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Abstract

The dollar game is a chip-firing game introduced by Baker as a context in which
to formulate and prove the Riemann-Roch theorem for graphs. A divisor on a graph
is a formal integer sum of vertices. Each determines a dollar game, the goal of which
is to transform the given divisor into one that is effective (nonnegative) using chip-
firing moves. We use Duval, Klivans, and Martin’s theory of chip-firing on simplicial
complexes to generalize the dollar game and results related to the Riemann-Roch
theorem for graphs to higher dimensions. In particular, we extend the notion of the
degree of a divisor on a graph to a (multi)degree of a chain on a simplicial complex
and use it to establish two main results. The first of these generalizes the fact that
if a divisor on a graph has large enough degree (at least as large as the genus of
the graph), it is winnable; and the second generalizes the fact that trees (graphs of
genus 0) are exactly the graphs on which every divisor of degree 0, interpreted as
an instance of the dollar game, is winnable.

Mathematics Subject Classifications: 05E45

1 Introduction

Let G = (V,E) be a finite, connected, undirected graph with vertex set V and edge
set E. To play the dollar game on G, assign an integer number of dollars to each vertex.
Negative integers are interpreted as debt. A lending move consists of a vertex giving one
of its dollars to each of its neighboring vertices, and a borrowing move is the opposite, in
which a vertex takes a dollar from each neighbor. Vertices may lend or borrow, regardless
of the number of dollars they possess. The goal of the game is to bring all vertices out of
debt through a sequence of such moves.

The dollar game was introduced in Riemann-Roch and Abel-Jacobi theory on a finite
graph, by Baker and Norine ([2]) as a variant of an earlier version due to Biggs ([4]). Baker
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and Norine’s work develops the divisor theory of graphs, which views a graph as a discrete
version of an algebraic curve or Riemann surface. The assignment of av dollars to each
vertex v is formally a divisor D =

∑
v∈V avv in the free abelian group Div(G) := ZV . The

net amount of money on the graph is deg(D) :=
∑

v∈V av, the degree of D. Divisors D
and D′ are linearly equivalent, denoted D ∼ D′, if one may be obtained from the other
via lending and borrowing moves. The group of divisors modulo linear equivalence is the
Picard group Pic(G). Since lending and borrowing moves conserve net wealth, Pic(G) is
graded by degree. Its degree zero component is the Jacobian group Jac(G), which is a
finite group with size equal to the number of spanning trees of G. A choice of a vertex v
gives an isomorphism

Pic(G)
∼−→ Jac(G)⊕ Z (1)

[D] 7→ ([D − deg(D)v], deg(D)).

A divisor is effective if its coefficients are nonnegative. Thus, in the language of algebraic
geometry, an instance of the dollar game is a divisor D ∈ Div(G), and the game is won
by finding a linearly equivalent effective divisor.

A fundamental concept introduced in [2] is the notion of the rank of a divisor. If
there is no effective divisor linearly equivalent to D, then the rank of D is r(D) = −1.
Otherwise, the rank is the maximum integer k such that D − E is linearly equivalent to
an effective divisor for all effective divisors E of degree k. In terms of the dollar game, the
rank is a measure of robustness of winnability: the dollar game D is winnable if and only
if r(D) > 0, and if r(D) = k > 0, it is winnable even after removing k dollars arbitrarily.

The Riemann-Roch theorem for graphs ([2, Theorem 1.12]) has a form nearly identical
to that for algebraic curves. It says that for all D ∈ Div(G),

r(D)− r(K −D) = deg(D) + 1− g.

Here, g = |E| − |V | + 1 and K =
∑

v∈V (degG(v)v − 2) v where degG(v) is the num-
ber of edges incident on v. These play the role of the genus and the canonical divisor,
respectively, for an algebraic curve.

Since the rank is at least −1,

r(D) = deg(D) + 1− g + r(K −D) > deg(D)− g.

A consequence is that if deg(D) > g, then the dollar game D is winnable. This result is
sharp, too: there are always unwinnable divisors of degree g − 1 ([2, Theorem 1.9]). It
follows that all divisors of degree 0 are winnable if and only if g = 0, i.e., G is a tree. In
summary, the dollar game has a minimal “winning degree” g, and that minimal degree
is 0 exactly when the game is played on a tree. Our main goal is to generalize these results
to a dollar game played on a simplicial complex of any dimension.

Lending moves are sometimes called vertex-firings or chip-firings (and borrowing moves
are reverse firings). They arise naturally as an encoding of the discrete Laplacian operator
for the graph. Duval, Klivans, and Martin ([8], [9], [10]) use a version of a combinatorial
Laplacian to generalize the divisor theory of graphs to higher-dimensional simplicial (and
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cellular) complexes. In this theory, an i-chain—a formal integer sum of i-dimensional
faces—of a complex ∆ may be thought of as an assignment of an integer “flow” to each i-
face. Firing an i-face f then diverts flow around the (i + 1)-faces incident on f . The
group of i-cycles modulo these firing moves is the i-th critical group of the complex, Ki(∆),
generalizing the Jacobian group of a graph. By [8, Corollary 4.2], under certain restrictions
on ∆, the size of the torsion part of Ki(∆) is the number of torsion-weighted (i + 1)-
dimensional spanning trees of ∆.

In this paper, we interpret Duval, Klivans, and Martin’s theory as a higher-dimensional
dollar game. A chain on a simplicial complex is thought of as a distribution of wealth
among the faces. The goal of the game is to use face-firings to redistribute wealth,
leaving no face in debt. For this purpose, the naive version of degree as the net wealth
of the system is not appropriate: using that notion of degree, there would be simplicial
complexes with chains of arbitrarily negative degree that are winnable and arbitrarily
positive degree that are unwinnable. The root of the problem is that, unlike for graphs,
lending and borrowing moves on simplicial complexes are not necessarily conservative.
Instead, in Definition 4 we introduce a natural generalization of the degree of a divisor
on a graph to one that is invariant under firing moves on the chains of a complex. Our
main results generalize the properties of divisors on graphs discussed in connection with
the Riemann-Roch theorem, above: Theorem 18 shows that if the degree of a chain is
sufficiently large, then it is winnable, and Corollary 34 shows that for each i, all (i− 1)-
chains of degree 0 are winnable if and only if the i-skeleton of the complex is a spanning
forest, torsion-free in codimension one.

Section 2 sets notation and presents required background on (abstract) simplicial com-
plexes and polyhedral cones. In particular, ∆ always denotes a d-dimensional simplicial
complex. In Section 3, we recall the definition of the i-dimensional Laplacian Li and
critical group Ki(∆) for ∆ and use these to carefully define the dollar game determined
by each i-chain. Two i-chains are linearly equivalent if their difference is in the image
of Li.

Section 4 defines the degree of each i-chain σ of ∆ and relates it the winnability
of the dollar game, generalizing results from graphs (the special case d = 1) to higher
dimensions. Let H be the minimal additive basis, i.e., the Hilbert basis, for the monoid
of nonnegative integer points in the kernel of Li. Using H, we define the degree of σ as an
integer vector deg(σ) ∈ Z|H|. By Proposition 6, the degree of a chain is invariant under
linear equivalence, with the immediate consequence (Corollary 7) that if the dollar game
determined by the chain σ is winnable, then deg(σ) > 0. Lemma 10 is a key technical
result showing there is a strictly positive element in the kernel of Li. By Theorem 13,
the group of degree zero i-chains modulo linear equivalence is isomorphic to the torsion
part of the i-th critical group. In the special case where d = 1, this result generalizes
the fact that the Jacobian group of a connected graph is the torsion part of the Picard
group (in accordance with isomorphism (1)). Theorem 18 achieves one of our main goals:
it says that if the degree of a chain is sufficiently large, its corresponding dollar game is
winnable.

Section 5 considers the case where ∆ is a pseudomanifold. We compute the critical
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group of an oriented pseudomanifold (Proposition 21), generalizing [8, Theorem 4.7 and
subsequent remarks]. Our main result on pseudomanifolds is a combinatorial description
of the Hilbert basis H, described above, in codimension one (Theorem 22). The section
ends with an example of calculating minimal degrees δ such that every chain of degree at
least as large as δ is winnable.

Section 6 builds on the work of Duval, Klivans, and Martin ([8], [9], [10]) on higher-
dimensional forests and critical groups. Our main result is Corollary 34, which shows that
all (i−1)-chains of degree zero are winnable if and only if the i-skeleton is an i-dimensional
spanning forest, torsion-free in codimension one. We also generalize Theorem 3.4 of [8],
which for each dimension gives an isomorphism between the critical group and the cok-
ernel of the reduced Laplacian—a submatrix of the Laplacian determined by a spanning
forest. In Section 6.1, we consider an alternative generalization of the set of divisors of
nonnegative degree on a graph due to Corry and Keenan ([6]). We use it to charac-
terize higher-dimensional spanning trees that are acyclic in codimension one in terms of
winnability of the dollar game.

Section 7 poses some open questions. Finally, the proofs of Proposition 21 and Theo-
rem 30 are relegated to an appendix to avoid distraction from our main line of argument.

Readers interested in learning more about chip-firing on graphs and its relation to a
diverse range of mathematics may wish to consult the textbooks [7] and [15].

