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Abstract

Let Qd be the d-dimensional Hamming cube and N = |V (Qd)| = 2d. An inde-
pendent set I in Qd is called balanced if I contains the same number of even and
odd vertices. We show that the logarithm of the number of balanced independent
sets in Qd is

(1−Θ(1/
√
d))N/2.

The key ingredient of the proof is an improved version of “Sapozhenko’s graph
container lemma.”

Mathematics Subject Classifications: 05C69

1 Introduction

For a bipartite graph G = X
∐
Y and an independent set I in G, I is said to be balanced

if |I ∩ X| = |I ∩ Y |. We use bis(G) for the number of balanced independent sets of a
graph G.

Write Qd for the d-dimensional Hamming cube and N for |V (Qd)|(= 2d). In this note
we prove the following result on log bis(Qd). (All log’s in this paper are in base 2.)

Theorem 1.
log bis(Qd) = (1−Θ(1/

√
d))N/2. (1)
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It is easy to see that the rhs of (1) is a lower bound: Barber [2] showed that the size of a
maximum balanced independent set in Qd is

2d−1 − 2

(
d− 2

(d− 2)/2

)
if d is even;

2d−1 −
(

d− 1

(d− 1)/2

)
if d is odd,

and collecting balanced subsets of a maximum BIS gives the lower bound. So the main
task of this paper is to show the rhs of (1) is also an upper bound.

Background. The asymptotics for the number of (ordinary) independent sets in Qd, i(Qd),
was first given by Korshunov and Sapozhenko [11]:

Theorem 2.
i(Qd) ∼ 2

√
e2N/2. (2)

(The above asymptotics are substantially refined by Jenssen and Perkins in [8].) Note
that the rhs of (2) is an asymptotic lower bound on i(Qd): writing Qd = E

∐
O (a few

basic definitions are recalled below), any subset of E or O is an independent set, from
which we have 2 ·2N/2−1 independent sets. The extra factor

√
e reflects the contribution

of independent sets most of whose vertices are even (odd, resp.), together with a (very)
small number of odd (even, resp.) vertices. (See e.g. [4] for a more detailed description
on this lower bound construction.)

Thus Theorem 2 implies that i(Qd) is asymptotically equal to this lower bound, and
in particular, this implies all but a negligible fraction of independent sets in Qd are highly
unbalanced. The natural problem of estimating bis(Qd) was suggested by T. Helmuth,
M. Jenssen, and W. Perkins [6], and Theorem 1 answers this question at the level of
asymptotics of the logarithm.

After the first draft of this paper was prepared, it was communicated to the author that
the problem of estimating bis(Qd) was also considered by Galvin and Tetali [5] in their
study of the mixing time of hard core model dynamics on Qd, who obtained the weaker
upper bound exp2[(1 − Ω(1/(

√
d log d)))N/2]. We point out that Galvin and Tetali take

a roughly similar approach to the present approach, the key difference being that their
Lemma 3.4 is weaker (by a factor of log d) than our Lemma 11.

The key ingredient of the proof of Theorem 1 is Lemma 11, an improvement (see
Remark 12) of “Sapozhenko’s graph container lemma” from [12]. Sapozhenko’s lemma
and its variants have played a key role in resolving a number of asymptotic enumeration
problems on the Hamming cube and related structures, e.g. [11, 8, 3, 9, 10, 7, 1]. The
current improved version of the lemma is implicitly proved in [10, Lemma 6.3], but we
give a self-contained proof in Section 3 to provide a convenient reference for future work.

It would be of interest finding finer asymptotics for bis(Qd). For example,

Question 3. What is optimal C for which

log bis(Qd) = (1− C/
√
d)N/2?
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Or, even more ambitiously,

Question 4. What is the asymptotics for bis(Qd)?

Definitions. We use Qd for the d-dimensional Hamming cube: that is, V = V (Qd) is the
collection of binary strings of length d, and two vertices are adjacent iff they differ in
exactly one coordinate. A vertex v is even (odd, resp.) if v contains an even (odd, resp.)
number of 1’s. We use E (O, resp.) for the set of even (odd, resp.) vertices in Qd (so
Qd = E

∐
O). The collection of balanced independent sets in Qd is denoted by B = B(d),

and I always denotes a balanced independent set.
As usual, N(v) is the set of neighbors of v, and N(A) is the set of vertices that

are adjacent to at least one vertex in A. We use [A] for the closure of A, namely,
[A] = {v ∈ V : N(v) ⊆ N(A)}.

Finally, we refer to the logarithm of the number of possibilities for a choice as the cost
of that choice.

Outline. In Section 2 we recall some basic tools. The main lemma (Lemma 11) and
Theorem 1 are proved in Section 3 and Section 4 respectively.

2 Tools

The following is a well-known fact about the sum of binomial coefficients.

Proposition 5. For any fixed α ∈ [0, 1/2] and n ∈ Z+,∑
i6αn

(
n

i

)
6 2H(α)n,

where H(α) := −α logα− (1− α) log(1− α) is the binary entropy function.

