 link stars as given in
the theorem. It then follows from Theorem 6 that these embeddings are weakly linked
because every cycle in Θ links a star in Kn.

Proof. Let D be a cycle in Kn linking some cycle Ci in Θ. Then in the homology group
H1(R3 −D) we have

[C1] + [C2] + [C3] = 0.

Since there is no strong link between Θ and Kn, every [Ci] is ±1 or 0. Since some
term is non-zero, each of the three possible values must occur exactly once in the sum.
Thus, D must link exactly two of the Ci, one positively, and one negatively. We will use
this fact repeatedly.

Without loss of generality C1 links some cycle in Kn. Since C1 does not strongly link
any cycle in Kn, by Theorem 6 it links some star p1O1I1. Let p1qr be a triangle in p1O1I1.
Then p1qr links exactly one of C2 and C3. So without loss of generality we may assume
that C2 links p1qr, and therefore C2 links a star p2O2I2. We consider two cases, according
to whether or not there is a vertex p common to all triangles in Kn linking either C1 or
C2.
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q

r O1 ∩O2 O1 ∩ I2 I1 ∩O2 I1 ∩ I2

O1 ∩O2 (0, 0, 0) (0,−1,+1) (−1, 0,+1) (−1,−1,+2)
O1 ∩ I2 (0,+1,−1) (0, 0, 0) (−1,+1, 0) (−1, 0,+1)
I1 ∩O2 (+1, 0,−1) (+1,−1, 0) (0, 0, 0) (0,−1,+1)
I1 ∩ I2 (+1,+1,−2) (+1, 0,−1) (0,+1,−1) (0, 0, 0)

Table 1: The triples
!
Lk(pqr, C1),Lk(pqr, C2),Lk(pqr, C3)

"
in Case 1 of the proof of The-

orem 14.

Case 1: All triangles linking C1 or C2 share a vertex

Suppose that there is a vertex p common to all triangles linking either C1 or C2. Then we
may choose the stars linking C1 and C2 so that p1 = p2 = p. Moreover, since any triangle
linking C3 must also link either C1 or C2, if C3 also links some triangle it contains the
vertex p. Hence in this case, C3 must link a star of the form pO3I3.

Observe that O1∩O2, O1∩I2, I1∩O2, I1∩I2 are disjoint sets with union X = Kn−{p}.
Given a triangle pqr in Kn we have

Lk(pqr, C3) = −Lk(pqr, C1)− Lk(pqr, C2),

so the ordered triple !
Lk(pqr, C1),Lk(pqr, C2),Lk(pqr, C3)

"

is completely determined by the sets in O1∩O2, O1∩I2, I1∩O2, I1∩I2 that q and r belong
to. Calculating these triples we obtain Table 1.

If O1∩O2 and I1∩ I2 are both nonempty then by Table 1 C3 strongly links some cycle
in Kn. Since this is contrary to our hypothesis, at least one of these intersections must
be empty. Reversing the orientation of Θ switches the roles of Oi and Ii for each i, so
after doing this (if necessary), without loss of generality we may assume that I1∩ I2 = ∅.
Table 1 then shows that Lk(pqr, C3) = +1 precisely when q ∈ (O1 ∩ I2) ∪ (I1 ∩ O2) and
r ∈ O1∩O2. Observe that the conditions I1∩ I2 = ∅ and O1∪ I1 = O2∪ I2 = X together
imply I1 ⊆ O2, I2 ⊆ O1. We therefore have

O3 = I1 ∪ I2, I3 = O1 ∩O2,

and we see that I1, I2, I3 are pairwise disjoint sets with union X. This implies that we
also have

O1 = I2 ∪ I3, O2 = I1 ∪ I3,

and it follows that C1, C2 and C3 link Kn in stars as given by (A1).
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Case 2: Triangles linking C1 or C2 do not all share a vertex

Every triangle linking C1 contains p1, and every triangle linking C2 contains p2, so if
these triangles do not all share a common vertex we must have p1 ∕= p2. Reversing the
orientation of Θ exchanges the roles of O1 and I1, so without loss of generality we may
assume that p2 ∈ O1. At the beginning of the proof, we assumed that without loss of
generality there is a triangle T in the star p1O1I1 linking C2. Now since every triangle
linking C2 contains p2, T must have the form p1p2r for some r ∈ I1. Then

Lk(p2p1r, C2) = −Lk(p2p1r, C1) = Lk(p1p2r, C1) = +1. (1)

It follows that we also must have p1 ∈ O2.
Now there must be some triangle in Kn linking C1 that does not contain p2, because

otherwise p2 would be common to all triangles linking C1 or C2. Let T1 = p1q1r1 ∈ p1O1I1
be such a triangle. Then T1 does not link C2 because it does not contain p2, so it must
link C3 instead. By Theorem 6 C3 links a star p3O3I3 in Kn, where p3 ∈ T1. If p3 = p1
then this vertex would be common to all triangles linking C1 or C3. Since every triangle
linking C2 also links either C1 or C3, this would give us a vertex common to all triangles
linking C1 or C2, which is contrary to the hypothesis of this case. So p3 ∕= p1. We also
have p3 ∕= p2, because p2 /∈ T1. So the vertices p1, p2 and p3 are distinct.

Suppose now that p3 = r1, so that p3 ∈ I1. Then there must be some vertex r ∈ I1
such that r ∕= r1, because otherwise p3 would be common to all triangles linking C1 or C3,
and hence to all triangles linking C1 or C2. Consider the triangle p1q1r. This triangle links
C1, because it belongs to the star p1O1I1, but it does not link either C2 or C3, because it
does not contain either p2 or p3. This is a contradiction, so we must have p3 = q1 ∈ O1.
The argument of equation (1) then gives p1 ∈ O3.

There must also be some triangle T2 = p2q2r2 ∈ p2O2I2 that does not contain p1,
because otherwise p1 is common to all triangles linking C1 or C2. Arguing as above we
conclude that p3 ∈ O2, and p2 ∈ O3. We now have

{p2, p3} ⊆ O1, {p1, p3} ⊆ O2, {p1, p2} ⊆ O3. (2)

Suppose that there is some q ∈ O1 such that p2 ∕= q ∕= p3. Then for any r ∈ I1 the triangle
p1qr links C1, because it belongs to the star p1O1I1, but it does not link C2 or C3 because
it does not contain p2 or p3. This is a contradiction, so we must have O1 = {p2, p3}. By
the same reasoning the other inclusions in (2) must also be equalities, and we obtain
finally

O1 = {p2, p3}, O2 = {p1, p3}, O3 = {p1, p2},

and hence
I1 = I2 = I3 = I = Kn − {p1, p2, p3}

as claimed. To conclude we note that we must have n ! 5, because if n = 4 we would
have I = {r}, and the vertex r would be common to all triangles linking a cycle in Θ.
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Corollary 15. Let n ! 4. With notation as in Theorem 14, let Θ and Kn be disjointly
embedded in R3 such that

1. C1 links a fan in Kn with axis pq, and

2. C2 links a star in Kn that is either a fan with axis xy disjoint from pq, or a proper
star with apex x disjoint from pq.

Then C3 strongly links some cycle in Kn.

Proof. Since n ! 4 the only vertices common to all triangles linking C1 are p and q, and
the only vertices common to all triangles linking C2 are either x and y (if C2 links a fan),
or x alone (if C2 links a proper star). By hypothesis there is therefore no vertex common
to all triangles linking Θ, and so if Θ does not strongly link K5 we must be in Case (A2)
of Theorem 14. But in Case (A2) of the theorem the stars of C1, C2 and C3 are all proper,
contradicting the fact that C1 links a fan. Thus in fact neither case holds, so some cycle
in Θ strongly links a cycle in Kn. Both C1 and C2 link stars, so it is C3 that strongly
links Kn.

4 Weak linking of K4 with Kn

Let G = 〈p0, p1, p2, p3〉 ∼= K4, and let

C0 = p1p2p3, C2 = p0p1p3,

C1 = p3p2p0, C3 = p2p1p0.

With these orientations we have

[C0] + [C1] + [C2] + [C3] = 0

in H1(K4;Z), and for any i ∕= j the chain Ci + Cj represents a 4-cycle. We use C1, C2,
C3, and C4 in Theorem 16.

