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Abstract

Random intersection graphs are models of random graphs in which each vertex
is assigned a subset of objects independently and two vertices are adjacent if their
assigned subsets are adjacent. Let 𝑛 and 𝑚 = [𝛽𝑛𝛼] denote the number of vertices
and objects respectively. We get a central limit theorem for the largest component
of the random intersection graph 𝐺(𝑛,𝑚, 𝑝) in the supercritical regime and show
that it changes between 𝛼 > 1, 𝛼 = 1 and 𝛼 < 1.

Mathematics Subject Classifications: 05C80; 60F05

1 Introduction

Given positive integers 𝑛 and 𝑚, let V = {𝑣1, 𝑣2, . . . , 𝑣𝑛} and W = {𝑤1, 𝑤2, . . . , 𝑤𝑚}.
For 𝑝 ∈ [0, 1], we construct a random bipartite graph 𝐵(𝑛,𝑚, 𝑝) with bipartition (V,W)
in which each one of the 𝑛𝑚 possible edges between vertices from V and vertices from
W is occupied independently with probability 𝑝. The random intersection graph model
𝐺(𝑛,𝑚, 𝑝) is a graph with vertex set V in which 𝑣𝑖, 𝑣𝑗 ∈ V are adjacent if and only if
there exists some 𝑤 ∈W so that both 𝑣𝑖 and 𝑣𝑗 are adjacent to 𝑤 in 𝐵(𝑛,𝑚, 𝑝).

The random intersection graph 𝐺(𝑛,𝑚, 𝑝) was introduced by Singer [14] and Karoński,
Scheinerman and Singer-Cohen [9] and has been further studied and generalized by Gode-
hardt and Jaworski [6], Stark [15], Barbour and Reinert [2], Bloznelis [4]. Random inter-
section graph also has been used in various applications. These applications include, but
are not restricted to, secure wireless sensor networks [12], social networks [1] and circuit
design [14].

Erdős-Rényi random graph model 𝐺(𝑛, 𝑝) considers a fixed set of 𝑛 vertices and edges
that exist with a certain probability 𝑝 independently of all other edges. Fill, Scheinerman
and Singer-Cohen [5] showed that the total variation distance between 𝐺(𝑛,𝑚, 𝑝) and
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𝐺(𝑛, 𝑝) tends to 0 for any 0 6 𝑝 = 𝑝(𝑛) 6 1 if 𝑚 = [𝑛𝛼] with 𝛼 > 6, where 𝑝 is chosen so
that the expected numbers of edges in the two graphs are the same, i.e., 𝑝 = 1−(1−𝑝2)𝑚.
Kim, Lee and Na [10] proved that the total variation distance still tends to 0 for any
0 6 𝑝 = 𝑝(𝑛) 6 1 whenever 𝑚≫ 𝑛4.

Let 𝒩 (𝐺(𝑛,𝑚, 𝑝)) denote the number of the largest component of the random inter-
section graph 𝐺(𝑛,𝑚, 𝑝). In this paper, we assume that 𝑚 = [𝛽𝑛𝛼] and 𝑛𝑚𝑝2 = 𝜆, where
𝛼, 𝛽, 𝜆 are fixed positive constants.

Behrisch [3] studied 𝒩 (𝐺(𝑛,𝑚, 𝑝)) for 𝛼 ̸= 1, 𝛽 = 1 and 𝜆 ̸= 1. Lager̊as and Lindholm
[11] considered 𝒩 (𝐺(𝑛,𝑚, 𝑝)) when 𝛼 = 1 and 𝜆 ̸= 1. In the supercritical regime, i.e.,
𝑚𝑛𝑝2 = 𝜆 > 1, Behrisch [3] and Lager̊as and Lindholm [11] derived the following weak
law of large numbers:

𝒩 (𝐺(𝑛,𝑚, 𝑝))

𝑏𝑛

𝑝−→ 1− 𝑏, (1)

where

𝑏𝑛 =

{︂
𝑛, 𝛼 > 1,
𝑛𝑚𝑝, 𝛼 < 1,

𝑏 =

{︂
𝜌, 𝛼 ̸= 1,
𝜌𝛽, 𝛼 = 1,

(2)

𝜌 ∈ (0, 1) is the smallest nonnegative solution to

𝑥 = exp(𝜆(𝑥− 1)), (3)

and 𝜌𝛽 ∈ (0, 1) is the smallest nonnegative solution to

𝑥 = exp
{︁√︀

𝜆𝛽
(︁
𝑒
√

𝜆/𝛽(𝑥−1) − 1
)︁}︁

. (4)

The aim of this paper is to establish a central limit theorem for 𝒩 (𝐺(𝑛,𝑚, 𝑝)) in the
supercritical regime. Our main result is stated as follows.

Theorem 1. Assume that 𝑚 = [𝛽𝑛𝛼] and 𝑛𝑚𝑝2 = 𝜆 > 1. Let 𝜁𝑛,𝑚,𝑝 ∈ (0, 1) be the unique
positive solution to

𝑥𝑏𝑛/𝑛 + exp
{︁
−𝑚𝑝

(︁
1− 𝑒−𝑥𝑏𝑛𝑝

)︁}︁
= 1, (5)

and let

𝜎2 =

⎧⎨⎩
(︀
𝜆𝑐(1− 𝑐)𝜌2𝛽 + 𝜌𝛽(1− 𝜌𝛽)

)︀
(1− 𝜆𝑐𝜌𝛽)−2, 𝛼 = 1,

𝜌(1− 𝜌)(1− 𝜆𝜌)−2, 𝛼 > 1,
𝜆𝜌(1− 𝜌)(1− 𝜆𝜌)−2, 𝛼 < 1,

where 𝑐 = 𝑒(𝜌𝛽−1)
√

𝜆/𝛽. Then, for 𝛼 > 1/2, we have

𝒩 (𝐺(𝑛,𝑚, 𝑝))− 𝜁𝑛,𝑚,𝑝𝑏𝑛√
𝑛

𝑑−→ 𝑁(0, 𝜎2).
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Figure 1: Q-Q plots of sample data versus normal distribution.

Remark 2. For 𝛼 < 1, the largest component of 𝐺(𝑛,𝑚, 𝑝) is 𝑂𝑃 (𝑏𝑛) = 𝑂𝑃 (𝑛(𝛼+1)/2)
(see 1), and the second largest component of 𝐺(𝑛,𝑚, 𝑝) has size 𝑂𝑃 (

√︀
𝑛/𝑚 log2 𝑛) =

𝑂𝑃 (𝑛(1−𝛼)/2 log2 𝑛) (see Theorem 12 in [8]), the number of the largest component and the
second largest component are both close to

√
𝑛 for small 𝛼. Therefore, we guess that the

central limit theorem for 𝒩 (𝐺(𝑛,𝑚, 𝑝) doesn’t hold for small positive 𝛼.
Through numerical simulations, we obtain the number of the largest component in

random intersection graph models, all on 𝑛 = 100000 vertices, with 𝛽 = 1, 𝜆 = 2 and
different 𝛼. For each model, we take 2000 replications and our results are shown in Figure
1. The Q-Q plots show samples’ quantiles compared to the normal distribution. When
𝛼 < 0.5, the Q-Q plot shows that the points do not align along a line. While when
looking at the Q-Q plots for 𝛼 > 0.5, we see the points match up along a straight line
which shows that the quantiles match. This leads us to reason that the largest component
is most likely asymptoticallynormallydistributed when 𝛼 > 0.5. Q-Q plots show that the
limit distributions of order of the largest components change greatly near 𝛼 = 0.5.

Remark 3. From Lemma 7 in Section 2, we always have 𝜎2 > 0 for 𝜆 > 1.