For a positive integer m, a composition of m is a sequence (a1, . . . , as) of positive
integers summing to m. Recall the following basic fact:

Proposition 6. The number of compositions of m is 2m−1 and the number with at most
b 6 m/2 parts is ∑

i6b

(
m− 1

i

)
6 exp2[b log(em/b)].

Say A ⊆ V is 2-linked if for any u, v ∈ A, there are vertices u = u0, u1, . . . , ul = v in A
such that for each i ∈ [l], ui−1 and ui are at distance at most 2 in Qd. The 2-components
of A are its maximal 2-linked subsets.

Proposition 7 ([3], Lemma 1.6). For each fixed k, the number of k-linked subsets of V
of size x containing some specified vertex is at most 2O(x log d).
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The next two results recall standardish isoperimetric inequalities for Qd. Recall that
N = |V (Qd)| = 2d.

Proposition 8 ([4], Claim 2.5). For A ⊆ E (or O) with |A| 6 N/4,

|N(A)| − |A|
|N(A)|

= Ω(1/
√
d).

Proposition 9 ([4], Lemma 2.6). For A ⊆ E (or O),

if |A| < dO(1), then |A| 6 O(1/d)|N(A)|.

The next lemma recalls what we need from [12], and follows from Lemmas 5.3-5.5 in
the excellent exposition due to Galvin [4]. For A in the statement, we use G = N(A) and
t = |G| − |[A]|.

Lemma 10. For q, g ∈ Z+, q 6 N/4, g > d4 and

G(q, g) = {A ⊆ E : A is 2-linked, |[A]| = q and |G| = g},

there exist a family W =W(q, g) ⊆ 2E × 2O with

|W| = 2O(t log2 d/
√
d) (3)

and a function Φ = Φq,g : G → W such that for each A ∈ G, (S, F ) := Φ(A) satisfies:

(a) S ⊇ [A], F ⊆ G;

(b) |S| 6 |F |+O(t/(
√
d log d)).

3 Main Lemma

In this section we prove the following key lemma.

Lemma 11. For q, g, and G(q, g) as in Lemma 10,

log |G(q, g)| 6 g − Ω(t).

Remark 12. For comparison, Sapozhenko’s original graph container lemma says

log |G(q, g)| 6 g − Ω(t/ log d), (4)

so the main contribution of Lemma 11 is to improve the Ω(t/ log d)-term in the rhs of
(4) to Ω(t). This improvement plays a crucial role in the current work: the bound in (4)

would give a weaker bound, 2g−Ω(N/(
√
d log d)), in (10).
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Proof of Lemma 11. Given q and g, Lemma 10 givesW =W(q, g) at cost O(t log2 d/
√
d).

So it suffices to show that given (S, F ) ∈ W , the cost of specifying A ∈ Φ−1(S, F ) is at
most g − Ω(t).

Let γ ∈ (0, 1) be a constant TBD. (We don’t try to optimize γ.)
Case 1. If |S| < g − γt, then we specify A by picking a subset of S, which costs

|S| = g − γt.
Case 2. If |S| > g − γt, then we first fix an arbitrary closed A∗ ∈ Φ−1(S, F ) (we can

simply pick any member of Φ−1(S, F ) and take its closure). Note that this choice is free,
and |A∗| = q by the definition of G(q, g).

The crucial observation is that (letting G∗ = N(A∗))

(G∗ \G,G \G∗) determines (G, [A]).

In what follows we first specify G∗ \ G and G \ G∗ from which we have [A], and then
specify A ⊆ [A].

We first bound the cost of G∗ \ G. Since G∗ \ G ⊆ G∗ \ F , the cost of G∗ \ G is at
most (using Lemma 10 (b))

|G∗ \ F | = |G∗| − |F | 6 |G| − |S|+O(t/(
√
d log d)) 6 (1 + o(1))γt. (5)

Next, we bound the cost of G \G∗. Observe that

G \G∗ = N([A] \ A∗) \G∗,

because each x ∈ G \G∗ has a neighbor in [A] and none in A∗. So we may specify G \G∗
by specifying a Y ⊆ [A] \A∗ ⊆ S \A∗ with G \G∗ = N(Y ) \G∗. Moreover, we only need
Y ⊆ S \ A∗ of size at most |G \ G∗| 6 g − |F | 6 (1 + o(1))γt, by letting Y contain one
neighbor of x for each x ∈ G \G∗.

Now, since (again using Lemma 10 (b))

|S \ A∗| = |S| − q 6 |F |+ o(t)− q 6 g − q + o(t) 6 (1 + o(1))t,

the cost of specifying Y from S \ A∗ is at most

log

(
(1 + o(1))t

(1 + o(1))γt

)
6 (1 + o(1))H(γ)t (6)

where H(·) is the binary entropy function. Finally, once we have [A], we specify A by
picking a subset of [A], which costs

q = g − t. (7)

Summing up (5), (6), and (7), we bound the total cost for Case 2 by

(1 + o(1))γt+ (1 + o(1))H(γ)t+ (g − t). (8)

Now, choose γ so that (8) is less than (say) g − t/2, and the lemma follows.
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4 Proof of Theorem 1

We show that the rhs of (1) is an upper bound on log bis(Qd). We first dispose of the
minor cost for small independent sets.