Theorem 16. Let n ! 4, and suppose that G ∼= K4 and H ∼= Kn are weakly linked graphs
in R3. Then exactly one of the following holds:

(B1) There is a vertex q of H common to all triangles linking a curve in G. Then
there are pairwise disjoint sets I0, I1, I2, I3 (at most two of them empty) such that
I0 ∪ I1 ∪ I2 ∪ I3 = H − {q}, and after reversing the orientation of R3 (if necessary),
each Ci links the star qOiIi in Kn, where

Oi = H − {q}− Ii.

(B2) There is no vertex of H common to all triangles linking a curve in G. Then n ! 5
and there are distinct vertices q1, q2, q3 in H such that, after relabelling the vertices of
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Y

Figure 4: Embeddings of G ∼= K4 (blue) and H ∼= Kn (red) realising Cases (B1) (left)
and (B2) (right) of Theorem 16.

G and reversing orientation of R3 (if necessary), C0 does not link H and C1, C2, C3

link H in the stars

q1{q2, q3}I, q2{q1, q3}I, q3{q1, q2}I,

where I = H − {q1, q2, q3}. In particular, the vertex p0 of G is common to all
triangles of G linking H; and a triangle T of H links G if and only if it shares
exactly one edge with T ∗ = q1q2q3.

Embeddings realising (B1) and (B2) are illustrated in Figure 4. These embeddings
belong to the families of embeddings realising Theorem 24, which we prove are weakly
linked in Theorem 25.

Proof. We consider the two cases in turn.

Case 1: All triangles in H linking G share a common vertex q.

Then each triangle Ci in G links a star qOiIi in H, where we allow the possibility that Oi

or Ii is empty to cover the case where Ci doesn’t link H.
Suppose that Ci and Cj both link H. If Oi ∩ Oj ∕= ∅ ∕= Ii ∩ Ij, then we may choose

x ∈ Oi ∩Oj and y ∈ Ii ∩ Ij. Then Ci and Cj both link the triangle qxy ∈ H with linking
number 1, and consequently the square Ci+Cj strongly links qxy. So we must have either
Oi ∩ Oj = ∅, or Ii ∩ Ij = ∅. Reversing the orientation of R3 exchanges the roles of Oℓ

and Iℓ for all ℓ, so after doing this (if necessary) we may assume that Ii ∩ Ij = ∅. This
implies Ii ⊆ Oj and Ij ⊆ Oi, because {Oℓ, Iℓ} is a partition of H − {q} for each ℓ.
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We claim now that if Ck also linksH, then Ii∩Ik = Ij∩Ik = ∅. Suppose to the contrary
that Ii ∩ Ik is nonempty. Then we must have Oi ∩ Ok = ∅, by the previous paragraph,
and arguing as above we must have Oi ⊆ Ik, and Ok ⊆ Ii. But then Ij ⊆ Oi ⊆ Ik and
Ok ⊆ Ii ⊆ Oj, so Ij ∩ Ik ∕= ∅ ∕= Oj ∩Ok, giving us a strong link. We must therefore have
Ia ∩ Ib = ∅ whenever Ca and Cb link H, and we extend this to hold for all a and b by
setting Iℓ = ∅, Oℓ = H − {p} if Cℓ does not link H. Note that at most two of the Iℓ can
be empty, because any triangle in H linking G must link it in exactly two triangles, one
positively and one negatively.

To complete the proof in this case we must show that I0 ∪ I1 ∪ I2 ∪ I3 = H − {q}.
Let x ∈ H − {q}. If x /∈ Ii then we necessarily have x ∈ Oi. Then qxy links Ci with
linking number +1 for some y, so it must link some Ck with linking number −1. Then
qyx ∈ qOkIk, and we conclude that x ∈ Ik.

Case 2: There is no vertex common to all triangles in H linking G.

First we show that some triangle Ci of G must link a proper star in H.
Suppose to the contrary that every triangle of G that links H links it in a fan. We

may suppose that some triangle Ci links H in the fan with axis xy. By assumption x does
not belong to every triangle of H linking G, so some Cj links a triangle T1 ⊆ H that does
not contain x. Then Cj links a fan in H, and since Ci ∪ Cj is a theta curve the axis of
this fan must meet xy, by Corollary 15. Thus Cj links H in a fan with axis ±yz, for some
z ∕= x. Now since y is not common to all triangles of H linking G, some cycle Ck must
link a triangle T2 that does contain y. Then Ck links H in a fan, and by Corollary 15 the
axis of this fan must meet both xy and yz. The axis must therefore be ±zx. But now the
triangle xyz ⊆ H links all three triangles Ci, Cj, Ck, contradicting the fact that it must
link G in a star, which contains exactly two triangles. So some triangle in G must link a
proper star in H. Note that this immediately implies n ! 5.

Without loss of generality C1 links a proper star with apex q1. By assumption q1
is not common to all triangles of H linking G, so without loss of generality C2 links a
triangle T that does not contain q1. Now C1∪C2 is a theta curve, and since q1 is the only
vertex common to all triangles linking C1, and some triangle linking C2 does not contain
q1, there is no vertex common to all triangles of H linking C1 or C2. We must therefore
be in Case (A2) of Theorem 14, so there are vertices q2 and q3 such that (after reversing
orientation of R3, if necessary) C1, C2 and −(C1 + C2) link H in the stars

ΣC1 = q1{q2, q3}I,
ΣC2 = q2{q1, q3}I,

Σ−(C1+C2) = q3{q1, q2}I,

where I = H − {q1, q2, q3}.
We now consider C0 and C3. At least one of them must link H, because otherwise

C0 + C3 = −(C1 + C2) would not, a contradiction. After relabelling the vertices of G (if
necessary) we may therefore assume that C3 links H. We will show under these conditions
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that C0 does not link H. To do this we use the fact that C0, C3 and −(C0+C3) = C1+C2

form a theta curve, with −(C0 + C3) linking H in the star −Σ−(C1+C2) = q3I{q1, q2}.
We first show that C3 must link H in a star with apex q3. Suppose to the contrary

that q3 is not common to all triangles linking C3. If C3 links H in a star with apex q1
then by Case (A2) of Theorem 14 it must link H in the star q1I{q2, q3}; but then for any
r ∈ I both C2 and C3 link the triangle q2q1r with linking number +1, and it follows that
the square C2 + C3 strongly links H. The same argument shows that C3 cannot link a
star with apex q2, so suppose finally that C3 links H in a star with apex q4 ∈ I. Then by
Theorem 14 Case (A2) it must be the case that |I| = 2, so n = 5 and there is a vertex q5
such that C3, C0 and −(C0 + C3) link H in the stars

ΣC0 = q5{q3, q4}{q1, q2},
ΣC3 = q4{q3, q5}{q1, q2},

Σ−(C0+C3) = q3{q4, q5}{q1, q2}.

Observe now that C1 ∪ C3 is a theta curve, and the stars

ΣC1 = q1{q2, q3}{q4, q5},
ΣC3 = q4{q3, q5}{q1, q2}

don’t satisfy (A2). It follows that the square C1 +C3 must strongly link H: for example,
it strongly links the square q1q2q4q5 in H. We conclude that C3 must link H in a star
ΣC3 = q3O3I3 with apex q3, as claimed.

We now use the fact that both C1 ∪ C3 and C2 ∪ C3 are theta curves. The vertices q1
and q2 cannot both be common to every triangle in H linking C3, because then the only
triangle in H linking C3 would be q1q2q3. So suppose without loss of generality that q1 is
not common to every triangle in H linking C3. Then C1 ∪ C3 must satisfy Case (A2) of
Theorem 14. However, the only star with apex q3 that can satisfy (A2) together with ΣC1

is q3{q1, q2}I = Σ−(C1+C2), so it must be the case that ΣC3 = q3{q1, q2}I too. But then

ΣC0+C3 = Σ−(C1+C2) = ΣC3 ,

and it follows that C0 does not link H. This completes the proof.

Remark 17. We may express the linking between G and H in Case (B2) of Theorem 16
in terms of stars in G as follows.

Notice that a triangle of H links G if and only if it has the form ±qiqjy, for i ∕= j and
y ∈ I. Consider the triangle q3q2y. This is linked positively by the triangles C3 = p1p0p2
of G and −C2 = p1p0p3 of G, and hence links G in the star p1{p0}{p2, p3}. Considering
the triangles yq1q3 and q2q1y in turn, we find that the triangles ±qiqjy link G according
to the following stars:

Σq3q2y = p1{p0}{p2, p3},
Σyq1q3 = p2{p0}{p1, p3},
Σq2q1y = p3{p0}{p1, p2}.
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5 Stars with no common apex

A key step in our characterisation of weakly linked embeddings of G ∼= Km and H ∼= Kn

is an analysis of the way in which two stars in a weakly linked embedding can meet. In
Theorem 20, we analyse a pair of stars that do not share a common apex. We begin with
the following definitions.

