
There does not exist a strongly regular graph

with parameters (1911, 270, 105, 27)

Jack H. Koolen∗

School of Mathematical Sciences
University of Science and Technology of China

Hefei, Anhui, PR China.

and
CAS Wu Wen-Tsun Key Laboratory of Mathematics

Hefei, Anhui, PR China.

koolen@ustc.edu.cn

Brhane Gebremichel†

School of Mathematical Sciences
University of Science and Technology of China

Hefei, Anhui, PR China.

brhaneg220@mail.ustc.edu.cn

Submitted: Aug 26, 2021; Accepted: Mar 13, 2022; Published: Apr 8, 2022

c©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

In this paper we show that there does not exist a strongly regular graph with
parameters (1911, 270, 105, 27).
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1 Introduction

In this paper all the graphs are finite, undirected and simple. For definitions, we do not
define, see [2]. Recall that a strongly regular graph with parameters (n, k,λ, µ) is a k-
regular graph on n vertices such that two distinct vertices have λ, respectively µ, common
neighbours when they are adjacent, respectively non-adjacent.
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Let H(a, t) be the graph with 1 + a+ t vertices, consisting of a complete graph Ka+t

and a vertex adjacent to exactly a vertices of Ka+t.
In [6], Greaves, Koolen and Park obtained the following lemma.

Lemma 1. Let G be a graph with smallest eigenvalue θ = θmin(G). Assume that G
contains an induced H(a, t). Then

(a− θ(θ + 1))(t− (θ + 1)2) ! (θ(θ + 1))2 (1)

holds.

Using Lemma 1, Greaves et al. [6] derived a method restricting the order of maximal
cliques in a strongly regular graph. They showed the following result.

Lemma 2 (cf. [6, Lemma 3.7]). Let G be a strongly regular graph with parameters
(n, k,λ, µ) having smallest eigenvalue −m. Let C be a maximal clique of G with order γ.

If µ > m(m− 1) and γ > µ2

µ−m(m−1)
−m+ 1, then

((γ+m−3)(k−γ+1)−2(γ−1)(λ−γ+2))2−(k−γ+1)2(γ+m−1)(γ−(m−1)(4m−1)) " 0.
(2)

We denote the polynomial on the left hand side of the Inequality (2) by MG(γ).
Now we recall the Delsarte bound for strongly regular graphs. Let G be a strongly

regular graph with parameters (n, k,λ, µ) and smallest eigenvalue −m. Let C be a clique
of G with order γ. Then

γ ! 1 +
k

m
. (3)

The Inequality (3) is called the Delsarte bound.
So, if MG(1 +

k
m
) < 0, then we can improve the Delsarte bound using Lemma 2.

In this paper we extend the method of Greaves et al., by considering two large maximal
cliques that intersect in many vertices. Although we are not able to enlarge the forbidden
interval as given in Lemma 2, in general, we will show the following result:

Theorem 3. There does not exist a strongly regular graph with parameters
(1911, 270, 105, 27).

To put this result in context, we now discuss a result of Sims. Sims showed the
following result:

Theorem 4 (cf. [3, Theorems 8.6.3, 8.6.4]). Let m " 2 be an integer. There exists
a constant N(m) > 0 such that any primitive strongly regular graph with parameters
(n, k,λ, µ) and smallest eigenvalue −m satisfies either n ! N(m) or µ ∈ {m(m−1),m2}.
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For m = 3, the largest open case of a set of feasible parameters of a primitive strongly
regular graph with smallest eigenvalue −3 and µ ∕∈ {6, 9} was (1911, 270, 105, 27), and we
show in this paper that it does not exist. On the other hand, it is known that N(3) " 276,
as there exist many strongly regular graphs with parameters (276, 135, 78, 54), see [3,
Section 8.10.1]. On this moment, there are twelve cases of parameter sets of putative
primitive strongly regular graphs with smallest eigenvalue −3, n > 276 and µ ∕∈ {6, 9}
which are still open. They are in Table 1 above (cf. [7]).