Remark 4. We write

𝑓(𝑥) = exp
{︁
𝑚𝑝

(︁
𝑒−𝑥𝑛𝑝 − 1

)︁}︁
+ 𝑥− 1,

then 𝑓 ′′(𝑥) > 0 for 𝑥 ∈ R. This implies that 𝑓(𝑥) is a convex function. Note that
𝑓(0) = 0, 𝑓(1) > 0 and 𝑓 ′(0) = −𝜆+ 1 < 0. The equation 𝑓(𝑥) = 0 has only one non-zero
solution 𝑥𝑛,𝑚,𝑝 ∈ (0, 1). Hence 𝜁𝑛,𝑚,𝑝 := 𝑥𝑛,𝑚,𝑝𝑛/𝑏𝑛 is the unique positive solution to (5)
and 𝜁𝑛,𝑚,𝑝 = 𝑥𝑛,𝑚,𝑝 ∈ (0, 1) for 𝛼 > 1. As for 𝛼 < 1, by noting that 𝑚𝑝→ 0 and applying
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the inequality 1− 𝑒−𝑥 6 𝑥 for all 𝑥 ∈ R, we also have

0 < 𝜁𝑛,𝑚,𝑝 =
1− exp

{︀
−𝑚𝑝(1− 𝑒−𝜁𝑛,𝑚,𝑝𝜆)

}︀
𝑚𝑝

6 1− 𝑒−𝜁𝑛,𝑚,𝑝𝜆 < 1.

Furthermore, if 𝛼 > 1, then 𝑛𝑝→ 0 and

log(1− 𝜁𝑛,𝑚,𝑝) = −𝑚𝑝
(︁

1− 𝑒−𝜁𝑛,𝑚,𝑝𝑛𝑝
)︁
∼ −𝜆𝜁𝑛,𝑚,𝑝.

If 𝛼 < 1, then 𝑚𝑝→ 0 and

𝜁𝑛,𝑚,𝑝 =
1− exp

{︀
−𝑚𝑝(1− 𝑒−𝜁𝑛,𝑚,𝑝𝜆)

}︀
𝑚𝑝

∼ 1− 𝑒−𝜁𝑛,𝑚,𝑝𝜆.

Therefore by some basic calculations, we can get that 𝜁𝑛,𝑚,𝑝 → 1− 𝜌 for 𝛼 ̸= 1.

If 𝛼 = 1, then we have 𝑛𝑝→
√︀

𝜆/𝛽, 𝑚𝑝→
√
𝜆𝛽 and

log(1− 𝜁𝑛,𝑚,𝑝) = −𝑚𝑝(1− 𝑒−𝜁𝑛,𝑚,𝑝𝑛𝑝)

= −𝑚𝑝(1− 𝑒−𝜁𝑛,𝑚,𝑝

√
𝜆/𝛽)

(︁
1 +

1− 𝑒𝜁𝑛,𝑚,𝑝(
√

𝜆/𝛽−𝑛𝑝)

𝑒𝜁𝑛,𝑚,𝑝

√
𝜆/𝛽 − 1

)︁
∼ −

√︀
𝜆𝛽(1− 𝑒−𝜁𝑛,𝑚,𝑝

√
𝜆/𝛽).

We can also get that 𝜁𝑛,𝑚,𝑝 → 1− 𝜌𝛽 for 𝛼 = 1.
Combining the above facts, we always have

𝜁𝑛,𝑚,𝑝 → 1− 𝑏. (6)

Hence the weak law of large numbers (1) is an immediate consequence of Theorem 1.

The basic idea of the proof of Theorem 1 follows from the proof of corresponding result
for Erdős-Rényi random graph 𝐺(𝑛, 𝑝) (see, for instance, Chapter 4 in [13]). In section 2,
we construct a related random variable 𝑆𝑡, get a central limit theorem for 𝑆𝑡 and estimate
the probability that 𝑆𝑡 = 0. The proof of Theorem 1 is given in Sections 3. Throughout
this paper, all limits are taken as 𝑛→∞ and 𝑚→∞. We denote by 𝑎 ∧ 𝑏 := min{𝑎, 𝑏}
for any 𝑎, 𝑏 ∈ R.

2 Preliminaries

For two vertices 𝑣, 𝑣′ ∈ V, we write 𝑣 ←→ 𝑣′ when there exists a path of occupied
edges connecting 𝑣 and 𝑣′ in 𝐺(𝑛,𝑚, 𝑝). For 𝑣 ∈ V, we denote the connected component
containing 𝑣 by

𝒞(𝑣) = {𝑣′ ∈ V : 𝑣 ←→ 𝑣′}.
Assume that V = {𝑣1, 𝑣2, . . . , 𝑣𝑛}. Fix 𝑘 = 𝑘𝑛,𝑚,𝑝 6 𝑛, which will be chosen later on, and
let

𝒞𝑘 = ∪𝑘𝑖=1𝒞(𝑣𝑖).
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To study the growth of 𝒞𝑘, we consider the random bipartite graph 𝐵(𝑛,𝑚, 𝑝) with bi-
partition (V,W) which is defined in Section 1. For any 𝑣 ∈ V and 𝑤 ∈W, if 𝑣 and 𝑤
are adjacent in 𝐵(𝑛,𝑚, 𝑝), then we set 𝜂𝑣,𝑤 = 1, otherwise 𝜂𝑣,𝑤 = 0.

In the beginning, we construct 𝑈𝑡, �̄�𝑡, 𝑉𝑡 and 𝑊𝑡 recursively with 𝑈𝑡, 𝑉𝑡 ⊂ V and
�̄�𝑡,𝑊𝑡 ⊂ W for 𝑡 = 0, 1, 2, . . .. 𝑈𝑡 and �̄�𝑡 are the sets of active vertices which are
investigated at 𝑡 in V and W respectively, 𝑉𝑡 and 𝑊𝑡 are the unexplored vertices in V
and W respectively. For 𝑡 = 0, we let 𝑈0 = {𝑣1, · · · , 𝑣𝑘}, �̄�0 = ∅, 𝑉0 = V − 𝑈0 and
𝑊0 = W. If 𝑈𝑡 ̸= ∅, then we pick 𝑣𝑖𝑡 from 𝑈𝑡 according to some rule that is measurable
with respect to F𝑡 = 𝜎(𝑈0, . . . , 𝑈𝑡) and let

𝑈𝑡+1 = (𝑈𝑡 − {𝑣𝑖𝑡}) ∪𝑁𝑡+1,

𝑉𝑡+1 = 𝑉𝑡 −𝑁𝑡+1,

𝑊𝑡+1 = 𝑊𝑡 − �̄�𝑡+1,

where

�̄�𝑡+1 =
{︀
𝑤 ∈ 𝑊𝑡 : 𝜂𝑣𝑖𝑡 ,𝑤 = 1

}︀
, 𝑁𝑡+1 =

{︀
𝑣 ∈ 𝑉𝑡 : 𝜂𝑣,𝑤 = 1 for some 𝑤 ∈ �̄�𝑡+1

}︀
.

At time 𝜏 = inf{𝑡 : 𝑈𝑡 = ∅} the process stops. For 𝑡 > 0, let 𝑆𝑡 = |𝑈𝑡|. This implies that

|𝒞𝑘|
𝑑
= min{𝑡 : 𝑆𝑡 = 0}. (7)

Lemma 5. For 𝑡 > 0, let 𝐻𝑡 =
∑︀𝑡

𝑖=0 |�̄�𝑖|. Then we have

𝐻𝑡 ∼ B(𝑚, 1− (1− 𝑝)𝑡), (8)

and conditionally on 𝐻𝑡,

𝑆𝑡 + 𝑡− 𝑘 ∼ B(𝑛− 𝑘, 1− (1− 𝑝)𝐻𝑡). (9)

Moreover, for 0 6 𝑙 6 𝑡 6 𝑛,

𝐻𝑡 −𝐻𝑙 ∼ B(𝑚, (1− 𝑝)𝑙 − (1− 𝑝)𝑡), (10)

and conditionally on 𝐻𝑙, 𝐻𝑡 and 𝑆𝑙,

𝑆𝑡 − 𝑆𝑙 + (𝑡− 𝑙) ∼ B(𝑛− 𝑙 − 𝑆𝑙, 1− (1− 𝑝)𝐻𝑡−𝐻𝑙). (11)

Proof. Conditionally on 𝐻𝑡, we have

𝑚−𝐻𝑡+1 = 𝑚−𝐻𝑡 − |�̄�𝑡+1| = 𝑚−𝐻𝑡 − B(𝑚−𝐻𝑡, 𝑝) ∼ B(𝑚−𝐻𝑡, 1− 𝑝).