Definition 18. Let Σ1 = p1O1I1,Σ2 = p2O2I2 be stars in Km, with m ! 4.

1. If p1 ∕= p2, then Σ1 and Σ2 are mutually oriented if p1 ∈ O2 and p2 ∈ O1.

2. If there is a vertex p ofKm such that Σ1,Σ2 may be expressed in the form Σi = pO′
iI

′
i

for each i, then Σ1 and Σ2 have a common apex. Otherwise, we say that Σ1 and Σ2

have no common apex.

Remark 19. Suppose that p1 ∕= p2. Then ε1Σ1, ε2Σ2 are mutually oriented for a unique
choice of signs ε1, ε2 ∈ {±1}. Furthermore, if Σ1 and Σ2 are mutually oriented, then they
have a common apex if and only if one of the following holds:

1. Σ1 is a fan with axis p1p2 (so that Σ1 = p1{p2}I1 may be expressed in the form
Σ1 = p2I1{p1}).

2. Σ2 is a fan with axis p2p1 (so that Σ2 = p2{p1}I2 may be expressed in the form
Σ2 = p1I2{p2}).

3. There exists a vertex p in Km such that Σi is a fan with axis ppi for each i (so that
Σi = piOi{p} may be expressed in the form Σi = p{pi}Oi for each i).

Theorem 20 (Stars with no common apex). Let m and n be positive integers with m ! 5.
Suppose that G ∼= Km and H ∼= Kn are weakly linked graphs in R3, and T1 and T2 are
triangles in H linking G in stars Σ1 = p1O1I1 and Σ2 = p2O2I2, respectively, which have
no common apex. Then (after possibly re-orienting T1 and T2 so that Σ1 and Σ2 are
mutually oriented) precisely one of the following holds:

(C1) There is a vertex p3 distinct from p1, p2 such that I1 = {p3} and O2 = {p1, p3}.

(C2) There is a vertex p3 distinct from p1, p2 such that I2 = {p3} and O1 = {p2, p3}.

(C3) There is a vertex p3 distinct from p1, p2 such that O1 = {p2, p3} and O2 = {p1, p3}.

Thus, disregarding orientations, Σ1 ∪ Σ2 consists of all triangles sharing an edge with
T ∗ = p1p2p3, with the sole exception of T ∗ itself in (C3).

Remark 21. Note that if stars Σ1 and Σ2 satisfy one of (C1)–(C3), then at least one of
them must be a proper star. Consequently, if triangles T1 and T2 in H link fans in G then
the axes of the fans must intersect.
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Figure 5: The cycles C1, C2 and C3 in the proof of Proposition 22.

Theorem 20 turns out to be easier to prove for m ! 6 than for m = 5. However, for
the sake of space, we present a single proof for m ! 5. The proof breaks into two cases,
according to the way in which T1 and T2 intersect. The case where they intersect in an
edge was addressed by Theorem 14, and the case where they intersect in a single vertex
is addressed by Proposition 22.

Proposition 22. Let m and n be positive integers with m ! 5. Suppose that G ∼= Km

and H ∼= Kn are weakly linked graphs in R3. Let p1, p2 be vertices of G such that p1 ∕= p2,
and let C1 and C2 be cycles in H that intersect in a single vertex q, and link G in mutually
oriented stars Σ1 = p1O1I1 and Σ2 = p2O2I2, respectively. If Σ1 and Σ2 have no common
apex, then they are described by one of conditions (C1)–(C3).

Proof. Without loss of generality we assume that C1 and C2 are triangles. Let C1 = qx1y1,
C2 = qx2y2, and set C3 = qy1x2, C0 = qy2x2y1x1, so that

3'

i=0

[Ci] = 0

in H1(H) (see Figure 5). In addition, let Θ1,Θ2 be the theta curves Θ1 = C1 ∪ C3,
Θ2 = C2 ∪ C3.

If C3 does not link G, then C ′
2 = C2 + C3 = qy1x2y2 links G in Σ2. The cycles C0, C1

and C ′
2 together form a theta curve, and since Σ1 and Σ2 have no common apex we are

in Case (A2) of Theorem 14. Since also Σ1 and Σ2 are mutually oriented, it follows that
Case (C3) above holds.

Suppose then that C3 links G in a star Σ3. We consider cases, according to which case
of Theorem 14 is satisfied by each of Θ1 and Θ2.

Case 1: Both Θ1 and Θ2 satisfy Case (A2) of Theorem 14

Then Σ3 has no common apex with Σ1 or Σ2. Let Σ3 = p3O3I3, where p3 ∕= p1, p2.
By (A2) applied to Θ1 there are two possible ways in which Σ1 and Σ3 can meet:

either O1 = O3, p1 ∈ I3 and p3 ∈ I1; or I1 = I3, p1 ∈ O3 and p3 ∈ O1. Likewise, by (A2)
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applied to Θ2 there are two possible ways in which Σ2 and Σ3 can meet: either O2 = O3,
p2 ∈ I3 and p3 ∈ I2; or I2 = I3, p2 ∈ O3 and p3 ∈ O2. If O1 = O3 and p1 ∈ I3 then (since
p1 ∈ O2) both O2 = O3 and I2 = I3 are impossible, so it must be the case that I1 = I3
and p1 ∈ O3. By the same argument it must also be the case that I2 = I3 and p2 ∈ O3.
Then by (A2) it follows that

O1 = {p2, p3}, O2 = {p1, p3}, O3 = {p1, p2},

and I1 = I2 = I3 = G− {p1, p2, p3}. This shows that (C3) above holds.

Case 2: Θ1 satisfies Case (A1) of Theorem 14, Θ2 satisfies Case (A2)

Then Σ1 and Σ3 have a common apex, and Σ2 and Σ3 are proper stars with no common
apex.

Suppose first that p1 cannot be chosen as the common apex of Σ1 and Σ3. Then we
can write Σ1 = p3O

′
1I

′
1, Σ3 = p3O3I3, for some p3 ∕= p1, p2. Since either p1 or p3 can be

chosen as the apex of Σ1, this star must be a fan with axis ±p1p3 and therefore one of O1

and I1 must be equal to {p3}. But p2 ∈ O1 by hypothesis, so it must be I1 that is equal
to {p3}; that is, Σ1 = p1O1{p3} = p3{p1}O1 and we have O′

1 = {p1}, I ′1 = O1.
The star Σ3 is proper, so |I3| ! 2 and hence I3 contains some r ∕= p1, p3. Then r

must belong to I ′1 = O1 = G − {p1, p3} also, which implies I ′1 ∩ I3 ∕= ∅. It now follows
by (A1) applied to Θ1 that O′

1 ∩ O3 must be empty, and therefore p1 ∈ I3. Now recall
that p1 ∈ O2. This means that O2 ∕= O3 and I2 ∕= I3, in contradiction with Case (A2).
We conclude that p1 must be the common apex of Σ1 and Σ3.

Accordingly, let Σ3 = p1O3I3 and consider Θ2 = C2 ∪ C3. Since the apex p1 of Σ3

belongs to O2, by (A2) we must have I2 = I3 and O2 = {p1, p3}, O3 = {p2, p3} for some
p3 ∈ G. Then since O1 ∩ O3 contains p2 it is nonempty, so by (A1) applied to Θ1 we
must have I1 ∩ I3 = ∅. But I3 = G − {p1, p2, p3} and p1, p2 /∈ I1, so the only possibility
is I1 = {p3}. We conclude that (C1) holds.

Case 3: Θ1 satisfies Case (A2) of Theorem 14, Θ2 satisfies Case (A1)

Reversing the roles of Θ1 and Θ2 in Case 2, we conclude that Σ1 and Σ2 satisfy (C2).

Case 4: Both Θ1 and Θ2 satisfy Case (A1) of Theorem 14

Then Σ1 and Σ2 have a common apex with Σ3. Since they do not share a common apex
with each other, there must be vertices r1, r2 in G such that Σ3 is a fan with axis ±r1r2,
and ri can be chosen as the apex of Σi for i = 1, 2.

