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Abstract

Let G and H be disjoint embeddings of complete graphs K,, and K, in R3 such
that some cycle in G links a cycle in H with non-zero linking number. We say that
G and H are weakly linked if the absolute value of the linking number of any cycle
in G with a cycle in H is 0 or 1. Our main result is an algebraic characterisation of
when a pair of disjointly embedded complete graphs is weakly linked.

As a step towards this result, we show that if G and H are weakly linked, then
each contains either a vertex common to all triangles linking the other or a triangle
which shares an edge with all triangles linking the other. All families of weakly
linked pairs of embedded complete graphs are then characterised by which of these
two cases holds in each complete graph.

Mathematics Subject Classifications: 57M15, 57K10
*Supported in part by NSF Grant DMS-1607744.
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1 Introduction

The study of linked cycles within an embedded graph began in 1983 with Conway and
Gordon’s [1] and Sachs’ [8] result that every embedding of Kg in R? contains a pair
of triangles with non-zero linking number. Any graph with this property is said to be
intrinsically linked. In the same paper, Sachs showed that each of the seven graphs in the
Petersen family is intrinsically linked and no minor of any of them is intrinsically linked.
Then, in 1995, Robertson, Seymour, and Thomas [7] proved that these seven graphs are
the only graphs which are minor minimal with respect to being intrinsically linked. Since
then, many results have been obtained about intrinsic linking of graphs.

In this paper, we explore how pairs of cycles in disjointly embedded complete graphs
in R3 can be linked. We consider linking from a purely algebraic point of view. Thus
we say that disjoint simple closed curves C' and D are linked if and only if their pairwise
linking number Lk(C| D) is non-zero. We introduce the following definitions.

Definition 1. We say that disjointly embedded simple closed curves C' and D in R? are
strongly linked if |Lk(C, D)| > 2, and weakly linked if |Lk(C, D)| = 1.

Definition 2. We say that disjointly embedded graphs G and H in R® are strongly linked
if some cycle in G strongly links a cycle in H; and weakly linked if some cycle in G links
a cycle in H, but no cycle in G strongly links any cycle in H.

Our main result is a characterisation of all weakly linked embeddings of G = K,,, and
H = K, in terms of the pairwise linking numbers between triangles in G and triangles
in H. Since any cycle in a complete graph can be decomposed as a sum of triangles, this
completely determines all pairwise linking numbers between cycles in GG and cycles in H.

We build our results in stages as follows. In Section 2, we prove Theorem 6, which
characterises weak linking between a simple closed curve and an embedded complete graph
K,. Since the complete graph K3 is a cycle, this also characterises weak linking of K,
and K, when min{m,n} = 3. In Section 3, we prove Theorem 14, which characterises
weak linking between a theta curve (i.e., a graph with two vertices joined by three edges,
homeomorphic to the Greek letter ©) and a complete graph K,,. Next, in Section 4, we
prove Theorem 16, which characterises weak linking of K, and K,,, for n > 4. In Section 5,
we prove Theorem 20, which is a technical result needed for our characterisation of weakly
linked embeddings of K,, and K,,. Finally in Section 6, we prove the following dichotomy.

Theorem 3 (Theorem 23 paraphrased). Letm > 5 and n > 4, and suppose that G = K,
and H = K,, are weakly linked in R3. Then exactly one of the following holds:

1. There is a vertex p of G common to all triangles of G linking H (“G contains a
common vertex”).

2. There is a triangle T* in G such that a triangle T # T of G links H if and only if
it shares an edge with T* (“G' contains a common triangle”).
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Figure 1: An embedding of K¢ = (p, qo, q1,70,71,72) and a curve C such that C' links Kg
in the star p|qoqi|rorirs.

Then in Theorem 24, we characterise weak linking between G and H when at least
one of G and H contains no vertex common to all triangles linking the other; while in
Theorem 26, we characterise weak linking when both G and H contain a vertex common
to all triangles linking the other. We conclude the paper with a brief discussion of the
problem of determing the least n such that every embedding of K,, in R? contains a pair
of disjoint cycles that are strong linked.

The concept of a star (defined below) will play a key role in our results.

Definition 4. Let ({p}, O,1 ) be an ordered partition of the vertices of K, where O =
{q1,...,qx} and I = {ry,...,7}. The star pOI consists of all oriented triangles of the
form pgr, where ¢ € O and r € I. We also express the star pOI as p|q; - - qx|r1 -+ 74

The vertex p is said to be the apex of the star. A star pOI is proper if neither O nor
I is a singleton, and improper otherwise. Note that the improper stars p{q}I and ¢I{p}
are equal. We also refer to an improper star p{q}I as a fan with axis pq.

If ¥ = pOlI is a star, then we define — to be the star —X = pIO. We say that —X
is obtained by reversing the orientation of X.

Definition 5. Let n > 3, and let C be an oriented simple closed curve disjoint from
an embedding of K, in R3. We say that C' links K,, in the star pOI if for all oriented
triangles T" of K, we have

+1 if T is a triangle of the star pOI,
Lk(C,T) = ¢ —1 if —T is a triangle of the star pOI,

0 otherwise.

Figure 1 shows an example of an embedding of K¢ = (p, qo, q1,70,71,72) and a curve
C' which links Kjg in the star p|qogi|rorir2. The vertex p together with all incident edges
(shown in blue) form a star, hence the name.

Unoriented stars with min{|O|, ||} < 2 were previously used by Flapan, Naimi, and
Pommersheim [4] and Drummond-Cole and O’Donnol [2] to study intrinsically n-linked
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graphs. In particular, a graph G is said to be intrinsically n-linked or InL if every em-
bedding of G in R3 contains a non-split link of n-components. Flapan, Naimi, and Pom-
mersheim used stars to prove that K is I3L; and then Drummond-Cole and O’Donnol
used them to show that for every n > 2, K|z, is InL.

2 Weak linking of a simple closed curve with K,

The main result of this section is the following theorem, which shows that weak linking
between a simple closed curve and a complete graph can be characterised in terms of
stars.

Theorem 6. Let n > 3, and let C' be an oriented simple closed curve disjoint from an
embedding of K, in R® such that C links some cycle of K,,. Then C weakly links K,, if
and only if C' links K,, in a star.

The case n = 3 is immediate, using any vertex as the apex and the remaining two
vertices as O and I. For n > 4 we prove Theorem 6 as a series of lemmas, beginning with
the “if” direction in Lemma 7:

Lemma 7. Let C be an oriented cycle disjoint from an embedding of K,, in R3. If C links
K, in a star, then C' weakly links K,.

Proof. Suppose that C' links the star pOI in K,,, and let D = vgv; - - - vx_1 be a k-cycle in
K,,. We first show that if D does not contain p, then D does not link C'.

To do this, decompose D as the sum of the triangles T; = vov;v;41, for 1 <@ < k — 2,
so that in the homology group H;(R?* — C') we have

Then since C' links K, in the star pOI, and D does not contain p, we have [T;] = 0 for
all 7. Therefore [D] = 0, showing that D does not link C'.

Suppose now that D does contain p. Since C' links K, in the star pOI, C' does not
strongly link any triangle in K,,. Thus we may assume that & > 4. Assume without loss of
generality that vg = p, and let T' = vgvvp—1 and D’ = vjvy -+ - vp_1. Then T is a triangle,
D' is a (k— 1)-cycle, and D = T + D’ as 1-chains in K,,. The cycle D’ does not contain
p so by the previous paragraph, in H;(R? — C') we have

[D] = [T] + [D] = [T] € {0, £1},

Therefore D does not strongly link C'. Since C links K, it follows that C' weakly links
K, as required. O

In order to prove the “only if” direction of Theorem 6, we first prove the case n = 4
in Lemma 8; then we use Lemma 8 to prove the case n = 5 in Lemma 9; then finally we
use Lemma 9 to prove the case n > 6 in Lemma 10.
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Lemma 8. Let C be an oriented simple closed curve which weakly links an embedding of
K4 in R3. Then C links K, in a fan.

Proof. Let Ky = (vg, vy, v9,v3), and let

Co = 110903, C = v30900,

CQ = VoU1V3, 03 = VU1 7g.
Then as 1-chains in K, we have

and for ¢ # j the sum C; + C} is a 4-cycle in Kj.
In the homology group H;(R?* — C') we have

[Co] + [Ch] + [Co] + [C5] = 0,

with each [C;] € {0, £1} and some [C;] # 0. If there exist ¢ # j such that [C;] = [C}] # 0,
then [C; + C;] = 2[C;] # 0, and C strongly links the four cycle C; + Cj, contrary to
hypothesis. So it must be the case that one term is equal to +1, one term is equal to —1,
and the other two are zero. After relabelling the vertices and reorienting C' (if necessary),
we may assume that

[Co] = [Ch] =0, [Cy] = —[Cs] = 1.
Thus we let O = {v1}, I = {vy,v3}, and see that C links K} in the fan vo{v;}1. O

Lemma 9. Let C be an oriented simple closed curve which weakly links an embedding of
K5 in R3. Then C links K5 in a star.

Proof. Since any cycle that links C' can be broken into triangles, there must be at least
one triangle in K5 that links C'. First we suppose that there is some edge pg common to
all triangles which link C. Let K5 = (p, q, 9,71, 72), and assume without loss of generality
that Lk(C, pgro) = +1. We claim that C' links K3 in the star p|q|rorirs.

To see this, we apply Lemma 8 to Ky = (p, q,79,7;) for i = 1,2. By Lemma 8, C' links
K, in a star. This star must be the fan with axis pqg because we know Lk(C, pgro) = +1
and pq is common to all triangles in Kj linking C'. Therefore for ¢ = 1,2, the triangle
pqr; in Ky = (p,q,ro,r;) links C' with linking number +1. Thus every triangle in the star
plg|rorire in K links C positively; every triangle in the star g|p|rorire links C' negatively;
and since every triangle that links C' contains pq, no other triangle can link C'. It follows
that C' links K3 in the star p|q|rorire as claimed, completing the proof in this case.