Note the fact that if 𝑁 ∼ B(𝑛, 𝑝), and coditionally on 𝑁 , 𝑀 ∼ B(𝑁, 𝑞), then 𝑀 ∼
B(𝑛, 𝑝𝑞). For any 0 6 𝑙 6 𝑡 6 𝑛, we have 𝑚 −𝐻𝑙 ∼ B(𝑚, (1 − 𝑝)𝑙) and conditionally on
𝐻𝑙,

𝑚−𝐻𝑡 ∼ B(𝑚−𝐻𝑙, (1− 𝑝)𝑡−𝑙)

∼ 𝑚−𝐻𝑙 − B(𝑚−𝐻𝑙, 1− (1− 𝑝)𝑡−𝑙).
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Hence, conditionally on 𝐻𝑙,

𝐻𝑡 −𝐻𝑙 ∼ B(𝑚−𝐻𝑙, 1− (1− 𝑝)𝑡−𝑙).

This implies (10).
Conditionally on 𝑆𝑡 and |�̄�𝑡+1|, we have |𝑁𝑡+1| ∼ 𝐵(𝑛 − 𝑡 − 𝑆𝑡, 1 − (1 − 𝑝)|�̄�𝑡+1|) and

then

𝑛− 𝑡− 𝑆𝑡+1 = 𝑛− 𝑡− 𝑆𝑡 − |𝑁𝑡+1| ∼ 𝐵(𝑛− 𝑡− 𝑆𝑡, (1− 𝑝)|�̄�𝑡+1|).

Therefore for any 0 6 𝑙 6 𝑡 6 𝑛, conditionally on 𝐻𝑡, 𝐻𝑙 and 𝑆𝑙,

𝑛− 𝑡− 𝑆𝑡 ∼ B(𝑛− 𝑙 − 𝑆𝑙, (1− 𝑝)𝐻𝑡−𝐻𝑙)

∼ 𝑛− 𝑙 − 𝑆𝑙 − B(𝑛− 𝑙 − 𝑆𝑙, 1− (1− 𝑝)𝐻𝑡−𝐻𝑙).

This proves (11).
By taking 𝑙 = 0, (8) and (9) follow from (10) and (11), respectively. The proof of

Lemma 5 is completed.

Let 𝛾 ∈ R and 𝜃 ∈ (0, 1). Assume that {𝜃𝑛, 𝑛 > 1} is a sequence of real numbers such
that 𝜃𝑛 ∈ (0, 1) and 𝜃𝑛 → 𝜃. Define

𝜇𝑛 :=
(︁

1− 𝜃𝑛𝑏𝑛/𝑛− exp
{︁
−𝑚𝑝

(︁
1− 𝑒−𝜃𝑛𝑏𝑛𝑝

)︁}︁)︁
𝑛 + 𝛾𝜇(𝜃)

√
𝑛,

where

𝜇(𝜃) :=

{︃
𝜆𝑒−𝜃
√

𝜆/𝛽−𝑐0(𝜃) − 1, 𝛼 = 1,
𝜆𝑒−𝜃𝜆 − 1, 𝛼 ̸= 1,

(12)

and
𝑐0(𝜃) :=

√︀
𝜆𝛽(1− 𝑒−𝜃

√
𝜆/𝛽).

Let

𝜈(𝜃) :=

⎧⎨⎩
√︀
𝜆/𝛽𝑒−𝜃

√
𝜆/𝛽𝑐0(𝜃)𝑒−2𝑐0(𝜃) + 𝑒−𝑐0(𝜃)(1− 𝑒−𝑐0(𝜃)), 𝛼 = 1,

𝑒−𝜃𝜆(1− 𝑒−𝜃𝜆), 𝛼 > 1,
𝜆𝑒−𝜃𝜆(1− 𝑒−𝜃𝜆), 𝛼 < 1.

(13)

Lemma 6. Assume that 𝑚 = [𝛽𝑛𝛼], 𝑛𝑚𝑝2 = 𝜆 and 𝑘 = 𝑜(
√
𝑛). Then we have

𝑆[𝜃𝑛𝑏𝑛+𝛾
√
𝑛] − 𝜇𝑛√︀

𝑛𝜈(𝜃)

𝑑−→ 𝑁(0, 1), (14)

where 𝑏𝑛 is defined in (2)
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Proof. Let 𝑎𝑛 := [𝜃𝑛𝑏𝑛 + 𝛾
√
𝑛] and

𝐴𝑛 := −𝑎𝑛 + 𝑘 + (𝑛− 𝑘)(1− (1− 𝑝)E(𝐻𝑎𝑛 )),̃︀𝐴𝑛 := −𝑎𝑛 + 𝑘 + (𝑛− 𝑘)(1− (1− 𝑝)𝐻𝑎𝑛 ),

𝐵2
𝑛 := (1− (1− 𝑝)𝐻𝑎𝑛 )(1− 𝑝)𝐻𝑎𝑛 .

By (9) and applying the classical Berry-Esseen inequality for the binomial distribution,
there exists some absolute constant 𝐶 > 0 such that

sup
𝑥∈R

⃒⃒⃒
P
(︁ 𝑆𝑎𝑛 − ̃︀𝐴𝑛√

𝑛− 𝑘𝐵𝑛

6 𝑥
⃒⃒⃒
𝐻𝑎𝑛

)︁
− Φ(𝑥)

⃒⃒⃒
6

𝐶

𝐵𝑛

√
𝑛− 𝑘

. (15)

This implies that

sup
𝑥∈R

⃒⃒⃒
P
(︁ 𝑆𝑎𝑛 − 𝐴𝑛√

𝑛− 𝑘𝐵𝑛

6 𝑥
⃒⃒⃒
𝐻𝑎𝑛

)︁
− Φ

(︁
𝑥 +

𝐴𝑛 − ̃︀𝐴𝑛√
𝑛− 𝑘𝐵𝑛

)︁⃒⃒⃒
= sup

𝑥∈R

⃒⃒⃒
P
(︁ 𝑆𝑎𝑛 − ̃︀𝐴𝑛√

𝑛− 𝑘𝐵𝑛

6 𝑥 +
𝐴𝑛 − ̃︀𝐴𝑛√
𝑛− 𝑘𝐵𝑛

⃒⃒⃒
𝐻𝑎𝑛

)︁
− Φ

(︁
𝑥 +

𝐴𝑛 − ̃︀𝐴𝑛√
𝑛− 𝑘𝐵𝑛

)︁⃒⃒⃒
6

𝐶

𝐵𝑛

√
𝑛− 𝑘

∧ 1.

Hence

sup
𝑥∈R

⃒⃒⃒
P
(︁ 𝑆𝑎𝑛 − 𝐴𝑛√

𝑛− 𝑘𝐵𝑛

6 𝑥
)︁
− E

(︁
Φ
(︁
𝑥 +

𝐴𝑛 − ̃︀𝐴𝑛√
𝑛− 𝑘𝐵𝑛

)︁)︁⃒⃒⃒
6 E

(︁ 𝐶

𝐵𝑛

√
𝑛− 𝑘

∧ 1
)︁
.