(n, k,λ, µ) θ0, [θ1]
m(θ1), [θ2]

m(θ2) (n, k,λ, µ) θ0, [θ1]
m(θ1), [θ2]

m(θ2)

(288, 105, 52, 30) 105, [25]27, [−3]260 (476, 133, 60, 28) 133, [35]34, [−3]441

(300, 117, 60, 36) 117, [27]26, [−3]273 (540, 147, 66, 30) 147, [39]35, [−3]504

(351, 140, 73, 44) 140, [32]26, [−3]324 (550, 162, 75, 36) 162, [42]33, [−3]516

(375, 102, 45, 21) 102, [27]34, [−3]340 (575, 112, 45, 16) 112, [32]46, [−3]528

(405, 132, 63, 33) 132, [33]30, [−3]374 (703, 182, 81, 35) 182, [49]37, [−3]665

(441, 88, 35, 13) 88, [25]44, [−3]396 (1344, 221, 88, 26) 221, [65]56, [−3]1287

Table 1: List of putative primitive strongly regular graphs with smallest eigenvalue −3
for n > 276.

So our main result shows that N(3) ! 1344. We believe N(3) = 276, and we conjec-
ture:

Conjecture 5. Let G be a primitive strongly regular graph with parameters (n, k,λ, µ)
and smallest eigenvalue −3. Then either µ ∈ {6, 9} or n ! 276.

This paper is organized as follows: In the next section we give the preliminaries. In Sec-
tion 3 we give some properties of a strongly regular graph with parameters
(1911, 270, 105, 27). In Section 4, we find large cliques in a strongly regular graph with
parameters (1911, 270, 105, 27) and apply the properties given in Section 3 to show the
main result.

2 Preliminaries

2.1 Graphs

Let G = (V (G), E(G)) be a graph with order n(G) < ∞. The adjacency matrix A(G) is
a square (n(G)× n(G))-matrix, whose rows and columns are indexed by V (G), such that
A(G)xy = 1 if xy ∈ E(G), and 0 otherwise. The eigenvalues of G are the eigenvalues of
its adjacency matrix A(G). The smallest eigenvalue of G is denoted by θmin(G). For a
connected graph G and two vertices x and y of G, define the distance d(x, y) as the length
of a shortest path connecting x and y.

The valency kG(x) of a vertex x of G is the number of neighbours of x, i.e. the number
of the vertices y ∈ V (G) such that xy ∈ E(G). A graph G is k-regular if kG(x) = k for
all vertices x ∈ V (G). As mentioned in the introduction, a graph G is strongly regular
with parameters (n, k,λ, µ) if G has n vertices, is k-regular and any two distinct vertices
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have exactly λ (resp. µ) common neighbours if they are adjacent (resp. non-adjacent). In
this case, we will also write G is an SRG(n, k,λ, µ). A strongly regular graph G is called
primitive if G and its complement are both connected. A graph G is co-edge-regular with
parameters (n, k, µ) if G has n vertices, is k-regular and any two distinct non-adjacent
vertices have exactly µ common neighbours. A clique is a complete graph.

2.2 Interlacing

If M (resp. N) is a real symmetric m×m (resp. n× n) matrix with θ1(M) " θ2(M) "
· · · " θm(M) (resp. θ1(N) " θ2(N) " · · · " θn(N)) the eigenvalues of M (resp. N) in
non-increasing order. Assume m ! n. Then we say that the eigenvalues of M interlace
the eigenvalues of N , if θn−m+i(N) ! θi(M) ! θi(N) for i = 1, . . . ,m.

The following result is a special case of interlacing.

Lemma 6 (cf. [5, Theorem 9.1.1]). Let B be a real symmetric n × n matrix and C be a
principal submatrix of B of order m, where m < n. Then the eigenvalues of C interlace
the eigenvalues of B.

As an easy consequence of Lemma 6, we have the following proposition.

Proposition 7. Let G be a graph and H a proper induced subgraph of G. Denote by
θmin(G) (resp. θmin(H)) the smallest eigenvalue of G (resp. H). Then θmin(G) ! θmin(H).

Let G = (V (G), E(G)) be a graph and π = {V1, . . . , Vr} be a partition of V (G). For a
vertex x ∈ V (G), define βj(x) as the number of neighbours of x in Vj for j = 1, 2, . . . , r.
Define the quotient matrix Q of π as the (r × r)-matrix with entries

Qi,j :=

!
x∈Vi

βj(x)

|Vi|
,

for 1 ! i, j ! r.