Suppose now that there is no edge of K5 common to all triangles linking C. Since
any two triangles in K5 must share at least one vertex, this implies there exist triangles
To = pgoro and T; = pqyry such that To N1y = {p} and Lk(C,Ty) = Lk(C,T}) = +1. We
show that C' links K3 in the star X = p|qoqi|ror.
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In what follows homology classes are taken with respect to H; (R* — (), and subscripts
are taken modulo 2. We begin by showing that the two remaining triangles pgyr; and
pqi7o of ¥ link C' with linking number +1. To see that [pg;r;11] = +1 for i = 0, 1 consider
the 5-cycle D = priqiriv1qi+1. We have

(D] = [priqiri41qi+1) = [prigi] + [pgiris1] + [privigisi)
= [])qmﬂ] -2,

so we must have [pg;r;11] = +1 because otherwise either D or pg;r;; would strongly link
C.

We next show that [pgog1] = [prori] = 0. Recall that ¢; and r; were chosen so that
[pqore] = +1 and [pgim1] = +1. Suppose that [pg;gi+1] = +1 for some i € {0,1}. Then
letting D = pq;q;+17i+1 we have

[D] = [PQz'CJi+17"z‘+1] = [p%‘%’-‘,—l] + [sz'+17“i+1] = +2.

Similarly, if [pryr;11] = 41 for some i, then letting D = pg;r;r;11 we have

[D] = [pqiririy1) = [pgirs) + [privig1) = +2.

In either case, some cycle in K5 would strongly link C', contrary to hypothesis. Since ¢
can be either 0 or 1, we must have [pgoq1] = [pror1] = 0.

To complete the proof that C' links K in the star ¥ = p|qoqi|rory, it remains to show
that C' links no triangle in K4 = (qo,q1,70,71). Suppose to the contrary that it does.
Then it must positively link some triangle of the form ¢;q;4+17; or ¢;rjrj41. In the first
case, letting D = ¢;q;117;p we have

[D] = [@igi+175p] = [¢iGi+175] + [@i175p] = +2;
and in the second, letting D = ¢;r;r;11p we similarly get
[D] = lgirjrjsap] = lgirjria] + [irjap] = +2.

In either case some cycle in K5 strongly links C', contrary to hypothesis. So no triangle in
K4 = {q0,q1,70,71) can link C, and we conclude that C links K5 in the star ¥ = p|qoq1|ror:-
This completes the proof. O

Lemma 10. Let n > 6, and let C be an oriented simple closed curve which weakly links
an embedding of K, in R3. Then C links K,, in a star.

To prove Lemma 10 we will use Lemma 11, which is a special case of a lemma proved
in Flapan [3].

Lemma 11 (Triple link implies strong link). Let LU Z U W be a 3-component link in
R3, such that Z and W are cycles belonging to an embedding of K,, in R3. Suppose that
Lk(L,Z) # 0 # Lk(L,W). Then K,, contains a cycle which strongly links L.
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P2 P1

q1 q2
Po

Figure 2: Three triangles pop1qo, poqip2, qop1p2 that pairwise intersect but share no com-
mon vertex.

Proof. In Lemma 1 of [3] the component L is also assumed to be a cycle belonging to
K, but this hypothesis plays no role in the proof and can be omitted. If either Z or
W strongly links L then we are done. Otherwise, we may orient Z and W such that
Lk(L,Z) = Lk(L,W) = 1, and apply [3, Lemma 1] to obtain a cycle J in K, with at least
6 vertices such that for some orientation of J, we have Lk(L, .J) > 2. O

Proof of Lemma 10. Since C' links some cycle of K, it links some triangle. Since n > 5,
this triangle lies in a K5 subgraph which links C'. Thus by Lemma 9, C' links a star in
this K5. It follows that C' links at least three triangles in K,. If there are two disjoint
triangles in K, which link C', then by Lemma 11 C strongly links some cycle of K,. So
we assume that no pair of triangles that link C' are disjoint.

Now we show that there is a vertex p in K, such that every triangle in K, that links
C' contains p. Suppose this is not the case. Since no pair of triangles that link C are
disjoint, there must exist three triangles linking C' which pairwise intersect but don’t all
share a common vertex. We know by Lemma 9 that the set of triangles in a K5 which link
C must all share at least one common vertex. Thus the three triangles which pairwise
intersect but don’t have a common vertex must use at least 6 vertices. If any pair of them
shared a common edge, it would only require 5 vertices; and if they used more than 6
vertices, there would be a pair that did not share a vertex. Thus we have the situation
illustrated in Figure 2, with C' linking the triangles pop1q2, poqip2, and qopips.

Suppose without loss of generality that Lk(C, pop1g2) = +1 (re-orienting C', if neces-
sary), and consider the Kj-subgraph H = (po, p1, D2, q1, q2). Since pop1g2 and poqipe both
link C' and are contained in H, C' must link H in a proper star with apex pg. This star
must be either po|p1gi|page (if Lk(C, poqip2) = +1), or polpip2|q1gz (if Lk(C, pogip2) = —1).
Hence either popi1ps and ppqiqe both link C', or pop1¢; and pgp2ge both link C.

If pop1pe and pgq1qo both link C| then the triangles poqiq2 and gopipe in K, would
be disjoint triangles which both link C. Hence by Lemma 11, there would be a cycle in
K, strongly linking C'. As this is contrary to hypothesis, we must have both pypiq; and
pop2q2 linking C' instead. Then in the Kj-subgraph H' = (po, p1, P2, qo,q1) we have at
least the three triangles poqip2, qop1p2, and pop1q; linking C. But this is impossible by
Lemma 9 since C' must link H’ in a star, which means that there is a vertex common to
all triangles in H’ which link C. Thus, in fact, there must be some vertex p in K, such
that every triangle in K, that links C' contains p.
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We next show that every vertex s of K, belongs to some triangle in K, linking C.
Indeed, let pgr be a triangle in K, linking C, and consider the Kj-subgraph (p,q,r,s).
By Lemma 8 this K -subgraph must link C' in a fan, so either pgs or prs must link C'.

We're now ready to partition the vertices of K, — {p} into sets O and I as required
by the theorem. Let

O ={q€ K, :[pgr] =1 for some r € K},
I ={reK,:[pgr] =1 for some q € K,},

where homology classes are taken with respect to H;(R?* —C'). By the previous paragraph
every vertex of K, — {p} belongs to O UI. We claim that moreover O NI = &, so that
{O, I} is in fact a partition of the vertices of K, —{p}. To see this, suppose that r € ONI.
Then there are vertices ¢ and s such that [pgr] = [prs| = 1. But this would imply that

[pqrs] = [pqr] + [prs] = 2,

and hence the square pqrs would strongly link C'. Thus O NI = @.

Given ¢ € O and r € I, we must show that C' links pgr. Now by definition of O and
I, there are vertices s € I and t € O such that [pgs] = [ptr] = 1. If s =7 or t = ¢, then
C' does link pgr as required. Otherwise p,q,r,s,t are all distinct so H = (p,q,r,s,t) is
a Ks-subgraph. By Lemma 9, C' must link H in the star p|qt|rs, and so [pgr] = 1, as
required.

Finally, to show that C' only links triangles of the form pqr with ¢ € O and r € I,
we consider triangles in K, which are not of this form. Since {{p}, O,I } partitions the
vertices of K, such a triangle must have one of the following forms:

® pq1q2 with ¢1,¢q2 € O, which cannot link C since that would imply that ¢; or ¢
belongs to O N I.

e priry with r,7o € I, which cannot link C' since that would imply that r; or ro
belongs to O N 1.

e xyz with p ¢ {x,y, 2z}, which cannot link C' because we showed that every triangle
that links C' contains p.

So we are done. ]

Taken together, Lemmas 8, 9, and 10 complete the proof of Theorem 6. By Lemma 11,
if a cycle C weakly links a complete graph K, then any two cycles in K, that link C' must
intersect. We extend this result to a pair of weakly linked complete graphs as follows.

Theorem 12. Let m,n > 3, and suppose that G = K, and H = K,, are weakly linked
graphs in R3. If Oy and Oy are cycles in G that link H, then there is a vertex p of G that
belongs to both Cy and Cs.

To prove Theorem 12, we first prove the following lemma.
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Lemma 13. Let C and Cs be oriented simple closed curves which weakly link an embed-
ding of K,, in R®. Then there is a cycle of length at most 4 in K,, that links both C, and
Cs.

Proof. By Theorem 6, C; and Cs each link K, in a star. Let ¢q;O11; be the star that links
C1, and let goO515 be the star that links C5. We show as follows that there is a cycle in
K, that links both C; and Cs.

We first suppose that ¢; # ¢2. Since {{ql},Ol,Il} and {{QQ},OQ,IQ} each partition
K,, we can switch the orientations on C; and Cy (if necessary) so that ¢; € I and
¢2 € Oq. Hence for all r € I, we have Lk(C1,7q1q2) = 1; and for every r € Oy, we have
Lk(Cy,rq1q2) = 1. If there is some 7 € I} N O, then the triangle g;gor links both C} and
02.

So we assume that I; N O, = &. Since {{ql}, O, Il} and {{QQ}, O, 12} are partitions
of K,, with ¢; € I, and ¢ € O, it follows that we must have Oy C O; and I; C I5. Let
x €1 C Iy, y € Oy C 04, and consider the square zq;¢2y. In H;(R — C}) we have

[zq1g2y] = [xq1y] + [yqiqe] =14+ 0 =1,

because ¢z € Oq; and in H;(R — Cy) we have

[Tq12y) = [rq1qa] + [rgey] =0+ 1 =1,

because ¢q; € I,. Thus C and C5 both link the square xq;q2y.

Next suppose that ¢ = ¢o. If Oy C O, then by analogy with our above argument
I; C I,. In this case, if z € Oy and y € I;, then ¢ zy links both C; and C5. Thus we
assume that Oy € Oy, and similarly that O; € O,. It follows that there is some vertex
r € Oy N I; and some vertex y € I, N O7. But now zyg; links both C; and Cs. O

Proof of Theorem 12. By hypothesis C'; and C5 both weakly link H, so by Lemma 13
there is a cycle D in H which links both C'; and C5. Theorem 12 now follows from either
Lemma 11 or Theorem 6 applied to the cycle D and the complete graph G: for instance,
by Theorem 6 D links G in a star pOI, and then p must belong to C; for ¢ = 1,2, because
otherwise C; does not link D. O

3 Weak linking of a © curve with K,
Theorem 14. Let © be a theta curve with oriented cycles Cy,Cs, C3 such that
[Ch] + [Co] +[C5] =0

in Hy(©). Let n > 3, and suppose that © and K, are weakly linked graphs in R3. Then
exactly one of the following cases holds:

(A1) There is a vertex p of K, common to all triangles linking a curve in ©. Then there
are pairwise disjoint sets Iy, Iy, I3 (at most one empty) such that I, U Iy U I3 =
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Figure 3: Cases (A1) (left) and (A2) (right) of Theorem 14. The second vertex of © is
placed at infinity.