2 Preliminaries

2.1 Simplicial complexes

Throughout this paper, ∆ is a d-dimensional simplicial complex on the set V = [n] :=
{1, . . . , n} for some integer n. A subset of V of cardinality i + 1 that is an element of ∆
is an i-dimensional face or i-face of ∆, and the collection of all i-faces is denoted ∆i.
Let fi = fi(∆) := |∆i| be the number of faces of dimension i. The empty set is the single
face of dimension −1. The elements of V are called vertices. The set of all faces forms a
poset under inclusion, graded by dimension, and its maximal elements are the facets of ∆.
To say that ∆ has dimension d means that its highest-dimensional facet has dimension d.
The complex ∆ is pure if all of its facets have dimension d, which we do not assume.
If R is a commutative ring, the module of i-chains, Ci(∆, R), is the free R-module with
basis ∆i. In particular, let Ci(∆) denote the integral i-chains, Ci(∆,Z). Take Ci(∆, R) =
0 for i > d and i < −1, whereas C−1(∆, R) ≈ R. Given an i-chain σ =

∑
f∈∆i

aff , we
write σ(f) := af and define the support of σ to be supp(σ) := {f ∈ ∆i : σ(f) 6= 0}.

In general, our results will depend on the choice of an orientation of ∆ (cf. Example 2).
In order for the dollar game to be sensible, this orientation must be acyclic, i.e., for all i,
every positive sum of i-faces has nonzero boundary. Since any such orientation induces
an acyclic orientation on the 1-skeleton of ∆, every acyclic orientation is the standard
orientation up to renumbering of the vertices, so we fix the standard orientation on ∆
induced by the natural ordering on the vertex set V = [n]. Thus, each i-face is represented
by the list of its vertices v0 · · · vi with v0 < · · · < vi. We fix the lexicographic total
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ordering on each ∆i and the corresponding induced isomorphism Ci(∆) ' Zfi . If π is a
permutation, we write

vπ(0) · · · vπ(i) = sgn(π) v0 · · · vi
as chains.

For each i, there is a boundary mapping

∂i : Ci(∆, R)→ Ci−1(∆, R)

defined by

∂i(v0 · · · vi) :=
i∑

j=0

(−1)jv0 · · · v̂j · · · vi,

where v̂j indicates that vj is omitted. We have ∂i ◦ ∂i+1 = 0. The elements of ker ∂i are
the i-cycles and elements of im ∂i are i-boundaries. The i-th reduced homology group is

H̃i(∆, R) := ker ∂i/ im ∂i+1.

The ordinary homology groups Hi(∆, R) use the same definition, with one change: ∂0 is
taken to be the zero mapping, or equivalently, C−1(∆) is defined to be the trivial group.

We write simply H̃i(∆) and Hi(∆) in the case R = Z. The i-th reduced Betti number is

β̃i(∆) = rankZ H̃i(∆) = dimQ H̃i(∆,Q).

Applying the functor Hom(·, R), we get the dual mapping

∂ti+1 : Ci(∆, R)→ Ci+1(∆, R)

identifying chain modules with their duals using our fixed orderings of the faces of ∆.
If Σ is a subcomplex of ∆, we assume it has the orientation inherited from ∆ (in-

duced by the natural ordering on V ) and may write ∂Σ,i for its i-th boundary mapping.
The i-skeleton of ∆, denoted Skeli(∆), is the subcomplex consisting of all faces of ∆ of
dimension i or less.

Relative homology is mentioned in Section 5. The relative chain complex (with Z-
coefficients) for a nonempty subcomplex Σ of ∆ is the complex

· · · → Ci(∆)/Ci(Σ)
∂i−→ Ci−1(∆)/Ci−1(Σ)→ · · · ,

where ∂i is induced by ∂i. The i-th relative homology group is

Hi(∆,Σ) := ker ∂i/ im ∂i+1.

If Σ = ∅, we take Hi(∆,Σ) := Hi(∆).
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2.2 Polyhedral cones

We recall some facts about polyhedral cones, using [11], [13], and [18] as references. Let Q
be a cone in Rn. For us, this means Q is a subset of Rn closed under nonnegative linear
combinations: if x, y ∈ Q and α, β ∈ R>0, then αx + βy ∈ Q. The cone Q is pointed
ifQ\{0} is contained in an open half-space in Rn, i.e., there exists z ∈ Rn such that x·z > 0
for all x ∈ Q \ {0} (using the ordinary dot product on Rn). We say Q is polyhedral if it is
finitely generated, i.e., if there exist x1, . . . , x` ∈ Rn such that

Q = SpanR>0
{x1, . . . , x`} :=

{∑`
i=1 αixi : αi > 0 for 1 6 i 6 `

}
.

If the generators x1, . . . , x` can be taken to be integral, then Q is a rational polyhedral
cone.

Let Q be a rational polyhedral cone. Then the semigroup of its integral points, QZ :=
Q ∩ Zn, has a Hilbert basis H, defined to be a set of minimal cardinality such that every
point of QZ is a nonnegative integral combination of elements of H. If Q is pointed,
then H is unique, determined by the property that x ∈ H if and only if x ∈ QZ \ {0} and
there do not exist y, z ∈ QZ \ {0} such that x = y + z. If Q is integrally generated by
x1, . . . , x`, let

Π := Π(x1, . . . , x`) :=
{∑`

i=1 αixi : 0 6 αi < 1 for 1 6 i 6 `
}
⊂ Rn

be the corresponding fundamental parallelepiped. Then

H ⊂ {x1, . . . , x`} ∪ Π.

The dual of Q is the rational polyhedral cone

Q∗ := {x ∈ Rn : x · q > 0 for all q ∈ Q},

and we have (Q∗)∗ = Q. The Minkowski sum of two rational polyhedral cones Q1 and Q2

is the rational polyhedral cone Q1 + Q2 := {x+ y : x ∈ Q1, y ∈ Q2}. We will need the
following well-known fact:

(Q1 ∩Q2)∗ = Q∗1 +Q∗2.

2.3 Partial order

Throughout this paper, fix the following “component-wise” partial order on the i-chains
of ∆: write σ > τ if σ(f) > τ(f) for all faces f ∈ ∆i. We say σ is nonnegative if σ > 0,
where 0 denotes the zero i-chain. Fix a similar partial order on Rk: write v > w if vi > wi
for all i; and v is nonnegative if v > 0, where 0 denotes the zero vector.

3 The dollar game

The i-th Laplacian of ∆, also know as the i-th up-down combinatorial Laplacian, is the
mapping

Li := ∂i+1 ◦ ∂ti+1 : Ci(∆)→ Ci(∆).
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The isomorphism Ci(∆) ' Rfi identifies Li with an fi×fi matrix whose rows and columns
are indexed by the i-faces.

Think of σ =
∑

f∈∆i
σ(f)f ∈ Ci(∆) as a distribution of wealth to the i-faces of ∆:

face f has σ(f) dollars, interpreted as debt if σ(f) is negative. A borrowing move at
an i-face f redistributes wealth by replacing σ by the i-chain

σ + Lif.

A lending move at f replaces σ by
σ − Lif.

The goal of the dollar game for σ is to bring all faces out of debt through a sequence of
lending and borrowing moves. In detail, say σ is linearly equivalent to the i-chain σ′ and
write σ ∼ σ′ if there exists v ∈ Zfi such that

σ′ = σ + Liv. (2)

Call σ′ effective if σ′ > 0. Then σ is winnable if there exists an effective σ′ linearly
equivalent to σ, and winning the dollar game determined by σ means finding such a σ′.

The i-chain class group is

J i(∆) := Ci(∆)/∼ = Ci(∆)/ imLi.

So an i-chain σ is winnable if and only if there is an effective chain in its class [σ] ∈ J i(∆).
The image of the i-th Laplacian is contained in the kernel of the i-th boundary map-

ping, which allows us to define the i-th critical group of ∆ introduced by Duval, Klivans,
and Martin in [8]:

Ki(∆) := ker ∂i/ imLi.

Choosing a splitting ρ : im ∂i → Ci(∆) of the exact sequence of free abelian groups

0→ ker ∂i → Ci(∆)→ im ∂i → 0

gives a corresponding isomorphism

J i(∆)→ Ki(∆)⊕ im ∂i (3)

[σ] 7→ ([σ − ρ(σ)], ∂i(σ)).

The torsion part of J i(∆) is thus the torsion part of the critical group, T(Ki(∆)), (which,
itself, is sometimes called the critical group of ∆ (e.g., in [9])). There is a natural surjec-

tion Ki(∆) → H̃i(∆) which is an isomorphism when restricted to the free parts of each
group (Corollary 14).

Example 1. Figure 1 illustrates an instance of the dollar game determined by a 1-chain σ
on the simplicial complex with two facets: 123 and 234. Calling the winning chain on the
right σ′, Equation (2) in this case takes the form
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1

2 3

4

−$1 $2

−$3

$2 −$1

13

lends

1

2 3

4

$0 $1

−$2

$2 −$1

23

borrows

1

2 3

4

$1 $0

$0

$1 $0

Figure 1: Winning the dollar game σ = −12+2·13−3·23+2·24−34 on the 2-dimensional
simplicial complex with facets 123 and 234.


1
0
0
1
0

 =


−1

2
−3

2
−1

+


1 −1 1 0 0
−1 1 −1 0 0

1 −1 2 −1 1
0 0 −1 1 −1
0 0 1 −1 1




0
−1

1
0
0


12 13 23 24 34

σ′ = σ + L1v.

Note that in moving from σ to σ′, money has been introduced from nowhere: the net
amount in σ is −$1, while in σ′ it is $2. While the simplicial dollar game does not
conserve the net amount of money, other quantities are conserved, and we will discuss
this at length starting in the next section. For now, as an example, it is easy to check that
the sum of the amount of money on just the edges 12 and 13 is conserved under lending
and borrowing moves. Thus, for instance, if we change the amount of money on 12 in σ
from −$1 to −$3, the resulting game could never be won. And that statement would
continue to hold no matter how much money we added to the edges 23, 24, and 34.

