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Abstract

Let k > 2 and n1 > n2 > n3 > n4 be integers such that n4 is sufficiently larger
than k. We determine the maximum number of edges of a 4-partite graph with
parts of sizes n1, . . . , n4 that does not contain k vertex-disjoint triangles. For any
r > t > 3, we give a conjecture on the maximum number of edges of an r-partite
graph that does not contain k vertex-disjoint cliques Kt.

Mathematics Subject Classifications: 05C35

1 Introduction

Given two graphs G and F , we say that G is F -free if G does not contain F as a subgraph.
Let Kt denote a complete graph on t vertices, and Tn,t denote a balanced complete t-
partite graph on n vertices (now known as the Turán graph). In 1941, Turán [9] proved
that Tn,t has the maximum number of edges among all Kt+1-free graphs (the case t = 2
was previously solved by Mantel [7]). Turán’s result initiates the study of Extremal Graph
Theory, an important area of research in modern Combinatorics (see the monograph of
Bollobás [2]). Let kKt denote k disjoint copies of Kt. Simonovits [8] studied the Turán
problem for kKt and showed that when n is sufficiently large, the (unique) extremal graph
on n vertices is the join of Kk−1 and the Turán graph Tn−k+1,t−1.

In this paper we consider Turán problems in multi-partite graphs. Let Kn1,n2,...,nr

denote the complete r-partite graph on parts of sizes n1, n2, . . . , nr. This variant of the
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Turán problem was first considered by Zarankiewicz [11], who was interested in the case
of forbidding Ks,t in (subgraphs of) Ka,b. Formally, given graphs H and F , we define
ex(H,F ) as the maximum number of edges in an F -free subgraph of H. Bollobás, Erdős,
and Straus [3] (see also [2, Page 544]) proved the following result. For any subset I ⊆ [r],
write nI :=

∑
i∈I ni.

Theorem 1. [3] The extremal number ex(Kn1,...,nr , Kt) is equal to

max
P

∑
I 6=I′∈P

nI · nI′ ,

where the maximum is taken over all partitions P of [r] into t− 1 parts.

The problem of forbidding disjoint copies of cliques in multi-partite graphs has been
studied recently. Chen, Li and Tu [4] determined ex(Kn1,n2 , kK2) and De Silva, Heysse
and Young [6] claimed that ex(Kn1,...,nr , kK2) = (k−1)(n1 + · · ·+nr−1) for n1 > · · · > nr.
De Silva, Heysse, Kapilow, Schenfisch and Young [5] determined ex(Kn1,...,nr , kKr) and
raised the question of determining ex(Kn1,...,nr , kKt) when r > t. After giving another
proof of Theorem 1, Bennett, English and Talanda-Fisher [1] reiterated this question.

Problem 2. [5] Determine ex(Kn1,...,nr , kKt) when r > t.

In this paper we solve Problem 2 for r = 4 and t = 3 when all ni’s are sufficiently large.
To state our result, for k > 1, we define a function of positive integers n1 > n2 > n3 > n4:

gk(n1, n2, n3, n4) := max {(n1 + n4)(n2 + n3) + (k − 1)n1, n1(n2 + n3 + n4) + (k − 1)(n2 + n3)}

=

{
(n1 + n4)(n2 + n3) + (k − 1)n1 if n1 6 n2 + n3,
n1(n2 + n3 + n4) + (k − 1)(n2 + n3), if n1 > n2 + n3.

When G is a 4-partite graph with parts of sizes n1 > n2 > n3 > n4, we define gk(G) :=
gk(n1, n2, n3, n4). For arbitrary positive integers a, b, c, d, we define that gk(a, b, c, d) =
gk(a1, a2, a3, a4), where a1 > a2 > a3 > a4 is a reordering of a, b, c, d.

Theorem 3. Given k > 1, there exists N0(k) such that if G is a kK3-free 4-partite graph
with parts of sizes n1 > n2 > n3 > n4 > 6k2 and n1 + n2 + n3 + n4 > N0(k), then
e(G) 6 gk(n1, n2, n3, n4). In other words, ex(Kn1,n2,n3,n4 , kK3) 6 gk(n1, n2, n3, n4).

Theorem 3 is tight due to two constructions G1 and G2 below. In fact, a subgraph of
G2 was given by De Silva et al. [5] as a potential extremal construction; later Wagner [10]
realized that G1 was a better construction for the n1 = n2 = n3 = n4 case. Let n1 > n2 >
n3 > n4 > k. We define two 4-partite graphs with parts V1, . . . , V4 such that |Vi| = ni.
Fix a set Z of k − 1 vertices in V4. Let

G1 := KV1∪V4, V2∪V3 ∪KZ, V1 and G2 := KV1, V2∪V3∪V4 ∪KZ, V2∪V3 ,

where KV1,...,Vr denotes the complete r-partite graph with parts V1, . . . , Vr. Note that
each triangle must intersect Z and thus both G1 and G2 are kK3-free. Moreover, e(G1) =
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Figure 1: The extremal graphs G1 and G2

(n1 + n4)(n2 + n3) + (k − 1)n1 and e(G2) = n1(n2 + n3 + n4) + (k − 1)(n2 + n3). Thus
e(G2) 6 e(G1) if and only if n1 6 n2 + n3 and equality holds when n1 = n2 + n3.

Our proof uses a progressive induction (an induction without a base case) on the total
number of vertices and a standard induction on k that uses Theorem 1 as the base case.

We conjecture an answer to Problem 2 in general, which includes all aforementioned
results [1, 4, 6] and Theorem 3.