K, — {p}, and after reversing the orientation of © (if necessary), each C; links the
star pO;1; in K,, where

01:IQUI3, 02211U13, 03211U12.

(A2) There is no vertex of K, common to all triangles linking a curve in ©. Then
n = 5 and there are distinct vertices py, ps,ps in K, such that, after reversing the
orientation of © (if necessary), each C; links the star p;O;1 in K,, where

Ol = {p2ap3}a 02 = {p17p3}7 03 = {p17p2}7

and I = K, — {p1,p2, 03}

Figure 3 illustrates the two cases. The loops C}, Cs and Cj link stars as given in
the theorem. It then follows from Theorem 6 that these embeddings are weakly linked
because every cycle in © links a star in K.

Proof. Let D be a cycle in K,, linking some cycle C; in ©. Then in the homology group
H,(R3 — D) we have
[Ch] + [C5] + [C5] = 0.

Since there is no strong link between © and K, every [C;] is £1 or 0. Since some
term is non-zero, each of the three possible values must occur exactly once in the sum.
Thus, D must link exactly two of the C}, one positively, and one negatively. We will use
this fact repeatedly.

Without loss of generality ' links some cycle in K,,. Since C; does not strongly link
any cycle in K,,, by Theorem 6 it links some star p;O11;. Let p1qr be a triangle in p;O11;.
Then piqr links exactly one of Cy and C3. So without loss of generality we may assume
that Cy links piqr, and therefore C5 links a star poOsl5. We consider two cases, according
to whether or not there is a vertex p common to all triangles in K, linking either C; or

Cs.
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T OlmOQ Olmlg ]1“02 Ilﬂfg

01N 0y (0,0,0) (0,—-1,+1) (-1,0,+1) (—1,—-1,42)
O,nl, (0,+1,-1) (0,0,0)  (—=1,+1,0) (—1,0,+1)
LNOy (+1,0,-1) (+1,—-1,0)  (0,0,0) (0,—1,+1)
LNl (4+1,41,-2) (+1,0,—1) (0,+1,-1) (0,0,0)

Table 1: The triples (Lk(pqr, C4), Lk(pqr, Cy), Lk(pqr, C’g)) in Case 1 of the proof of The-
orem 14.

Case 1: All triangles linking C; or C5 share a vertex

Suppose that there is a vertex p common to all triangles linking either C'; or C5. Then we
may choose the stars linking C'; and Cs so that p; = ps = p. Moreover, since any triangle
linking C'3 must also link either C or C, if C5 also links some triangle it contains the
vertex p. Hence in this case, C3 must link a star of the form pO3/;.

Observe that O1NO2, O1 N1y, [;NO4, I NI, are disjoint sets with union X = K, —{p}.
Given a triangle pqr in K,, we have

Lk(pgr, C3) = —Lk(pqr, C1) — Lk(pgr, Ca),

so the ordered triple
(Lk(pqr7 Cl)a Lk(pqr7 02)7 Lk(pqr7 C3))

is completely determined by the sets in O N Oy, O1 N Iy, Iy NO4y, I; N 15 that g and r belong
to. Calculating these triples we obtain Table 1.

If O1N O3 and I, N I, are both nonempty then by Table 1 C5 strongly links some cycle
in K,. Since this is contrary to our hypothesis, at least one of these intersections must
be empty. Reversing the orientation of © switches the roles of O; and I; for each ¢, so
after doing this (if necessary), without loss of generality we may assume that I; N[, = @.
Table 1 then shows that Lk(pgr, C3) = +1 precisely when ¢ € (O; N I3) U (I; N Os) and
r € 01N Oy. Observe that the conditions Iy NIy = @ and O; U = Oy U I, = X together
imply I; C Oy, I C O;. We therefore have

03:[1U12, 13201002,

and we see that [y, I, I3 are pairwise disjoint sets with union X. This implies that we
also have

Oy =1, Uls, O, =1, Uls,

and it follows that C;, Cy and Cj link K, in stars as given by (Al).
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Case 2: Triangles linking C; or C> do not all share a vertex

Every triangle linking '} contains p;, and every triangle linking C5 contains p,, so if
these triangles do not all share a common vertex we must have p; # ps. Reversing the
orientation of © exchanges the roles of O; and I;, so without loss of generality we may
assume that ps € O;. At the beginning of the proof, we assumed that without loss of
generality there is a triangle 7" in the star p;O;1; linking Cs. Now since every triangle
linking C'5 contains po, T" must have the form p;psr for some r € I;. Then

Lk(popir, C3) = —Lk(papir, C1) = Lk(p1por, Cy) = +1. (1)

It follows that we also must have p; € Os.

Now there must be some triangle in K, linking C'; that does not contain ps, because
otherwise py would be common to all triangles linking C4 or Cs. Let T7 = pygiry € p1O114
be such a triangle. Then T} does not link Cy because it does not contain py, so it must
link Cj5 instead. By Theorem 6 C5 links a star psOsl3 in K,,, where ps € T1. If p3 = py
then this vertex would be common to all triangles linking C or C5. Since every triangle
linking C5 also links either C'; or ('3, this would give us a vertex common to all triangles
linking C; or Cy, which is contrary to the hypothesis of this case. So p3 # p;. We also
have p3 # pq, because py ¢ T). So the vertices p;, ps and ps3 are distinct.

Suppose now that p3 = 71, so that ps € I;. Then there must be some vertex r € I,
such that r # ry, because otherwise p3 would be common to all triangles linking C or Cs,
and hence to all triangles linking C'; or C5. Consider the triangle p;q;r. This triangle links
C1, because it belongs to the star p;O11;, but it does not link either C5 or 3, because it
does not contain either py or p3. This is a contradiction, so we must have p3 = ¢; € O;.
The argument of equation (1) then gives p; € Os.

There must also be some triangle T5 = paqars € p2Ool5 that does not contain pq,
because otherwise p; is common to all triangles linking C; or Cy. Arguing as above we
conclude that p3 € O,, and ps € O3. We now have

{p2,p3} C Oy, {p1,p3} C Oy, {p1,p2} C Os. (2)

Suppose that there is some ¢ € O; such that py # g # p3. Then for any r € I; the triangle
p1gr links C', because it belongs to the star p;O;1;, but it does not link C5 or C3 because
it does not contain py or p3. This is a contradiction, so we must have O; = {ps, p3}. By
the same reasoning the other inclusions in (2) must also be equalities, and we obtain
finally

O1 = {p2, ps3}, O = {p1, ps}, Os = {p1, p2},

and hence
]1 = 12 = 13 =1= Kn - {p17p27p3}

as claimed. To conclude we note that we must have n > 5, because if n = 4 we would
have I = {r}, and the vertex r would be common to all triangles linking a cycle in ©. O
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Corollary 15. Let n > 4. With notation as in Theorem 14, let © and K, be disjointly
embedded in R? such that

1. Cy links a fan in K, with azxis pq, and

2. Cy links a star in K, that is either a fan with azis xy disjoint from pq, or a proper
star with apex x disjoint from pq.

Then Cs strongly links some cycle in K,,.

Proof. Since n > 4 the only vertices common to all triangles linking C are p and ¢, and
the only vertices common to all triangles linking Cy are either « and y (if Cy links a fan),
or z alone (if Cy links a proper star). By hypothesis there is therefore no vertex common
to all triangles linking ©, and so if © does not strongly link K5 we must be in Case (A2)
of Theorem 14. But in Case (A2) of the theorem the stars of C, Cy and Cj are all proper,
contradicting the fact that C links a fan. Thus in fact neither case holds, so some cycle
in © strongly links a cycle in K,,. Both C} and C link stars, so it is C3 that strongly
links K,. O

4 Weak linking of K, with K,
Let G = <p07p17p27p3> = K47 and let

Co = p1p2ps3, C = pop1ps,
C1 = pspapo, C3 = papiDo-

With these orientations we have
[Co] + [C1] + [Co] + [C3] =0

in Hy(Ky;Z), and for any ¢ # j the chain C; + C; represents a 4-cycle. We use C, Cy,
C3, and Cy in Theorem 16.

Theorem 16. Let n > 4, and suppose that G = Ky and H = K,, are weakly linked graphs
in R3. Then exactly one of the following holds:

(B1) There is a vertex q of H common to all triangles linking a curve in G. Then
there are pairwise disjoint sets Iy, I, Is, I3 (at most two of them empty) such that
IybUL UL, UIy = H —{q}, and after reversing the orientation of R® (if necessary),
each C; links the star qO;1; in K,,, where

Oz:H—{q}—]z

(B2) There is no vertex of H common to all triangles linking a curve in G. Thenn =5
and there are distinct vertices qi1, q2, q3 in H such that, after relabelling the vertices of
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Figure 4: Embeddings of G = K, (blue) and H = K,, (red) realising Cases (B1) (left)
and (B2) (right) of Theorem 16.

G and reversing orientation of R? (if necessary), Cy does not link H and Cy, Cy, Cs
link H in the stars

a{q, @3}, ae{q, e}, a{q, @},

where I = H — {q1,q2,q3}. In particular, the vertex py of G is common to all
triangles of G linking H; and a triangle T of H links G if and only if it shares
exactly one edge with T™ = q1q2q3.

Embeddings realising (B1) and (B2) are illustrated in Figure 4. These embeddings
belong to the families of embeddings realising Theorem 24, which we prove are weakly
linked in Theorem 25.

Proof. We consider the two cases in turn.

Case 1: All triangles in H linking G share a common vertex q.

Then each triangle C; in G links a star ¢qO;I; in H, where we allow the possibility that O;
or I; is empty to cover the case where C; doesn’t link H.