Proposition 8 (cf. [5, Lemma 9.6.1]). Let G = (V (G), E(G)) be a graph and π :=
{V1, . . . , Vr} be a partition of V (G). Let Q be the quotient matrix of π. Then the eigen-
values of Q interlace the eigenvalues of G.

As an easy consequence of Proposition 8 we have the following lemma.

Lemma 9. Let G = (V (G), E(G)) be a graph and π := {V1, . . . , Vr} be a partition of
V (G). Let Q be the quotient matrix of π. Denote by θmin(G) (resp. θmin(Q)) the smallest
eigenvalue of G (resp. Q). Then θmin(G) ! θmin(Q).

2.3 Terwilliger graphs

A Terwilliger graph is a non-complete graph such that, for any two vertices x and y at
distance 2, the subgraph induced by common neighbours of x and y forms a clique with
order c (for some fixed c " 0).

Lemma 10 (cf. [1, Corollary 1.16.6 (ii)]). There does not exist a strongly regular Ter-
williger graph with parameters (n, k,λ, µ) satisfying k < 50(µ− 1).
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2.4 Join of graphs

Let G1 and G2 be two graphs such that V (G1) ∩ V (G2) = ∅. The join of G1 and G2,
denoted by G1∇G2, has as vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2) ∪
{{x1, x2} | x1 ∈ V (G1), x2 ∈ V (G2)}. The following lemma is a consequence of [2, Section
2.3.1].

Lemma 11. Let Gi be a ki-regular graph with ni vertices, for i = 1, 2, such that V (G1)∩
V (G2) = ∅. Then the smallest eigenvalue θmin(G1∇G2) of the join G1∇G2 satisfies

θmin(G1∇G2) = min{θmin(G1), θmin(G2), θmin(Q)}

where

Q =

"
k1 n2

n1 k2

#
.

The following lemma was inspired by Cao, Koolen, Munemasa, Yoshino [4].

Lemma 12. Let G be a k-regular graph on n vertices with smallest eigenvalue θmin(G) !
−1. Consider Kt∇G for some positive integer t. Then θmin(Kt∇G) = θmin(G) if and only
if

(θmin(G)− k)(θmin(G) + 1− t) " nt.

Proof. By Lemma 11, we find θmin(G) = θmin(Kt∇G) if and only if

θmin(

"
t− 1 n
t k

#
) " θmin(G)

if and only if

det(

"
t− 1− θmin(G) n

t k − θmin(G)

#
) " 0,

as θmin(Kt) " −1 (because t " 1). This shows the lemma.

3 Some properties of a SRG(1911, 270, 105, 27)

In this section we collect some elementary properties of a strongly regular graph with
parameters (1911, 270, 105, 27). First we show that all cliques in such a graph have order
at most 32.

Lemma 13. If a strongly regular graph G with parameters (1911, 270, 105, 27) exists, then
any clique in G has order at most 32.
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Proof. Let G be a strongly regular graph with parameters (1911, 270, 105, 27). Then, it
has smallest eigenvalue−3. Let C be a maximal clique inG of order γ. If γ > 272

27−6
−3+1 =

325
7
, then, by Lemma 2, we have

MG(γ) = 672γ3 − 80784γ2 + 1468512γ + 3277200 " 0

as c = 27 > 6. It is easily checked that MG(0) > 0, MG(26) < 0 and MG(97) < 0. This
means that γ " 98. This gives a contradiction, as the Delsarte bound gives

γ ! 1 +
k

m
= 1 +

270

3
= 91.

So we obtain that any clique in G has order at most 32.

Next we will show that there must exist an induced quadrangle in such a strongly
regular graph.

Lemma 14. If a strongly regular graph with parameters (1911, 270, 105, 27) exists, then
it contains an induced quadrangle.

Proof. Suppose that there exists a strongly regular graph G with parameters
(1911, 270, 105, 27), which does not contain any induced quadrangles. Then G is a Ter-
williger graph. By Lemma 10, the valency of G is at least 1300, as µ = 27. This is a
contradiction, as k = 270. This shows the lemma.

We will need the following consequence of Lemma 1 later in the paper.

Lemma 15. Let G be a graph with smallest eigenvalue at least −3. Let C be a clique of
G with order γ. Let x be a vertex of G that is not in C and has exactly a neighbours in
C. Then a ! amin or a " amax where amin and amax are as in Table 2.