Proposition 13. There is a constant α ∈ (0, 1/2) such that

|{I ∈ B : |I| 6 αN}| = 2(1−Ω(1))N/2. (9)

Proof. The lhs of (9) is at most (with plenty of room) ∑
06k6αN/2

(
N/2

k

)2

6 2H(α)N

(the inequality uses Proposition 5), and the rhs is less than 2(1−Ω(1))N/2 for small enough
constant α.

Let B′ = {I ∈ B : |I| > αN} where α is the constant in Proposition 13. A natural way
to specify a balanced independent set I is to choose a set A ⊆ E and a set B ⊆ O \N(A)
so that |A| = |B| (and take I = A ∪ B). Moreover, since [I ∩ E ] and [I ∩ O] have no
edges between them, A and B must satisfy min{|[A]|, |[B]|} 6 N/4 (because |N(X)| >
|X|, ∀X ⊆ E or O). Thus, |B′| is at most

2×
∑

g>αN/2

∑
A⊆E:|N(A)|=g
|A|>αN/2
|[A]|6N/4

|{B ⊆ O \N(A)}|

= 2N/2+1
∑

g>αN/2

2−g|{A ⊆ E : |N(A)| = g, |A| > αN/2, |[A]| 6 N/4}|.

Our main task is to show that

given g = Ω(N), |{A ⊆ E : |N(A)| = g, |A| > αN/2, |[A]| 6 N/4}| 6 2g−Ω(N/
√
d), (10)

from which it follows that (with Proposition 13)

|B| 6 2(1−Ω(1))N/2 + 2N/2+1
∑

g>αN/2

2−Ω(N/
√
d) = 2(1−Ω(1/

√
d))N/2.

In the rest of the paper, we show (10). In what follows, we always assume that g and A
satisfy the restrictions in (10).

Notation.
Recall that a 2-component of A is a maximal 2-linked subset of A (see Section 2).

• Ai’s: 2-components of A.
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• Gi = N(Ai), G = ∪iGi = N(A).

• gi = |Gi|, ai = |Ai|, qi = |[Ai]|, ti = gi − qi.

• c(A) =
∑

i qi (note that |A| 6 c(A) 6 |[A]|).

• g = |G| (=
∑

i gi).

• Ai (or simply i) is


isolated if ai = 1 (equiv. gi = d);

small if Ai is not isolated and gi < d4;

large otherwise.

Note that the classification in the above bullet point is entirely determined by gi.
By Proposition 9, ∑

{ai: i isolated or small} = O(N/d),

so in particular, we have (since |A| = Ω(N))∑
{gi: i large} >

∑
{ai: i large} = Ω(N). (11)

Proof of (10). Observe that (since |A| 6 c(A) 6 |[A]|) it suffices to show that given g as
in (10) and q with αN/2 6 q 6 min{N/4, g}, the number of A’s in E with c(A) = q and

|N(A)| = g is at most 2g−Ω(N/
√
d) (since then summing this up over all q’s gives (10)).

Given q and g, we first decompose (q, g) into {(qi, gi)′s} so that
∑

i qi = q and
∑

i gi = g
(and then specify Ai’s satisfying |[Ai]| = qi and |Gi| = gi). The number of elements in a
decomposition {(qi, gi)′s} is at most g/d, so Proposition 6 bounds the cost of the gi’s by
(g/d) log(ed) and that of the qi’s by{

(g/d) log(ed) if (g >) q > 2g/d;
2g/d if q 6 2g/d.

Therefore, the total cost of the specification of qi’s and gi’s is at most

O(g log d/d). (12)

Lemma 14. Given (qi, gi), if i is isolated or small, then the cost of Ai with |[Ai]| = qi
and |Gi| = gi is at most gi.

Proof. The cost of an isolated i is at most

log(N/2) = d− 1 6 gi.

For a small i, we use Proposition 7 to bound the cost of [Ai] by

log(N/2) +O(qi log d)
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(log(N/2) is the cost for the ‘specified vertex’ in Proposition 7). Once we have [Ai] we
specify Ai by choosing each subset of [Ai], which costs qi. Therefore, the total cost for
small i’s is

log(N/2) +O(qi log d) + qi 6 gi,

where the inequality follows from the fact that gi/2 > d− 1 and Proposition 9.

Finally, given (qi, gi) such that i is large, Lemma 11 bounds the cost for Ai with
|[Ai]| = qi and |Gi| = gi by

gi − Ω(ti) (13)

(here we need the assumption that (qi 6) q 6 N/4 to apply Lemma 11).
Summing up the costs in (12), Lemma 14 and (13), we have the cost for A at most

O(g log d/d) + g −
∑
{Ω(ti): i large}. (14)

Now Proposition 8 gives ti = Ω(gi/
√
d) for all i, so by (11) we bound (14) by

g − Ω(N/
√
d).
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