Conjecture 4. Given r > t > 3 and k > 2, let n1, . . . , nr be sufficiently large. For
I ⊆ [r], write mI := mini∈I ni. Given a partition P of [r], let nP := maxI∈P{nI −mI}.
The Turán number ex(Kn1,...,nr , kKt) is equal to

max
P

{
(k − 1)nP +

∑
I 6=I′∈P

nI · nI′

}
, (1.1)

where the maximum is taken over all partitions P of [r] into t− 1 parts.

The bound (1.1) is achieved by the following graph. Given integers k, t and n1, . . . , nr

with r > t and ni > k for all i, let P be a partition of [r] into t − 1 parts that maxi-
mizes (1.1). Let G be an r-partite graph whose parts have sizes n1, . . . , nr. Partition G
into t − 1 parts according to P , namely, let VI =

⋃
i∈I Vi for every I ∈ P and include

all edges between VI and VI′ for all I 6= I ′ ∈ P . In addition, let I0 ∈ P such that
nP = nI0 −mI0 and let Vi0 be the smallest part in VI0 . We choose a set Z ⊆ Vi0 of k − 1
vertices and add all edges between Z and VI0 \ Vi0 .

Verifying Conjecture 4 seems hard due to the complexity of (1.1) – we shall discuss
this in the last section.

Notation. Given a graph G = (V,E), let |G| denote the order of G. Suppose A,B are
two disjoint subsets of V . Let e(A) := e(G[A]) be the number of edges of G in A and
e(A,B) be the number of edges of G with one end in A and the other in B. Moreover,
let G \ A := G[V \ A]. Denote by

e(A;G) := e(G)− e(G \ A),
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the number of edges of G incident to A. Given a vertex x, let N(x) denote the set of
neighbors of x. For vertices x, y and z, we often write xyz for {x, y, z}. We sometimes
abuse this notation by using xy ∈ A × B to indicate that x ∈ A and y ∈ B. Given an
r-partite graph G, a crossing set is a set that contains at most one vertex from each part
of G.

2 Proof of Theorem 3

In this section we prove Theorem 3. Define two sequences N0(k) and M0(k) recursively
by letting N0(1) = 1,

M0(k) = max{72(k − 1)3, 96k2, N0(k − 1) + 3}, and N0(k) = M0(k)2 (2.1)

for k > 2. Given a 4-partite graph G, let v4(G) denote the size of the smallest part of
G. Define ϕ(G) := e(G)− gk(G). The following theorem is the main step in the proof of
Theorem 3.

Theorem 5. Suppose k > 2 and Theorem 3 holds for k−1. Let G be a 4-partite graph of
order |G| > M0(k) and with v4(G) > 6k2. If G is kK3-free and ϕ(G) > 0, then we can find
a subgraph G′ of G such that |G| − 2 6 |G′| 6 |G| − 1, v4(G

′) > 6k2, and ϕ(G′) > ϕ(G).

Theorem 3 nows follows from Theorem 5 by an induction on k and a progressive
induction on |G| (e.g., used in [8]).

Proof of Theorem 3. The base case k = 1 follows from Theorem 1 with N0(1) = 1. Let
k > 2 and G be a 4-partite graph of order |G| > N0(k) and with v4(G) > 6k2. Suppose
G is kK3-free and ϕ(G) > 0. By Theorem 5, we find a subgraph G1 ⊂ G such that
|G| − 2 6 |G1| 6 |G| − 1, v4(G1) > 6k2, and ϕ(G1) > ϕ(G) > 1. Repeating this process,
we obtain subgraphs G1 ⊃ G2 ⊃ G3 ⊃ · · · ⊃ Gt such that |G| − 2i 6 |Gi| 6 |G| − i and
ϕ(Gi) > i for i = 1, . . . , t. We stop at Gt because |Gt| 6 M0(k). Hence,

t >
|G| − |Gt|

2
>

N0(k)−M0(k)

2
=

M0(k)2 −M0(k)

2
=

(
M0(k)

2

)
.

Consequently, ϕ(Gt) >
(
M0(k)

2

)
. However, since ϕ(Gt) 6 e(Gt) 6

(
M0(k)

2

)
, this is impossi-

ble.

The rest of this section is devoted to the proof of Theorem 5.

Proof of Theorem 5. Let k > 2 and suppose that

(∗) for any (k − 1)K3-free 4-partite graph G̃ with part sizes n′1 > n′2 > n′3 > n′4 >
6(k − 1)2 and

∑
i∈[4] n

′
i > N0(k − 1), we have e(G̃) 6 gk−1(n

′
1, n

′
2, n

′
3, n

′
4).
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Let G be a 4-partite graph of order |G| > M0(k) and with parts of size n1 > n2 >
n3 > n4 > 6k2. Assume that G is kK3-free and ϕ(G) > 0. Without loss of generality, we
assume that G contains k − 1 disjoint triangles – otherwise we keep adding edges to G
until it contains k− 1 disjoint triangles (as a result, ϕ(G) increases). Our goal is to show
that there exists a crossing set T ⊂ V (G) of size at most 2 such that ϕ(G) < ϕ(G \ T )
and v4(G \ T ) > 6k2.

We proceed in the following cases. It is easy to see that these cases cover all possibil-
ities. In each case we verify v4(G \ T ) > 6k2 immediately.
Case 0. n1 > n2 + n3. We will select a one-element set T ⊂ V1. Since n1 > 2n4, we
have n1 − 1 > n4 and thus v4(G \ T ) = n4 > 6k2.