Suppose that C; and C; both link H. If O, N O; # @ # I; N I}, then we may choose
€ 0;N0;and y € I; N I;. Then C; and C; both link the triangle gry € H with linking
number 1, and consequently the square C; +C} strongly links gzy. So we must have either
0,N0; =@, or I; N I; = &. Reversing the orientation of R?* exchanges the roles of O,
and [, for all ¢, so after doing this (if necessary) we may assume that ; N I; = @. This
implies I; C O; and I; C O;, because {Oy, I,} is a partition of H — {¢} for each (.
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We claim now that if C}, also links H, then I;NI}, = I;NI;, = &. Suppose to the contrary
that I; N I, is nonempty. Then we must have O; N O, = &, by the previous paragraph,
and arguing as above we must have O; C I, and Oy C [;. But then [; C O; C I}, and
Or C I, COj,s0 I; NI}, # @ # O; N Oy, giving us a strong link. We must therefore have
I, N I, = & whenever C, and C} link H, and we extend this to hold for all a and b by
setting I, = @, Oy = H — {p} if Cy does not link H. Note that at most two of the I, can
be empty, because any triangle in H linking G must link it in exactly two triangles, one
positively and one negatively.

To complete the proof in this case we must show that Io U U, U I3 = H — {q}.
Let © € H —{q}. If « ¢ I, then we necessarily have x € O;. Then qzy links C; with
linking number +1 for some y, so it must link some C}, with linking number —1. Then
qyx € qOiI;, and we conclude that x € Ij.

Case 2: There is no vertex common to all triangles in H linking G.

First we show that some triangle C; of G must link a proper star in H.

Suppose to the contrary that every triangle of G' that links H links it in a fan. We
may suppose that some triangle C; links H in the fan with axis xy. By assumption x does
not belong to every triangle of H linking G, so some C} links a triangle 77 C H that does
not contain x. Then C; links a fan in H, and since C; U C} is a theta curve the axis of
this fan must meet xy, by Corollary 15. Thus C; links H in a fan with axis £yz, for some
z # x. Now since y is not common to all triangles of H linking G, some cycle C} must
link a triangle 75 that does contain y. Then CY% links H in a fan, and by Corollary 15 the
axis of this fan must meet both xy and yz. The axis must therefore be +2z2. But now the
triangle xyz C H links all three triangles Cj, C}, Cy, contradicting the fact that it must
link GG in a star, which contains exactly two triangles. So some triangle in G' must link a
proper star in H. Note that this immediately implies n > 5.

Without loss of generality C links a proper star with apex ¢;. By assumption ¢;
is not common to all triangles of H linking G, so without loss of generality C5 links a
triangle 7' that does not contain ¢;. Now C; U} is a theta curve, and since ¢; is the only
vertex common to all triangles linking ', and some triangle linking Cs does not contain
q1, there is no vertex common to all triangles of H linking C; or C;. We must therefore
be in Case (A2) of Theorem 14, so there are vertices ¢, and g3 such that (after reversing
orientation of R?, if necessary) C, Cy and —(C; + Cy) link H in the stars

ECl = Q1{QQ7 Q3}]7
Yo, = @{q, ¢},
Yoo+ = @la, @}H,

where I = H — {q1, 42,3}

We now consider Cy and C5. At least one of them must link H, because otherwise
Co + C3 = —(C + C3) would not, a contradiction. After relabelling the vertices of G (if
necessary) we may therefore assume that Cjs links H. We will show under these conditions
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that Cy does not link H. To do this we use the fact that Cy, C3 and —(Cy+C3) = Cy +Cy
form a theta curve, with —(Cy + C3) linking H in the star —X_ (¢, +cn) = ¢3/{q1, @2}

We first show that C'3s must link H in a star with apex g3. Suppose to the contrary
that ¢3 is not common to all triangles linking C5. If C5 links H in a star with apex ¢;
then by Case (A2) of Theorem 14 it must link H in the star ¢;7/{gs, g3}; but then for any
r € I both C5 and Cj link the triangle goq;r with linking number +1, and it follows that
the square Cy + Cj5 strongly links H. The same argument shows that C3 cannot link a
star with apex ¢, so suppose finally that C5 links H in a star with apex ¢4 € I. Then by
Theorem 14 Case (A2) it must be the case that |I| = 2, so n = 5 and there is a vertex g
such that C5, Cy and —(Cp + C3) link H in the stars

200 = CI5{Q37 CJ4}{Q1; QQ};
Yo, = @ig, s Ha, 2}
E—(cowg) = 613{% Q5}{Q1, 92}'

Observe now that C7 U (5 is a theta curve, and the stars

201 = ql{QQa Q3}{Q47 CI5}7
Yo, = Q4{QS7Q5}{Q1:Q2}

don’t satisfy (A2). It follows that the square C} + C5 must strongly link H: for example,
it strongly links the square ¢1¢2q4q5 in H. We conclude that C3 must link H in a star
Yoy = 30315 with apex g3, as claimed.

We now use the fact that both C; U C3 and Cy U C3 are theta curves. The vertices ¢;
and ¢ cannot both be common to every triangle in H linking Cj5, because then the only
triangle in H linking C'3 would be q1¢2q3. So suppose without loss of generality that ¢; is
not common to every triangle in H linking C5. Then C7 U C5 must satisfy Case (A2) of
Theorem 14. However, the only star with apex g3 that can satisfy (A2) together with 3¢,
is ¢3{q1, @2} 1 = X_(c,+¢y), s0 it must be the case that ¥, = ¢3{q1,¢2}I too. But then

Ycg+oy = E_(Cl+02) = Xy,
and it follows that Cj does not link H. This completes the proof. O

Remark 17. We may express the linking between G and H in Case (B2) of Theorem 16
in terms of stars in GG as follows.

Notice that a triangle of H links G if and only if it has the form +¢;q,y, for i # j and
y € I. Consider the triangle g3qoy. This is linked positively by the triangles C5 = p1pop
of G and —Cy = p1pgps of G, and hence links G in the star p;{po}{p2, p3}. Considering
the triangles yqi¢3 and ¢2qiy in turn, we find that the triangles £¢,;q;y link G' according
to the following stars:

EQ3q2y = Pl{po}{pQ,pB},
Yyqrgs = p2{po{p1, 3},
Yoay = Ps{po{p1, p2}-
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5 Stars with no common apex

A key step in our characterisation of weakly linked embeddings of G = K, and H = K,
is an analysis of the way in which two stars in a weakly linked embedding can meet. In
Theorem 20, we analyse a pair of stars that do not share a common apex. We begin with
the following definitions.

Definition 18. Let ¥ = p;O111, %5 = poOs15 be stars in K,,, with m > 4.
1. If p; # po, then ¥y and Xy are mutually oriented if p; € Oy and py € O;.

2. If there is a vertex p of K, such that ¥, ¥ may be expressed in the form 3; = pO.I!

7
for each 7, then »; and X5 have a common apexr. Otherwise, we say that >; and X,

have no common apex.

Remark 19. Suppose that p; # ps. Then €13, 935 are mutually oriented for a unique
choice of signs e, e € {£1}. Furthermore, if ¥; and 3, are mutually oriented, then they
have a common apex if and only if one of the following holds:

1. ¥ is a fan with axis pips (so that 1 = pi{p2}I; may be expressed in the form
Y1 =p2hi{pi}).

2. Yo is a fan with axis pop; (so that Xy = po{p;1}I> may be expressed in the form
Yo = p1—72{p2}).

3. There exists a vertex p in K, such that 3; is a fan with axis pp; for each ¢ (so that
¥, = p;0i{p} may be expressed in the form 3; = p{p;}O; for each 7).

Theorem 20 (Stars with no common apex). Let m and n be positive integers with m > 5.
Suppose that G =2 K,, and H = K,, are weakly linked graphs in R3, and Ty and Ty are
triangles in H linking G in stars X1 = p1O11; and Yo = p2Osls, respectively, which have
no common apex. Then (after possibly re-orienting Ty and Ty so that ¥; and 3o are
mutually oriented) precisely one of the following holds:

(C1) There is a vertex ps distinct from py, py such that I = {ps} and Oy = {p1, ps}.
(C2) There is a vertex ps distinct from py, pa such that Iy = {ps} and Oy = {ps2, p3}.
(C3) There is a vertex ps distinct from py, pa such that Oy = {p2, ps} and Oy = {p1,ps}.

Thus, disregarding orientations, 1 U Xy consists of all triangles sharing an edge with
T* = p1paps, with the sole exception of T* itself in (C3).

Remark 21. Note that if stars 3, and ¥, satisfy one of (C1)-(C3), then at least one of
them must be a proper star. Consequently, if triangles T} and 75 in H link fans in G then
the axes of the fans must intersect.
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Figure 5: The cycles C, Cy and Cj3 in the proof of Proposition 22.

Theorem 20 turns out to be easier to prove for m > 6 than for m = 5. However, for
the sake of space, we present a single proof for m > 5. The proof breaks into two cases,
according to the way in which 77 and 75 intersect. The case where they intersect in an
edge was addressed by Theorem 14, and the case where they intersect in a single vertex
is addressed by Proposition 22.

Proposition 22. Let m and n be positive integers with m > 5. Suppose that G = K,
and H = K,, are weakly linked graphs in R®. Let py,py be vertices of G such that p; # ps,
and let C7 and Cy be cycles in H that intersect in a single vertex q, and link G in mutually
oriented stars 31 = p1O11 and Yo = pOs 1y, respectively. If ¥y and X9 have no common
apez, then they are described by one of conditions (C1)—(C3).

Proof. Without loss of generality we assume that C and C5 are triangles. Let C = qx1y;,
Ca = qrays, and set C3 = qy172, Co = qyatay171, so that

in Hi(H) (see Figure 5). In addition, let ©1,0, be the theta curves ©; = C; U Cj,
Oy = CyUCh.

If C3 does not link G, then C) = Cy + C3 = qy122ys links G in X, The cycles Cy, C
and O} together form a theta curve, and since 3; and ¥, have no common apex we are
in Case (A2) of Theorem 14. Since also 3; and ¥y are mutually oriented, it follows that
Case (C3) above holds.

Suppose then that C3 links G in a star ¥3. We consider cases, according to which case
of Theorem 14 is satisfied by each of ©; and O,.