γ 29 30 31 32
amin 8 8 7 7
amax 23 24 26 27

Table 2: Values of amin and amax

Proof. This lemma follows immediately from Lemma 1.

Now we will show the following restriction on maximal cliques intersecting in many
vertices in a strongly regular graph with parameters (1911, 270, 105, 27).

Lemma 16. Let G be strongly regular graph with parameters (1911, 270, 105, 27). Assume
there are two distinct maximal cliques C1 and C2 such that |V (C1)| " 29, |V (C2)| " 29,
and |V (C1) ∩ V (C2)| " 22. Then |V (C1)| = |V (C2)| = 29 and |V (C1) ∩ V (C2)| = 27.
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Proof. We have that |V (C1) ∩ V (C2)| =: t ∈ {22, 23, . . . , 27} as µ = 27.
Assume t = 22. Let C ′

1 (resp. C ′
2) be a subclique of C1 (resp. C2) such that V (C ′

1) ⊇
V (C1) ∩ V (C2), V (C ′

2) ⊇ V (C1) ∩ V (C2) and |V (C ′
1)| = |V (C ′

2)| = 29. Let K be the
induced subgraph on V (C ′

1) ∪ V (C ′
2). By Proposition 7, we see that K has smallest

eigenvalue at least −3. Let π = {V (C ′
1) ∩ V (C ′

2), (V (C ′
1) \ V (C ′

2)) ∪ (V (C ′
2) \ V (C ′

1))} of
V (C ′

1) ∪ V (C ′
2) be a partition of K with quotient matrix

Q =

"
21 14
22 α + 6

#
.

By Lemma 9, we see that the smallest eigenvalue of Q is at least −3. This implies that
24α " 92, as det(Q+ 3I) " 0. So, α " 23

6
. We obtain that there are at least ⌈7×23

6
⌉ = 27

edges between V1 := V (C ′
1)\V (C ′

2) and V2 := V (C ′
2)\V (C ′

1). Now all vertices of V1 (resp.
V2) have at most 5 neighbours in V2 (resp. V1), as µ = 27.

Consider the bipartite graph B with color classes V1 and V2, where v1 ∈ V1 is adjacent
to v2 ∈ V2 if they are adjacent in G. We know that kB(v1) + kB(v2) ! 5 if v1 ∈ V1,
v2 ∈ V2 and v1 ∕∼ v2, as µ = 27. Let B have maximal valency p, and we may assume that
dB(x) = p for a vertex x ∈ V1 and p " 3. Then the neighbours of x in V2 have valency
at most p in B and the non-neighbours of x in V2 have valency at most 5 − p in B. So
B has at most p2 + (7 − p)(5 − p) edges. This means that B has at most 25 edges, as
p ∈ {3, 4, 5}. This is a contradiction with the fact that B has to have at least 27 edges.
This shows that t = 22 is not possible.

In similar fashion, it can be shown that t ∕∈ {23, 24, 25, 26}.
Now assume t = 27. If |V (C1)| " 30 and |V (C2)| " 29, then the quotient matrix Q′

of π′ = {V (C1) ∩ V (C2), V (C1) \ V (C2), V (C2) \ V (C1)} satisfies

$

%
26 t1 t2
27 t1 − 1 0
27 0 t2 − 1

&

' , where t1 + 27 = |V (C1)| and t2 + 27 = |V (C2)|.

As the smallest eigenvalue of Q′ is at least −3, we obtain that

29(t1 + 2)(t2 + 2)− 27(t1(t2 + 2) + t2(t1 + 2)) " 0.

This means
−25t1t2 + 4(t1 + t2) + 116 " 0,

and hence

25(t1 −
4

25
)(t2 −

4

25
) < 117.

As t1 " 3 and t2 " 2 we have 25(t1− 4
25
)(t2− 4

25
) > 130, which gives a contradiction. This

shows the lemma.

the electronic journal of combinatorics 29(2) (2022), #P2.3 7



4 Proof of Theorem 3

In this section we give a proof of Theorem 3.
Let G be a strongly regular graph with parameters (n, k,λ, µ). Let x be a vertex of G.

Let y1, y2, . . . , yℓ be distinct pairwise non-adjacent neighbours of x, that is, the induced
subgraph of G on {x, y1, y2, . . . , yℓ} is a ℓ-claw.