Suppose first that ri = pi for i = 1, 2. Without loss of generality we may assume that
Σ3 has axis r1r2 = p1p2; that is, Σ3 = p1{p2}I3, where I3 = G− {p1, p2}. Choose p3 ∈ I1.
Then p3 ∈ I3 also, so triangle T = p1p2p3 belongs to both Σ1 and Σ3. This means that
C ′

1 = C1 + C3 strongly links T , a contradiction.
It must therefore be the case that ri ∕= pi for some i. Suppose without loss of generality

that r1 ∕= p1. Let p3 = r1, and let Σ1 = p3O
′
1I

′
1, Σ3 = p3O3I3. Then as in the second
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paragraph of Case 2 above we must have Σ1 = p3{p1}O1; that is, I1 = {p3}, O′
1 = {p1},

I ′1 = O1 = G− {p1, p3}.
By (A1) applied to Θ1 at least one of O′

1 ∩ O3 and I ′1 ∩ I3 must be empty. The star
Σ3 is a fan with axis ±p3r2, so one of O3 and I3 must equal {r2}. If I3 were equal to
{r2} then (since p1, p3 and r2 are distinct) we would have r2 ∈ I ′1 ∩ I3 and p1 ∈ O′

1 ∩ O3,
contradicting the fact that at least one of O′

1 ∩O3 and I ′1 ∩ I3 must be empty. So it must
instead be the case that O3 = {r2}, and therefore Σ3 = p3{r2}I3 for I3 = G − {r2, p3}.
It now follows from (A1) that C ′

1 = C1 + C3 links the proper star Σ4 = p3{p1, r2}I4, for
I4 = G− {p1, p3, r2}.

We now consider the theta curve Θ = C ′
1 ∪ C2. If it were the case that r2 ∕= p2 then

Σ2 would be a fan with axis ±p2r2 disjoint from the apex p3 of Σ4, which is impossible
by Corollary 15 applied to Θ. So we must instead have r2 = p2, giving Σ3 = p3{p2}I3,
Σ4 = p3{p1, p2}I for I = G− {p1, p2, p3}.

Observe now that C3 positively links the triangle T = p3p2p1. Recall that Σ2 = p2O2I2,
with p1 ∈ O2. If it were the case that p3 ∈ I2 then C2 would also positively link T , and
then C ′

2 = C2 + C3 would strongly link T . We must therefore have p3 ∈ O2 instead,
and hence {p1, p3} ⊆ O2. It follows that Σ2 and Σ4 cannot have a common apex, so by
Theorem 14 applied to Θ, O2 must exactly equal {p1, p3}. We already have I1 = {p3}, so
this shows that (C1) holds. This completes the proof.

Proof of Theorem 20. Suppose that Σ1 and Σ2 have no common apex, and re-orient T1

and T2 (if necessary) so that Σ1 and Σ2 are mutually oriented. By Theorem 12 the
triangles T1, T2 must intersect. If T1 and T2 meet in an edge, then T1 ∪ T2 forms a theta
curve so Σ1 and Σ2 are described by Theorem 14. Since they have no common apex they
must satisfy condition (A2), which co-incides with condition (C3). Otherwise, T1 and T2

meet in a single vertex and the result follows from Proposition 22.

6 Our main results

We are now ready to complete our characterisation of weakly linked embeddings of G ∼=
Km and H ∼= Kn. The first step is to prove the common vertex or common triangle
dichotomy of Theorem 3, restated here as Theorem 23. This leads to two cases: one of
G and H contains a common triangle (see Section 6.1), or both contain a common vertex
(see Sections 6.2 and 6.3). In each case, we first determine the possible patterns of linking
numbers; exhibit embeddings realising them; and then prove that our embeddings are
weakly linked.

Theorem 23. Let m ! 5 and n ! 4. Suppose that G ∼= Km and H ∼= Kn are weakly
linked graphs in R3. If there is no vertex of G common to all triangles of G linking H,
then there is a triangle T ∗ in G such that a triangle T ∕= T ∗ of G links H if and only if
it shares an edge with T ∗.

Proof. Let TG be the set of oriented triangles in G that link H, and let TH be the set of
oriented triangles in H that link G. By Theorem 6 each triangle T in TH links G in a star
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ΣT , and we let
SG = {ΣT : T ∈ TH}.

We claim that
TG =

*

Σ∈SG

Σ.

Indeed, any triangle S ∈ ΣT ⊆ SG links the triangle T of H, so belongs to TG; and
conversely, any triangle S ∈ TG must positively link some triangle T ∈ TH (for example,
by subdividing a cycle D in H linking S, or because S must link H in a star ΣS), and
consequently belongs to ΣT .

First suppose that there is no proper star in SG. Then every star in SG is a fan, and
by Remark 21 the axes of any two such fans must intersect. Choose vertices p1, p2 in G
such that the fan with axis p1p2 belongs to SG, and note that the axis of any other fan
in SG must contain either p1 or p2. Since p1 is not common to all triangles linking H,
there must be a vertex p3 of G such that the fan with axis p2p3 belongs to SG; and since
also p2 is not common to all triangles linking H, there must be a vertex p4 of G such that
the fan with axis p4p1 belongs to SG. But then the fan axes p2p3 and p4p1 are disjoint
unless p3 = p4. It follows that we must have p3 = p4, and then SG contains precisely the
fans with axes ±p1p2, ±p2p3 and ±p3p1. The triangle T ∗ = p1p2p3 therefore satisfies the
conclusion of the theorem.

Now suppose that there is T1 ∈ TH such that ΣT1 = p1O1I1 is a proper star. By
assumption p1 is not common to all triangles in G linking H, so there is a triangle T2 ∈ TH

such that ΣT2 = p2O2I2 has no common apex with ΣT1 . Without loss of generality we may
assume that ΣT1 and ΣT2 are mutually oriented, and then by Theorem 20 there is a vertex
p3 of G such that O1 = {p2, p3}, and either O2 = {p1, p3}, or ΣT2 is a fan with axis p3p2.
Let T ∗ = p1p2p3, I

∗ = G − {p1, p2, p3}, and for i, j ∈ {1, 2, 3} define Iij = G − {pi, pj}.
We claim that, up to orientation, every star in SG is equal to one of

Σ1 = p1{p2, p3}I∗, Σ2 = p2{p3, p1}I∗, Σ3 = p3{p1, p2}I∗,
Σ12 = p1{p2}I12, Σ23 = p2{p3}I23, Σ31 = p3{p1}I31.

It would then follow that T ∗ satisfies the conclusion of the theorem. Note that under
these conditions T ∗ links H if and only if one of the stars Σij belongs to SG.

So far we have ΣT1 equal to Σ1, and ΣT2 equal to either Σ2 or −Σ23. The case m ! 6
is simpler than the case m = 5, so we will assume for now that m ! 6 and address the
case m = 5 later. Under the assumption m ! 6 we have |I∗| ! 3. If Σ = pOI ∈ SG is a
proper star with p ∕= p1, then Σ must be one of ±Σ2,±Σ3, by Theorem 20 applied to Σ
and ΣT1 = Σ1. In addition, if Σ = pOI ∈ SG is a proper star with p = p1, then Σ must
be ±Σ1, by Theorem 20 applied to Σ and ΣT2 , regardless of whether ΣT2 is equal to Σ2 or
−Σ23. We conclude that, up to orientation, when m ! 6 the only proper stars that can
belong to SG are Σ1, Σ2 and Σ3.

Still assuming m ! 6, if Σ ∈ SG is a fan with axis pq disjoint from p1 then by
Theorem 20 we must have Σ = ±Σ23. The axis of any other fan in SG must therefore
meet p1. Regardless of whether ΣT2 is equal to Σ2 or −Σ23, up to orientation the only
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other fan axes possible are p1p2 and p3p1, giving us Σ12 or Σ31: if Σ2 ∈ SG then p3p1 is
the only fan axis disjoint from p2 satisfying Theorem 20 with respect to Σ2, and p1p2 is
the only axis meeting both p1 and p2; while if −Σ23 ∈ SG then any axis must meet both
p1 and p2p3. Thus, the only possible stars in SG are those listed above, and the theorem
is proved for m ! 6.