We assume n1 6 n2 + n3 in the remaining cases.
Case 1. n1 > n3 and n2 > n4. We will select a crossing set T ⊂ V1 ∪ V2. Since
n1 − 1 > n2 − 1 > n4, we have v4(G \ T ) = n4 > 6k2.
Case 2. n1 = n2 = n3 > n4 > 6k2. We select a one-element set T ⊂ V (G). Then
v4(G \ T ) > n4 − 1 > 6k2.
Case 3. n1 = n2 = n3 > n4 = 6k2. We will select a one-element set T ⊂ V1∪V2∪V3.
Since n3 − 1 > n4, we have v4(G \ T ) = n4 = 6k2.
Case 4. n1 > n2 = n3 = n4. We will select a one-element set T ⊂ V1. Since n1 > n4,
v4(G \ T ) = n4 > 6k2.

It remains to show ϕ(G) < ϕ(G \ T ) in Cases 0–4. This is actually easy in Case 0.
Case 0. Recall that ϕ(G) = e(G)− gk(n1, n2, n3, n4) > 0. Since n1 > n2 + n3,

gk(n1, n2, n3, n4) = n1(n2 + n3 + n4) + (k − 1)(n2 + n3).

First assume that some vertex v ∈ V1 satisfies d(v) < n2 + n3 + n4. Let T = {v}. Since
n1 − 1 > n2 + n3,

gk(n1 − 1, n2, n3, n4) = (n1 − 1)(n2 + n3 + n4) + (k − 1)(n2 + n3)

= gk(n1, n2, n3, n4)− (n2 + n3 + n4).

It follows that

ϕ(G \ {v}) = e(G)− d(v)− gk(n1 − 1, n2, n3, n4) > e(G)− gk(n1, n2, n3, n4) = ϕ(G),

as desired. Otherwise, G[V1, V2 ∪ V3 ∪ V4] must be complete. Since G is kK3-free, it
follows that G[V2 ∪ V3 ∪ V4] contains no matching of size k. The result of [6] or a simple
induction on k1 yields that e(G[V2 ∪ V3 ∪ V4]) 6 (k − 1)(n2 + n3). This shows that
e(G) 6 n1(n2 + n3 + n4) + (k − 1)(n2 + n3), namely, ϕ(G) = 0, a contradiction.

In the rest of the proof we assume n1 6 n2 + n3 and will resolve Cases 1–4.
One difficulty in these cases is that, after we delete a set T ⊆ V (G), the sizes of the

four parts of G\T may not follow the order in G. For instance, suppose n1 6 n2 +n3 and

1If there is a vertex of degree at least 2k− 1, then we can delete it and apply induction; otherwise, as
the size of the maximum matching is k − 1, there are at most 2(k − 1)(2k − 1) 6 (k − 1)(n2 + n3) edges
(using k � n3 6 n2).
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T = {v} ⊆ V1. If n1 > n2, then the order of the part sizes of G\T is n1−1 > n2 > n3 > n4,
the same as in G. However, when n1 = n2 > n3 > n4, the order of the part sizes of G \ T
is n2 > n1−1 > n3 > n4, and the degree estimates we obtain are quite different. Another
complication comes from the fact that there are two possible extremal graphs. Even under
the assumption that n1 6 n2 +n3, we still have to consider the possibility of n′1 > n′2 +n′3
in G \ T , where n′1, n

′
2, n

′
3, n

′
4 are the part sizes of G \ T .

Although a case analysis is inevitable, we study the structure of G in Section 2.1 and
use it to simplify the presentation of the proofs of Cases 1–4 in Section 2.2.

2.1 Preparation

We first give several preliminary results. An edge of G is called rich if it is contained in
at least k triangles whose third vertices are located in the same part of V (G). We show
that every triangle in G must contain a rich edge and G contains at most 6(k − 1)2 rich
edges. Let Z be the set of vertices incident to at least one rich edge. Thus, not only is
G \ Z triangle-free, but also every edge in G \ Z is not contained in any triangle of G
because such a triangle would not contain any rich edge.

We shall use the following simple fact.

Fact 6. Let G be a 4-partite graph with parts V1, . . . , V4 and suppose x ∈ V1 and y ∈ V2.
Let ni := |Vi| for i ∈ [4]. Then x and y have at least d(x) + d(y) −

∑
i∈[4] ni common

neighbors in G. In particular, if x and y have no common neighbor, then d(x) + d(y) =∑
i∈[4] ni implies that xy ∈ E(G), V2 ⊆ N(x) and V1 ⊆ N(y). Moreover, if d(x) + d(y) >∑
i∈[4] ni + 2k − 1, then xy is rich.

Proof. Note that |N(x)∩(V3∪V4)| = d(x)−|N(x)∩V2| > d(x)−n2 and |N(y)∩(V3∪V4)| =
d(y)− |N(y)∩ V1| > d(y)− n1. Let m denote the number of common neighbors of x and
y. Then m > |N(x) ∩ (V3 ∪ V4)|+ |N(y) ∩ (V3 ∪ V4)| − n3 − n4 > d(x) + d(y)−

∑
i∈[4] ni.

So the first part of the fact follows. In particular, if m = 0, then d(x) + d(y) 6
∑

i∈[4] ni.
Moreover, if the equality holds, then the inequalities in previous calculations must be
equalities. In particular, V2 ⊆ N(x) and V1 ⊆ N(y), which also imply that xy ∈ E(G).

For the “moreover” part, note that d(x) +d(y) >
∑

i∈[4] ni + 2k− 1 implies that x and
y have at least 2k − 1 common neighbors and thus at least k common neighbors in one
part. Therefore xy is rich.

Recall that we have assumed that ϕ(G) > 0 and n1 6 n2 + n3. Thus,

e(G) > gk(n1, n2, n3, n4) = (n1 + n4)(n2 + n3) + (k − 1)n1. (2.2)

Let R be the subgraph of G induced by the rich edges of G, and let Z = V (R) be the
set of the vertices of G that are incident to at least one rich edge.