If (
√
𝑛𝐵𝑛)−1 𝑝→ 0, then we have

sup
𝑥∈R

⃒⃒⃒
P
(︁ 𝑆𝑎𝑛 − 𝐴𝑛√

𝑛− 𝑘𝐵𝑛

6 𝑥
)︁
− E

(︁
Φ
(︁
𝑥 +

𝐴𝑛 − ̃︀𝐴𝑛√
𝑛− 𝑘𝐵𝑛

)︁)︁⃒⃒⃒
→ 0. (16)

Note that

1− (1− 𝑝)𝑎𝑛 = 1− 𝑒𝑎𝑛 ln(1−𝑝) = 1− 𝑒−𝑎𝑛𝑝 + 𝑂(𝑝)

= 1− 𝑒−𝜃𝑛𝑏𝑛𝑝−𝛾
√
𝜆/

√
𝑚 + 𝑂(𝑝)

= 1− 𝑒−𝜃𝑛𝑏𝑛𝑝
(︁

1− 𝛾
√
𝜆√
𝑚

)︁
+ 𝑂(𝑝 + 𝑚−1).

By (8), we have

E(𝐻𝑎𝑛) = 𝑚(1− (1− 𝑝)𝑎𝑛) ∼

⎧⎨⎩ 𝑚(1− 𝑒−𝜃
√

𝜆/𝛽), 𝛼 = 1,
𝜃𝑛𝑚𝑝, 𝛼 > 1,
𝑚(1− 𝑒−𝜃𝜆), 𝛼 < 1,

(17)
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and

Var(𝐻𝑎𝑛) = 𝑚(1− 𝑝)𝑎𝑛(1− (1− 𝑝)𝑎𝑛) ∼

⎧⎨⎩ 𝑚𝑒−𝜃
√

𝜆/𝛽(1− 𝑒−𝜃
√

𝜆/𝛽), 𝛼 = 1,
𝜃𝑛𝑚𝑝, 𝛼 > 1,
𝑚𝑒−𝜃𝜆(1− 𝑒−𝜃𝜆), 𝛼 < 1.

(18)

Therefore,

(1− 𝑝)E(𝐻𝑎𝑛 ) → 𝑒−𝑐1 , 𝑝Var(𝐻𝑎𝑛)→ 𝑐2, (19)

where

𝑐1 = 𝑐1(𝜃) :=

⎧⎨⎩
√
𝜆𝛽(1− 𝑒−𝜃

√
𝜆/𝛽), 𝛼 = 1,

𝜃𝜆, 𝛼 > 1,
0, 𝛼 < 1,

and

𝑐2 = 𝑐2(𝜃) :=

⎧⎨⎩
√
𝜆𝛽𝑒−𝜃

√
𝜆/𝛽(1− 𝑒−𝜃

√
𝜆/𝛽), 𝛼 = 1,

𝜃𝜆, 𝛼 > 1,
0, 𝛼 < 1.

Furthermore, we get that

(1− 𝑝)E(𝐻𝑎𝑛 ) = exp{−𝑚𝑝(1− (1− 𝑝)𝑎𝑛)}+ 𝑂(𝑝)

= exp
{︁
−𝑚𝑝

(︁
1− 𝑒−𝜃𝑛𝑏𝑛𝑝

(︁
1− 𝛾

√
𝜆√
𝑚

)︁)︁}︁
+ 𝑂(𝑝 + 𝑛−1)

= exp
{︁
−𝑚𝑝

(︁
1− 𝑒−𝜃𝑛𝑏𝑛𝑝

)︁}︁(︁
1− 𝛾𝜆√

𝑛
𝑒−𝜃𝑛𝑏𝑛𝑝

)︁
+ 𝑂(𝑝 + 𝑛−1).

Hence

𝐴𝑛 = (𝑛− 𝑘)
(︁

1− exp
{︁
−𝑚𝑝

(︁
1− 𝑒−𝜃𝑛𝑏𝑛𝑝

)︁}︁(︁
1− 𝛾𝜆√

𝑛
𝑒−𝜃𝑛𝑏𝑛𝑝

)︁
+ 𝑂(𝑝 + 𝑛−1)

)︁
− 𝑎𝑛 + 𝑘

=
(︁

1− 𝜃𝑛𝑏𝑛/𝑛− exp
{︁
−𝑚𝑝

(︁
1− 𝑒−𝜃𝑛𝑏𝑛𝑝

)︁}︁)︁
𝑛

+ 𝛾(𝜆𝑒−𝜃𝑛𝑏𝑛𝑝−𝑚𝑝(1−𝑒−𝜃𝑛𝑏𝑛𝑝) − 1)
√
𝑛 + 𝑜(

√
𝑛)

= 𝜇𝑛 + 𝑜(
√
𝑛), (20)

where we have used the fact that

𝑛𝑝√
𝑛

=
√︀
𝑛𝑝2 =

√︀
𝜆/𝑚→ 0.

Since Var(𝐻𝑎𝑛) → ∞ (by (19)), by using (8) and applying the central limit theorem
for the binomial distribution, we have

𝐻𝑎𝑛 − E(𝐻𝑎𝑛)√︀
Var(𝐻𝑎𝑛)

𝑑−→ 𝑁(0, 1). (21)
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It follows from (19) and (21) that 𝑝(𝐻𝑎𝑛 − E(𝐻𝑎𝑛))
𝑝→ 0. Hence

(1− 𝑝)𝐻𝑎𝑛

(1− 𝑝)E(𝐻𝑎𝑛 )
= 𝑒(𝐻𝑎𝑛−E(𝐻𝑎𝑛 )) ln(1−𝑝) 𝑝−→ 1. (22)

This together with (19) implies that, for 𝛼 > 1,

𝐵2
𝑛

𝑝−→ (1− 𝑒−𝑐1)𝑒−𝑐1 . (23)

By the mean value theorem, we have

√
𝑛((1− 𝑝)𝐻𝑎𝑛 − (1− 𝑝)E(𝐻𝑎𝑛 ))

=
√
𝑛 ln(1− 𝑝)(1− 𝑝)𝛿𝑛(𝐻𝑎𝑛 − E(𝐻𝑎𝑛))

=
√
𝑛𝑝

√︀
𝑝Var(𝐻𝑎𝑛)(1− 𝑝)𝛿𝑛

ln(1− 𝑝)

𝑝

𝐻𝑎𝑛 − E(𝐻𝑎𝑛)√︀
Var(𝐻𝑎𝑛)

,

where 𝛿𝑛 lies between 𝐻𝑎𝑛 and E(𝐻𝑎𝑛).
If 𝛼 = 1, then by (19), (21), (22) and Slutsky’s theorem, we have

√
𝑛((1− 𝑝)𝐻𝑎𝑛 − (1− 𝑝)E(𝐻𝑎𝑛 ))

𝑑−→ 𝑁(0,
√︀

𝜆/𝛽𝑐2𝑒
−2𝑐1).

This implies that

𝐴𝑛 − ̃︀𝐴𝑛√
𝑛− 𝑘𝐵𝑛

=

√
𝑛− 𝑘((1− 𝑝)𝐻𝑎𝑛 − (1− 𝑝)E(𝐻𝑎𝑛 ))

𝐵𝑛

𝑑−→ 𝑁
(︁

0,

√︀
𝜆/𝛽𝑐2𝑒

−𝑐1

1− 𝑒−𝑐1

)︁
.