We turn now to the case m = 5. Then |I∗| = 2, and we let I∗ = {p4, p5}. The
additional difficulty that arises in this case is that the fan with axis p4p5 and the proper
stars p4{p2, p3}{p1, p5} and p5{p2, p3}{p1, p4} also satisfy Theorem 20 applied to Σ1.

Suppose first that every proper star in SG has apex p1. Then ΣT2 is equal to −Σ23.
The only proper stars with apex p1 that satisfy Theorem 20 with respect to Σ23 are ±Σ1,
so there can be no other proper star in SG. The axis of any other fan must meet p2p3;
by Theorem 20 applied to Σ1 the only possibilities are ±Σ12 and ±Σ31. Thus T

∗ satisfies
the required conditions.

Suppose finally then that there is a proper star in SH with apex not equal to p1. We
could have chosen this star as ΣT2 , so without loss of generality we may assume that
ΣT2 = Σ2. Any other proper star in SG has no common apex with at least one of Σ1 and
Σ2, and so must satisfy Theorem 20 with respect to one or both of Σ1 and Σ2. Up to
orientation, the stars that are compatible with Σ1 are

p2|p1p3|p4p5, p4|p2p3|p1p5,
p3|p1p2|p4p5, p5|p2p3|p1p4;

while those that are compatible with Σ2 are

p1|p2p3|p4p5, p4|p1p3|p2p5,
p3|p1p2|p4p5, p5|p1p3|p2p4.

The only star that appears on both lists is p3{p1, p2}{p4, p5} = Σ3, so we conclude that
up to orientation the only proper stars that can belong to SG are Σ1, Σ2 and Σ3.

By Theorem 20 applied to each of Σ1 and Σ2, if there is a fan other than ±Σ12, ±Σ23

and ±Σ31 in SG then it must have axis ±p4p5. So suppose that there is a triangle in H
linking the fan Σ45 = p4|p5|p1p2p3. Then this is in fact the only fan in SG, because Σ12,
Σ23 and Σ31 all have axes disjoint from p4p5. So up to orientation, the only stars that can
belong to SG are Σi for i = 1, 2, 3 and Σ45. We show that this is impossible.

Label the triangles of the K4 subgraph K = 〈p1, p2, p4, p5〉 such that

C1 = p2p4p5, C2 = p5p4p1,

C4 = p1p2p5, C5 = p4p2p1.

Observe that each of these triangles belongs to at least one of ±Σ1, ±Σ2 and ±Σ45, and
so links H. Since every triangle of K links H we must be in case (B1) of Theorem 16.
It follows that there is a vertex q of H, a sign ε ∈ {±1}, and pairwise disjoint subsets
J1, J2, J4, J5 of H − {q} such that Ci links H in the star εqPiJi for i = 1, 2, 4, 5, where

Pi = H − {q}− Ji.
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Moreover, Ji must be nonempty for each i, because otherwise Ci does not link H. We
may therefore choose xi ∈ Ji for i = 2, 5, to get a triangle qx2x5 in H that links both
C2 and C5 in K. But this is impossible, because none of the stars that can belong to SG

contains both of these triangles, so no triangle in H can link both C2 and C5. It follows
that the fan with axis p4p5 cannot belong to SG, and the theorem is proved.

6.1 Embeddings with a common triangle

In this section we analyse the case where at least one of G and H contains no vertex
common to all triangles linking the other. Without loss of generality we may assume that
this is G, and then by Theorem 23 there is a triangle T ∗ in G such that a triangle T ∕= T ∗

in G links H if and only if T shares an edge with T ∗.
Theorem 24 shows that there are two possible patterns of linking numbers, according

to whether or not H contains a vertex common to all triangles linking G. We exhibit
embeddings realising these in Figure 6, and then prove that our embeddings are weakly
linked in Theorem 25.

Theorem 24. Let m,n ! 5, and let G ∼= Km and H ∼= Kn be weakly linked graphs in R3.
Suppose that there is a triangle T ∗ = p1p2p3 in G such that a triangle T ∕= T ∗ in G links
H if and only if T shares an edge with T ∗. Let X = G− {p1, p2, p3}, and for each x ∈ X
let

T0(x) = T ∗ = p1p2p3, T1(x) = p3p2x, T2(x) = xp1p3, T3(x) = p2p1x.

Then exactly one of the following holds:

(D1) There is a vertex q of H common to all triangles of H linking G. Then there are
pairwise disjoint sets I0, I1, I2, I3 such that I0 ∪ I1 ∪ I2 ∪ I3 = H − {q}, and after
reversing the orientation of R3 (if necessary), for each x ∈ X and 0 " i " 4 the
triangle Ti(x) links H in the star qOiIi, where

Oi = H − {q}− Ii.

Moreover, Ii is nonempty for 1 " i " 3, and I0 is nonempty if and only if T ∗ links
H.

(D2) There is no vertex of H common to all triangles of H linking G. Then T ∗ does not
link H, and there is a triangle U∗ = q1q2q3 of H such that a triangle U of H links
G if and only if U shares exactly one edge with U∗. Let Y = H − {q1, q2, q3}, and
for each y ∈ Y let

U1(y) = q3q2y, U2(y) = yq1q3, U3(y) = q2q1y.

Then after relabelling the pi, qi and reversing orientation of R3 (if necessary),
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(a) for each x ∈ X the triangles T1(x), T2(x), T3(x) link H in the stars

q1{q2, q3}Y, q2{q1, q3}Y, q3{q1, q2}Y ;

and

(b) for each y ∈ Y the triangles U1(y), U2(y), U3(y) link G in the stars

p1X{p2, p3}, p2X{p1, p3}, p3X{p1, p2}.

Proof. Let x1, x2 ∈ X. We begin by showing that

Lk(Ti(x1), D) = Lk(Ti(x2), D)

for 1 " i " 3 and all cycles D in H.
By symmetry, we may assume without loss of generality that i = 1, so that Ti(x1) =

T1(x1) = p3p2x1, Ti(x2) = T1(x2) = p3p2x2. Consider the 4-cycle C = p2x1p3x2 in G. As
a 1-chain we have

C = x1p3x2 + x2p2x1.

The triangles x1p3x2, x2p2x1 have no edge in common with T ∗, so by hypothesis they do
not link H. Hence in H1(R3 −D) we have

[C] = [x1p3x2] + [x2p2x1] = 0 + 0 = 0.

On the other hand, we may also write

C = p2x1p3 + p3x2p2 = T1(x1)− T2(x2),

and therefore
[T1(x1)]− [T2(x2)] = [C] = 0.

It follows that Lk(T1(x1), D) = Lk(T1(x2), D) as claimed.
Fix x ∈ X. Since no triangle contained in X links H by hypothesis, it follows from the

above that the linking between G and H is completely determined by the linking between
G′ = 〈x, p1, p2, p3〉 and H. Since G′ ∼= K4, this is given by Theorem 16, with x in the role
of p0; that is, with Ci = Ti(x) for 0 " i " 3.

If case (B1) of Theorem 16 holds, then (since Ti(x
′) must link H in the same star as

Ti(x) for 1 " i " 3 and all x′ ∈ X) G links H according to Case (D1) above. We note
that Ii is necessarily nonempty for 1 " i " 3, because Ti(x) links H for all x ∈ X by
hypothesis. Moreover, T ∗ links H if and only I0 is nonempty, as given.

If Case (B2) of Theorem 16 holds, then G links H according to (D2a). To obtain
part (D2b), we replace {p0} with X in the stars given in Remark 17.

Theorem 25. The embeddings of Figure 6 realising Cases (D1) and (D2) of Theorem 24
are weakly linked.
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Figure 6: Embeddings of G ∼= Km (blue) and H ∼= Kn (red) realising Cases (D1) (left)
and (D2) (right) of Theorem 24.

Proof. Let T ∗ be the triangle p1p2p3, and let G′ be G minus the three edges p1p2, p2p3
and p3p1 of T ∗. Then there is a 2-sphere separating G′ from H, so G′ does not link H.
Therefore any cycle C in G that links H must use at least one edge belonging to T ∗.

If C uses all three edges of T ∗, then we necessarily have C = ±T ∗. In the embedding
of Figure 6 (left) T ∗ does not link H, and in the embedding of Figure 6 (right) T ∗ links
H in the star qO0I0, where O0 = I1 ∪ I2 ∪ I3. In either case C does not strongly link H,
so we may assume in what follows that C uses at most two edges of T ∗.