Claim 7. Suppose (∗), (2.2), and G is kK3-free. Then the following assertions hold:

(i) every vertex is contained in at most k − 1 edges of R whose other ends are located
in the same part of G; in particular, the maximum degree of R is at most 3k − 3;
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(ii) e(R) 6 6(k − 1)2 and |Z| 6 6(k − 1)2;

(iii) every triangle in G contains an edge in R.

Proof. We first show (i) ⇒ (ii). Note that if R has a matching of size k, then we can
greedily build k vertex-disjoint triangles by extending each rich edge in the matching.
This contradicts the assumption that G is kK3-free. Therefore, the largest matching in R
is of size at most k− 1 and consequently, R has a vertex cover of size at most 2(k− 1). If
the maximum degree of R is at most 3k−3, then e(R) 6 2(k−1)(3k−4)+k−1 < 6(k−1)2

and |Z| 6 2(k − 1)(3k − 4) + 2(k − 1) = 6(k − 1)2, confirming (ii).
To see (i), we assume that some vertex v is incident to k rich edges whose other ends

are in the same part of G. If there is a copy S of (k − 1)K3 in G \ {v}, then we can pick
a rich edge in G \S that contains v and then extend this rich edge to a triangle that does
not intersect S. This gives a kK3 in G, a contradiction. Thus, we infer that G \ {v} is
(k − 1)K3-free.

Let n′1 > n′2 > n′3 > n′4 be the sizes of four parts of G \ {v}. By (∗), we have
e(G \ {v}) 6 gk−1(n

′
1, n

′
2, n

′
3, n

′
4). To estimate gk−1(n

′
1, n

′
2, n

′
3, n

′
4), we first observe that

there exists i0 ∈ [4] such that n′i = ni for all i 6= i0 and ni0 = ni0 − 1; and furthermore,
n′i = |Vi \ {v}| for i ∈ [4] after relabeling V1, V2, V3, V4 if necessary (but maintaining
ni = |Vi|). This is obvious when v ∈ Vi0 and ni0 > ni0+1. Otherwise, for example,
assume that v ∈ V1 and n1 = n2 > n3 (other cases are similar). Then n′1 = n2 = n1 and
n′2 = n1 − 1 = n2 − 1. After relabeling V1 and V2, we have v ∈ V2, and n′i = |Vi \ {v}| for
i ∈ [4].

By the definition of g, we consider two cases. When n′1 6 n′2 + n′3, we have

gk−1(n
′
1, n

′
2, n

′
3, n

′
4) = (n′1 + n′4)(n

′
2 + n′3) + (k − 2)n′1

6

{
(n1 + n4 − 1)(n2 + n3) + (k − 2)n1 if v ∈ V1 ∪ V4,
(n1 + n4)(n2 + n3 − 1) + (k − 2)n1, if v ∈ V2 ∪ V3.

(2.3)

Together with (2.2) and (∗), this implies that

dG(v) = e(G)− e(G \ {v}) > gk(n1, n2, n3, n4)− gk−1(n
′
1, n

′
2, n

′
3, n

′
4)

>

{
n1 + n2 + n3 if v ∈ V1 ∪ V4,
2n1 + n4, if v ∈ V2 ∪ V3,

which is impossible. When n′1 > n′2 + n′3, it must be the case when n1 = n2 + n3 and
n′i0 = ni0 − 1 for i0 ∈ {2, 3}. Thus

gk−1(n
′
1, n

′
2, n

′
3, n

′
4) = n′1(n

′
2 + n′3 + n′4) + (k − 2)(n′2 + n′3)

= (n2 + n3)(n1 + n4 − 1) + (k − 2)(n1 − 1).

Together with (2.2) and (∗), this implies that dG(v) > n1 + n2 + n3, which is impossible
for any v ∈ V (G).

To see (iii), let S be a triangle in G and consider G \ S. Since G is kK3-free, G \ S is
(k − 1)K3-free. By (∗), we have e(G \ S) 6 gk−1(n

′
1, n

′
2, n

′
3, n

′
4) where n′1 > n′2 > n′3 > n′4
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are the sizes of parts of G \ S. We observe that there exists i0 ∈ [4] such that n′i = ni− 1
for i 6= i0 and n′i0 = ni0 ; furthermore, n′i = |Vi\S| after relabeling V1, V2, V3, V4 if necessary
(while maintaining ni = |Vi|). This is obvious when S ⊂

⋃
i 6=i0

Vi and either i0 = 1 or
ni0−1 > ni0 . Otherwise, for example, assume that S ⊂ V1∪V2∪V3 and n2 > n3 = n4 (other
cases are similar). We have n′1 = n1−1, n′2 = n2−1, n′3 = n4 = n3 and n′4 = n3−1 = n4−1.
After swapping V3 and V4, we have S ⊂ V1 ∪ V2 ∪ V4.

If n′1 6 n′2 + n′3. then gk−1(n
′
1, n

′
2, n

′
3, n

′
4) = (n′1 + n′4)(n

′
2 + n′3) + (k − 2)n′1. By our

observation on the values of n′1, n
′
2, n

′
3, n

′
4, it follows that

gk−1(n
′
1, n

′
2, n

′
3, n

′
4) 6 max

j=1,2
{(n1 + n4 − j)(n2 + n3 − (3− j))}+ (k − 2)n1.