Example 2. Here we show that winnability depends on the orientation of the simplicial
complex. Figure 2 depicts two dollar games on the 2-simplex (the simplicial complex with
the single facet 123). The first can be won by lending at the edge 13. The second is not
winnable. To see this, note that the sum of the 13 and 23 components of a 1-chain on this
complex—which is −$2 for the second game—is invariant under lending and borrowing
moves. So one of these games is winnable and the other is not, yet they are the same up
to a relabeling of the vertices (which amounts to a change in orientation).

1

2 3

−$1 $1

−$1

1

2 3

$1 −$1

−$1

Figure 2: Two dollar games on the edges of a 2-simplex. Only the first is winnable.
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Example 3 (Graphs). Let ∆ = G be a connected, undirected graph as in the introduc-
tion. In that case, the dollar game for 0-chains on ∆ we just defined is the same as the
dollar game for graphs from [2]. If the vertices of G are vi = i for i = 1, . . . , n, then
the 0-th Laplacian is the usual discrete Laplacian for a graph:

L0 = diag(degG(v1), . . . , degG(vn))− A,

the difference of the diagonal matrix of vertex degrees and the adjacency matrix of G.
The 0-chain class group and 0-th critical group are the Picard group and Jacobian group,
respectively, described in the introduction: J 0(∆) = Pic(G) and K0(∆) = Jac(G). Iso-
morphism (3) specializes to the usual isomorphism (1) for graphs.

4 Degree

The naive way of generalizing the degree of a divisor on a graph to the degree of an i-
chain on a simplicial complex ∆, by simply summing up the coefficients of the i-faces, fails
to retain many of the useful properties of the graph-theoretic degree. Under this naive
definition of degree, as shown in Example 1, linearly equivalent i-chains can fail to have
the same degree, i-chains with negative degree can be winnable, and for a fixed complex,
there can exist i-chains of arbitrarily large degree that are unwinnable. This section will
introduce a better generalization of degree, avoiding these problems. To summarize the
rest of this section: Theorem 13 shows that the group of i-chains of degree zero modulo
firing rules is exactly the torsion part of the i-th critical group, as it is in the usual case
of connected graphs. Our main result is Theorem 18, which states that i-chains of large
enough degree are winnable. Unlike for graphs, it turns out that all i-chains of a given
degree may be winnable even though there exists an i-chain of larger degree that is not
(cf. Example 37). Corollary 20 says this will not occur if the Hilbert basis Hi consists
of 0-1 vectors.

For divisors on a graph, the degree function, deg: ZV → Z, is a linear function with
the following two properties:

invariance under linear equivalence: D ∼ D′ ⇒ deg(D) = deg(D′),

nonnegativity on effective divisors: E > 0⇒ deg(E) > 0.

To generalize the notion of degree to higher dimensions, for each i, we look for a linear
function deg : Ci(∆)→ Z with the above two properties. Any such linear function can be
represented by σ 7→ 〈σ, σ′〉 for a fixed σ′ ∈ Ci(∆), where 〈σ, σ′〉 :=

∑
f∈∆i

σ(f)σ′(f). To
have invariance under linear equivalence, σ′ must lie in the kernel of Li. For the function
to be nonnegative on effective chains, σ′ must itself be effective. Thus, an integer-valued
linear function has our two desired properties if and only if it is expressible as the inner
product with an effective i-chain in kerLi. But no particular one of these functions
stands out as a preferred choice. Instead, we will take our generalization to contain the
information of the output of all such functions, as we now describe.
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The set C :=
{
v ∈ Rfi : Liv > 0 and v > 0

}
is a pointed, rational, polyhedral cone.

Therefore, its set of integer points, C ∩Zfi , has a unique Hilbert basis H ([14], [18]). This
means that C ∩ Zfi is exactly the set of nonnegative integer linear combinations of H,
and H is the smallest subset of C∩Zfi with this property. We can now give our definition
of degree:

Definition 4. Let i ∈ Z. The i-th nonnegative kernel for ∆ is the monoid

ker+ Li := {σ ∈ kerLi : σ(f) > 0 for all f ∈ ∆i} .

Fix an ordering
Hi = Hi(∆) = (h1, . . . , h`i)

for the elements of the Hilbert basis for ker+ Li. The degree of σ ∈ Ci(∆) is

deg(σ) := degi(σ) := (σ · h1, . . . , σ · h`i)

where σ · hj :=
∑

f∈∆i
σ(f)hj(f).

Remark 5. Another possible definition for the degree function is to replace Hi in the
definition with a list of only those elements of the Hilbert basis that are rays of the
cone L+

i ⊗ R. Denoting this variant of the definition of degree by rdeg, we have

deg(σ) > deg(σ′) ⇐⇒ rdeg(σ) > rdeg(σ′)

for σ, σ′ ∈ Ci(∆). This means that all our results relating winnability of the dollar game
to the degree of a chain will hold using either definition. One advantage of rdeg over deg
is that it is easier to compute.

For each i, our definition of degree is a linear function into Z`i , where `i is the number
of elements in Hi, and satisfies the two essential properties described earlier: invariance
under linear equivalence is shown below, and nonnegativity on effective chains is obvious.
It also specializes to the usual definition of degree in the case of a connected graph, as
the Hilbert basis in that case is the sum of all of the vertices of the graph.

Proposition 6. The degree of an i-chain depends only on its linear equivalence class.

Proof. It suffices to show that every element of imLi has degree zero. If τ ∈ kerLi
and σ ∈ Ci(∆), then

〈τ, Liσ〉 = 〈Ltiτ, σ〉 = 〈Liτ, σ〉 = 0,

since Li is symmetric. In particular, 〈τ, Liσ〉 = 0 for all τ ∈ ker+ Li.

Corollary 7. If an i-chain σ is winnable, then deg(σ) > 0.

Proof. If σ is winnable, then σ ∼ τ for some τ > 0. Then deg(σ) = deg(τ), and since
each element of the Hilbert basis Hi(∆) has nonnegative coefficients, deg(τ) > 0.
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Remark 8. Using (4), below, the proof of Proposition 6 is easily modified to show that
every element of im ∂i+1 has degree zero. Thus, we get the stronger result that degree is
a homology invariant.

Definition 9. A vector δ ∈ Z|Hi| is a realizable i-degree if there exists an i-chain σ such
that deg(σ) = δ.

It is typically the case that not all degrees are realizable. For instance, consider the 3-
simplex with single facet 1234. In this case, the Hilbert basis for ker+ L2, computed by
Sage ([20]), is

{123 + 124, 123 + 234, 134 + 124, 134 + 234}.

Ordering these elements as listed, it is easy to check that there are no 2-chains of de-
gree (0, 0, 0, 1).

In general, the set of realizable i-degrees forms an additive monoidMi(∆), and Propo-
sition 6 says that the i-class group J i(∆) is graded byMi. Given δ ∈Mi(∆), let J δ

i (∆)
denote the δ-th graded part of J i(∆). Then there is a faithful action of the group J 0

i (∆)
on J δ

i (∆) given by addition of i-chains.

4.1 The group of chain classes of degree zero

Our next goal is Theorem 13, identifying the group of degree zero i-chains modulo firing
rules with the torsion part of the critical group Ki(∆), and thus generalizing a well-known
result from the divisor theory of graphs (cf. Example 16). Letting K = Z, Q, or R, we
use the standard notation X⊥ = {y ∈ K : x · y = 0 for all x ∈ X} for the perpendicular
space for a subset X ⊆ Kn.

By standard linear algebra,

kerLi = ker ∂i+1∂
t
i+1 = ker ∂ti+1. (4)

Using the chain property of boundary maps, we identify a useful subset of the kernel:

im ∂ti ⊆ ker ∂ti+1 = kerLi.

If f is an (i− 1)-face of ∆, the element ∂ti(f) is called the star of f ; it is a signed sum of
the faces radiating from f . If f = v0 · · · vi−1, then each element in the support of its star
has the form v0 · · · vkvvk+1 · · · vi−1 for some vertex v. The set of stars generates im ∂ti .

Lemma 10. For each i, there exists a strictly positive element τ ∈ kerLi, i.e., such
that τ(f) > 0 for all f ∈ ∆i.

Proof. For the sake of contradiction, assume no such element τ exists. Then for every σ ∈
kerLi, let mσ denote the least (in lexicographic ordering) i-face such that σ(m) 6 0.
Choose a σ ∈ kerLi with maximal mσ. Say m := mσ = v0 · · · vi, and consider the star
S := ∂ti(v1 · · · vi). The coefficient of m in S is 1, and if m0 is an i-face such that m0 < m,
then m0 begins with a vertex v smaller than v1, meaning one of two cases occurs: either
m0 = vv1 · · · vi, in which case the coefficient of m0 in S is 1, or m0 does not contain
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v1 · · · vi as a subface, and the coefficient of m0 in S is 0. Either way, if m0 < m, then the
coefficient ofm0 in S is nonnegative. Now consider σ′ := σ+(1−σ(m))S. Then σ′ ∈ kerLi,
and σ′(f) > 0 for all faces f 6 m, contradicting the maximality of m. So our assumption
must be false.

The following is an immediate consequence:

Corollary 11. If σ is an effective i-chain and deg(σ) = 0, then σ = 0.

Corollary 12. For each i, the Z-span of ker+ Li is kerLi. Hence,

(ker+ Li)
⊥ = (kerLi)

⊥ = (ker ∂ti+1)⊥.

Proof. Take a strictly positive element τ ∈ kerLi that is primitive, i.e., it is not an
integer multiple of any other element. We can then complete {τ} to a basis {τ, σ1, . . . , σk}
for kerLi. (To see this, consider the exact sequence

0→ Zτ → Zn → Zn/Zτ → 0.