The edges of T ∗ on C must occur consecutively, so we may decompose C as the
concatenation PQ, where P is a path in T ∗ and Q is a path in G′. By symmetry, we
may assume without loss of generality that P begins at p1 and ends at p2 (travelling
anticlockwise if it has length 1, and clockwise via p3 if it has length 2). Let x0 be the
first vertex of X on Q, and let R, R̄ be the paths p2x0p1, p1x0p2, respectively. Then we
may decompose C as C = C1 + C2, where C1 is the concatenation PR and C2 is the
concatenation R̄Q (when Q = R we have simply C = C1). Then C2 does not link H,
because it is a cycle in G′, so for any cycle D in H we have

Lk(C,D) = Lk(C1, D).

To complete the proof we check that C1 does not strongly link H, by verifying that it
links a star in H.

If the path P has length 1 (that is, if it is simply the edge p1p2) then C1 = p1p2x0

is the triangle −T3(x0). In either embedding this links H in a star: the star qI3O3 in
Figure 6 (left), and the star q3Y {q1, q2} in Figure 6 (right). On the other hand, if P has
length 2 (that is, if P is the path p1p3p2), then C1 links the star q(I1 ∪ I2)(I0 ∪ I3) in
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Figure 6 (left), and the star q3Y {q1, q2} in Figure 6 (right). In all cases C1 links a star in
H, so G and H are not strongly linked.

6.2 Embeddings with a common vertex in both G and H

In this section we analyse the case where there is a vertex in each graph common to all tri-
angles linking the other. The linking between the two graphs is described by Theorem 26,
and we exhibit a weakly linked embedding realising it in Figure 7.

Theorem 26. Let m,n ! 5, and let G ∼= Km and H ∼= Kn be weakly linked graphs in R3.
Suppose that there is a vertex p of G common to all triangles of G linking H, and a vertex
q of H common to all triangles of H linking G. Then for some 2 " ℓ " min{m,n} − 1,
there exists

• a partition X = {X0, X1, . . . , Xℓ−1} of G′ = G− {p}, such that the triangle pxy of
G links H if and only if x and y belong to different parts of X ; and

• a partition Y = {Y0, Y1, . . . , Yℓ−1} of H ′ = H − {q}, such that the triangle quv of H
links G if and only if u and v belong to different parts of Y.

Moreover:

1. If xj ∈ Xj, xk ∈ Xk for j < k, then pxjxk links H in the star qOjkIjk, where

Ojk =
k−1*

i=j

Yi, Ijk = H ′ −Ojk =

+
j−1*

i=0

Yi

,
∪
+

ℓ−1*

i=k

Yi

,
.

2. If yj ∈ Yj, yk ∈ Yk for j < k, then qyjyk links G in the star pPjkJjk, where

Jjk =
k*

i=j+1

Xi, Pjk = G′ − Jjk =

+
j*

i=0

Xi

,
∪
+

ℓ−1*

i=k+1

Xi

,
.

An embedding realising the linking of Theorem 26 is described in Construction 40, and
the case ℓ = 5 is illustrated in Figure 7. Note that the partitions X and Y are circularly
rather than linearly ordered.

We will prove Theorem 26 through a series of intermediate results. These will typically
be proved under the hypotheses of Theorem 26. To avoid repeating these, unless some
other hypothesis is given, we assume throughout this section that G and H are weakly
linked. Our first step is to get our hands on the partition X , which we will do by defining
an equivalence relation ∼ on G′. The definition of ∼ depends only on the existence of
the vertex p ∈ G common to all triangles linking H, and not on the existence of the
vertex q ∈ H common to all triangles linking G. For full generality we therefore begin by
assuming only the existence of p, and postpone introducing the hypothesis of the existence
of q. Thus, unless some other hypothesis is given, we assume throughout this section that
there is a vertex p of G common to all triangles of G linking H.

the electronic journal of combinatorics 29(2) (2022), #P2.27 26



Definition 27. Let G′ = G− {p}. We define a relation ∼ on the vertices of G′ by x ∼ y
if and only if x = y, or x ∕= y and pxy does not link H.

We prove that ∼ is an equivalence relation on G′ in Lemma 29 below. We will write
[x] for the equivalence class of x ∈ G′ with respect to ∼, and X for {[x] : x ∈ G′}, the set
of equivalence classes of ∼. Note that |X | ! 2, because if |X | = 1 then G does not link
H.

To prove Lemma 29 and establish some other properties of ∼ we will repeatedly use
the following lemma.

Lemma 28. Let x, y, z be distinct vertices of G′, and let D be a cycle of H. Then

[pxy] + [pyz] + [pzx] = 0 (3)

holds in H1(R3 −D).

Proof. The triangles pxy, pyz, pzx and zyx satisfy pxy+ pyz+ pzx+ zyx = 0 as 1-chains
in G, so in H1(R3 −D) we have

[pxy] + [pyz] + [pzx] + [zyx] = 0.

By assumption p is common to all triangles of G linking H, so zyx does not link H and
therefore [zyx] = 0. The lemma follows.

Lemma 29. The relation ∼ on G′ of Definition 27 is an equivalence relation.

Proof. The relation ∼ is reflexive by definition, and it is symmetric because Lk(pyx,D) =
−Lk(pxy,D) for all x ∕= y in G′ and any cycle D in H. To prove that ∼ is transitive,
suppose that x, y, z are distinct vertices of G′ such that x ∼ y and y ∼ z. Let D be a
cycle of H. Then [pxy] = [pyz] = 0 in H1(R3 −D), so by Lemma 28 we have

[pxz] = [pxy] + [pyz] = 0 + 0 = 0

also. Since this holds for any cycle D in H we conclude that pxz does not link H, and
therefore x ∼ z.

Remark 30. In the embedding of Figure 6 (left), the vertex q is common to all triangles
of H linking G. The equivalence classes of the corresponding relation ∼ defined on
H ′ = H − {q} are the sets Ii, for 0 " i " 3.

Lemma 31. Let x, y ∈ G′ with x ∼ y, and let D be a cycle in H. Then

Lk(pxz,D) = Lk(pyz,D)

for all z ∈ G′ with z ∕= x, y.

Proof. For any z ∈ G′ we have [pxy] = 0 in equation (3), and so [pxz] = −[pzx] =
[pyz].
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Lemma 32. Let x, y ∈ G′. Suppose that there is z ∈ G′ such that

Lk(pxz,D) = Lk(pyz,D)

for all cycles D in H. Then x ∼ y.

Proof. Let D be a cycle of H. Applying Lemma 28, in H1(R3 −D) we have

[pxy] = [pxz]− [pyz] = 0.

Since this holds for any cycle D in H we conclude that pxy does not link H, and therefore
x ∼ y.

We now introduce the hypothesis of the existence of q. Thus, unless some other
hypothesis is given, we assume throughout the rest of this section that there is a vertex q
of H common to all triangles of H linking G. Let x, y ∈ G′ be such that x ∕∼ y. Then pxy
links H, so by Theorem 6 it links H in a star qOxyIxy with apex q, because q is common
to all triangles of H linking G. Note here that {Oxy, Ixy} is a partition of H ′ = H − {q}.

Lemma 33. Let x, y ∈ G′ such that x ∕∼ y. Then the star qOxyIxy depends only on the
equivalence classes of x and y. More precisely, if x ∼ z and y ∼ w, then Oxy = Ozw and
Ixy = Izw.

Proof. Since x ∼ z, by Lemma 31 we have Lk(pxy,D) = Lk(pzy,D) for all cycles D in
H. It follows that qOzyIzy = qOxyIxy. Similarly, since y ∼ w, we have qOyzIyz = qOwzIwz.
The result now follows from the fact that if the triangle pab links H in the star qOI, then
pba = −pab links H in the star −qOI = qIO; that is, qObaIba = qIabOab.

Our next step is to establish the cyclic ordering of X , the set of equivalence classes of
∼. We do this below by introducing a method of cyclically ordering triples of points in
G′. This will be well defined on equivalence classes, and we will show that we can use it
to cyclically order them.

Let (x, y, z) be an ordered triple of points in G′ such that x ∕∼ y ∕∼ z ∕∼ x. Consider
K4 = 〈p, x, y, z〉, with the faces labelled and oriented such that

C0 = zyx, C1 = pyz, C2 = pxz, C3 = pyz.