Case 1: Both ©; and O, satisfy Case (A2) of Theorem 14

Then Y3 has no common apex with 31 or ¥y. Let X3 = p3O3l3, where p3 # py, po.
By (A2) applied to ©; there are two possible ways in which ¥; and 3 can meet:
either Oy = O3, py € I3 and p3 € I1; or I} = I3, p; € O3 and p3 € O;. Likewise, by (A2)
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applied to © there are two possible ways in which ¥y and ¥3 can meet: either Oy = Os,
po € I3 and p3 € Iy; or Iy = I3, py € O3 and p3 € Oy. If O = O3 and p; € I3 then (since
p1 € Os) both Oy = O3 and I, = I3 are impossible, so it must be the case that I = I3
and p; € O3. By the same argument it must also be the case that I = I3 and py € Os.
Then by (A2) it follows that

O1 = {p2, p3}, O = {p1, ps}, Os = {p1.p2},

and I} = Iy = I3 = G — {p1, p2, ps}. This shows that (C3) above holds.

Case 2: O, satisfies Case (Al) of Theorem 14, ©, satisfies Case (A2)

Then ¥; and X3 have a common apex, and Y5 and X3 are proper stars with no common
apex.

Suppose first that p; cannot be chosen as the common apex of »; and ¥3. Then we
can write ¥y = p3O11], X3 = p3Osl3, for some ps # p1,pe. Since either p; or ps can be
chosen as the apex of ¥, this star must be a fan with axis +p;p3 and therefore one of O,
and I; must be equal to {p3}. But p» € O; by hypothesis, so it must be [; that is equal
to {ps}; that is, £1 = p1O1{ps} = p3{p1}O;1 and we have O] = {p:}, I} = O;.

The star Y3 is proper, so |I3] > 2 and hence I3 contains some r # p;,ps3. Then r
must belong to If = O; = G — {p1, ps} also, which implies I] N I3 # &. It now follows
by (A1) applied to ©; that O7 N O3 must be empty, and therefore p; € I3. Now recall
that p; € O,. This means that Oy # O3 and I # I3, in contradiction with Case (A2).
We conclude that p; must be the common apex of ¥; and ¥s.

Accordingly, let X3 = p;O3l3 and consider ©; = Cy U C3. Since the apex p; of X3
belongs to Og, by (A2) we must have I = I3 and Oy = {p1,ps}, O3 = {p2, ps} for some
ps € G. Then since O; N O3 contains p, it is nonempty, so by (Al) applied to ©; we
must have I N I3 = @. But I3 = G — {p1, p2, p3} and p1, ps ¢ I, so the only possibility
is Iy = {p3}. We conclude that (C1) holds.

Case 3: O, satisfies Case (A2) of Theorem 14, ©, satisfies Case (Al)

Reversing the roles of ©; and ©5 in Case 2, we conclude that 3, and ¥, satisfy (C2).

Case 4: Both ©; and O, satisfy Case (Al) of Theorem 14

Then >; and ¥y have a common apex with »3. Since they do not share a common apex
with each other, there must be vertices 71,7 in G such that Y3 is a fan with axis £ry7s,
and r; can be chosen as the apex of ¥; for i =1, 2.

Suppose first that r; = p; for : = 1,2. Without loss of generality we may assume that
Y3 has axis r1ry = p1pe; that is, X3 = p1{p2} 13, where I3y = G — {p1, p2}. Choose p3 € I;.
Then p3 € I3 also, so triangle T = pipops belongs to both »; and 3. This means that
C1 = Cy + Cj strongly links 7', a contradiction.

It must therefore be the case that r; # p; for some 7. Suppose without loss of generality
that r; # p;. Let p3 = 1y, and let ¥y = p3O11{, ¥3 = p3O3l5. Then as in the second
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paragraph of Case 2 above we must have ¥ = p3{p;}Oy; that is, I = {ps}, O] = {p1},
I =0, =G —{p,ps}.

By (A1) applied to O; at least one of O] N O3 and I{ N I3 must be empty. The star
Y3 is a fan with axis 4psre, so one of Oz and I3 must equal {ro}. If I3 were equal to
{r2} then (since py, ps and 7y are distinct) we would have ro € I{ N I3 and p; € O] N O3,
contradicting the fact that at least one of O] N O3 and I] N I3 must be empty. So it must
instead be the case that O3 = {7y}, and therefore 35 = p3{ro}I3 for I3 = G — {ro, ps}.
It now follows from (A1) that C] = Cy + Cs links the proper star ¥4 = p3{p1,r2}14, for
Iy = G —{p1,p3, T2}

We now consider the theta curve © = C] U Cy. If it were the case that ry # po then
Ys would be a fan with axis 4+pors disjoint from the apex ps of ¥4, which is impossible
by Corollary 15 applied to ©. So we must instead have ry = po, giving 33 = ps3{p2}1,
Y4 = p3{p1, p2}! for I = G — {p1,p2, p3}.

Observe now that C's positively links the triangle 7' = p3pop;. Recall that X9 = poOs 15,
with p; € O,. If it were the case that ps € Iy then Cs would also positively link 7', and
then C§ = Cy + C3 would strongly link 7. We must therefore have p3 € Oy instead,
and hence {p1,p3} C Oq. It follows that ¥y and ¥, cannot have a common apex, so by
Theorem 14 applied to ©, Oy must exactly equal {p1,ps}. We already have I; = {ps}, so
this shows that (C1) holds. This completes the proof. O

Proof of Theorem 20. Suppose that ¥; and Y5 have no common apex, and re-orient T}
and Ty (if necessary) so that ¥; and Y, are mutually oriented. By Theorem 12 the
triangles 77, T5 must intersect. If 7T} and 75 meet in an edge, then 7T} U T5 forms a theta
curve so Y; and Xy are described by Theorem 14. Since they have no common apex they
must satisfy condition (A2), which co-incides with condition (C3). Otherwise, T} and T5
meet in a single vertex and the result follows from Proposition 22. O

6 Our main results

We are now ready to complete our characterisation of weakly linked embeddings of G =
K,, and H = K,. The first step is to prove the common vertex or common triangle
dichotomy of Theorem 3, restated here as Theorem 23. This leads to two cases: one of
G and H contains a common triangle (see Section 6.1), or both contain a common vertex
(see Sections 6.2 and 6.3). In each case, we first determine the possible patterns of linking
numbers; exhibit embeddings realising them; and then prove that our embeddings are
weakly linked.

Theorem 23. Let m > 5 and n > 4. Suppose that G = K, and H = K, are weakly
linked graphs in R3. If there is no vertex of G common to all triangles of G linking H,
then there is a triangle T* in G such that a triangle T # T of G links H if and only if
it shares an edge with T™.

Proof. Let Tg be the set of oriented triangles in G that link H, and let 7Ty be the set of
oriented triangles in H that link G. By Theorem 6 each triangle 7" in Ty links G in a star
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Y, and we let
SG = {ZT : TGTH}

TC;:UE.

YeSa

We claim that

Indeed, any triangle S € 7 C Sg links the triangle T of H, so belongs to 7g; and
conversely, any triangle S € Tg must positively link some triangle T' € Ty (for example,
by subdividing a cycle D in H linking S, or because S must link H in a star Xg), and
consequently belongs to ¥7.

First suppose that there is no proper star in Sg. Then every star in S is a fan, and
by Remark 21 the axes of any two such fans must intersect. Choose vertices pi, po in G
such that the fan with axis pip, belongs to Sg, and note that the axis of any other fan
in S¢ must contain either p; or ps. Since p; is not common to all triangles linking H,
there must be a vertex p3 of GG such that the fan with axis psps belongs to Sg; and since
also po is not common to all triangles linking H, there must be a vertex p4 of G such that
the fan with axis pyp; belongs to Sg. But then the fan axes pops and pyp; are disjoint
unless p3 = py. It follows that we must have p3 = p4, and then S contains precisely the
fans with axes 4+p1ps, £pops and +p3p;. The triangle T = pipops therefore satisfies the
conclusion of the theorem.

Now suppose that there is 77 € Ty such that ¥, = p;O;1; is a proper star. By
assumption p; is not common to all triangles in G linking H, so there is a triangle T, € Ty
such that X5, = p2O0315 has no common apex with X7, . Without loss of generality we may
assume that X7, and X, are mutually oriented, and then by Theorem 20 there is a vertex
p3 of G such that O; = {ps, p3}, and either Oy = {p1,p3}, or Lr, is a fan with axis psps.
Let T* = p1pops, I* = G — {p1,p2,ps}, and for 4,j € {1,2,3} define I;; = G — {p;, p,}.
We claim that, up to orientation, every star in Sg is equal to one of

X1 = pi{p2.ps}H”, Yo = po{ps. 21}, Y3 = p3{p1, p2 11",
Y12 = pi{p2}io, Yoz = po{ps}os, Y31 = pa3{p1}1s1.

It would then follow that T™ satisfies the conclusion of the theorem. Note that under
these conditions 7™ links H if and only if one of the stars X;; belongs to Sg.

So far we have X7, equal to ¥, and Y7, equal to either 3y or —Xs3. The case m > 6
is simpler than the case m = 5, so we will assume for now that m > 6 and address the
case m = b later. Under the assumption m > 6 we have |[*| > 3. If ¥ = pOI € S; is a
proper star with p # p;, then ¥ must be one of +3,, £33, by Theorem 20 applied to X
and X1, = ¥;. In addition, if ¥ = pOI € S¢ is a proper star with p = py, then ¥ must
be +%;, by Theorem 20 applied to X and X, regardless of whether ¥, is equal to X5 or
—>l93. We conclude that, up to orientation, when m > 6 the only proper stars that can
belong to Sg are ¥q, Y9 and 3.

Still assuming m > 6, if ¥ € Sg is a fan with axis pq disjoint from p; then by
Theorem 20 we must have ¥ = +33. The axis of any other fan in Sg must therefore
meet p;. Regardless of whether X7, is equal to X3 or —a3, up to orientation the only
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other fan axes possible are p;ps and p3p;, giving us X5 or X31: if ¥y € S then psp; is
the only fan axis disjoint from p, satisfying Theorem 20 with respect to X5, and pips is
the only axis meeting both p; and po; while if —>93 € S then any axis must meet both
p1 and pops. Thus, the only possible stars in Sg are those listed above, and the theorem
is proved for m > 6.