Let p := |{(yi, x′, yj) | yi ∼ x′ ∼ yj, 1 ! i < j ! ℓ, x ∕= x′, and x ∕∼ x′}|. For
1 ! i < j ! ℓ, let C(yi, yj) := {z ∈ V (G) | z ∼ x, z ∼ yi, z ∼ yj} and let c(yi, yj) =
|C(yi, yj)|. If there is no confusion possible, we will abbreviate c(yi, yj) by cij. We see
that cij ! µ− 1 for all 1 ! i < j ! ℓ. Further, let me = |{z ∼ x | z is adjacent to exactly
e yi

′s}| for e = 0, 1, . . . , ℓ.
Then the following equations hold:

ℓ(

e=0

me = k − ℓ, (4)

ℓ(

e=0

eme = λℓ, (5)

ℓ(

e=0

"
e

2

#
me =

"
ℓ

2

#
(µ− 1)− p, (6)

ℓ(

e=0

"
e

2

#
me =

(

1!i<j!ℓ

cij. (7)

Combining Equations (4), (5) and (6), we see that

0 !
ℓ(

e=0

"
e− 1

2

#
me = k − (λ+ 1)ℓ+

"
ℓ

2

#
(µ− 1)− p (8)

holds.
Now let G be a strongly regular graph with parameters (1911, 270, 105, 27). By Lemma

14, we know that G contains an induced quadrangle say x ∼ y1 ∼ x′ ∼ y2. Let W =
{w ∼ x | d(y1, w) = d(y2, w) = 2}, and let H be the induced subgraph of G on W . Note
that the cardinality of W , |W |, is at least 270−2× (105+1) = 58. As G does not contain
a clique of order at least 33, by Lemma 13, the graph H is not a complete graph.

We will show that H contains many large cliques.
First we establish the following claim:

Claim 1. The graph H does not contain an independent set of cardinality 3.
Proof. Assume that H contains an independent set of cardinality 3, say {w1, w2, w3}.
Then the subgraph of G induced on {x, y1, y2, w1, w2, w3} is a 5-claw. Then, by Equation
(8), we see that 0 ! 270− 5× 106 +

)
5
2

*
× 26− p = −p, so p = 0. This is a contradiction,

as the induced subgraph on {x, x′, y1, y2} is a quadrangle. This shows the claim. □
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Define W ′ := {w ∈ W | kH(w) = |W |− 1} and W ′′ = W \W ′. As H is not complete,
it follows that W ′′ is not empty.

Now we establish the following claim.

Claim 2. Let w1, w2 ∈ W ′′ such that d(w1, w2) = 2. Then the subgraph of G induced on
{x, y1, y2, w1, w2} is a 4-claw. As before, for z1, z2 ∈ {y1, y2, w1, w2}, let C(z1, z2) := {z ∈
V (G) | z ∼ x, z1 ∼ z ∼ z2} with cardinality c(z1, z2). Then we have:

1. c(y1, y2) ∈ {24, 25};

2. c(z1, z2) ∈ {25, 26} if {z1, z2} ∈
){y1,y2,w1,w2}

2

*
and {z1, z2} ∕= {y1, y2};

3.
β :=

(

{z1,z2}∈({y1,y2,w1,w2}
2 )

c(z1, z2) ∈ {154, 155},

and m3 = 0 if β = 154 (and, m3 = 1 if β = 155).

Proof. By Equation (8), we see that 0 ! 270 − 4 × 106 +
)
4
2

*
× 26 − p = 2 − p, and

hence p ∈ {1, 2}, as x, y1, x
′, y2 is an induced quadrangle. Equation (8) also shows that

m3+ p = 2. Combining Equations (6) and (7), we obtain β = 6× 26− p = 156− p. So we
have shown Item (iii). As c(y1, y2) ! 25 and c(z1, z2) ! 26 for all {z1, z2} ∈

){y1,y2,w1,w2}
2

*
,

Items (i) and (ii) follow. This shows the claim. □
Now we are going to look at H more closely. For w1, w2 ∈ W ′′ with d(w1, w2) = 2,

define C ′(w1, w2) = {w ∈ W | w1 ∼ w ∼ w2} with cardinality c′(w1, w2).

Claim 3. The following hold:

1. If c(y1, y2) = 24, then |W | = 82. In this case, kH(w) ∈ {81, 53} for w ∈ W and for
w1, w2 ∈ W ′′ with d(w1, w2) = 2 we have c′(w1, w2) = 26.