Since Zn/Zτ is torsion-free, the sequence splits.) Then, for each nonzero N ∈ Z, the set

{τ, σ1 +Nτ, . . . , σk +Nτ}

is still a basis for kerLi. By taking N � 0, this basis will consist solely of
elements ker+

i Li.

Theorem 13. For each i, the group of i-chains of degree zero modulo firing rules is
isomorphic to the torsion part of the i-th critical group of ∆:

(kerLi)
⊥/ im(Li) = T(Ki(∆)).

Proof. To see that imLi ⊆ (kerLi)
⊥, let σ ∈ Z∆i and τ ∈ kerLi = ker ∂ti+1. Then

〈τ, Liσ〉 = 〈τ, ∂i+1∂
t
i+1σ〉 = 〈∂ti+1τ, ∂

t
i+1σ〉 = 〈0, ∂ti+1σ〉 = 0.

We also have (im ∂ti)
⊥ ⊆ ker ∂i. To see this, take σ ∈ (im ∂ti)

⊥ and τ ∈ Z∆i−1. Then

0 = 〈σ, ∂tiτ〉 = 〈∂iσ, τ〉.

Since τ is arbitrary, ∂iσ = 0.
Next,

im ∂ti ⊆ ker ∂ti+1 ⇒ (kerLi)
⊥ = (ker ∂ti+1)⊥ ⊆ (im ∂ti)

⊥ ⊆ ker ∂i.

Hence,
(kerLi)

⊥/ imLi ⊆ ker ∂i/ imLi =: Ki(∆).

Since dimQ(kerLi)
⊥ = dimQ(imLi), the group (kerLi)

⊥/ imLi is finite, and hence torsion.
So it is a subset of T(Ki(∆)). To show the opposite inclusion, let σ ∈ ker ∂i, and suppose
there exists a positive integer k such that kσ ∈ imLi. Say kσ = Liτ , and let ν ∈ kerLi =
ker ∂ti+1. Then

k〈ν, σ〉 = 〈ν, kσ〉 = 〈ν, Liτ〉 = 〈∂ti+1ν, ∂
t
i+1τ〉 = 0.

Therefore, 〈ν, σ〉 = 0. So each torsion element of Ki(∆) is an element
of (kerLi)

⊥/ im(Li).
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Corollary 14. The natural surjection Ki(∆)→ H̃i(∆) is an isomorphism when restricted

to the free parts of Ki(∆) and H̃i(∆) and a surjection when restricted to the torsion parts.

Proof. Consider the exact sequence

0→ im ∂i+1/ imLi → Ki(∆)→ H̃i(∆)→ 0.

We have
imLi ⊆ im ∂i+1 ⊆ (kerLi)

⊥,

where the second inclusion follows by an argument similar to that given for imLi at the
beginning of the proof of Theorem 13. From Theorem 13, it follows that im ∂i+1/ imLi is
finite. Tensoring the sequence by Q then gives the result about the free parts, and since
the torsion functor T( · ) is left-exact, there is a surjection for the torsion parts.

Remark 15. Let δ be a realizable i-degree, and fix any σ ∈ Ci(∆) such that deg(σ) = δ.
Then there is a bijection of chain class groups J 0

i (∆) → J δ
i (∆) given by ω 7→ ω + σ for

each ω ∈ J 0
i (∆). By Theorem 13, the group J 0

i (∆) is the torsion part of the (finitely-
generated abelian group) K0(∆) and hence is finite. Thus, there are only finitely many
chains to check to determine whether all chains of a given degree are winnable.

Example 16 (Graphs). Consider again how our structures generalize those on graphs.
In the case d = 1, the simplicial complex ∆ is determined by its 1-skeleton, a graph G.
We have two notions of degree for an element σ ∈ Ci(∆): as a 0-chain on ∆, there is
the degree determined by dot products with elements of the Hilbert basis H0; and as a
divisor on a graph, there is the usual degree given by ∂0(σ) =

∑
v∈V σ(v). Call the former

the ∆-degree, deg(∆, σ), of σ, and call the latter the G-degree, deg(G, σ).
By definition, the Picard group Pic(G) is the set of 0-chains modulo the image of L0,

and hence, coincides with the 0-th class group J 0. Now, Pic(G) is graded by G-degree,
and its G-degree zero part is by definition the Jacobian group Jac(G). Hence,

Jac(G) = K0(∆) = ker ∂0/ imL0.

On the other hand, J 0(∆) is graded by ∆-degree. While Pic(G) = J 0(∆) as groups, in
the case where G is not connected, their gradings differ.

If G is connected or, equivalently, β̃0(∆) = 0, the Hilbert basis H0 consists of the
all-ones vector ~1, and deg(∆, σ) = σ · ~1 = ∂0(σ) = deg(G, σ). Thus, Pic(G) = J 0 as
graded groups, and Jac(G) is the collection of ∆-degree zero 1-chains. As is well-known,
the matrix-tree theorem implies that | Jac(G)| is the number of spanning trees of G.
So Jac(G) is finite, hence torsion, in agreement with Theorem 13.

Now consider the case where G is not connected. To fix ideas, say G is the graph
consisting of the disjoint union of two triangles, one with vertices 1, 2, 3 and the other
with vertices 4, 5, 6. In this case,

Jac(G) = K0(∆) ' Z/3Z⊕ Z/3Z⊕ Z.
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The Hilbert basisH0 consists of two elements h1 = (1, 1, 1, 0, 0, 0) and h2 = (0, 0, 0, 1, 1, 1).
So if σ ∈ C0(∆), then

deg(G, σ) =
∑6

i=1 σi and deg(∆, σ) = (
∑3

i=1 σi,
∑6

i=4 σi).

For instance, if σ = 1 − 4 = (1, 0, 0,−1, 0, 0), then deg(G, σ) = 0 while deg(∆, σ) =
(1,−1) 6= (0, 0). The ∆-degree zero part of J 0 is isomorphic to the direct sum of two
copies of the Jacobian group of a triangle, i.e., to Z/3Z⊕ Z/3Z.

4.2 Degree/winnability condition

We now show that if the degree of an i-chain is sufficiently large, it is winnable. The
proof requires the following lemma:

Lemma 17. For each integer i, there exists a finite set of i-chains Pi such that any σ ∈
Ci(∆) with deg(σ) > 0 can be written as σ = ζ + τ + φ where deg(ζ) = 0, τ is effective,
and φ ∈ Pi.
Proof. Having ordered ∆i lexicographically, we make the identification Ci(∆,R) ' Rfi

where fi := |Ci(∆)|. Let LR
i := Li⊗R : Rfi → Rfi , and let O+ be the nonnegative orthant

of Rfi . Using dual cones, the fact that σ has degree at least 0 can be expressed as follows:

σ ∈ ((kerLR
i ) ∩ O+)∗ ∩ Zfi = ((kerLR

i )∗ + (O+)∗) ∩ Zfi = ((kerLR
i )∗ +O+) ∩ Zfi .

We can split both (kerLR
i )∗ and O+ into the Minkowski sum of the integer points they

contain and their respective fundamental parallelepipeds P1 and P2 (with respect to any
choice of integral generators), to get

((kerLR
i )∗ +O+) ∩ Zfi = (((kerLR

i )∗ ∩ Zfi + P1) + (O+ ∩ Zfi + P2)) ∩ Zfi

= (kerLR
i )∗ ∩ Zfi +O+ ∩ Zfi + (P1 + P2) ∩ Zfi .

Since kerLR
i is a linear space, (kerLR

i )∗ = (kerLR
i )⊥. Hence, (kerLR

i )∗ ∩ Zfi is the set
of all i-chains of degree 0, and O+ ∩ Zfi is the set of effective i-chains. So letting Pi =
(P1 +P2)∩Zfi , which is a finite set since P1 and P2 are bounded, completes the proof.

Theorem 18. If the degree of a chain is sufficiently large, then it is winnable: for each
integer i there exists a realizable i-degree δ ∈ Z|Hi| such that for all σ ∈ Ci(∆), if deg(σ) >
δ, then σ is winnable.

Proof. Let S be a set of representatives for T(Ki(∆)), and let Pi be as in Lemma 17. By
finiteness of S and Pi, there exists an i-chain ω such that the chain ω + γ + φ is effective
for all γ ∈ S and φ ∈ Pi. Set δ = deg(ω), and let σ be an i-chain such that deg(σ) > δ.
Then deg(σ − ω) > 0, so by Lemma 17 we can write

σ − ω = ζ + τ + φ

where deg(ζ) = 0, τ is effective, and φ ∈ Pi. Since deg(ζ) = 0, we have ζ ∈ (ker+ Li)
⊥ =

(kerLi)
⊥ by Corollary 12. So by Theorem 13, there exists γ ∈ S such that ζ ∼ γ. It

follows that σ is winnable:
σ ∼ (ω + γ + φ) + τ > 0.

the electronic journal of combinatorics 29(2) (2022), #P2.37 14



Let Wi be the set of all δ satisfying the conditions in Theorem 18. Then Wi is
partially ordered (§2.3) and bounded below by 0 ∈ Z|Hi|. So it is natural to consider its
set of minimal elements, min(Wi). To see that min(Wi) is finite, consider the polynomial
ideal generated by the monomials xδ :=

∏
i x

δi
i as δ varies over Wi. By the Hilbert basis

theorem, this ideal is finitely generated, and its minimal set of generators corresponds
with min(Wi). See Example 27 for the computation of min(W1) for a hollow tetrahedron.