We turn now to the case m = 5. Then |I*| = 2, and we let I* = {p4,ps}. The
additional difficulty that arises in this case is that the fan with axis psps and the proper
stars pa{pa, p3}{p1, 5} and ps{ps, p3}{p1, ps} also satisfy Theorem 20 applied to ¥;.

Suppose first that every proper star in Sg has apex p;. Then X7, is equal to —Xo3.
The only proper stars with apex p; that satisfy Theorem 20 with respect to a3 are £33,
so there can be no other proper star in Sg. The axis of any other fan must meet pops;
by Theorem 20 applied to ¥; the only possibilities are +315 and +3>3;. Thus T™ satisfies
the required conditions.

Suppose finally then that there is a proper star in Sy with apex not equal to p;. We
could have chosen this star as >p,, so without loss of generality we may assume that
Y1, = X9. Any other proper star in Sg has no common apex with at least one of ¥; and
Yo, and so must satisfy Theorem 20 with respect to one or both of ¥; and ¥5. Up to
orientation, the stars that are compatible with X»; are

P2|P1p3|Paps, Pa|paps|p1ps,
p3|p1p2|paps, Ds|P2ps|p1pa;

while those that are compatible with 5 are

D1 |P2p3 |p4p57 Pa !p1p3 |p2p57
D3 |P1p2 \p4p5, Ds ’plps ’ D2p4.

The only star that appears on both lists is ps{p1, p2}{ps, ps} = X3, so we conclude that
up to orientation the only proper stars that can belong to Sg are ¥, >s and 3.

By Theorem 20 applied to each of ¥; and X, if there is a fan other than +315, +393
and £>3; in Sg then it must have axis +p,ps. So suppose that there is a triangle in H
linking the fan Y45 = p4|ps|p1p2ps. Then this is in fact the only fan in Sg, because X1,
Yo and Y3; all have axes disjoint from pyps. So up to orientation, the only stars that can
belong to Sg are ¥; for i = 1,2,3 and Y45. We show that this is impossible.

Label the triangles of the K, subgraph K = (p1, pa, p4, ps) such that

C1 = papaps, Cy = pspapi,
Cy = p1paps, Cs = papap1.

Observe that each of these triangles belongs to at least one of £33, +3 and +X,5, and
so links H. Since every triangle of K links H we must be in case (B1) of Theorem 16.

It follows that there is a vertex q of H, a sign ¢ € {£1}, and pairwise disjoint subsets
J1, Ja, Jy, J5 of H — {q} such that C; links H in the star eqP;J; for i = 1,2,4,5, where
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Moreover, J; must be nonempty for each i, because otherwise C; does not link H. We
may therefore choose z; € J; for i« = 2,5, to get a triangle gxoxs in H that links both
C5 and C5 in K. But this is impossible, because none of the stars that can belong to S¢g
contains both of these triangles, so no triangle in H can link both Cy and C5. It follows
that the fan with axis psps cannot belong to S, and the theorem is proved. O

6.1 Embeddings with a common triangle

In this section we analyse the case where at least one of G and H contains no vertex
common to all triangles linking the other. Without loss of generality we may assume that
this is GG, and then by Theorem 23 there is a triangle 7™ in G such that a triangle T # T
in G links H if and only if 7" shares an edge with 7.

Theorem 24 shows that there are two possible patterns of linking numbers, according
to whether or not H contains a vertex common to all triangles linking G. We exhibit
embeddings realising these in Figure 6, and then prove that our embeddings are weakly
linked in Theorem 25.

Theorem 24. Let m,n > 5, and let G = K,,, and H = K,, be weakly linked graphs in R3.
Suppose that there is a triangle T* = p1paps in G such that a triangle T # T* in G links
H if and only if T' shares an edge with T*. Let X = G — {p1,p2,p3}, and for each v € X
let

To(z) = T" = pipaps, T1(z) = p3par, Ty(z) = zp1ps, T3(z) = paprv.
Then exactly one of the following holds:

(D1) There is a vertex q of H common to all triangles of H linking G. Then there are
pairwise disjoint sets Iy, Iy, I, I3 such that Iy U I; UL, U I3 = H — {q}, and after
reversing the orientation of R (if necessary), for each x € X and 0 < i < 4 the
triangle T;(x) links H in the star qO;I;, where

O, =H—{q} — .

Moreover, I; is nonempty for 1 <1 < 3, and Iy is nonempty if and only if T™ links
H.

(D2) There is no vertex of H common to all triangles of H linking G. Then T* does not
link H, and there is a triangle U* = q1q2q3 of H such that a triangle U of H links
G if and only if U shares exactly one edge with U*. Let Y = H — {q1,q2,q3}, and
for each y € Y let

Ur(y) = q3q2y, Us(y) = yaq1qs, Us(y) = e2q1y-

Then after relabelling the p;, ¢; and reversing orientation of R3 (if necessary),
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(a) for each x € X the triangles Ti(x), To(x), T3(x) link H in the stars

QI{Q2:QS}Y7 Q2{Q1,Q3}Y, Q3{Q1>Q2}Y;

and
(b) for each y €Y the triangles Ui (y), Ua(y), Us(y) link G in the stars

p1X{p2, p3}, p2X{p1,ps}, p3X{p1, 2}
Proof. Let x1,25 € X. We begin by showing that
Lk(T;(xy1), D) = Lk(T;(x2), D)

for 1 <7< 3 and all cycles D in H.

By symmetry, we may assume without loss of generality that ¢ = 1, so that T;(x;) =
Ti(x1) = pspoxy, Ti(x2) = Ti(x9) = pspaxe. Consider the 4-cycle C' = pazip3zs in G. As
a 1-chain we have

C' = 21p372 + Topay.

The triangles x1psx2, xopox; have no edge in common with 7™, so by hypothesis they do
not link H. Hence in H;(R?® — D) we have

[C] = [z1p3wa] + [Tapox1] =0+ 0= 0.
On the other hand, we may also write

C' = paxr1p3 + p3xaps = T1($1) - T2($2),

and therefore

[T(21)] = [Ta(z2)] = [C] = 0.

It follows that Lk(T}(x;), D) = Lk(T(x2), D) as claimed.

Fix x € X. Since no triangle contained in X links H by hypothesis, it follows from the
above that the linking between G and H is completely determined by the linking between
G’ = (x,p1,pe2,p3) and H. Since G’ = K4, this is given by Theorem 16, with x in the role
of po; that is, with C; = T;(x) for 0 <7 < 3.

If case (B1) of Theorem 16 holds, then (since T;(2') must link H in the same star as
Ti(z) for 1 < i < 3 and all 2/ € X) G links H according to Case (D1) above. We note
that I; is necessarily nonempty for 1 < ¢ < 3, because T;(z) links H for all z € X by
hypothesis. Moreover, T links H if and only I is nonempty, as given.

If Case (B2) of Theorem 16 holds, then G links H according to (D2a). To obtain
part (D2b), we replace {po} with X in the stars given in Remark 17. O

Theorem 25. The embeddings of Figure 6 realising Cases (D1) and (D2) of Theorem 24
are weakly linked.

THE ELECTRONIC JOURNAL OF COMBINATORICS 29(2) (2022), #P2.27 24



Figure 6: Embeddings of G = K, (blue) and H = K,, (red) realising Cases (D1) (left)
and (D2) (right) of Theorem 24.

Proof. Let T* be the triangle p;pop3, and let G’ be G minus the three edges pip2, p2ps
and p3p; of T*. Then there is a 2-sphere separating G’ from H, so G’ does not link H.
Therefore any cycle C' in GG that links H must use at least one edge belonging to 7.

If C uses all three edges of 7™, then we necessarily have C' = £7™. In the embedding
of Figure 6 (left) 7% does not link H, and in the embedding of Figure 6 (right) 7 links
H in the star qOyly, where Oy = I; U Iy U I5. In either case C' does not strongly link H,
so we may assume in what follows that C' uses at most two edges of T™.

The edges of 7" on C' must occur consecutively, so we may decompose C' as the
concatenation P(Q), where P is a path in 7% and () is a path in G’. By symmetry, we
may assume without loss of generality that P begins at p; and ends at py (travelling
anticlockwise if it has length 1, and clockwise via ps if it has length 2). Let z be the
first vertex of X on @, and let R, R be the paths pozop1, pi12ops2, respectively. Then we
may decompose C' as C = C} + (5, where (] is the concatenation PR and Cj is the
concatenation RQ (when Q = R we have simply C' = ;). Then C, does not link H,
because it is a cycle in G’, so for any cycle D in H we have

Lk(C, D) = Lk(C}, D).

To complete the proof we check that C; does not strongly link H, by verifying that it
links a star in H.

If the path P has length 1 (that is, if it is simply the edge pip2) then C; = pipexg
is the triangle —T3(xg). In either embedding this links H in a star: the star qI303 in
Figure 6 (left), and the star ¢3Y{qi1, g2} in Figure 6 (right). On the other hand, if P has
length 2 (that is, if P is the path pipsps), then C links the star q(I; U I5)(Ip U I3) in
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Figure 6 (left), and the star ¢3Y{q1, ¢2} in Figure 6 (right). In all cases C; links a star in
H, so G and H are not strongly linked. O

6.2 Embeddings with a common vertex in both G and H

In this section we analyse the case where there is a vertex in each graph common to all tri-
angles linking the other. The linking between the two graphs is described by Theorem 26,
and we exhibit a weakly linked embedding realising it in Figure 7.

Theorem 26. Let m,n > 5, and let G = K,,, and H = K,, be weakly linked graphs in R3.
Suppose that there is a vertex p of G common to all triangles of G linking H, and a vertex
q of H common to all triangles of H linking G. Then for some 2 < { < min{m,n} — 1,
there exists

e a partition X = {Xo, X1,..., X1} of G = G — {p}, such that the triangle pxy of
G links H if and only if x and y belong to different parts of X; and

e a partition Y = {Yo,Y1,..., Yoo} of H = H —{q}, such that the triangle quv of H
links G if and only if u and v belong to different parts of ).