Note that
-

i Ci = 0 as a 1-chain in G. Since q is common to all triangles of H linking
K4 the linking between K4 and H is described by Case (B1) of Theorem 16. Furthermore
xyz does not link H, and the other three triangles all do because x ∕∼ y ∕∼ z ∕∼ x, so
exactly one of the following holds:

(a) the sets Oxy, Oyz, Ozx are a partition of H ′, and

Ixy = Ozx ∪Oyz, Iyz = Oxy ∪Ozx, Izx = Oyz ∪Oxy;

or
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(b) the sets Ixy, Iyz, Izx are a partition of H ′, and

Oxy = Izx ∪ Iyz, Oyz = Ixy ∪ Izx, Ozx = Iyz ∪ Ixy.

We define

ε(x, y, z) =

.
+1 if case (a) holds,

−1 if case (b) holds.

By Lemma 33 the value of ε(x, y, z) depends only on the equivalence classes of x, y and
z with respect to ∼, so we may define ε on triples of distinct equivalence classes by

ε([x], [y], [z]) = ε(x, y, z).

Observe that
ε(x, y, z) = ε(y, z, x) = ε(z, x, y)

since cyclically permuting x, y, z does not change the triangles involved; and

ε(x, y, z) = −ε(y, x, z),

since swapping x and y reverses the orientations of all the triangles, and qObaIba = qIabOab

for all a ∕∼ b.

Remark 34. Observe that if ε(x, y, z) = 1, then

Oxz = Izx = Oxy ∪Oyz.

Note also that Oxy ∩Oyz = ∅, so {Oxy, Oyz} is a partition of Oxz.

Lemma 35. Let x, y, z, w be distinct vertices in G′ such that no two belong to the same
equivalence class. Suppose that ε(x, y, z) = ε(x, z, w) = 1. Then {Oxy, Oyz, Ozw, Owx} is
a partition of H ′, and ε(y, z, w) = ε(y, w, x) = 1.

Proof. Since ε(x, y, z) = 1, the sets Oxy, Oyz, Ozx are a partition of H ′, and Izx =
Oyz ∪ Oxy. Likewise Oxz, Ozw, Owx are a partition of H ′, and Ixz = Owx ∪ Ozw. Then
Ozx = Ixz = Owx ∪Ozw, and since {Ozx, Izx} is a partition of G′, it must be the case that
{Oxy, Oyz, Ozw, Owx} is a partition of G′ too. In particular, Oyz ∩Ozw = Owx ∩Oxy = ∅,
so the ordered triples (y, z, w) and (y, w, x) must both satisfy case (a) above.

Proposition 36. Suppose that |X | = ℓ. Then there is a bijection i *→ Xi from {i : 0 "
i " ℓ − 1} to X such that ε(Xi, Xj, Xk) = 1 for i ∕= j ∕= k ∕= i if and only if the strictly
increasing permutation of i, j, k is a cyclic permutation of (i, j, k).

Proof. Fix x0 ∈ G′, and let X ′ = X − {[x0]}. Define a relation ≼ on X ′ by [y] ≼ [z] if and
only if [y] = [z], or [y] ∕= [z] and ε(x0, y, z) = 1. We claim that ≼ is a total order on X ′.

The relation ≼ is reflexive by definition. To prove that it is antisymmetric, observe
that if [y] ∕= [z], then exactly one of ε(x0, y, z) = 1 and ε(x0, z, y) = 1 holds, so exactly
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one of y ≼ z and z ≼ y holds. This also shows that the relation ≼ is connex1, so it only
remains to prove that ≼ is transitive. This follows from Lemma 35. Suppose that y ≼ z
and z ≼ w for y, z, w belonging to distinct classes. Then ε(x0, y, z) = ε(x0, z, w) = 1, so
by Lemma 35 ε(y, w, x0) = 1. But ε(x0, y, w) = ε(y, w, x0), so y ≼ w.

For 1 " i " ℓ − 1 choose xi ∈ G′ such that i *→ [xi] is an order preserving bijection
from ({i : 1 " i " ℓ− 1},") to (X ′,≼). Let Xi = [xi] for 0 " i " ℓ− 1. Then i *→ Xi is
a bijection from {i : 0 " i " ℓ− 1} to X , and we claim it satisfies the required condition.

To prove this, it suffices to show that ε(xi, xj, xk) = 1 whenever i < j < k. For
[y], [z] ∈ X ′ write [y] ≺ [z] if [y] ∕= [z] and [y] ≼ [z]. If i = 0 then ε(x0, xj, xk) = 1 by
definition of ≼, because [xj] ≺ [xk] if and only if j < k. Otherwise, since 0 < i < j < k
we have xi ≺ xj ≺ xk, so ε(x0, xi, xj) = ε(x0, xj, xk) = 1. Then ε(xi, xj, xk) = 1 by
Lemma 35, and we are done.

We now define the sets Yi of Theorem 26, and establish the structure of the stars
pOxjxk

Ixjxk
. As in the proof of Proposition 36, for 0 " i " ℓ− 1 choose xi ∈ G′ such that

Xi = [xi]. Let Yi = Oxixi+1
(subscripts on x taken mod ℓ), and set Y = {Yi : 0 " i " ℓ−1}.

Then:

Proposition 37. The set Y is a partition of H ′, and if j < k then

Oxjxk
=

k−1*

i=j

Yi. (4)

Consequently

Ixjxk
= H ′ −Oxjxk

=

+
j−1*

i=0

Yi

,
∪
+

ℓ−1*

i=k

Yi

,
.

Proof. Each set Yi is nonempty, because xi ∕∼ xi+1 and so Oxixi+1
∕= ∅. We show that

Yi ∩ Yj = ∅ if i ∕= j.
Note we consider subscripts mod ℓ. Without loss of generality, assume i < j. If

j = i + 1 then Yi ∩ Yi+1 = ∅ follows from ε(xi, xi+1, xi+2) = 1, so suppose j > i + 1.
Consider the 4-tuple (xi, xi+1, xj, xj+1). Then ε(xi, xi+1, xj) = ε(xi, xj, xj+1) = 1, so
{Oxixi+1

, Oxi+1xj
, Oxjxj+1

, Oxj+1xi
} is a partition ofH ′ by Lemma 35. In particular, Yi∩Yj =

Oxixi+1
∩Oxjxj+1

= ∅, as required.
The proof of equation (4) is by induction on k, using Remark 34 for the inductive

step. The case k = j + 1 holds by definition of Yj. If the equation is true for some k > j,
then since ε(xj, xk, xk+1) = 1, for k + 1 we have

Oxjxk+1
= Oxjxk

∪Oxkxk+1
=

+
k−1*

i=j

Yi

,
∪ Yk =

k*

i=j

Yi.

To complete the proof we must show that
/ℓ−1

i=0 Yi = H ′. Given u ∈ H ′, consider the
triangle pxℓ−1x0, which links H in the star qOxℓ−1x0Ixℓ−1x0 . If u ∈ Oxℓ−1x0 = Yℓ−1 we are

done; and otherwise we must have u ∈ Ixℓ−1x0 = Ox0xℓ−1
=

/ℓ−2
i=0 Yi.

1A binary relation ⊲⊳ on a set A is connex if for all x, y ∈ A, the condition x ⊲⊳ y or y ⊲⊳ x holds.
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Since q is common to all triangles of H linking G, as in Definition 27 and Lemma 29
we may define an equivalence relation ≃ on H ′ by u ≃ v if and only if quv does not link
G. We show that Y is the set of equivalence classes of ≃ on H ′:

Corollary 38. The set Y is the set of equivalence classes of ≃ on H ′ defined by u ≃ v if
and only if quv does not link G.

Proof. Let u, v ∈ H ′, and suppose that u ∈ Yi, v ∈ Yj. If i ∕= j then u ∈ Oxixi+1
but

v /∈ Oxixi+1
, so quv links pxixi+1. Therefore u ∕≃ v. On the other hand, if i = j then by

Proposition 37 u and v belong to the same part of {Oxy, Ixy} for all x, y ∈ G′ with x ∕∼ y,
so quv does not link pxy for any x, y ∈ G′ and therefore u ≃ v.

To complete the proof of Theorem 26, we establish the structure of the stars linked by
triangles in H. This is done by re-expressing the linking described by the stars qOxaxb

Ixaxb

in terms of stars in G.