Intuition coming from the dollar game on graphs may not apply to Wi on a general
simplicial complex. For instance, as in Example 27, there are typically infinitely many
nonnegative realizable degrees that are not in Wi. Further, as will be demonstrated in
Example 37, it may be the case that all i-chains of a particular realizable degree δ are
winnable even though there exists an unwinnable i-chain σ with deg(σ) > δ.

To finish this section, we describe conditions under which δ ∈ Wi if and only if δ is
realizable and all i-chains of degree exactly δ are winnable.

Proposition 19. Suppose the i-th Hilbert basis Hi of ∆ consists of 0-1 vectors, and
let σ be an i-chain such that deg(σ) > 0. Then there exists an effective i-chain τ (not
necessarily linearly equivalent to σ) such that deg(τ) = deg(σ).

Proof. Suppose the result is false, and let σ be a counterexample of minimal degree
deg(σ) > 0 (using the component-wise partial order defined in Section 2.3). Note that
deg(σ) 6= 0. Using notation for dual cones from the proof of Lemma 17, we have

σ ∈ (kerLR
i ∩ O+)∗ = (kerLR

i )∗ +O+ = (kerLR
i )⊥ +O+.

The last equality follows because kerLR
i is a linear space. Therefore, over R, we have σ =

ν+τ where ν ∈ (kerLR
i )⊥ and τ =

∑
f∈∆i

τ(f)f with τ(f) > 0 for all f ∈ ∆i. So τ ·h = σ·h
for all h ∈ Hi, and since deg(σ) 6= 0, there exists a face f ′ such that τ(f ′) > 0. To compute
the degree of the integral chain σ−f ′, let h =

∑
f∈∆i

h(f)f be an arbitrary element of Hi.

Since h(f ′) ∈ {0, 1}, taking dot products,

(σ − f ′) · h = (τ − f ′) · h =
∑
f∈∆i

τ(f)h(f)− h(f ′) =
∑
f 6=f ′

τ(f)h(f) + (τ(f ′)− 1)h(f ′) > −1.

Since (σ − f ′) · h ∈ Z for all h ∈ Hi, it follows that deg(σ − f ′) > 0. On the other hand,
by Lemma 10, there exists some h ∈ Hi such that h(f ′) > 0, and therefore deg(σ − f ′)
is strictly smaller than deg(σ). By minimality, there exists an effective integral i-chain ρ
with deg(ρ) = deg(σ − f ′). But then ρ + f ′ is an effective divisor of degree deg(σ),
contradicting the fact that σ is a counterexample.

Corollary 20. Suppose Hi consists of 0-1 vectors and that there exists a realizable i-
degree δ such that every i-chain of degree δ is winnable. Then every i-chain with degree
at least δ is winnable.

Proof. Let σ ∈ Ci(∆) with deg(σ) > δ. By Corollary 19, there exists an effective chain τ ∈
Ci(∆) of degree deg(σ)−δ. Since σ−τ has degree δ, by hypothesis it is linearly equivalent
to an effective chain ρ. Therefore, σ ∼ τ + ρ > 0, and σ is winnable.
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5 Pseudomanifolds

In this section we take ∆ to be a d-dimensional orientable pseudomanifold. References
for pseudomanifolds include [16] and [19]. To say that ∆ is a pseudomanifold means that
it is

1. pure: each facet has dimension d;

2. non-branching: each (d− 1)-face is a face of at most two facets; and

3. strongly connected: if σ and σ′ are facets, there exists a sequence of facets σ0, . . . , σk
with σ0 = σ and σk = σ′ such that each pair of consecutive facets σi and σi+1 share
a (d− 1)-face.

The boundary ∂∆ of ∆ is the collection of (d − 1)-faces of ∆ that are faces of exactly
one facet. Since ∆ is a pseudomanifold, it is a standard result that exactly one of the
following must hold in relative homology:

(i) Hd(∆, ∂∆) ≈ Z and Hd−1(∆, ∂∆) is torsion-free.

(ii) Hd(∆, ∂∆) = 0 and Hd−1(∆, ∂∆) has torsion subgroup T(Hd−1(∆, ∂∆)) ≈ Z/2Z.

In our case, we are assuming that ∆ is an orientable pseudomanifold, which by definition
means that (i) holds. It is then possible to orient the facets of ∆ so that the sum of
their boundaries is supported on the boundary of ∆. Letting f (1), . . . , f (m) ∈ Cd(∆) be
the facets of ∆, this means that for each i we can choose γi ∈

{
±f (i)

}
and define γ =

γ1 + · · · + γm so that ∂d(γ) is supported on ∂∆. (In particular, if ∆ has no boundary,
then ∂d(γ) = 0.) We call the relative cycle γ a pseudomanifold orientation for ∆. Its
class [γ] ∈ Hd(∆, ∂∆) is a choice of generator for the top relative homology group. Recall
that the simplicial complexes studied in this paper all come with a fixed underlying
orientation as a simplicial complex, upon which the dollar game depends. The orientations
of the facets γi need not agree with those given by that fixed orientation.

The proof of the following is in the appendix. It was proved in [8] for the case

H̃d−1(∆) = 0 and ∂∆ = ∅.

Proposition 21. Suppose ∆ is a d-dimensional orientable pseudomanifold. If ∂∆ 6= ∅,

Kd−1(∆) = H̃d−1(∆)

and otherwise, if ∆ has no boundary,

Kd−1(∆) ' (Z/mZ)⊕ H̃d−1(∆)

where m = fd is the number of facets of ∆.
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To define the degree of a (d−1)-chain on a pseudomanifold ∆, we need to compute the
Hilbert basis for ker+ Ld−1. Our main goal for this section is a combinatorial description
of this basis. We start by defining the γ-incidence graph Γ = Γ(∆, γ) as a directed graph
whose vertices are the oriented facets {γi}. If ∂∆ 6= ∅, let γ0 := 0 ∈ Cd(∆), and include
it, too, as a vertex of Γ. The edges of Γ are in bijection with the codimension-one faces
of ∆. To describe them, let σ be any (d− 1)-face and write

∂td(σ) = γj − γi

for uniquely determined i and j. (If σ ∈ ∂∆, then one of i or j will be 0.) Let σ− := i
and σ+ := j. The directed edge corresponding to σ then starts at γσ− and ends at γσ+ .
See Figures 3 and 4 for examples.

Theorem 22 (Hilbert basis for an orientable pseudomanifold). Let ∆ be a pseudoman-
ifold with pseudomanifold orientation γ. Then the Hilbert basis for the nonnegative ker-
nel ker+ Ld−1 is the set of incidence vectors for the simple directed cycles of Γ(∆, γ).

Proof. Let τ =
∑

σ aσσ ∈ Cd−1(∆) 6= 0. Then τ ∈ kerLd−1 = ker ∂td if and only if

0 = ∂td(τ) =
∑
σ

aσ(γσ+ − γσ−).

Requiring τ ∈ ker+ Ld−1 adds the restriction that aσ > 0 for all σ, which is equivalent to
saying that τ is a directed cycle in Γ. Then τ is simple if and only if it is not the sum of
two other non-trivial directed cycles, which is exactly the requirement that τ belong to
the Hilbert basis.

Corollary 23. Suppose δ is a realizable (d−1)-degree on the orientable pseudomanifold ∆
of dimension d and that every (d− 1)-chain of degree δ is winnable. Then every (d− 1)-
chain with degree at least δ is winnable.

Proof. The result follows immediately from Theorem 22 and Corollary 20.

Example 24. Let ∆ be the hollow tetrahedron with facets 123, 124, 134, and 234. A
pseudomanifold orientation is given by

γ = 132 + 124 + 143 + 234 = −123 + 124− 134 + 234.

Both ∆ and its associated γ-incidence graph Γ(∆, γ) appear in Figure 3. The edges
of Γ(∆, γ) are labeled by the corresponding 1-faces of ∆. The incidence vectors for
the three simple directed cycles of Γ(∆, γ), and hence the elements of the Hilbert basis
for ker+ L1, are listed as rows in the table below:

12 13 14 23 24 34
1 1 1 0 0 0
0 0 1 0 1 1
0 1 1 1 1 0

.
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34

24

1323

Γ(∆, γ)

Figure 3: The hollow tetrahedron and its γ-incidence graph (cf. Example 24).

Example 25. Figure 4 shows a triangulated annulus ∆ in the plane and its γ-incidence
graph for the counter-clockwise orientation,

γ = 125 + 143 + 154 + 236 + 265 + 346.

The boundary is ∂∆ =
{

12, 13, 23, 45, 46, 56
}

. Since the boundary is nonempty, the γ-
incidence graph includes the vertex ∗, representing 0 ∈ Cd(∆). The Hilbert basis for
ker+ L1 has ten elements, two of which are displayed below:

1

2

3

4
56

125

265

236

346

143

154

∗

2526

36

34 14

15

12

56

23

46

13

45

∆ Γ(∆, γ)

Figure 4: A triangulated annulus and its γ-incidence graph (cf. Example 25).

12 13 14 15 23 25 26 34 36 45 46 56
0 0 1 1 0 1 1 1 1 0 0 0
0 0 0 1 1 1 1 0 0 1 0 0

Two elements in the Hilbert basis for ker+ L1.
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Example 26. The condition of being orientable as a pseudomanifold is necessary in
both Proposition 21 and Theorem 22. The Klein bottle simplicial complex in Figure 5
is a non-orientable pseudomanifold of dimension 2. Computing with Sage ([20]), we
find K1(∆) ' Z/2Z ⊕ Z/2Z ⊕ Z and that the Hilbert basis for ker+ L1 has 14 elements.
Three of these basis elements are not 0-1 vectors and, thus, are not incidence vectors of
simple cycles in a directed graph.