Moreover:

1. If vj € X;, o, € Xy, for j <k, then px;xy, links H in the star qOj 15, where

k—1 j—1 -1
O =Y Ijsz’—ojF(Un)u(Um).
i=j

1=0 i=k

2. Ify; €Y}, yp € Yy, for j <k, then qyyi links G in the star pPj,J;i, where

k J -1
In=J X, Py =G — jk:<UX,->U<UXZ->.
=0

i=j+1 i=k-+1

An embedding realising the linking of Theorem 26 is described in Construction 40, and
the case £ = 5 is illustrated in Figure 7. Note that the partitions X and ) are circularly
rather than linearly ordered.

We will prove Theorem 26 through a series of intermediate results. These will typically
be proved under the hypotheses of Theorem 26. To avoid repeating these, unless some
other hypothesis is given, we assume throughout this section that G and H are weakly
linked. Our first step is to get our hands on the partition X', which we will do by defining
an equivalence relation ~ on G’. The definition of ~ depends only on the existence of
the vertex p € G common to all triangles linking H, and not on the existence of the
vertex ¢ € H common to all triangles linking GG. For full generality we therefore begin by
assuming only the existence of p, and postpone introducing the hypothesis of the existence
of q. Thus, unless some other hypothesis is given, we assume throughout this section that
there is a vertex p of G common to all triangles of G linking H.
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Definition 27. Let G' = G — {p}. We define a relation ~ on the vertices of G’ by x ~ y
if and only if =y, or x # y and pry does not link H.

We prove that ~ is an equivalence relation on G’ in Lemma 29 below. We will write
[z] for the equivalence class of © € G’ with respect to ~, and & for {[z] : x € G'}, the set
of equivalence classes of ~. Note that |X| > 2, because if |X| = 1 then G does not link
H.

To prove Lemma 29 and establish some other properties of ~ we will repeatedly use
the following lemma.

Lemma 28. Let x,y, z be distinct vertices of G', and let D be a cycle of H. Then

[pry] + [pyz] + [pzx] =0 (3)
holds in H\(R3 — D).

Proof. The triangles pxy, pyz, pzx and zyx satisty pry + pyz + pzx + zyx = 0 as 1-chains
in G, so in H;(R?® — D) we have

[pxy] + [pyz] + [pzz] + [zyz] = 0.

By assumption p is common to all triangles of G linking H, so zyx does not link H and
therefore [zyz| = 0. The lemma follows. O

Lemma 29. The relation ~ on G’ of Definition 27 is an equivalence relation.

Proof. The relation ~ is reflexive by definition, and it is symmetric because Lk(pyx, D) =
—Lk(pzy, D) for all  # y in G’ and any cycle D in H. To prove that ~ is transitive,
suppose that x,y, z are distinct vertices of G’ such that x ~ y and y ~ 2. Let D be a
cycle of H. Then [pry] = [pyz] = 0 in H;(R® — D), so by Lemma 28 we have

[pr2] = [pry] + [pyz] =0+ 0=0

also. Since this holds for any cycle D in H we conclude that prz does not link H, and
therefore x ~ z. O

Remark 30. In the embedding of Figure 6 (left), the vertex ¢ is common to all triangles
of H linking G. The equivalence classes of the corresponding relation ~ defined on
H' = H — {q} are the sets [;, for 0 < i < 3.

Lemma 31. Let x, y € G' with x ~ vy, and let D be a cycle in H. Then
Lk(pzz, D) = Lk(pyz, D)
for all z € G with z # x,y.

Proof. For any z € G’ we have [pry] = 0 in equation (3), and so [prz] = —[pzx]
[pyz]. O
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Lemma 32. Let x, y € G'. Suppose that there is z € G' such that
Lk(pzz, D) = Lk(pyz, D)
for all cycles D in H. Then x ~ y.
Proof. Let D be a cycle of H. Applying Lemma 28, in H;(R?® — D) we have

[pry] = [prz] — [pyz] = 0.

Since this holds for any cycle D in H we conclude that pxy does not link H, and therefore
T~ . ]

We now introduce the hypothesis of the existence of q. Thus, unless some other
hypothesis is given, we assume throughout the rest of this section that there is a vertex q
of H common to all triangles of H linking G. Let x,y € G’ be such that = ¢ y. Then pxy
links H, so by Theorem 6 it links H in a star qO,,I,, with apex ¢, because ¢ is common
to all triangles of H linking G. Note here that {O,,, I, } is a partition of H' = H — {q¢}.

Lemma 33. Let x,y € G’ such that x ¢ y. Then the star qO.y1,, depends only on the
equivalence classes of x and y. More precisely, if v ~ z and y ~ w, then Oy = O, and

Iy = 1.

Proof. Since x ~ z, by Lemma 31 we have Lk(pzy, D) = Lk(pzy, D) for all cycles D in
H. It follows that ¢O,, 1., = qOgyI,,. Similarly, since y ~ w, we have ¢O,.1,. = qO.1..
The result now follows from the fact that if the triangle pab links H in the star qO1, then
pba = —pab links H in the star —qOI = qIO; that is, ¢Opelpe = qLlapOgp- O

Our next step is to establish the cyclic ordering of X', the set of equivalence classes of
~. We do this below by introducing a method of cyclically ordering triples of points in
G'. This will be well defined on equivalence classes, and we will show that we can use it
to cyclically order them.

Let (x,y, z) be an ordered triple of points in G’ such that x % y ¢ z o x. Consider
Ky = (p,z,y, z), with the faces labelled and oriented such that

Cy = zyz, Ci = pyz, Cy = pxz, C3 = pyz.

Note that > . C; = 0 as a 1-chain in G. Since ¢ is common to all triangles of H linking
K the linking between K, and H is described by Case (B1) of Theorem 16. Furthermore
xyz does not link H, and the other three triangles all do because x ¢ y ¢ z ¢ x, so
exactly one of the following holds:

(a) the sets Oy, Oy, O, are a partition of H’', and

Ixy = Ozz U Oy27 ]yz = O:cy U Ozx: Iza: = Oyz U Oa:ya

or
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(b) the sets I,

Y

I

vz, 1. are a partition of H', and

Omy =1,U Iyza Oyz = ]xy U sz; Ozaz = [yz U [xy-

We define
+1 if case (a) holds,
e(x,y,2) = .
—1 if case (b) holds.

By Lemma 33 the value of ¢(z,y, z) depends only on the equivalence classes of z, y and
z with respect to ~, so we may define € on triples of distinct equivalence classes by

e(l2], ly], [2]) = (@, 9, 2).

Observe that
e(z,y,2) =¢cy,z,z) = e(z,x,y)

since cyclically permuting x,y, z does not change the triangles involved; and

5(1’7% Z) = _5(,%% 2)7

since swapping x and y reverses the orientations of all the triangles, and qOp, Ipe = qL0pOup
for all a % b.

Remark 34. Observe that if e(x,y,z) = 1, then
Oy =1y = Oyy UO,,.
Note also that O,, N Oy, = &, 50 {Oyy, Oy, } is a partition of O,,.

Lemma 35. Let x,y,z,w be distinct vertices in G' such that no two belong to the same
equivalence class. Suppose that e(x,y,z) = e(x,z,w) = 1. Then {Oyy, Oyz, Oz, O} 1S
a partition of H', and €(y, z,w) = e(y,w,x) = 1.

Proof. Since e(x,y,z) = 1, the sets Oy, O,., O,, are a partition of H', and I, =
Oy U Oyy. Likewise Oy, Oy, Oy, are a partition of H', and I,, = Oy U O,y Then
O, = I, = Oy UO,y, and since {O,,, I, } is a partition of G', it must be the case that
{04y, Oyz, Oy, Oy} is a partition of G’ too. In particular, Oy, N O,y = Oy N Oyy = D,
so the ordered triples (y, z,w) and (y,w, z) must both satisfy case (a) above. O

Proposition 36. Suppose that |X| = (. Then there is a bijection i — X; from {i : 0 <
i <l —1} to X such that e(X;, X;, Xy) =1 for i # j # k # i if and only if the strictly
increasing permutation of i, j, k is a cyclic permutation of (i, 7, k).

Proof. Fix xy € G', and let X’ = X — {[x¢]}. Define a relation < on X’ by [y] < [#] if and

only if [y] = [2], or [y] # [2] and €(xg,y, z) = 1. We claim that < is a total order on A”.
The relation < is reflexive by definition. To prove that it is antisymmetric, observe

that if [y] # [z], then exactly one of e(zg,y,2) = 1 and e(xo, z,y) = 1 holds, so exactly
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one of y < z and z < y holds. This also shows that the relation < is connex!, so it only
remains to prove that < is transitive. This follows from Lemma 35. Suppose that y < z
and z < w for y, z, w belonging to distinct classes. Then e(xg,y, z) = (xg, z,w) = 1, so
by Lemma 35 e(y, w, z9) = 1. But e(xo,y, w) = e(y, w, ), so y < w.

For 1 < i < ¢ —1 choose x; € G’ such that ¢ — [2;] is an order preserving bijection
from ({i:1<i<l—1},<) to (X, =). Let X; =[] for 0 <i <l —1. Then i — X, is
a bijection from {i: 0 <i < ¢ — 1} to X, and we claim it satisfies the required condition.

To prove this, it suffices to show that e(x;,x;,zx) = 1 whenever i < j < k. For
[y], [2] € X" write [y] < [2] if [y] # [2] and [y] = [2]. If i = O then e(zg,z;,x;) = 1 by
definition of <, because [z;] < [zx] if and only if 7 < k. Otherwise, since 0 < ¢ < j < k
we have x; < x; < xy, s0 €(xg, %, x;) = e(xg,x;,2,) = 1. Then e(z;, z;,2,) = 1 by
Lemma 35, and we are done. O

We now define the sets Y; of Theorem 26, and establish the structure of the stars
POs,z 2z, - As in the proof of Proposition 36, for 0 <4 < £ — 1 choose x; € G’ such that
X; = [z;]. Let Y; = O,,,., (subscripts on  taken mod ¢), and set Y = {Y; : 0 < < (—1}.
Then:

Proposition 37. The set Y is a partition of H', and if j < k then

Li+1

Igmk - U Y (4)

j—1 —1

1=0 i=k

Consequently

Proof. Each set Y; is nonempty, because x; % z;,1 and so O # . We show that
YinY;=aifi #j.