If n′1 > n′2 + n′3, then gk−1(n
′
1, n

′
2, n

′
3, n

′
4) = n′1(n

′
2 + n′3 + n′4) + (k − 2)(n′2 + n′3). In this

case, we must have n1 = n2 + n3 − t for t = 0, 1, n′2 = n2 − 1, and n′3 = n3 − 1. Thus
n′i = ni − 1 either for i ∈ [3] or for i ∈ {2, 3, 4}, and consequently

gk−1(n
′
1, n

′
2, n

′
3, n

′
4) 6 max{(n1 − 1)(n2 + n3 + n4 − 2) + (k − 2)(n2 + n3 − 2),

n1(n2 + n3 + n4 − 3) + (k − 2)(n2 + n3 − 2).

Since n1 = n2 + n3 − t for t = 0, 1, it follows that

gk−1(n
′
1, n

′
2, n

′
3, n

′
4) 6 max

j=1,2,3
{(n2 + n3 − (3− j))(n1 + n4 − j)}+ (k − 2)(n1 − 1).

Putting all cases together with e(G \ S) 6 gk−1(n
′
1, n

′
2, n

′
3, n

′
4), we conclude that

e(G \ S) 6 max
j=1,2,3

{(n1 + n4 − j)(n2 + n3 − (3− j))}+ (k − 2)n1. (2.4)

Recall that e(S;G) := e(G)− e(G \S). We next claim that e(S;G) > 3
2

∑
i∈[4] ni + 3k.

Indeed, if the maximum in (2.4) is achieved by j = 1, 2, then, together with (2.2), it gives

e(S;G) >
∑
i∈[4]

ni + min{n1 + n4, n2 + n3}+ n1 − 2 >
3

2

∑
i∈[4]

ni + n4 − 2 >
3

2

∑
i∈[4]

ni + 3k,

where we used n4 > 6k2 in the last inequality. Otherwise, the maximum in (2.4) is
achieved by j = 3, that is, e(G \S) 6 (n1 +n4− 3)(n2 +n3) + (k− 2)n1. By (2.2), we get

e(S;G) > (n1 + n4)(n2 + n3) + (k − 1)n1 − (n1 + n4 − 3)(n2 + n3)− (k − 2)n1

= n1 + 3n2 + 3n3 >
3

2

∑
i∈[4]

ni +
n4

2
>

3

2

∑
i∈[4]

ni + 3k,

where we used the assumption n2 + n3 > n1 and n2, n3 > n4.
Let S = xyz and note that d(x) + d(y) + d(z) = e(S;G) + 3. By averaging, without

loss of generality, we may assume that

d(x) + d(y) >
2

3

3

2

∑
i∈[4]

ni + 3k

 =
∑
i∈[4]

ni + 2k.

By the moreover part of Fact 6, xy is rich and we are done.
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For two disjoint sets A,B ⊆ V (G), let d(A,B) = e(A,B)/(|A||B|) be the density of
the bipartite graph with parts A and B. A pair (Vi, Vj) is called full if d(Vi \ Z, Vj) =
d(Vj \ Z, Vi) = 1; (Vi, Vj) is called empty if e(Vi \ Z, Vj) = e(Vi, Vj \ Z) = 0. We have the
following observation.

Observation 8. For distinct i, j, t ∈ [4], if d(Vi \ Z, Vj) = d(Vi \ Z, Vt) = 1, then (Vj, Vt)
must be empty because any edge in (Vj, Vt) but not in (Vj ∩Z, Vt∩Z) will create a triangle
with at most one vertex in Z, contradicting (iii). In particular, if both (Vi, Vj) and (Vi, Vt)
are full, then (Vj, Vt) is empty.

Claim 9. Fix i 6= j ∈ [4]. If d(x) + d(y) >
∑

i∈[4] ni for every edge xy ∈ Vi × Vj, then
either

• e(Vi \ Z, Vj \ Z) = 0 (this is weaker than (Vi, Vj) being empty) or

• d(Vi \ Z, Vj) = d(Vj \ Z, Vi) = 1, and d(x) + d(y) =
∑

i∈[4] ni.

Moreover, if d(x) + d(y) >
∑

i∈[4] ni for every edge xy ∈ Vi × Vj, then (Vi, Vj) is empty.

Proof. Assume that {i, j, t, `} = [4]. Suppose there is an edge xy ∈ (Vi \ Z) × (Vj \ Z).
Note that if x and y have a common neighbor z, then as x, y /∈ Z, none of the edges of
xyz is rich, contradicting (iii). Thus, x and y have no common neighbor. By Fact 6,
d(x)+d(y) 6

∑
i∈[4] ni. If d(x)+d(y) >

∑
i∈[4] ni, then Fact 6 implies that Vj ⊆ N(x) and

Vi ⊆ N(y). In particular, xy′ ∈ E(G) for every y′ ∈ Vj \ Z. Applying the same argument
to the edge xy′, we obtain that Vi ⊆ N(y′). Similarly, we can derive that Vj ⊆ N(x′) for
every x′ ∈ Vi \ Z. Thus, d(Vi \ Z, Vj) = d(Vj \ Z, Vi) = 1.

Now assume d(x)+d(y) >
∑

i∈[4] ni for every edge xy ∈ Vi×Vj. If e(Vi\Z, Vj \Z) 6= 0,
then the arguments in the previous paragraph provide a contradiction. Suppose there is
an edge xy ∈ (Vi ∩Z)× (Vj \Z). As d(x) + d(y) >

∑
i∈[4] ni, x and y have some common

neighbors in Vt ∪ V`. But since y /∈ Z, by (iii), their common neighbors must be in
(Vt ∪ V`) ∩ Z. Since e(Vi \ Z, Vj \ Z) = 0, we know that N(y) ∩ Vi ⊆ Vi ∩ Z. Altogether,
we obtain that d(x) + d(y) 6 nj + nt + n` + |Z| <

∑
i∈[4] ni, a contradiction. Analogous

arguments show that there is no edge in (Vi \ Z) × (Vj ∩ Z). Thus, e(Vi \ Z, Vj) =
e(Vi, Vj \ Z) = 0, that is, (Vi, Vj) is empty.