1 2 3 1

1 2 3 1

4

5 4

5
6

7 8

Figure 5: Triangulation of a Klein bottle (cf. Example 26).

Example 27 (Computing minimal winning degrees). Let ∆ be the hollow tetrahedron in
Example 24, and use lexicographic ordering of the edges of ∆ to identify C1(∆) with Z6,
as usual. For the purpose of computing degrees, we can order the elements of the Hilbert
basis H1 for ∆, computed in Example 24, as

h1 = (1, 1, 1, 0, 0, 0), h2 = (0, 0, 1, 0, 1, 1), h3 = (0, 1, 1, 1, 1, 0).

By Theorem 18, there exists an effective 1-chain τ ∈ Z6 such that every 1-chain of degree
at least δ := deg(τ) is winnable. In this example, we compute all minimal such δ (the
set min(Wi), using earlier notation). We then exhibit an infinite family of nonnegative
realizable 1-degrees that are not realizable by winnable 1-chains.

Choose an effective τ ∈ C1(∆) = Z6 with deg(τ) = δ, and suppose that every 1-
chain of degree at least δ is winnable. Let σ(0), σ(1), σ(2), σ(3) be representatives for the
elements of K1(∆) ' Z/4Z. Then the equivalence classes of 1-chains of degree δ in J 1 :=
C1(∆)/ imL1 are τ + σ(i) for i = 0, . . . , 3 (cf. Remark 15). Each σ(i) has degree 0 by
Theorem 13. By assumption τ +σ(i) is winnable, so working modulo imL1, we can choose
the σ(i) so that each τ + σ(i) is effective. In order to minimize δ, we minimize τ .

First, suppose δ1 = 0. Since τ is effective and τ · h1 = τ1 + τ2 + τ3 = δ1 = 0, it
follows that τ1 = τ2 = τ3 = 0. Using this, it similarly follows that σ

(i)
1 = σ

(i)
2 = σ

(i)
3 = 0

for i = 0, 1, 2, 3. Some linear algebra shows that K1(∆) is generated by (0, 0, 0, 1,−1, 1)
and 1-chains in the image of the Laplacian which are 0 in the first three components are
exactly those of the form (0, 0, 0, 4k,−4k, 4k) for some integer k. So up to re-indexing,
σ(i) = (0, 0, 0, i+ 4ki,−i− 4ki, i+ 4ki) for some integers ki. Now consider the conditions
on τ , besides τ > 0, required to ensure each τ + σ(i) is effective. These are τ4

τ5

τ6

 >

 −ii
−i

+ ki

 −4
4
−4
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for some integer ki and for i = 0, . . . , 3. For i = 0, we take ki = 0 and see there is no
additional condition imposed on τ ; for i = 1, either τ5 > 1 or both τ4 and τ6 are at least 3;
for i = 2, either τ5 > 2 or both τ4 and τ6 are at least 2; and for i = 3, either τ5 > 3 or
both τ4 and τ6 are at least 1. Thus, to minimize τ , there are eight cases to consider. In
all of these, deg(τ) > (0, 3, 3).

Next, suppose δ2 = 0. By a similar argument (or by symmetry, swapping vertex 1
with 4 and vertex 2 with 3), we find minimal τ have degree at least (3, 0, 3). Finally,

suppose δ3 = 0. In that case, τ2 = τ3 = τ4 = τ5 = 0 and σ
(i)
2 = σ

(i)
3 = σ

(i)
4 = σ

(i)
5 = 0

for all i. However, requiring a chain of the form (a, 0, 0, 0, 0, b) to represent an element
in K1(∆)—and hence be in the kernel of ∂1—forces a = b = 0. That is not possible since
the σ(i) are a full set of representatives for K1(∆). So we must have δ3 > 1.

Combining the above, we conclude δ is greater than or equal to one of (0, 3, 3), (3, 0, 3),
or (1, 1, 1). In fact, these three degrees are minimal winning degrees for ∆ since there
exist four effective 1-chains of each degree that are pairwise not linearly equivalent. We
list these chains in the table below:

degree δ representatives for J 1(∆)
(0, 3, 3) (0, 0, 0, 3, 0, 3), (0, 0, 0, 2, 1, 2), (0, 0, 0, 1, 2, 1), (0, 0, 0, 0, 3, 0)
(3, 0, 3) (3, 0, 0, 3, 0, 0), (2, 1, 0, 2, 0, 0), (1, 2, 0, 1, 0, 0), (0, 3, 0, 0, 0, 0)
(1, 1, 1) (1, 0, 0, 1, 0, 1), (1, 0, 0, 0, 1, 0), (0, 1, 0, 0, 0, 1), (0, 0, 1, 0, 0, 0)

.

On a graph, there are only finitely many nonnegative degrees realizable by unwinnable
divisors. That is not usually the case for a general simplicial complex. For instance, on
our current ∆, consider the family of 1-chains σ = (a,−b, b, 0, 0, 0) where a > 0 and b > 0.
We have deg(σ) = (a, b, 0) > 0 = (0, 0, 0). Let τ be any effective 1-chain of degree (a, b, 0).
Taking the dot product of τ with each hi, it follows that τ = (a, 0, 0, 0, 0, b), and thus σ−
τ = (0,−b, b, 0, 0,−b). However, computing the Hermite normal form for L1, we see
that imL1 is spanned by (1, 0,−1, 3,−2, 3), (0, 1,−1, 1,−1, 2), and (0, 0, 0, 4,−4, 4). It is
straightforward to check that σ − τ 6∈ imL1, and hence σ 6∼ τ . Hence, σ is not winnable.

6 Forests

It is well-known that the dollar game on a graph is winnable for all initial configurations
of degree zero if and only if the graph is a tree (e.g., cf. [2]). In this section, that
result is extended to higher dimensions. We first recall the basics of trees on simplicial
complexes as developed by Duval, Klivans, and Martin in [8] and [9]. In [8], it is shown
that under certain circumstances, each critical group is isomorphic to the cokernel of a
certain submatrix of the corresponding Laplacian matrix called the reduced Laplacian.
Theorem 30 generalizes that result by loosening the hypotheses.

Definition 28. A spanning i-forest of ∆ is an i-dimensional subcomplex Υ ⊆ ∆ with
Skeli−1(Υ) = Skeli−1(∆) and satisfying the three conditions

1. H̃i(Υ) = 0;
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2. β̃i−1(Υ) = β̃i−1(∆);

3. fi(Υ) = fi(∆)− β̃i(Skeli(∆)).

In the case where β̃i−1(∆) = 0, a spanning i-forest is called a spanning i-tree. The

complex ∆ is a forest if it is a spanning forest of itself, i.e., if H̃d(∆) = 0. If, in addi-
tion, β̃d−1(∆) = 0, then ∆ is a tree.

Remarks. Let Υ be an i-dimensional subcomplex of ∆ sharing the same (i−1)-skeleton.

1. For a graph G, the above definition says that a (one-dimensional) spanning forest
contains all of the vertices of G and: (i) has no cycles, (ii) has the same number of
components as G, and (iii) has m− c edges, where m is the number of edges and c
is the number of components of G.

2. The condition H̃i(Υ) = 0 is equivalent to the elements of the set

A := {∂Υ,i(f) : f ∈ Υi}

being linearly independent (over Z or, equivalently, over Q).

3. Since Υ and ∆ have the same (i−1)-skeleton, ∂∆,i−1 = ∂Υ,i−1, and hence, β̃i−1(Υ) =
β̃i−1(∆) is equivalent to rank im ∂Υ,i = rank im ∂∆,i.

4. It follows from the previous two remarks that Υ is a spanning i-forest if and only
if A, defined above, is a basis for im ∂∆,i over Q, i.e, the columns of the matrix ∂∆,i

corresponding to the i-faces of Υ are a Q-basis for the column space of ∂∆,i. In
particular, spanning i-forests always exist.

5. Since ∂∆,j = ∂Skeli(∆),j for all j 6 i, it follows the j-th reduced homology groups,
Betti numbers, and critical groups for ∆ and for Skeli(∆) are the same for all j < i.
In particular, this implies that the j-forests (resp., j-trees) of ∆ are the same as
those for Skeli(∆) for all j 6 i.

Proposition 29 ([8, Prop 3.5], [9]). Any two of the three conditions defining a spanning i-
forest implies the remaining condition.

The proof of the following is in the appendix. It generalizes a result in [8], where
it is proved with the assumptions that ∆ is pure, that β̃i(∆) = 0 for all i < d, and

that H̃i−1(Υ) = 0.

Theorem 30. Let Υ be an i-dimensional spanning forest of ∆ such H̃i−1(Υ) = H̃i−1(∆).
Let Θ := ∆i \ Υi. Define the reduced Laplacian L̃ of ∆ with respect to Υ to be the
square submatrix of Li consisting of the rows and columns indexed by Θ. Then there is
an isomorphism

Ki(∆)
∼−→ ZΘ/ im L̃

obtained by setting the faces of Υi equal to 0.
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Definition 31. Define the i-complexity or i-forest number of ∆ to be

τ := τi(∆) :=
∑
Υ⊆∆

|T(H̃i−1(Υ))|2

where the sum is over all spanning i-forests Υ of ∆.

Proposition 32. τi(∆) = 1 if and only if Skeli(∆) is a spanning i-forest of ∆ and

H̃i−1(∆) is torsion-free. If Skeli(∆) is a spanning i-forest, regardless of whether H̃i−1(∆)
is torsion-free, then Skeli(∆) is the unique spanning i-forest of ∆.