Therefore, for any 𝑥 ∈ R,

E
(︁

Φ
(︁
𝑥 +

𝐴𝑛 − ̃︀𝐴𝑛√
𝑛− 𝑘𝐵𝑛

)︁)︁
−→ E(Φ(𝑥 + 𝑌 )) = P(𝑋 6 𝑥 + 𝑌 ) = P(𝑍 6 𝑥),

where 𝑋, 𝑌, 𝑍 are independent random variables such that

𝑋 ∼ 𝑁(0, 1), 𝑌 ∼ 𝑁
(︁

0,

√︀
𝜆/𝛽𝑐2𝑒

−𝑐1

1− 𝑒−𝑐1

)︁
, 𝑍 ∼ 𝑁

(︁
0,

√︀
𝜆/𝛽𝑐2𝑒

−𝑐1

1− 𝑒−𝑐1
+ 1

)︁
.

Summarizing the above facts, it follows from (16) that

𝑆𝑎𝑛 − 𝐴𝑛√
𝑛− 𝑘𝐵𝑛

𝑑−→ 𝑁
(︁

0,

√︀
𝜆/𝛽𝑐2𝑒

−𝑐1

1− 𝑒−𝑐1
+ 1

)︁
.

Hence, by applying (20), (23) and Slutsky’s theorem, we have

𝑆𝑎𝑛 − 𝜇𝑛√
𝑛

𝑑−→ 𝑁
(︁

0,
√︀

𝜆/𝛽𝑐2𝑒
−2𝑐1 + 𝑒−𝑐1(1− 𝑒−𝑐1)

)︁
.
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Similarly, if 𝛼 > 1, then we have

𝐴𝑛 − ̃︀𝐴𝑛√
𝑛− 𝑘𝐵𝑛

𝑝−→ 0,
𝑆𝑎𝑛 − 𝐴𝑛√
𝑛− 𝑘𝐵𝑛

𝑑−→ 𝑁(0, 1),

and

𝑆𝑎𝑛 − 𝜇𝑛√
𝑛

𝑑−→ 𝑁
(︁

0, 𝑒−𝑐1(1− 𝑒−𝑐1)
)︁
.

If 𝛼 < 1, then by applying (17), (18) and (21), we have 𝑚−1𝐻𝑎𝑛

𝑝−→ 1 − 𝑒−𝜃𝜆. This
together with the facts that 𝑚𝑝→ 0 and 𝐻𝑎𝑛 6 𝑚 implies that

1− (1− 𝑝)𝐻𝑎𝑛

𝑚𝑝
=
− ln(1− 𝑝)𝐻𝑎𝑛 + 𝑂(𝑝2𝐻2

𝑎𝑛)

𝑚𝑝
=

𝑝𝐻𝑎𝑛 + 𝑂(𝑝2𝐻2
𝑎𝑛 + 𝑝2𝐻𝑎𝑛)

𝑚𝑝

𝑝−→ 1−𝑒−𝜃𝜆.

Therefore,

𝐵2
𝑛

𝑚𝑝

𝑝−→ 1− 𝑒−𝜃𝜆. (24)

By the mean value theorem, we have

1√
𝑚𝑝

((1− 𝑝)𝐻𝑎𝑛 − (1− 𝑝)E(𝐻𝑎𝑛 ))

=
1√
𝑚𝑝

ln(1− 𝑝)(1− 𝑝)𝛿
′
𝑛(𝐻𝑎𝑛 − E(𝐻𝑎𝑛))

=
√︀

Var(𝐻𝑎𝑛)/𝑚(1− 𝑝)𝛿
′
𝑛

ln(1− 𝑝)

𝑝

𝐻𝑎𝑛 − E(𝐻𝑎𝑛)√︀
Var(𝐻𝑎𝑛)

,

where 𝛿′𝑛 lies between 𝐻𝑎𝑛 and E(𝐻𝑎𝑛). By (18), (19), (21), (22) and Slutsky’s theorem,
we have

1√
𝑚𝑝

((1− 𝑝)𝐻𝑎𝑛 − (1− 𝑝)E(𝐻𝑎𝑛 ))
𝑑−→ 𝑁(0, 𝑒−𝜃𝜆(1− 𝑒−𝜃𝜆)).

Hence,

𝐴𝑛 − ̃︀𝐴𝑛√
𝑛

=

√
𝜆(𝑛− 𝑘)((1− 𝑝)𝐻𝑎𝑛 − (1− 𝑝)E(𝐻𝑎𝑛 ))√

𝑚𝑛𝑝

𝑑−→ 𝑁(0, 𝜆𝑒−𝜃𝜆(1− 𝑒−𝜃𝜆)). (25)

By (24) and the fact that 𝑛𝑚𝑝 → ∞, we have (𝐵𝑛

√
𝑛− 𝑘)−1 𝑝→ 0. Therefore, it follows

from (15) that

sup
𝑥∈R

⃒⃒⃒
P
(︁ 𝑆𝑎𝑛 − ̃︀𝐴𝑛√

𝑛− 𝑘𝐵𝑛

6 𝑥
)︁
− Φ(𝑥)

⃒⃒⃒
6 E

(︁ 𝐶

𝐵𝑛

√
𝑛− 𝑘

∧ 1
)︁
→ 0.
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This means that
𝑆𝑎𝑛 − ̃︀𝐴𝑛√
𝑛− 𝑘𝐵𝑛

𝑑−→ 𝑁(0, 1).

Therefore, by applying (24) and (25), we have

𝑆𝑎𝑛 − 𝐴𝑛√
𝑛

=

√︀
(𝑛− 𝑘)𝑚𝑝√

𝑛

𝐵𝑛√
𝑚𝑝

𝑆𝑎𝑛 − ̃︀𝐴𝑛√
𝑛− 𝑘𝐵𝑛

− 𝐴𝑛 − ̃︀𝐴𝑛√
𝑛

𝑑−→ 𝑁(0, 𝜆𝑒−𝜃𝜆(1− 𝑒−𝜃𝜆)).

Now (14) follows from (20) for 𝛼 < 1.
The proof of Lemma 6 is completed.

Lemma 7. Assume that 𝜆 > 1 and 𝛽 > 0, then we have

𝜆𝜌𝛽𝑒
√

𝜆/𝛽(𝜌𝛽−1) < 1, 𝜆𝜌 < 1,

where 𝜌 and 𝜌𝛽 are defined in (3) and (4) respectively.

Proof. Since 𝜆𝜌 < 1 is a well-known result for Branching processes, we only need to prove

𝜆𝜌𝛽𝑒
√

𝜆/𝛽(𝜌𝛽−1) < 1. Let 𝑁 be a Poisson random variable with mean
√
𝜆𝛽 and we define

𝐻 = 𝑋 ′
1 + · · ·𝑋 ′

𝑁 ,

where (𝑋 ′
𝑖)𝑖>1 are i.i.d. Poisson random variables with mean

√︀
𝜆/𝛽 and are independent

of 𝑁 . Then the probability generating function of the distribution 𝐻 is

E(𝑥𝐻) = E(E(𝑥𝑋′
1+···𝑋′

𝑁 |𝑁))

= exp
{︁√︀

𝜆𝛽
(︁
𝑒
√

𝜆/𝛽(𝑥−1) − 1
)︁}︁

.

We define 𝑓(𝑥) = E(𝑥𝐻)− 𝑥 for 𝑥 > 0. By noting that 𝑓(𝑥) is strictly convex on R and
𝑓(1) = 𝑓(𝜌𝛽) = 0, we have 𝑓 ′(𝜌𝛽) < 0. Recalling the definition of 𝜌𝛽, we have

𝑓 ′(𝜌𝛽) = 𝜆 exp
{︁√︀

𝜆𝛽(𝑒
√

𝜆/𝛽(𝜌𝛽−1) − 1)
}︁
𝑒
√

𝜆/𝛽(𝜌𝛽−1) − 1

= 𝜆𝜌𝛽𝑒
√

𝜆/𝛽(𝜌𝛽−1) − 1.

Therefore,

𝜆𝜌𝛽𝑒
√

𝜆/𝛽(𝜌𝛽−1) < 1.