2. If c(y1, y2) = 25, then |W | = 83. In this case kH(w) ∈ {82, 53, 54} for w ∈ W and
for w1, w2 ∈ W ′′ with d(w1, w2) = 2 we have c′(w1, w2) ∈ {25, 26}. Moreover, the
induced subgraph of H on {w ∈ W | kH(w) = 54} forms a clique, if {w ∈ W |
kH(w) = 54} ∕= ∅.

Proof. We have |W | = 270−2(105+1)+c(y1, y2). So we obtain |W | = 82, if c(y1, y2) = 24,
and |W | = 83, if c(y1, y2) = 25. We already observed that W ′′ ∕= ∅. Let w1, w2 ∈ W ′′ with
d(w1, w2) = 2.

If c(y1, y2) = 24, then c(z1, z2) = 26 for all {z1, z2} ∈
){y1,y2,w1,w2}

2

*
\ {{y1, y2}}, and

m3 = 0, by Claim 2. This shows that kH(w1) = kH(w2) = 105 − 2 × 26 = 53 and
c′(w1, w2) = 26. This shows Item (i).

If c(y1, y2) = 25, then there is at most one set {z1, z2} ∈
){y1,y2,w1,w2}

2

*
\ {{y1, y2}}

such that c(z1, z2) = 25 and the others have c(z1, z2) = 26. If there is one set {z1, z2} ∈){y1,y2,w1,w2}
2

*
\{{y1, y2}} such that c(z1, z2) = 25, then m3 = 0 and we see that c′(w1, w2) ∈

{25, 26}. Also we see that in this case we have |{z | z ∼ x, z ∼ w1, z is adjacent to at
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least one of y1 and y2}| ∈ {51, 52}. This means that kH(w1) ∈ {53, 54}. If there is not a
set {z1, z2} ∈

){y1,y2,w1,w2}
2

*
\ {{y1, y2}} such that c(z1, z2) = 25, then c(w1, w2) = 26, and

hence c′(w1, w2) ∈ {25, 26}, as m3 = 1 in this case. Again we see that in this case we have
|{z | z ∼ x, z ∼ w1, z is adjacent to at least one of y1 and y2}| ∈ {51, 52}. This means
that kH(w1) ∈ {53, 54}.

In order to show Item (ii), let w,w′ ∈ W be distinct vertices such that kH(w) =
kH(w

′) = 54. This means that w and w′ have both exactly 51 common neighbours with
x that are not in W . If w ∕∼ w′, then this means that c(w, y1) + c(w, y2) + c(w′, y1) +
c(w′, y2)−m3 ! 2× 51 = 102. Now, by Claim 2(iii), we find

153 = 26 + 102 + 25

" c(w,w′) + c(w, y1) + c(w, y2) + c(w′, y1) + c(w′, y2) + c(y1, y2)−m3

= 154,

which is impossible. This shows the claim. □.
Now we are going to find large cliques in H. For w ∈ W ′′, define Nw := {w1 ∈

W | d(w,w1) = 2} with cardinality nw. The induced subgraph of G on Nw ∪ {x} is a
complete graph, as H does not contain an independent set with order 3, by Claim 1.
Let Cw be a maximal clique of G containing Nw ∪ {x}. Note that, by Claim 3, we have
nw = |W | − kH(w) − 1 ∈ {82 − 53 − 1, 83 − 54 − 1, 83 − 53 − 1} = {28, 29}. Now let
z1, z2 be two distinct vertices of G such that for all v ∈ Nw we have z1 ∼ v ∼ z2. Then z1
and z2 have at least 28 common neighbours and hence must be adjacent, as µ = 27. This
shows that Cw is unique.

Now we will show that G has two distinct maximal cliques C1 and C2, each with at
least 29 vertices, and intersecting in at least 22 vertices.

Claim 4. Let w1, w2 ∈ W ′′ with d(w1, w2) = 2. Then there exists a common neighbour
w ∈ W ′′ of w1 and w2 such that |Nw ∩Nw1 | " 21 or |Nw ∩Nw2 | " 21.
Proof. Let w1, w2 ∈ W ′′ with d(w1, w2) = 2. There are at most three vertices w ∈ W
such that w ∼ z for all z ∈ Nw1 , as nw1 " 28, µ = 27 and Cw1 has at most 32 vertices,
by Lemma 13. Similarly, there are at most three vertices w ∈ W such that w ∼ z for all
z ∈ Nw2 . In particular, the set W ′ contains at most three vertices.