Proposition 39. Suppose that yj ∈ Yj, yk ∈ Yk. If j < k then qyjyk links G in the star
pPjkJjk in G, where

Jjk =
k*

i=j+1

Xi, Pjk = G′ − Jjk =

+
j*

i=0

Xi

,
∪
+

ℓ−1*

i=k+1

Xi

,
.

Proof. Let xa, xb ∈ G be such that xa ∈ Xa, xb ∈ Xb and Lk(pxaxb, qyjyk) = 1; that is,
so that yj ∈ Oxaxb

and yk ∈ Ixaxb
. If a < b then by Proposition 37 we have yj ∈ Oxaxb

and yk ∈ Ixaxb
if and only if a " j < b and b " k, so a " j < b " k. Otherwise, if b < a

then by Proposition 37 we have yj ∈ Oxaxb
= Ixbxa and yk ∈ Ixaxb

= Oxbxa if and only if
b " k < a and j < b, so j < b " k < a. Thus Lk(pxaxb, qyjyk) = 1 if and only if b belongs
to the interval (j, k] and a does not, and the result follows.

6.3 Realising Theorem 26

We now describe an embedding of G and H in R3 realising the linking described by
Theorem 26. We will use co-ordinates (z, t) for R3, where z ∈ C and t ∈ R.

Construction 40. Let X = {X0, X1, . . . , Xℓ−1}, Y = {Y0, Y1, . . . , Yℓ−1} be partitions of
G′ and H ′, respectively, where ℓ ! 2. Let ζ be the (2ℓ)th root of unity ζ = eπi/ℓ, and
choose ρ ∈ R such that ρ < |1 − ζ|/2, so that the circles centred on 1 and ζ with radius
ρ do not intersect. This choice also ensures that the circles do not contain 0. Place p at
(0, 1) and q at (0,−1), and for 0 " j " ℓ− 1

• place the points belonging to Xj on the circle in the plane t = −1 with centre ζ2j

and radius ρ, so that they are equally spaced on this circle; and

• place the points belonging to Yj on the circle in the plane t = +1 with centre ζ2j+1

and radius ρ, so that they are equally spaced on this circle.
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Figure 7: Construction 40 when ℓ = 5.

Connect p to each vertex x ∈ G′ by a straight line, and similarly connect q to each vertex
y ∈ H ′ by a straight line. No edge px meets any edge qy, because the projections of these
line segments into the plane t = 0 meet only at z = 0. To complete the embedding, join
each pair of vertices in G′ by an embedded arc in the half space t " −1, and similarly
join each pair of vertices in H ′ by an embedded arc in the half space t ! 1.

Figure 7 illustrates the embedding in the case ℓ = 5. We show that it realises the
linking pattern of Theorem 26 in Proposition 41, and then use Proposition 42 to show
that it is in indeed weakly linked in Corollary 43.

Proposition 41. The embedding of Construction 40 realises the linking pattern of The-
orem 26.

Proof. If p is deleted from G then there is a 2-sphere separating G′ from H, so G′ does
not link H. Similarly, if q is deleted from H then there is a 2-sphere separating H ′ from
G, so H ′ does not link G. Therefore p is common to all triangles of G linking H, and q
is common to all triangles of H linking G. Let xj ∈ Xj, xk ∈ Xk, with j < k. We show
that pxjxk links H in the star qOjkIjk of Theorem 26. This completely determines the
linking between G and H, because by Proposition 39 each triangle quv in H then links G
as described in Theorem 26 also.

Let C be the simple closed curve in R3 consisting of the line segment from p = (0, 1)
to (ζ2j,−1), the arc of the unit circle in the plane t = −1 from (ζ2j,−1) to (ζ2k,−1)
(taken in the positive direction, so that it contains the point (ζk+j,−1)), followed by the
line segment from (ζ2k,−1) to p. There is an isotopy of R3 fixing H and deforming pxjxk
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into C, so Lk(pxjxk, D) = Lk(C,D) for all cycles D in H. We show that C links H in
the star qOjkIjk.

The curve C lies on the cone with apex p that contains the unit circle in the plane
t = −1. Let F be the portion of this cone bounded by C. Then F is a Seifert surface for
C, so we may calculate Lk(C,D) by counting signed intersections of D with F . The only
edges of H which meet F are edges of the form qya, with ya ∈ Ya for j " a < k, and all
such oriented edges meet F with intersection number +1. It follows that a triangle T of
H links C if and only if it contains exactly one such edge, and the linking number is +1
if and only if T orients the edge from q to ya. It follows that C, and hence pxjxk, links
H in the star qOjkIjk, as required.

To prove that the embedding of Construction 40 is weakly linked we will use the
following proposition.

Proposition 42. Let m,n ! 3, and suppose that G ∼= Km and H ∼= Kn are disjointly
embedded in R3 such that

1. there is a vertex q of H common to all triangles in H that link G; and

2. every triangle in H that links G, links G in a star.

Then G and H are not strongly linked.

We note that the proposition may be used to give a second proof that the embedding
of Figure 6 (left) is weakly linked.

Proof. Let C be a cycle in G, and let D = v0v1 · · · vk−1 be a k-cycle in H. We will show
that C does not strongly link D. The argument is essentially identical to the proof of
Lemma 7.

If q does not belong to D then we decompose D as the sum of the triangles Ti =
v0vivi+1, for 1 " i " k−2. Since q does not belong to D but is common to all triangles in
H linking G we have Lk(C, Ti) = 0 for all i, and thus in the homology group H1(R3 −C)
we have

[D] =
k−2'

i=1

[Ti] = 0.

It follows that only cycles in H that contain q can link G.
Now suppose that q belongs to D. By hypothesis and Lemma 7 no triangle in H

strongly links G, so we may assume that k ! 4. Assume without loss of generality that
v0 = q, and let T = v0v1vk−1, D

′ = v1v2 · · · vk−1. Then T is a triangle, D′ is a (k−1)-cycle,
and D = T + D′ as 1-chains in H. The cycle D′ does not contain q, so by the previous
paragraph in H1(R3 − C) we have

[D] = [T ] + [D′] = [T ] ∈ {0,±1}.

Therefore C does not strongly link D.
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Corollary 43. The embedding of Construction 40 is weakly linked.

Proof. By Proposition 41 the embedding of Construction 40 realises the linking pattern
of Theorem 26, so q is common to every triangle in H linking G, and each triangle in H
that links G, links G in a star. Therefore G and H are linked but not strongly linked, by
Proposition 42.

7 Discussion

Our definition of a weakly linked embedding of a pair of graphs G and H excludes from
consideration links between disjoint cycles that both lie in G or both lie in H. This is
because Flapan [3, Theorem 1] has shown that K10 is intrinsically strongly linked (ISL),
meaning that every embedding of K10 in R3 contains a pair of disjoint cycles that are
strongly linked. Thus, if we had included links contained entirely within G or H we
would have been limited to m,n " 10. It is not at present known if this upper bound is
sharp, and to conclude the paper we briefly discuss the following question, which was the
original motivation for the work in this paper.

Question 44. Determine the least n such that Kn is intrinsically strongly linked.

Fleming and Mellor [5, Fig. 9] exhibit an embedding of K8 that contains only Hopf
links, so K8 is not ISL. It follows that the least n such that Kn is ISL is either 9 or 10.
Despite our efforts we have not yet been able to resolve this question by either proving that
K9 is ISL or finding an embedding of K9 that contains only weak links. We nevertheless
make the following conjecture:

Conjecture 45. The complete graph K9 is the smallest complete graph that is intrinsi-
cally strongly linked.

If true, this would show that for complete graphs, being intrinsically strongly linked
is a strictly weaker property than being intrinsically triple linked (I3L, meaning every
embedding contains a non-split 3-component link; in practice, this typically means a link
L1 ∪ L2 ∪ L3 such that Lk(Li, Li+1) is nonzero for i = 1, 2). Flapan [3, Lemma 1] proved
that if an embedding of Kn contains a triple link (in the sense given above), then it
contains a pair of disjoint cycles that are strongly linked. The fact that K10 is ISL then
follows from Flapan, Naimi and Pommersheim’s proof [4] that K10 is I3L. In the same
paper they show that K9 is not I3L, by exhibiting an embedding that contains no triple
link. This embedding nevertheless contains a strong link, offering some support for our
conjecture. In addition, Naimi and Pavelescu [6] use oriented matroid techniques to show
that all linear embeddings of K9 are triple linked, implying that they are also strongly
linked.
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