The proof of Lemma 7 is completed.

Lemma 8. Let 𝑥 ∈ R, 𝛼 > 0 and 𝑙𝑥 = [𝜁𝑛,𝑚,𝑝𝑏𝑛+𝑥
√
𝑛], where 𝜁𝑛,𝑚,𝑝 is defined in Theorem

1. There exists 𝜀0 ∈ (0, 1) such that for any 0 < 𝜀 < 𝜀0 and 𝑙𝑥 > 𝑙 > (1− 𝑏− 𝜀)𝑏𝑛,

P(𝑆𝑙𝑥 > 𝜀
√
𝑛, 𝑆𝑙 = 0) 6 exp{−𝜀2

√
𝑛/4}+ exp{−𝜀(𝑛 ∧𝑚)1/3/3}

holds for sufficiently large 𝑛, where 𝑏𝑛 and 𝑏 are defined in (2).
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Proof. Let 𝜀0 be a positive constant which will be chosen later on. For any 𝜀 ∈ (0, 𝜀0), we
denote by

ℎ1 := 𝜀E(𝐻𝑙𝑥 −𝐻𝑙) + (𝑛 ∧𝑚)1/3, ℎ2 := 𝑙𝑥 − 𝑙 + 𝜀
√
𝑛− (𝑛− 𝑙)(1− (1− 𝑝)E(𝐻𝑙𝑥−𝐻𝑙)+ℎ1).

Let 𝑇 be a random variable such that 𝑇 ∼ B(𝑛− 𝑙, 1− (1− 𝑝)E(𝐻𝑙𝑥−𝐻𝑙)+ℎ1).
By applying Lemma 5 and using the mean value theorem, there exists 𝛿 ∈ [𝑙, 𝑙𝑥] such

that

E(𝐻𝑙𝑥 −𝐻𝑙) = 𝑚((1− 𝑝)𝑙 − (1− 𝑝)𝑙𝑥)

= 𝑚(1− 𝑝)𝛿 ln((1− 𝑝)−1)(𝑙𝑥 − 𝑙)

6 𝑚𝑝(1 + 𝑂(𝑝))𝑒−𝑙𝑝(𝑙𝑥 − 𝑙),

where we have used the inequalities 1− 𝑝 6 𝑒−𝑝 and

ln((1− 𝑝)−1) = ln(1 + 𝑝(1− 𝑝)−1) 6 𝑝(1− 𝑝)−1 = 𝑝(1 + 𝑂(𝑝)).

Then by using the fact that 𝑝(𝑙𝑥 − 𝑙) 6 𝑝𝑙𝑥 6 𝑝𝑏𝑛 + 𝑥𝑝
√
𝑛 = 𝑜(𝑛𝑝(𝑛 ∧ 𝑚)1/3) and the

inequality 1− (1− 𝑦)𝑧 6 𝑦𝑧 for 0 < 𝑦 < 1 and 𝑧 > 1, we have

E(𝑇 ) = (𝑛− 𝑙)(1− (1− 𝑝)E(𝐻𝑙𝑥−𝐻𝑙)+ℎ1)

6 (𝑛− 𝑙)𝑝((1 + 𝜀)E(𝐻𝑙𝑥 −𝐻𝑙) + (𝑛 ∧𝑚)1/3)

6 (1 + 𝜀)(1− (1− 𝑏− 𝜀)𝑏𝑛/𝑛)𝜆 exp{−(1− 𝑏− 𝜀)𝑏𝑛𝑝}(𝑙𝑥 − 𝑙) + 𝑂(𝑛𝑝(𝑛 ∧𝑚)1/3).

By Lemma 7, we have 𝜆𝑒𝜆(𝜌−1) = 𝜆𝜌 < 1 and

𝜆𝜌𝛽 exp{−
√︀
𝜆/𝛽(1− 𝜌𝛽)} < 1.

Hence, by some basic calculations, for any 𝛼 > 0, we can choose 𝜀0 > 0 so small that

lim sup
𝑛,𝑚→∞

(1 + 𝜀0)(1− (1− 𝑏− 𝜀0)𝑏𝑛/𝑛)𝜆 exp{−(1− 𝑏− 𝜀0)𝑏𝑛𝑝} 6 1− 𝜀0.

By using the fact that

𝑛𝑝(𝑛 ∧𝑚)1/3 = 𝑂(𝑚1/3𝑛𝑝) = 𝑂
(︁√︀

𝑚𝑛𝑝2𝑚−1/6
√
𝑛
)︁

= 𝑜(
√
𝑛),

then for any 0 < 𝜀 < 𝜀0, we have E(𝑇 ) 6 (1− 𝜀)(𝑙𝑥 − 𝑙) + 𝑜(
√
𝑛) for sufficiently large 𝑛.

Therefore, for sufficiently large 𝑛, we have

ℎ2 > (𝜀/2)
√
𝑛, E(𝑇 ) 6

1− 𝜀

𝜀
ℎ2. (26)

By applying Chernoff’s bound for the binomial distribution (see, for instance, Theorem
2.21 in [13]) and the inequality ℎ1 > (𝑛 ∧𝑚)1/3, we obtain

P(𝐻𝑙𝑥 −𝐻𝑙 − E(𝐻𝑙𝑥 −𝐻𝑙) > ℎ1) 6 exp
{︁
− ℎ2

1

2E(𝐻𝑙𝑥 −𝐻𝑙) + 2ℎ1/3

}︁
6 exp

{︁
− 3𝜀ℎ1

2(3 + 𝜀)

}︁
6 exp{−𝜀(𝑛 ∧𝑚)1/3/3}. (27)
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By (26), for sufficiently large 𝑛, we have

P(𝑇 > 𝑙𝑥 − 𝑙 + 𝜀
√
𝑛) = P(𝑇 − E(𝑇 ) > ℎ2)

6 exp
{︁
− ℎ2

2

2E(𝑇 ) + 2ℎ2/3

}︁
6 exp

{︁
− ℎ2

2(1− 𝜀)/𝜀 + 2/3

}︁
6 exp{−𝜀2

√
𝑛/4}. (28)

It follows from (11) that, conditionally on 𝐻𝑙, 𝐻𝑙𝑥 and 𝑆𝑙 = 0,

𝑆𝑙𝑥 + (𝑙𝑥 − 𝑙) ∼ B(𝑛− 𝑙, 1− (1− 𝑝)𝐻𝑙𝑥−𝐻𝑙).

We can conclude from (27)-(28) that

P(𝑆𝑙𝑥 > 𝜀
√
𝑛, 𝑆𝑙 = 0) 6 P(𝑆𝑙𝑥 + (𝑙𝑥 − 𝑙) > 𝑙𝑥 − 𝑙 + 𝜀

√
𝑛, 𝐻𝑙𝑥 −𝐻𝑙 6 E(𝐻𝑙𝑥 −𝐻𝑙) + ℎ1)

+ P(𝐻𝑙𝑥 −𝐻𝑙 − E(𝐻𝑙𝑥 −𝐻𝑙) > ℎ1)

6 P(𝑇 > 𝑙𝑥 − 𝑙 + 𝜀
√
𝑛) + P(𝐻𝑙𝑥 −𝐻𝑙 − E(𝐻𝑙𝑥 −𝐻𝑙) > ℎ1)

6 exp{−𝜀2
√
𝑛/4}+ exp{−𝜀(𝑛 ∧𝑚)1/3/3}.

The proof of Lemma 8 is completed.

Lemma 9. Let 0 < 𝜂 < 1/2 be a fixed constant and set 𝑘 = 𝑘𝑛,𝑚,𝑝 = [(𝑚 ∧ 𝑛)𝜂𝑛𝑝]. Then
for any fixed 𝑟 ∈ (0, 1− 𝑏), we have

[𝑟𝑏𝑛]∑︁
𝑡=𝑘

P(𝑆𝑡 = 0) = 𝑜(1).