Note we consider subscripts mod ¢. Without loss of generality, assume ¢ < j. If
j =i+ 1 then Y;NY;,; = @ follows from e(x;, x;41,%i12) = 1, so suppose j > i + 1.
Consider the 4-tuple (x;, 11,2, xj41). Then e(x;, xit1,2;) = (v, x5, 2j41) = 1, so
1021241 Osii12;) Ojayirs Ouy 1, )+ 18 @ partition of H' by Lemma 35. In particular, Y;NY; =
Oziziis N Ogja;yy = 9, as Tequired.

The proof of equation (4) is by induction on k, using Remark 34 for the inductive
step. The case k = j + 1 holds by definition of Y;. If the equation is true for some £ > 7,

then since e(x;, x, vx11) = 1, for k + 1 we have

LiTi41

k-1

Osjanis = Onjop UOppan 1y = (U ) uY, = UY

i=j

To complete the proof we must show that Uf_ol Y = H'. Given u € H', consider the

triangle pxy_1x¢, which links H in the star qO,,_ 1:(:0 Iy zo- Ifu € Oy, 10y = Y1 we are
done; and otherwise we must have u € I, ;0 = Ogoz,_, Ue ;. O

LA binary relation < on a set A is connex if for all 2,y € A, the condition = 1y or y > z holds.
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Since ¢ is common to all triangles of H linking G, as in Definition 27 and Lemma 29
we may define an equivalence relation ~ on H’ by u ~ v if and only if quv does not link
G. We show that ) is the set of equivalence classes of ~ on H':

Corollary 38. The set Y is the set of equivalence classes of ~ on H' defined by u ~ v if
and only if quv does not link G.

Proof. Let u,v € H’', and suppose that v € ¥;, v € Y. If i # j then v € O,,,, but
v ¢ Oga,.y, 50 quu links pr;z;41. Therefore u %2 v. On the other hand, if ¢ = j then by
Proposition 37 w and v belong to the same part of {O,,, I, } for all z,y € G’ with x ¢ v,
so quv does not link pry for any x,y € G' and therefore u ~ v. O

To complete the proof of Theorem 26, we establish the structure of the stars linked by
triangles in A. This is done by re-expressing the linking described by the stars ¢Oy, 4, 5,2,
in terms of stars in G.

Proposition 39. Suppose that y; € Y;, yp € Yi. If j < k then qy;yi links G in the star
pPjrJji in G, where

k 7 /-1
T = X ijZG’—jk:<UX,~)u<UX,.).
=0

i=j+1 i=k+1

Proof. Let x,,x, € G be such that z, € X,, x, € X, and Lk(pz,zs, qyjyi) = 1; that is,
so that y; € O,,4, and y, € I,,,,. If a < b then by Proposition 37 we have y; € Og,q,
and y, € I,,,, if and only if a < 7 <band b < k,s0a < j<b< k. Otherwise, if b < a
then by Proposition 37 we have y; € Oy, = 3,2, and yi € 1,5, = Og,z, if and only if
b<k<aandj<b,soj<b<k<a. ThusLk(pr,z,qy;yx) = 11if and only if b belongs
to the interval (7, k] and a does not, and the result follows. O

6.3 Realising Theorem 26

We now describe an embedding of G and H in R? realising the linking described by
Theorem 26. We will use co-ordinates (z,t) for R3, where z € C and t € R.

Construction 40. Let X = {Xo, X3,..., Xo1}, Y = {Y, Y1, ..., Y1} be partitions of
G’ and H', respectively, where ¢ > 2. Let ¢ be the (2¢)th root of unity ¢ = ¢™/¢, and
choose p € R such that p < |1 — (|/2, so that the circles centred on 1 and ¢ with radius

p do not intersect. This choice also ensures that the circles do not contain 0. Place p at
(0,1) and g at (0,—1), and for 0 < j </ —1

e place the points belonging to X; on the circle in the plane ¢ = —1 with centre (%
and radius p, so that they are equally spaced on this circle; and

e place the points belonging to Y; on the circle in the plane ¢ = +1 with centre (¥
and radius p, so that they are equally spaced on this circle.
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Figure 7: Construction 40 when ¢ = 5.

Connect p to each vertex x € G’ by a straight line, and similarly connect ¢ to each vertex
y € H' by a straight line. No edge px meets any edge qy, because the projections of these
line segments into the plane t = 0 meet only at z = 0. To complete the embedding, join
each pair of vertices in G’ by an embedded arc in the half space ¢ < —1, and similarly
join each pair of vertices in H' by an embedded arc in the half space t > 1.

Figure 7 illustrates the embedding in the case ¢ = 5. We show that it realises the
linking pattern of Theorem 26 in Proposition 41, and then use Proposition 42 to show
that it is in indeed weakly linked in Corollary 43.

Proposition 41. The embedding of Construction 40 realises the linking pattern of The-
orem 26.

Proof. If p is deleted from G then there is a 2-sphere separating G’ from H, so G’ does
not link H. Similarly, if ¢ is deleted from H then there is a 2-sphere separating H' from
G, so H' does not link G. Therefore p is common to all triangles of G linking H, and ¢
is common to all triangles of H linking G. Let z; € X, x;, € X}, with j < k. We show
that pz;xy links H in the star qO,/;; of Theorem 26. This completely determines the
linking between GG and H, because by Proposition 39 each triangle quv in H then links G
as described in Theorem 26 also.

Let C be the simple closed curve in R? consisting of the line segment from p = (0, 1)
to (¢¥,—1), the arc of the unit circle in the plane t = —1 from ((¥,—1) to (¢*,—1)
(taken in the positive direction, so that it contains the point (¢¥*7, —1)), followed by the
line segment from (¢?*, —1) to p. There is an isotopy of R? fixing H and deforming pz;xy,
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into C, so Lk(pz;xi, D) = Lk(C, D) for all cycles D in H. We show that C' links H in
the star qOji1jy.

The curve C' lies on the cone with apex p that contains the unit circle in the plane
t = —1. Let F' be the portion of this cone bounded by C'. Then F is a Seifert surface for
C, so we may calculate Lk(C, D) by counting signed intersections of D with F'. The only
edges of H which meet F' are edges of the form qy,, with y, € Y, for j < a < k, and all
such oriented edges meet F' with intersection number +1. It follows that a triangle T" of
H links C' if and only if it contains exactly one such edge, and the linking number is +1
if and only if 7" orients the edge from ¢ to y,. It follows that C, and hence px;xy, links
H in the star qOj;1;i, as required. O

To prove that the embedding of Construction 40 is weakly linked we will use the
following proposition.

Proposition 42. Let m,n > 3, and suppose that G = K,,, and H = K, are disjointly
embedded in R3 such that

1. there is a vertex q of H common to all triangles in H that link G; and
2. every triangle in H that links G, links G in a star.
Then G and H are not strongly linked.

We note that the proposition may be used to give a second proof that the embedding
of Figure 6 (left) is weakly linked.

Proof. Let C be a cycle in G, and let D = vgvy - - - vx_1 be a k-cycle in H. We will show
that C' does not strongly link D. The argument is essentially identical to the proof of
Lemma 7.

If ¢ does not belong to D then we decompose D as the sum of the triangles T; =
VoU;V11, for 1 < ¢ < k—2. Since ¢ does not belong to D but is common to all triangles in
H linking G we have Lk(C,T;) = 0 for all 4, and thus in the homology group H;(R?* — C')
we have

It follows that only cycles in H that contain ¢ can link G.

Now suppose that ¢ belongs to D. By hypothesis and Lemma 7 no triangle in H
strongly links G, so we may assume that £ > 4. Assume without loss of generality that
vo = ¢, and let T' = vov1v_1, D' = v1vy - - - vp_1. Then T is a triangle, D’ is a (k—1)-cycle,
and D = T + D’ as 1-chains in H. The cycle D’ does not contain ¢, so by the previous
paragraph in H;(R* — C) we have

[D] = [T] + [D] = [T] € {0, £1}.

Therefore C' does not strongly link D. [
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Corollary 43. The embedding of Construction 40 is weakly linked.

Proof. By Proposition 41 the embedding of Construction 40 realises the linking pattern
of Theorem 26, so ¢ is common to every triangle in H linking G, and each triangle in H
that links G, links G in a star. Therefore G and H are linked but not strongly linked, by
Proposition 42. O

7 Discussion

Our definition of a weakly linked embedding of a pair of graphs G and H excludes from
consideration links between disjoint cycles that both lie in G or both lie in H. This is
because Flapan [3, Theorem 1] has shown that K is intrinsically strongly linked (ISL),
meaning that every embedding of K in R?® contains a pair of disjoint cycles that are
strongly linked. Thus, if we had included links contained entirely within G or H we
would have been limited to m,n < 10. It is not at present known if this upper bound is
sharp, and to conclude the paper we briefly discuss the following question, which was the
original motivation for the work in this paper.

Question 44. Determine the least n such that K, is intrinsically strongly linked.

Fleming and Mellor [5, Fig. 9] exhibit an embedding of Ky that contains only Hopf
links, so Ky is not ISL. It follows that the least n such that K, is ISL is either 9 or 10.
Despite our efforts we have not yet been able to resolve this question by either proving that
Ky is ISL or finding an embedding of Ky that contains only weak links. We nevertheless
make the following conjecture:

Conjecture 45. The complete graph Ky is the smallest complete graph that is intrinsi-
cally strongly linked.

If true, this would show that for complete graphs, being intrinsically strongly linked
is a strictly weaker property than being intrinsically triple linked (I3L, meaning every
embedding contains a non-split 3-component link; in practice, this typically means a link
Ly U Ly U Ly such that Lk(L;, L;11) is nonzero for ¢ = 1,2). Flapan [3, Lemma 1] proved
that if an embedding of K, contains a triple link (in the sense given above), then it
contains a pair of disjoint cycles that are strongly linked. The fact that Ky is ISL then
follows from Flapan, Naimi and Pommersheim’s proof [4] that K, is I3L. In the same
paper they show that Ky is not I3L, by exhibiting an embedding that contains no triple
link. This embedding nevertheless contains a strong link, offering some support for our
conjecture. In addition, Naimi and Pavelescu [6] use oriented matroid techniques to show
that all linear embeddings of Ky are triple linked, implying that they are also strongly
linked.
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