Consider a set T ⊆ V (G) defined in Cases 1–4 and let n′1, n
′
2, n

′
3, n

′
4 denote the sizes

of the parts of G \ T . Then ϕ(G) < ϕ(G \ T ) is equivalent to

e(G)− gk(n1, n2, n3, n4) < e(G \ T )− gk(n′1, n
′
2, n

′
3, n

′
4),

or e(T ;G) < gk(n1, n2, n3, n4)− gk(n′1, n
′
2, n

′
3, n

′
4). We will prove by contradiction, assum-

ing that ϕ(G) > ϕ(G \ T ), equivalently,

e(T ;G) > (n1 + n4)(n2 + n3) + (k − 1)n1 − gk(n′1, n
′
2, n

′
3, n

′
4) (2.5)

for every T ⊆ V (G) defined in Cases 1–4.
The case when T = {v} ⊆ V1 occurs in all four cases so we consider it before the cases.

Since n1 6 n2 + n3, we have three possibilities:
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• if n1 > n2, then gk(n1 − 1, n2, n3, n4) = (n1 − 1 + n4)(n2 + n3) + (k − 1)(n1 − 1);

• if n1 = n2 > n4, then gk(n1 − 1, n2, n3, n4) = (n1 + n4)(n2 + n3 − 1) + (k − 1)n1;

• if n1 = n4, then gk(n1 − 1, n2, n3, n4) = (n1 + n4 − 1)(n2 + n3) + (k − 1)n1;

Thus (2.5) implies that for every v ∈ V1,

d(v) >

{
n2 + n3 + k − 1, if n1 > n2,
n1 + n4, if n1 = n2.

(2.6)

2.2 Proof of Cases 1–4

After these preparations, we return to the proof of Cases 1–4. Recall that n1 6 n2 + n3

in all these cases. Recall also that ni > 6k2 for i ∈ [4], so we can always assume that
Vi \ Z 6= ∅. Moreover, by (2.1), we have M0(k) > N0(k − 1) + 3, and thus we can apply
the induction hypothesis (∗) on any (k − 1)K3-free subgraph G \ S, whenever |S| 6 3
(and thus v4(G \ S) > 6k2 − 3 > 6(k − 1)2).

Case 1. n1 > n3 and n2 > n4.
In this case (2.5) holds for every crossing set T = xy ∈ V1 × V2. Since the part sizes

of G \ {x, y} are n1 − 1 > {n2 − 1, n3} > n4. By (2.5), we have

e(xy;G) > (n1 + n4)(n2 + n3) + (k − 1)n1 − ((n1 + n4 − 1)(n2 + n3 − 1) + (k − 1)(n1 − 1))

=
∑
i∈[4]

ni + k − 2.

If xy ∈ E(G), then d(x)+d(y) = e(xy;G)+1 >
∑

i∈[4] ni+k−1 >
∑

i∈[4] ni. By Claim 9,

(V1, V2) is empty. For every x ∈ V1\Z, we thus have d(x) 6 n3+n4 < min{n2+n3, n1+n4},
contradicting (2.6).

Case 2. n1 = n2 = n3 > n4 > 6k2.
In this case (2.5) holds for any one-element set T ⊂ V (G). Write n1 = n2 = n3 = n.

For any x ∈ V1 ∪ V2 ∪ V3, by (2.5), we have

d(x) = e({x};G) > 2n(n + n4) + (k − 1)n− gk(n, n, n− 1, n4),

where gk(n, n, n− 1, n4) = (2n− 1)(n + n4) + (k − 1)n if n > n4 and gk(n, n, n− 1, n4) =
2n(n + n4 − 1) + (k − 1)n if n = n4. Thus, we have d(x) > min{2n, n + n4} = n + n4.
Similarly, for y ∈ V4, by (2.5), we have

d(y) = e({y};G) > 2n(n + n4) + (k − 1)n−
(
2n(n + n4 − 1) + (k − 1)n

)
= 2n. (2.7)

These together imply d(x) + d(y) >
∑

ni for every edge xy ∈ (V1 ∪ V2 ∪ V3) × V4.
For i = 1, 2, 3, Claim 9 implies that either (Vi, V4) is full or e(Vi \ Z, V4 \ Z) = 0. If
e(Vi \Z, V4 \Z) = 0 holds for at least two values of i ∈ {1, 2, 3}, then for every y ∈ V4 \Z,
we have d(y) 6 n + |Z| < 2n (as n > M0(k)/4 > 6k2), contradicting (2.7).
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This implies that at least two of (V1, V4), (V2, V4), and (V3, V4) must be full. Without
loss of generality, assume (V1, V4) and (V2, V4) are full. By Observation 8, (V1, V2) is empty.
Next, we claim that (V3, V4) is empty. Indeed, let x ∈ V2 \Z and recall that d(x) > n+n4.
Since (V1, V2) is empty, we have d(x) 6 n + n4. Thus, d(x) = n + n4 and in particular
V3 ⊆ N(x). Since this holds for every x ∈ V2 \ Z, it follows that d(V2 \ Z, V3) = 1. Thus
(V3, V4) is empty by Observation 8. Together with (ii), we infer

e(G) = e(G[Z])+e(V \Z;G) <

(
|Z|
2

)
+(n1+n2)(n3+n4) 6 (n1+n2)(n3+n4)+(k−1)n1,

contradicting (2.2), The previous inequality follows from
(|Z|

2

)
6 18(k − 1)4 6 (k − 1)n1,

which follows from n1 > M0(k)/4 and (2.1).