Proof. By (8), for 𝑘 6 𝑡 6 𝑟𝑏𝑛 and sufficiently large 𝑛, we have

E𝐻𝑡 = 𝑚(1− (1− 𝑝)𝑡) > 𝑚(1− (1− 𝑝)𝑘) >
1

2
𝑚𝑝𝑘. (29)

By applying Chernoff’s bound for binomial distribution (see Theorem 2.1 in [7]), we have

P(𝐻𝑡 − E𝐻𝑡 6 −(E𝐻𝑡)
2/3) 6 exp

{︁
− (E𝐻𝑡)

4/3

2E𝐻𝑡

}︁
6 exp

{︁
− 1

4
(𝑚𝑝𝑘)1/3

}︁
for large 𝑛.

Therefore, for large 𝑛, we apply (9) to obtain

P(𝑆𝑡 = 0) = P(B(𝑛− 𝑘, 1− (1− 𝑝)𝐻𝑡) = 𝑡− 𝑘)

6 P(B(𝑛, 1− (1− 𝑝)𝐻𝑡) 6 𝑡)

6 P(B(𝑛, 1− (1− 𝑝)𝐻𝑡) 6 𝑡,𝐻𝑡 − E𝐻𝑡 > −(E𝐻𝑡)
2/3)

+ P(𝐻𝑡 − E𝐻𝑡 6 −(E𝐻𝑡)
2/3)

6 exp
(︁
− 1

4
(𝑚𝑝𝑘)1/3

)︁
+ P(B(𝑛, 1− (1− 𝑝)E𝐻𝑡−(E𝐻𝑡)2/3) 6 𝑡). (30)
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By Markov’s inequality, we have that, for 𝑠 > 0,

P(B(𝑛, 1− (1− 𝑝)E𝐻𝑡−(E𝐻𝑡)2/3) 6 𝑡) 6 𝑒𝑠𝑡E
(︁
𝑒−𝑠B(𝑛,1−(1−𝑝)E𝐻𝑡−(E𝐻𝑡)

2/3
)
)︁

6 𝑒𝑠𝑡
(︁

1− (1− 𝑒−𝑝(E𝐻𝑡−(E𝐻𝑡)2/3))(1− 𝑒−𝑠)
)︁𝑛

6 exp
{︁
𝑠𝑡− 𝑛(1− 𝑒−𝑝(E𝐻𝑡−(E𝐻𝑡)2/3))(1− 𝑒−𝑠)

}︁
.

Let 𝑑 > 0 be a fixed constant and for 𝑡 > 0, let

𝑔(𝑡) =
1− 𝑒−𝑝𝑑E𝐻𝑡

𝑡
=

1− 𝑒−𝑝𝑑𝑚(1−(1−𝑝)𝑡)

𝑡
.

Note that, for any fixed 𝑑′ > 0, both (1−(1−𝑝)𝑡)/𝑡 and (1−𝑒−𝑑′𝑡)/𝑡 are strictly decreasing
in (0,∞) for 𝑡. Therefore, for 0 < 𝑡1 < 𝑡2,

𝑔(𝑡2) =
1− 𝑒

−𝑝𝑑𝑚𝑡2
1−(1−𝑝)𝑡2

𝑡2

𝑡2
<

1− 𝑒
−𝑝𝑑𝑚𝑡2

1−(1−𝑝)𝑡1

𝑡1

𝑡2
<

1− 𝑒
−𝑝𝑑𝑚𝑡1

1−(1−𝑝)𝑡1

𝑡1

𝑡1
= 𝑔(𝑡1).

Then 𝑔(𝑡) is strictly decreasing in (0,∞). Let 𝜀𝑛 = sup𝑘6𝑡6[𝑟𝑏𝑛](E𝐻𝑡)
−1/3, then 𝜀𝑛 → 0.

Hence, we obtain

inf
𝑘6𝑡6[𝑟𝑏𝑛]

𝑛(1− 𝑒−𝑝(E𝐻𝑡−(E𝐻𝑡)2/3))

𝑡
> inf

𝑘6𝑡6[𝑟𝑏𝑛]

𝑛(1− 𝑒−𝑝E𝐻𝑡(1−𝜀𝑛))

𝑡

>
𝑛(1− 𝑒−𝑝E𝐻[𝑟𝑏𝑛](1−𝜀𝑛))

[𝑟𝑏𝑛]

→ 𝑔(𝑟, 𝜆, 𝛽) :=

{︃
1−𝑒−

√
𝜆𝛽(1−𝑒−𝑟

√
𝜆/𝛽)

𝑟
, 𝛼 = 1,

1−𝑒−𝑟𝜆

𝑟
, 𝛼 ̸= 1.

By some basic calculations, we obtain

𝜕𝑔(𝑟, 𝜆, 𝛽)

𝜕𝑟
6 0.

Then, for 𝜆 > 1 and 𝑟 ∈ (0, 1− 𝑏), we have 𝑔(𝑟, 𝜆, 𝛽) > 𝑔(1− 𝑏, 𝜆, 𝛽) = 1. Therefore, for
𝜆 > 1 and 𝑟 ∈ (0, 1− 𝑏), we have 𝑔(𝑟, 𝜆, 𝛽) > 1. Choose 𝑠 = log 𝑔(𝑟, 𝜆, 𝛽), then

P(B(𝑛, 1− (1− 𝑝)E𝐻𝑡−(E𝐻𝑡)2/3) 6 𝑡) 6 exp
{︁
𝑠𝑡− 𝑛(1− 𝑒−𝑝(E𝐻𝑡−(E𝐻𝑡)2/3))(1− 𝑒−𝑠)

}︁
6 exp{−𝑡(𝑔(𝑟, 𝜆, 𝛽)− 1− log 𝑔(𝑟, 𝜆, 𝛽) + 𝑜(1))}

holds uniformly for 𝑘 6 𝑡 6 [𝑟𝑏𝑛]. Since 𝑔(𝑟, 𝜆, 𝛽) − 1 − log 𝑔(𝑟, 𝜆, 𝛽) > 0, we can choose
a constant 𝐽(𝑟, 𝜆, 𝛽) such that 0 < 𝐽(𝑟, 𝜆, 𝛽) < 𝑔(𝑟, 𝜆, 𝛽) − 1 − log 𝑔(𝑟, 𝜆, 𝛽) and, for

sufficiently large 𝑛, P(B(𝑛, 1 − (1 − 𝑝)E𝐻𝑡−(E𝐻𝑡)2/3) 6 𝑡) 6 𝑒−𝑡𝐽(𝑟,𝜆,𝛽) holds uniformly for
𝑘 6 𝑡 6 [𝑟𝑏𝑛].

This together with (30) implies that, for any 0 < 𝑟 < 1− 𝑏,

[𝑟𝑏𝑛]∑︁
𝑡=𝑘

P(𝑆𝑡 = 0) 6
[𝑟𝑏𝑛]∑︁
𝑡=𝑘

(︁
exp

{︁
− 1

4
(𝑚𝑝𝑘𝑛)1/3

}︁
+ 𝑒−𝑡𝐽(𝑟,𝜆,𝛽)

)︁
= 𝑜(1).

This completes the proof of Lemma 9.
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3 Proof of Theorem 1

Proposition 10. Let 𝜂 ∈ (0, 1/2) be a fixed constant. Assume that 𝑚 = [𝛽𝑛𝛼], 𝑛𝑚𝑝2 =
𝜆 > 1 and 𝑘 = 𝑘𝑛,𝑚,𝑝 := [(𝑚 ∧ 𝑛)𝜂𝑛𝑝]. Then for 𝛼 > 0, we have

|𝒞𝑘| − 𝜁𝑛,𝑚,𝑝𝑏𝑛√
𝑛

𝑑−→ 𝑁(0, 𝜎2),

where 𝜁𝑛,𝑚,𝑝 and 𝜎2 are defined in Theorem 1.