Proof. Suppose that τi(∆) = 1. Then ∆ possesses a unique spanning i-forest Υ, and

H̃i−1(Υ) is torsion-free. Considering ∂i as a matrix, it follows that its set of columns has
a unique maximal linearly independent subset: those columns corresponding to the faces
of Υ. Since the columns of ∂i are all nonzero, it must be that the columns corresponding
to Υ are the only columns, i.e., fi(Υ) = fi(∆), and hence Υ = Skeli(∆). It follows that

H̃i−1(∆) = H̃i−1(Υ) and hence is torsion-free.
Now suppose Skeli(∆) is a spanning i-forest and let Υ ⊆ ∆ be any spanning i-forest.

Since H̃i(Skeli(∆)) = 0, it follows from condition 3 of Definition 28 that

fi(Υ) = fi(∆)− β̃i(Skeli(∆)) = fi(∆).

Hence, Υ = Skeli(∆). So Skeli(∆) is the unique spanning i-forest of ∆. Further,

if H̃i−1(Skeli(∆)) is torsion free, then τi(∆) = |T(H̃i−1(∆))|2 = 1.

Theorem 33 ([9, Theorem 8.1]). |T(Ki−1(∆))| = τi(∆).1

Corollary 34. All (i− 1)-chains of degree 0 on ∆ are winnable if and only if τi(∆) = 1.

Proof. By Proposition 6 and Corollary 11, an (i− 1)-chain of degree 0 is winnable if and
only if it is linearly equivalent to the zero chain. The (i − 1)-chains of degree 0 are the
elements (ker+ Li−1)⊥ = (kerLi−1)⊥. Hence, by Theorem 13, all (i− 1)-chains of degree 0
are winnable if and only if T(Ki−1(∆)) = 0. The result then follows from Theorem 33.

Remark 35. As discussed in the introduction, Corollary 34 generalizes the result that all
divisors of degree 0 on a graph are winnable if and only if the graph is a tree. However,
for graphs, Corollary 34 says that all divisors of degree 0 on a forest are winnable. This
apparent contradiction is resolved by the fact that for unconnected graphs, our simplicial
notion of degree differs from the usual one for graphs. See Example 16.

Example 36. Simply being a spanning tree is not enough to guarantee winnability of all
degree 0 divisors. Figure 6 illustrates a two-dimensional complex P which is a triangu-
lation of the real projective plane. We have H̃0(P ) = H̃2(P ) = 0, and H̃1(P ) ≈ Z/2Z.
Therefore, P is a spanning tree with tree number τ2(P ) = 4. The cycle σ := 12 + 23− 13
is a 1-chain in the image of ∂2 and hence, by Remark 8, has degree 0. As argued in the
first line of the proof of Corollary 34, if σ were winnable, it would be linearly equivalent
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Figure 6: A triangulation of the real projective plane.

to the zero chain. We used Sage ([20]) to find that K1(P ) ≈ Z/2Z×Z/2Z and σ /∈ imL1.
Hence, 2σ is winnable, but σ is not.

Example 37. This example demonstrates that all i-chains of degree 0 of a complex can
be winnable, even though there are unwinnable i-chains of nonnegative degree. Let ∆ be
the three-dimensional simplicial complex with facets

(1, 2, 3, 4), (1, 2, 3, 6), (1, 2, 3, 7), (1, 2, 4, 6), (1, 2, 5, 7), (1, 3, 4, 7),

(1, 3, 5, 7), (1, 4, 5, 6), (1, 4, 5, 7), (1, 4, 6, 7), (2, 3, 4, 7), (2, 3, 5, 6),

(2, 3, 5, 7), (2, 4, 5, 6), (3, 4, 5, 7), (3, 5, 6, 7), (4, 5, 6, 7).

We have H̃3(∆) ∼= 0 and H̃2(∆) ∼= Z; so by Proposition 32, it follows that ∆ is a forest
with τ3(∆) = 1. Corollary 34 then implies that all 2-chains on ∆ of degree 0 are winnable.

The Hilbert basis of ker+ L2 for ∆ has 445 elements.2 Let A be the matrix whose
rows are these Hilbert basis elements. Each 2-face of ∆ may be considered as a chain
and, thus, has a degree. These degrees form the 33 columns of A. It follows that the
degrees of all effective 2-chains are precisely the nonnegative integer linear combinations
of the columns of A. The Hilbert basis for the polyhedral cone generated by the columns
of A consists of the columns of A and one other element δ. By the characterization of the
Hilbert basis, δ cannot be realized by any effective two-chain, but using linear algebra it
is possible to find non-effective two-chains of degree δ, one of which is

(1, 2, 3)− (1, 2, 7) + (1, 3, 5) + (1, 3, 6) + (1, 4, 6) + (1, 6, 7) + (2, 4, 5).

Thus, the above 2-chain is unwinnable but has nonnegative degree.

6.1 Spanning trees acyclic in codimension one

Definition 38. For each integer i, let

Λi(∆) = SpanZ>0
{∂i+1(f) : f ∈ ∆i+1} ⊂ Ci(∆) := Z∆i.

1In [9], this theorem is stated only for i = dim(∆). The version stated here follows by restricting
to Skeli(∆) (cf. Remark 5).

2We used the PyNormaliz package in Sage ([20]) for the Hilbert basis computations in this example.
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and
Xi(∆) := {σ ∈ Ci(∆) : ∂i(σ) ∈ Λi−1(∆)} .

The above definition was introduced by S. Corry and L. Keenan ([6]). Since Λ−1(∆) =
Z>0 and, therefore, X0(∆) = {σ ∈ C0(∆) : ∂0(σ) > 0}, they regarded the sets Xi(∆) as
generalizing the notion of divisors of nonnegative degree on a graph and explored their
relation to the winnability of the dollar game. They conjectured the equivalence of (1)
and (2) in the following proposition and proved it in the case i = 2 on a simplicial surface.

Proposition 39. The following are equivalent for i 6 d:

(1) Every σ ∈ Xi−1(∆) is winnable.

(2) Ki−1(∆) = 0.

(3) Skeli(∆) is a spanning i-tree of ∆ and H̃i−1(∆) = 0.

In particular, when i = d, the three conditions are equivalent to ∆ being a tree, acyclic in
codimension one.

Proof. We first note that since ∆ has the standard orientation, the only nonnegative
element of ker ∂i−1 is 0. To see this, suppose σ =

∑
f∈∆i

aff 6= 0 with af > 0 for all f .
Let v0 · · · vi be the lexicographically largest element in the support of σ (with v0 < · · · <
vi). For each v ∈ V such that v 6 v0, let gv := vv1 · · · vi. Then the coefficient of v1 · · · vi
in ∂i−1(σ) is

∑
v∈V agv > 0. Hence, σ /∈ ker ∂i−1. We will need this fact later in the proof.

Letting E denote the set of effective (i−1)-chains, we can write Xi−1(∆) = E+ker ∂i−1.
Thus, (1) is equivalent to E + ker ∂i−1 ⊆ E + imLi−1, which in turn is equivalent to

(1)′ E + ker ∂i−1 = E + imLi−1

since imLi−1 ⊆ ker ∂i−1. Now, if Ki−1(∆) = 0, then imLi−1 = ker ∂i−1, and (1)′ holds.
Conversely, suppose (1)′ holds, and let σ ∈ ker ∂i−1. By (1)′, there exist τ ∈ E and φ ∈
imLi−1 ⊆ ker ∂i−1 such that σ = τ + φ. But then σ − φ ∈ E ∩ ker ∂i−1 = {0}, which
implies σ = φ ∈ imLi−1. It follows that Ki−1(∆) = 0. Therefore, (1) is equivalent to (2).

We now prove the equivalence of (2) and (3) using Proposition 32. If Ki−1(∆) = 0,
then 1 = |T(Ki−1)| = τi(∆) by Theorem 33. Further, the natural surjection Ki−1(∆) →
H̃i−1(∆) implies H̃i−1(∆) = 0. Hence, Skeli(∆) is a spanning i-tree of ∆. Conversely,

suppose that Skeli(∆) is a spanning i-tree and H̃i−1(∆) = 0. Then τi(Skeli(∆)) = 1,
which implies that Ki−1(∆) is free by Theorem 33. However, the free part of Ki−1(∆) is

the same as the free part of H̃i−1(∆) by Corollary 14. Therefore, Ki−1(∆) = 0.

Example 40. This example shows that condition H̃i−1(∆) = 0 in part (3) of Propo-
sition 39 is necessary. Consider the simplicial complex ∆ pictured in Figure 7. By
inspection, H̃2(∆) = 0 and H̃1(∆) ' Z 6= 0. So the complex is a forest but not a tree.
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One may compute directly that K1(∆) ' Z or argue as follows. By Proposition 32,
we have τ2(∆) = 1. By Theorem 33, it follows that |T (K1(∆))| = 1. Then Corollary 14

says K1(∆) = H̃1(∆) ' Z.
Now consider a generator for the first homology such as

σ = (0, 0, 0, 1,−1, 1) = 23− 24 + 34.

The Hilbert basis H1 for ker+ L1, computed by Sage ([20]), is given by the rows of the
table

12 13 14 23 24 34
0 0 0 0 0 1
0 0 1 0 1 0
0 1 0 1 0 0
1 1 1 0 0 0

.

Ordering the elements of H1 as they appear in the table, top-to-bottom, we have deg(σ) =
(1,−1, 1, 0) 6> 0. So σ is not winnable even though ∂1(σ) = 0 ∈ Λ0(∆).

1

2
3 4

Figure 7: A simplicial complex with facets 123, 124, and 34 (cf. Example 40).

7 Further work

There is still much to be learned about winnability of the dollar game on a simplicial
complex. Here, we will present three general open areas of investigation: computation of
minimal winning degrees, algorithms for determining winnability, and generalization of
the rank function.