Case 3. n1 = n2 = n3 > n4 = 6k2.
Write n1 = n2 = n3 = n. We assume that

n1 > 30k2, (2.8)

as otherwise
∑

ni 6 3 · 30k2 + 6k2 6 M0(k) by (2.1), contradicting the assumption
|G| > M0(k). By (2.6) and the similarity of V1, V2, and V3, we have d(x) > n + n4 for
every x ∈ V1 ∪ V2 ∪ V3. We claim that for y ∈ V4,

d(y) 6 2n + 2k − 1. (2.9)

Otherwise, pick k neighbors x1, . . . , xk of y from the same part of G. For each i, since
d(xi) > n + n4, we have d(xi) + d(y) >

∑
ni + 2k− 1, yielding that xiy is rich by Fact 6.

However, this contradicts (i).

Claim. The graph G[V1 ∪ V2 ∪ V3] is K3-free.

Proof. Suppose instead, there exists a triangle xyz ∈ V1 × V2 × V3. Without loss of
generality, assume that d(x) > d(y) > d(z). We first claim that

d(x) + d(y) + d(z) > 5n + 2n4 + k. (2.10)

Otherwise d(x) + d(y) + d(z) 6 5n+ 2n4 + k− 1 and e(xyz;G) = d(x) + d(y) + d(z)− 3 6
5n + 2n4 + k − 4. Then, by (2.2),

e(G \ {x, y, z}) = e(G)− e(xyz;G) > gk(n, n, n, n4)− (5n + 2n4 + k − 4)

= 2n(n + n4) + (k − 1)n− (5n + 2n4 + k − 4)

= (2n− 2)(n− 1 + n4) + (k − 2)(n− 1)

= gk−1(n− 1, n− 1, n− 1, n4).

By induction hypothesis (∗), we obtain a copy of (k−1)K3 in G\{x, y, z}. Together with
the triangle xyz, this contradicts the assumption G is kK3-free.
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We next claim that at least two of xy, yz, xz are rich and thus all x, y, z ∈ Z. Indeed,
if d(x) < 2n + n4 − k, then by (2.10),

d(y) + d(z) > 5n + 2n4 + k − (2n + n4 − k) = 3n + n4 + 2k >
∑

ni + 2k − 1.

By Fact 6, yz is rich. Since d(x) is the largest, this argument implies that all three edges of
xyz are rich, as desired. Otherwise, d(x) > 2n+n4−k and recall that d(y) > d(z) > n+n4.
Thus

d(x) + d(y) > d(x) + d(z) > 3n + 2n4 − k >
∑

ni + 2k − 1

because n4 = 6k2 > 3k − 1. By Fact 6, both xy and xz are rich, as desired.
The claim in the previous paragraph applies to all triangles in V1 ∪ V2 ∪ V3. There-

fore, all the common neighbors of x and y in V1 ∪ V2 ∪ V3 are in Z and consequently,
|N(x)∩N(y)| 6 |Z|+ |V4| 6 6k2 +n4, and consequently, d(x) +d(y) 6

∑
ni + 6k2 +n4 =

3n + 2n4 + 6k2. On the other hand, (2.10) and the assumption d(x) > d(y) > d(z) imply
that

d(x) + d(y) >
2

3
(5n + 2n4 + k) =

10

3
n +

4

3
n4 +

2

3
k > 3n + 2n4 + 6k2 (2.11)

because n > 30k2 = 2n4 + 18k2 by (2.8). This gives a contradiction.

By the claim, G[V1∪V2∪V3] is K3-free, and thus has at most 2n2 edges by Theorem 1.
Together with (2.9) and (2.8), we obtain that

e(G) 6 2n2 + n4 · (2n + 2k − 1) = 2n(n + n4) + (2k − 1)n4 < 2n(n + n4) + (k − 1)n,

contradicting (2.2).

Case 4. n1 > n2 = n3 = n4.
Assume n2 = n3 = n4 = n and recall that n1 6 2n. We first claim that

d(x) 6 3n for all x ∈ V1, and d(y) 6 n1 + n + k − 1 for all y ∈ V2 ∪ V3 ∪ V4. (2.12)

Indeed, the bound d(x) 6 3n for x ∈ V1 is trivial. Suppose to the contrary, that there is a
vertex y ∈ V2∪V3∪V4 with d(y) > n1 +n+k. It follows that |N(y)∩V1| > d(y)−2n > k.
Assume that x1, . . . , xk ∈ N(y)∩V1. By (2.6), we have d(xj) > 2n+k−1. Thus, we infer
that d(xj) + d(y) > n1 + 3n+ 2k− 1. By Fact 6, we have x1y, . . . , xky ∈ E(R). However,
this contradicts (i).

We next claim that there is no rich edge in V1×(V2∪V3∪V4). Suppose to the contrary,
that xy ∈ V1×(V2∪V3∪V4) is a rich edge. By (2.12), we have e(xy;G) = d(x)+d(y)−1 6
n1 + 4n + k − 2. By (2.2), it follows that

e(G \ {x, y}) = e(G)− e(xy;G) > 2n(n1 + n) + (k − 1)n1 − (n1 + 4n + k − 2)

= 2n(n1 + n− 2) + (k − 2)(n1 − 1)

= gk−1(n1 − 1, n, n, n− 1).
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By induction hypothesis (∗), G \ {x, y} contains a copy S of (k − 1)K3. Since xy is rich,
we can find a triangle in G \ S containing xy, contradicting the assumption that G is
kK3-free.