Proof. At first, we have 𝑘 6 𝑚𝜂𝑛𝑝 = 𝑚𝜂−1/2
√
𝜆𝑛 = 𝑜(

√
𝑛). Let 𝑙𝑥 = [𝜁𝑛,𝑚,𝑝𝑏𝑛 + 𝑥

√
𝑛] for

any 𝑥 ∈ R. Then by (7) we have

P
(︁ |𝒞𝑘| − 𝜁𝑛,𝑚,𝑝𝑛√

𝑛
> 𝑥

)︁
= P(|𝒞𝑘| > 𝑙𝑥) = P(𝑆𝑖 > 0 for all 𝑖 6 𝑙𝑥) 6 P(𝑆𝑙𝑥 > 0).

Note that 𝜁𝑛,𝑚,𝑝 → 1− 𝑏 (see (6)), where 𝑏 is defined in (2). By applying Lemma 6 with
𝜃𝑛 = 𝜁𝑛,𝑚,𝑝 and 𝛾 = 𝑥, we have

P(𝑆𝑙𝑥 > 0) = P
(︁𝑆𝑙𝑥 − 𝑥𝜇(1− 𝑏)

√
𝑛√︀

𝑛𝜈(1− 𝑏)
>
−𝑥𝜇(1− 𝑏)√︀

𝜈(1− 𝑏)

)︁
→ P

(︁
𝑍 >

−𝑥𝜇(1− 𝑏)√︀
𝜈(1− 𝑏)

)︁
, (31)

where 𝑍 is a standard normal random variable, 𝜇(𝜃) and 𝜈(𝜃) are defined in (12) and
(13). Therefore,

lim sup
𝑛→∞

P
(︁ |𝒞𝑘| − 𝜁𝑛,𝑚,𝑝𝑛√

𝑛
> 𝑥

)︁
6 P

(︁
𝑍 >

−𝑥𝜇(1− 𝑏)√︀
𝜈(1− 𝑏)

)︁
. (32)

For the lower bound, we have that for any 𝜀 > 0,

P
(︁ |𝒞𝑘| − 𝜁𝑛,𝑚,𝑝𝑛√

𝑛
> 𝑥

)︁
= P(𝑆𝑖 > 0 for all 𝑖 6 𝑙𝑥)

> P(𝑆𝑙𝑥 > 𝜀
√
𝑛, 𝑆𝑖 > 0 for all 𝑖 6 𝑙𝑥)

= P(𝑆𝑙𝑥 > 𝜀
√
𝑛)− P(𝑆𝑙𝑥 > 𝜀

√
𝑛, 𝑆𝑖 = 0 for some 𝑖 < 𝑙𝑥)

> P(𝑆𝑙𝑥 > 𝜀
√
𝑛)−

𝑙𝑥−1∑︁
𝑙=𝑘

P(𝑆𝑙𝑥 > 𝜀
√
𝑛, 𝑆𝑙 = 0).

Similar arguments as in the proof of (31) show that

lim
𝜀↓0

lim
𝑛→∞

P(𝑆𝑙𝑥 > 𝜀
√
𝑛) = lim

𝜀↓0
P
(︁
𝑍 >

−𝑥𝜇(1− 𝑏) + 𝜀√︀
𝜈(1− 𝑏)

)︁
= P

(︁
𝑍 >

−𝑥𝜇(1− 𝑏)√︀
𝜈(1− 𝑏)

)︁
.

By applying Lemmas 8 and 9, we obtain that, for every 0 < 𝜀 < 𝜀0, 𝑟 ∈ (1− 𝑏− 𝜀, 1− 𝑏)
and sufficiently large 𝑛,

𝑙𝑥−1∑︁
𝑙=𝑘

P(𝑆𝑙𝑥 > 𝜀
√
𝑛, 𝑆𝑙 = 0) =

[𝑟𝑏𝑛]∑︁
𝑙=𝑘

P(𝑆𝑙𝑥 > 𝜀
√
𝑛, 𝑆𝑙 = 0) +

𝑙𝑥−1∑︁
𝑙=[𝑟𝑏𝑛]+1

P(𝑆𝑙𝑥 > 𝜀
√
𝑛, 𝑆𝑙 = 0)

6 𝑜(1) + 𝑏𝑛

(︁
exp{−𝜀2

√
𝑛/4}+ exp{−𝜀(𝑛 ∧𝑚)1/3/3}

)︁
= 𝑜(1),
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We conclude that

lim inf
𝑛→∞

P
(︁ |𝒞𝑘| − 𝜁𝑛,𝑚,𝑝𝑛√

𝑛
> 𝑥

)︁
> P

(︁
𝑍 >

−𝑥𝜇(1− 𝑏)√︀
𝜈(1− 𝑏)

)︁
. (33)

Noting that 𝑒−𝑐(1−𝜌𝛽) = 𝜌𝛽, 𝑒−(1−𝜌)𝜆 = 𝜌,

𝜇(1− 𝑏) =

{︂
𝜆𝑐𝜌𝛽 − 1, 𝛼 = 1,
𝜆𝜌− 1, 𝛼 ̸= 1,

and

𝜈(1− 𝑏) :=

⎧⎨⎩
𝜆𝑐(1− 𝑐)𝜌2𝛽 + 𝜌𝛽(1− 𝜌𝛽), 𝛼 = 1,
𝜌(1− 𝜌), 𝛼 > 1,
𝜆𝜌(1− 𝜌), 𝛼 < 1,

where 𝑐 = 𝑒(𝜌𝛽−1)
√

𝜆/𝛽, we have

𝜎2 =
𝜈(1− 𝑏)

𝜇2(1− 𝑏)
.

The proof of Proposition (10) is completed by (32) and (33).

Proof of Theorem 1. For 𝑚 = [𝛽𝑛𝛼], the second largest component of 𝐺(𝑛,𝑚, 𝑝) has size
less than 𝑂𝑃 (𝑎𝑛,𝑚,𝑝) (see Theorem 1 in [11] and Theorem 12 in [8]), where 𝑎𝑛,𝑚,𝑝 =√

𝑚𝑛
𝑚∧𝑛 log2 𝑛. Let 𝑘 = 𝑘𝑛,𝑚,𝑝 = [(𝑚 ∧ 𝑛)𝜂𝑛𝑝], then

𝑘𝑎𝑛,𝑚,𝑝 6
√
𝑚𝑛(𝑚 ∧ 𝑛)𝜂−1𝑛𝑝 log2 𝑛 = 𝑂𝑃 (𝑛(𝑚 ∧ 𝑛)𝜂−1 log2 𝑛).

For any 𝛼 > 1/2, there exists 0 < 𝜂𝛼 < 1/2 such that 𝑘𝑎𝑛,𝑚,𝑝 = 𝑜𝑃 (
√
𝑛). We can conclude

that, for any 𝛼 > 1/2, with high probability,

𝒩 (𝐺(𝑛,𝑚, 𝑝)) 6 |𝒞𝑘|.

Otherwise, with high probability,

|𝒞𝑘| = 𝑂𝑃 (𝑘𝑎𝑛,𝑚,𝑝) = 𝑜𝑃 (
√
𝑛).

This is a contradiction to Proposition 10. So, we get that with high probability,

𝒩 (𝐺(𝑛,𝑚, 𝑝)) 6 |𝒞𝑘| 6 𝒩 (𝐺(𝑛,𝑚, 𝑝)) + 𝑂𝑃 (𝑘𝑎𝑛,𝑚,𝑝) = 𝒩 (𝐺(𝑛,𝑚, 𝑝)) + 𝑜𝑃 (
√
𝑛).

Then Theorem 1 follows from Proposition 10.
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