Let Z := {z ∈ W \ (Nw1 ∪ Nw2) | z has at least nw1 − 7 neighbours in Nw1 and at
least nw2 − 7 neighbours in Nw2}. If Z ∕= ∅, then the subgraph of H induced on Z is a
clique, as any two vertices z1, z2 ∈ Z have at least 14 + 14 = 28 common neighbours and
µ = 27. It follows that |Z| ! 1 + kH(z) − (nw1 − 7 + nw2 − 7) ! 1 + 54 − 2 × 21 = 13,
where z is any vertex in Z. As c′(w1, w2) " 25 > 3 + 3 + 13 = 19, there exists a vertex
w ∈ W \ (Nw1 ∪ Nw2) with at most nw1 − 8 neighbours in Nw1 or with at most nw2 − 8
neighbours in Nw2 and w has a non-neighbour in both Nw1 and Nw2 . Without loss of
generality, we may assume that w has at most nw1 − 8 neighbours in Nw1 . By Lemma 15,
the vertex w has either at least nw1−7 neighbours in Nw1∪{x} or at most 8 neighbours in
Nw1 ∪{x} (as nw1 ∈ {28, 29}). This means that w has at most 8 neighbours in Nw1 ∪{x},
and hence at most 7 neighbours in Nw1 . This means that Nw and Nw1 intersect in at least
21 vertices. This shows the claim. □
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Claim 5. Let w,w1 ∈ W ′′ such that |Nw ∩ Nw1 | " 21. Then Cw and Cw1 both have
exactly 29 vertices and they intersect in precisely 27 vertices.
Proof. The maximal cliques Cw and Cw1 have both at least 29 vertices and they intersect
in at least 22 vertices as x is an element of both Cw and Cw1 . Hence, by Lemma 16, they
have both exactly 29 vertices and intersect in exactly 27 vertices, as both are maximal
cliques. □

Now we will show that W ′ = ∅ and that |W | = 82.

Claim 6.
(i) The set W ′ is empty.
(ii) The cardinality of W is equal to 82.

Proof. (i) Let z in W ′ and let w1, w2 ∈ W ′′ be two vertices at distance 2. Then Cwi

contains Nwi
∪ {x, z} for i = 1, 2 and hence has at least 30 vertices. Now there exists

a common neighbour w ∈ W ′′ such that without loss of generality |Nw ∩ Nw1 | " 21 by
Claim 4. But this is impossible by Claim 5.

(ii) By Claims 2 and 3, we have |W | ∈ {82, 83}. Let us assume that |W | = 83. As,
by (i), W ′ = ∅, we have kH(w) ∈ {53, 54}, by Claim 3. We have seen that the vertices
w ∈ W with kH(w) = 54 form a clique, if there are any. So this means that there
are at most 31 of them, as otherwise we would have a clique with 33 vertices, which is
impossible by Lemma 13. This means that there are at least 52 vertices w of W with
kH(w) = 53. Hence, there must be two distinct non-adjacent vertices w1, w2 ∈ W with
kH(w1) = kH(w2) = 53. Therefore we have that nw1 = nw2 = 29 and we obtain that both
the cliques Cw1 and Cw2 have at least 1 + 29 = 30 vertices. Now by Claim 4, there exists
a common neighbour w ∈ W ′′ such that without loss of generality |Nw ∩Nw1 | " 21. But
this is again impossible, by Claim 5. This finishes the proof of the claim. □

So we are in the case where |W | = 82. In this case, by Claim 3, the graph H is
a 53-regular graph (as W ′ = ∅) such that any two distinct non-adjacent vertices have
exactly 26 common neighbours inside H, so this means H is a co-edge-regular graph with
parameters (n′, k′, µ′) = (82, 53, 26). Also, nw = 28 for all w ∈ W .

Now we will show that H contains two cliques C1 and C2, each with 28 vertices, and
such that they intersect in exactly 2 vertices.