Now we show that there is no triangle intersecting V1. Suppose to the contrary, there
is a triangle xyz with x ∈ V1. If d(x) + d(z) > n1 + 3n + 2k − 1, then, by Fact 6, xy is
rich, contradicting our earlier claim. We thus assume that d(x) +d(z) < n1 + 3n+ 2k− 1.
Together with (2.12), it gives that d(x)+d(y)+d(z) < 2n1 +4n+3k−2, and e(xyz;G) =
d(x) + d(y) + d(z)− 3 < 2n1 + 4n + 3k − 5. By (2.2), it follows that

e(G \ {x, y, z}) = e(G)− e(xyz;G) > 2n(n1 + n) + (k − 1)n1 − (2n1 + 4n + 3k − 5)

= (n1 + n− 2)(2n− 1) + (k − 2)(n1 − 1) + n− 2k + 1

= gk−1(n1 − 1, n, n− 1, n− 1) + n− 2k + 1.

By (∗), G \ {x, y, z} contains a copy of (k − 1)K3. Together with the triangle xyz, this
contradicts the assumption that G is kK3-free.

We assumed that G contains k − 1 disjoint triangles. Let T1 be a triangle of G. By
the claim of the previous paragraph, T1 must be in V2 ∪ V3 ∪ V4. Moreover, by (iii), T1

must contain a rich edge xy. Below we show that

e(G \ {x, y}) > gk−1(n1, n, n− 1, n− 1). (2.13)

Then, by (∗), G \ {x, y} contains a copy S of (k − 1)K3. Since xy is rich, we can find a
triangle in G \ S containing xy, contradicting the assumption that G is kK3-free.

We first assume that n1 = 2n. If d(x) + d(y) > 6n, then x and y have a common
neighbor in V1, contradicting the earlier claim that there is no triangle intersecting V1.
We thus assume that d(x) + d(y) 6 6n. Thus e(xy;G) 6 6n− 1. By (2.2), it follows that

e(G \ {x, y}) > gk(2n, n, n, n)− (6n− 1)

= 3n · 2n + 2n(k − 1)− (6n− 1)

= 2n(3n− 2) + (k − 2)(2n− 1) + k − 1

= gk−1(2n, n, n− 1, n− 1) + k − 1.

Thus (2.13) holds. Second, assume n1 < 2n. By (2.12), we have e(xy;G) = d(x) + d(y)−
1 6 2(n1 + n + k − 1)− 1. By (2.2), it follows that

e(G \ {x, y}) > gk(n1, n, n, n)− (2n1 + 2n + 2k − 3)

= (n1 + n)2n + (k − 1)n1 − (2n1 + 2n + 2k − 3)

= (n1 + n− 1)(2n− 1) + (k − 2)n1 + n− 2k + 2

= gk−1(n1, n, n− 1, n− 1) + n− 2k + 2.

Thus (2.13) holds.
The proof of Theorem 5 is now completed.
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3 Concluding remarks

In this paper we solved Problem 2 for r = 4 and t = 3 when all ni’s are large. The idea in
our proof should be helpful for proving Conjecture 4 in general. However, to determine
the maximum in (1.1), there are quite a few cases to consider even when r = 5 and t = 3.
Indeed, suppose n1 > n2 > · · · > n5 and {I, I ′} is the bipartition of [5] that attained the
maximum in (1.1). Assume 1 ∈ I. Depending on the values of n1, . . . , n5, it is possible to
have

I = {1} or {1, 2} or {1, 3} or {1, 4} or {1, 5} or {1, 4, 5}.

Another open problem is to find the smallest N0(k) such that Theorem 3 holds. The
N0(k) provided in our proof is a doubly exponential function of k. Indeed, by (2.1) and
N0(1) = 1, we have M0(2) = 96 · 22 = 384 and N0(2) = 3842. It is easy to see that
N0(k) = (N0(k − 1) + 3)2 for k > 3. Thus N0(k − 1)2 6 N0(k) 6 2N0(k − 1)2 for k > 3.
It follows that

N0(2)2
k−2

6 N0(k) 6
(
2N0(2)

)2k−2

.

It is interesting to know whether one can reduce N0(k) to a polynomial function (or even
a linear function) of k.
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[3] B. Bollobás, P. Erdős, and E. G. Straus. Complete subgraphs of chromatic graphs
and hypergraphs. Utilitas Math., 6:343–347, 1974.

[4] H. Chen, X. Li, and J. Tu. Complete solution for the rainbow numbers of matchings.
Discrete Math., 309(10):3370 – 3380, 2009.

[5] J. De Silva, K. Heysse, A. Kapilow, A. Schenfisch, and M. Young. Turán numbers of
vertex-disjoint cliques in r-partite graphs. Discrete Math., 341(2):492–496, 2018.

[6] J. De Silva, K. Heysse, and M. Young. Rainbow number for matchings in r-partite
graphs, preprint.

[7] W. Mantel. Problem 28. Wiskundige Opgaven, 10:60–61, 1907.

the electronic journal of combinatorics 29(2) (2022), #P2.35 14



[8] M. Simonovits. A method for solving extremal problems in graph theory, stabil-
ity problems. In Theory of Graphs (Proc. Colloq., Tihany, 1966), pages 279–319.
Academic Press, New York, 1968.

[9] P. Turán. On an extremal problem in graph theory, (Hungarian). Mat. Fiz. Lapok,
48:436–452, 1941.

[10] A. Z. Wagner. Refuting conjectures in extremal combinatorics via linear program-
ming. J. Combin. Theory Ser. A, 169:105130, 2020.

[11] K. Zarankiewicz. Problem p 101. Colloq. Math., 3:19–30, 1954.

the electronic journal of combinatorics 29(2) (2022), #P2.35 15


	Introduction
	Proof of Theorem 3
	Preparation
	Proof of Cases 1–4

	Concluding remarks