Claim 7. The graph H contains two cliques C1 and C2, each with 28 vertices, and that
they intersect in exactly 2 vertices.
Proof. Let w1, w2 be two distinct non-adjacent vertices of H. Then, by Claims 4 and 5,
there exists a common neighbour w of w1 and w2 such that, without loss of generality,
the (maximal) cliques Cw and Cw1 both have exactly 29 vertices and intersect in exactly
27 vertices. Let z be a vertex of Cw but not of Cw1 and z1 a vertex of Cw1 but not of
Cw. Then z ∕∼ z1, as Cw and Cw1 are maximal cliques and µ = 27. As Cw and Cw1 both
contain x as a vertex, we see that Cw − {x} and Cw1 − {x} both are cliques inside H with
exactly 28 vertices and they intersect in exactly 26 vertices. Now the vertex w2 is a vertex
of Cw1 − {x}, but not a vertex of Cw − {x}. Now we consider Nw2 . Then the two vertices
of Cw which are not in Cw1 are both in Nw2 . This shows that Cw − {x} and Cw2 − {x}
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are two cliques with 28 vertices in H such that they intersect in exactly 2 vertices. This
shows the claim. □

Proof of Theorem 3. Let C1 and C2 be two cliques of H with 28 vertices intersecting in
exactly 2 vertices, say z and z′. Consider the partition π = {{z, z′}, (V (C1) \ V (C2)) ∪
(V (C2) \ V (C1)), Nz} of the vertex set W of H. The quotient matrix Q of π satisfies:

Q =

$

%
1 52 0
2 37 14
0 26 27

&

' ,

as the induced subgraph of H on Nz is complete and H is co-edge-regular with µ′ = 26.
This means that there are exactly 12 × 26 = 312 edges between V (C1) \ V (C2) and
V (C2) \ V (C1).

Next, we will show that there must be many more edges between V (C1) \ V (C2) and
V (C2) \ V (C1), which gives a contradiction.

There are at most 5 vertices in Nz that are adjacent to all vertices in V (C1) \ V (C2),
as any clique in G has at most 32 vertices. Also there are at most 5 vertices in Nz that
are adjacent to all vertices in V (C2) \ V (C1). So there exists a vertex u ∈ Nz that is not
adjacent to all vertices in V (C1)\V (C2) and not adjacent to all vertices in V (C2)\V (C1).
As u has exactly 26 neighbours in (V (C1) \ V (C2)) ∪ (V (C2) \ V (C1)), we may assume,
without loss of generality, that u has at least 13 neighbours in V (C1) \ V (C2). So u has
at least 14 neighbours in the clique C1 ∪ {x}, a clique with 29 vertices. By Lemma 15,
the vertex u has at least 23 neighbours in C1 ∪ {x} and hence at least 22 neighbours in
C1. This means that u has at most 4 neighbours in C2. Now consider the clique Cu.
Then Cu and {x} ∪ C2 intersect in at least 25 vertices. As both have 29 vertices, by
Lemma 15, they intersect in exactly 27 vertices. This means that |Nu ∩ V (C2)| = 26 and
hence |Nu ∩ V (C1)| = 4. We find that any vertex of Nu ∩ (V (C2) \ V (C1)) has at least
5 neighbours in C1 ∪ {x}. Now consider the join K4∇H of K4 and H, where K4 is a 4-
clique with vertices {v1, v2, v3, v4}. As H is an induced subgraph of G and G has smallest
eigenvalue −3, we see that θmin(H) " −3, by Lemma 7. It follows that θmin(K4∇H) = −3,
by Lemma 12. Now consider the clique C of K4∇H on V (C1) ∪ {v1, v2, v3, v4}. It has
32 vertices and any vertex w of Nu ∩ (V (C2) \ V (C1)) has at least 8 neighbours in C.
By Lemma 15, this means that w has at least 27 neighbours in C. It follows that w
has at least 23 neighbours in C1 and hence at least 21 neighbours in V (C1) \ V (C2).
This means that there are at least |Nu ∩ (V (C2) \ V (C1))| × 21 = 24 × 21 = 504 edges
between V (C1) \ V (C2) and V (C2) \ V (C1). This is a contradiction with the fact that
there are exactly 12 × 26 = 312 edges between V (C1) \ V (C2) and V (C2) \ V (C1). This
contradiction shows that |W | ∕= 82, and hence there does not exist a strongly regular
graph with parameters (1911, 270, 105, 27). This shows Theorem 3. □
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