Theorem 18 says there exists a realizable degree δ such that all i-chains of degree at
least δ are winnable. Call any minimal such δ a minimal winning degree for i-chains on ∆.
For divisors on connected graphs, there is one minimal winning degree, g = |E| − |V |+ 1.
We know of no such formulas in higher dimensions.

1. Is there a simple combinatorial description of the set of minimal winning degrees for
the i-chains of a simplicial complex?

2. It would be nice to compute minimal winning degrees for a class of simplicial com-
plexes. For example, what are the minimal winning degrees for (d − 2)-chains on
the d-dimensional simplex?
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On a graph, there are three standard methods of determining whether the dollar game
is winnable, and if it is winnable, finding a sequence of moves leading to a winning position.
One of these is a greedy algorithm. It proceeds as follows:

(i) Check if the divisor is effective. If so, the divisor is winnable.

(ii) Modify the divisor by borrowing at any vertex with a negative amount of dollars,
prioritizing vertices that have borrowed earlier in the algorithm.

(iii) If all vertices have been forced to borrow, the original divisor is unwinnable. Oth-
erwise, return to step (i).

The proof of the validity of this greedy algorithm (cf. [7, Section 3.1]) relies on two main
facts. First, a vertex cannot be brought out of debt by only borrowing at other vertices,
and second, the only way to leave a divisor unchanged through a series of borrowing
moves is to borrow at every vertex an equal number of times. Neither of these two facts
remains true for chains on a simplicial complex, so an immediate translation of the greedy
algorithm fails in higher dimensions. The ideas in this paper suggest possible fixes for the
second fact. For instance, one might attempt to modify the algorithm to avoid borrowing
at any combination of vertices forming an element of the Hilbert basis Hi(∆) of the
nonnegative kernel ker+

i Li. Our attempts in this direction have failed due to the first
fact. So we propose the question:

3. Can the greedy algorithm for the dollar game on graphs be generalized to one for
simplicial complexes?

Another method for determining winnability of the dollar game on a graph is through
q-reduction of a divisor ([2], [3]). In this method, given a divisor, one computes a linearly
equivalent standard form for the divisor with respect to a chosen vertex q. The game
is winnable if and only if q is out of debt in this standard form. Knowing whether q-
reduction generalizes to chains on a simplicial complex would be of general interest to
the chip-firing community ([1, Problem 17], [12]). Perhaps the methods of [17] could be
employed. In that work, q-reduction is interpreted as an instance of Gröbner reduction of
the lattice ideal of the graph Laplacian. We formulate the general question in the context
of the dollar game:

4. Can one define an efficiently computable standard representative of the equivalence
class of a chain on a simplicial complex which is effective if and only if the chain is
winnable?

A third way of computing winnability for graphs is to determine whether a certain
simplex, defined using the columns of the Laplacian matrix, contains integer points (cf. [7,
Section 2.3] or [5]). This method easily extends to the dollar game on a simplicial complex,
and it is the one we use in our own computations. However, the general problem of
determining whether a simplex has integer points is NP-hard unless the dimension is
fixed. Even so, for graphs, q-reduction provides a method of determining winnability of
a divisor that is polynomial in the size of the divisor and the size of the graph ([3]).
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5. Is there any efficient algorithm for determining winnability of the dollar game on a
simplicial complex?

The rank function, discussed in the introduction, is a measure of the robustness of
winnability of a divisor on a graph. As noted in [2, Remark 1.13], for a divisor D on an
algebraic curve, the same definition for rank would give r(D) = `(D)− 1, where `(D) is
the dimension of the vector space of global sections of the line bundle associated with D,
appearing in the standard formulation of the Riemann-Roch theorem for curves. The
Riemann-Roch theorem for divisors D on an algebraic surface can be thought of as a
refinement of a lower bound on `(D) in terms of data associated with D and the structure
of the surface (by dropping the superabundance term). This motivates the following:

6. Is there a generalization of the rank function to 1-chains on a simplicial complex of
dimension 2, measuring robustness of winnability and perhaps related to the Riemann-
Roch theorem for algebraic surfaces? If so, can one find a combinatorial lower bound
for it?

Appendix

In this appendix, we prove Proposition 21 and Theorem 30. The proof of Proposition 21
requires the following lemma.

Lemma 41. Let ∆ be a d-dimensional orientable pseudomanifold without boundary.
Let γ1, . . . , γm be the facets of ∆ oriented so that γ = γ1 + · · · + γm is a pseudomani-
fold orientation for ∆, i.e., such that ∂d(γ) = 0. Let σ, τ be two (d − 1)-chains in the
image of ∂d, and write

σ =
m∑
i=1

si∂d(γi), τ =
m∑
i=1

ti∂d(γi)

for some integers {si} and {ti}. Then σ and τ are linearly equivalent if and only if∑m
i=1 si =

∑m
i=1 ti mod m.

Proof. Let ξ be a (d− 1)-face of ∆. Then ξ is contained in exactly two facets, say γi and
γj, and Ld−1(ξ) = ±(∂d(γi)−∂d(γj)). By strong connectivity, it follows that ∂d(γi)−∂d(γj)
is in the image of Ld−1 for any pair 1 6 i, j 6 m, and thus,

im(Ld−1) = SpanZ {∂d(γi)− ∂d(γj) : 1 6 i, j 6 m} = {
∑m

i=1 ai∂d(γi) :
∑m

i=1 ai = 0} .

So linear equivalence of σ and τ is equivalent to being able to write

m∑
i=1

(si − ti)∂d(γi) =
m∑
i=1

ai∂d(γi) (5)
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for some integers ai summing to 0. Since the ∂d(γi) do not form a basis for the image
of ∂d, we cannot directly conclude something about the relation between the coefficients
on both sides of equation (5). However, note that the existence of arbitrary integers ai
(not necessarily summing to 0) such that equation (5) holds is equivalent to

ρ :=
m∑
i=1

(si − ti − ai)γi ∈ Cd(∆)

being in ker ∂d = Hd(∆) = Zγ, and thus to the existence of an integer ` such that ρ =
`(γ1+· · ·+γm). In this case, since the γi form a basis for Cd(∆), we conclude si−ti−ai = `
for i = 1, . . . ,m. Summing, we have

m∑
i=1

si =
m∑
i=1

ti +
m∑
i=1

ai mod m.

The result follows: if σ and τ are linearly equivalent, we can take
∑m

i=1 ai = 0 and conclude
that

∑m
i=1 si =

∑m
i=1 ti mod m. Conversely, if

∑m
i=1 si =

∑m
i=1 ti + `m for some integer `,

set ai := si − ti − ` for all i. Then (5) holds, and so σ and τ are linearly equivalent.

Proof of Proposition 21. The projection mapping from the critical group to the relative
homology group in codimension one gives the short exact sequence

0→ im ∂d/ imLd−1 → Kd−1(∆)→ H̃d−1(∆)→ 0. (6)

Let γ = γ1 + · · · + γm be as in the statement of Lemma 41, and first consider the case
where ∂∆ 6= ∅. Reasoning as in the beginning of the lemma, we still have

X := SpanZ {∂d(γi)− ∂(γj) : 1 6 i, j 6 m} ⊆ imLd−1.

Given any f ∈ ∂∆, there exists a unique γk whose boundary contains f in its sup-
port. Hence, Ld−1(f) = ±∂d(γk). Since imLd−1 contains X and ∂d(γk), it contains all of

the im ∂d(γi). So imLd−1 = im ∂d, and hence, Kd−1(∆) = H̃d−1(∆), as claimed.
Now consider the case where ∂∆ = ∅. Since ∆ is an orientable pseudomanifold,

H̃d−1(∆) is torsion-free, and thus sequence (6) splits. By the lemma, the mapping

Z/mZ→ im ∂d/ imLd−1

k 7→ k∂d(γ1)

is an isomorphism. The result follows.

Our proof of Theorem 30 follows the general outline of that in [8] with substantial
modifications.

Proof of Theorem 30. Considering the commutative diagram
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ZΥi ZΥi−1 ZΥi−2

Z∆i Z∆i−1 Z∆i−2

∂Υ,i ∂Υ,i−1

∂∆,i ∂∆,i−1

,

we see
im ∂Υ,i ⊆ im ∂∆,i ⊆ ker ∂∆,i−1 = ker ∂Υ,i−1.

Thus, there is a short exact sequence

0→ im ∂∆,i/ im ∂Υ,i → H̃i−1(Υ)→ H̃i−1(∆)→ 0.

By hypothesis, H̃i−1(Υ) = H̃i−1(∆), and hence

im ∂Υ,i = im ∂∆,i. (7)

We now describe a basis for ker ∂∆,i. For each θ ∈ Θ, since im ∂Υ,i = im ∂∆,i,

∂∆,i(θ) =
∑
τ∈Υi

aθ(τ)∂Υ,i(τ) (8)

for some aθ(τ) ∈ Z. Since H̃i(Υ) = 0, the boundary mapping ∂Υ,i is injective, and thus
the coefficients aθ(τ) are uniquely determined. Define

α(θ) :=
∑
τ∈Υi

aθ(τ)τ

and extend linearly to get a well-defined mapping α : ZΘ→ ZΥi. For each θ ∈ Θ, let

θ̂ := θ − α(θ).

We claim
ker ∂∆,i = {θ̂ : θ ∈ Θ}.

The θ̂ are linearly independent elements of the kernel. To show they span, suppose γ =∑
σ∈∆i

bσσ ∈ ker ∂∆,i. Consider

γ′ := γ −
∑
σ∈Θ

bσσ̂ =
∑
σ∈Υi

bσσ +
∑
σ∈Θ

bσ(σ − σ̂) =
∑
σ∈Υi

bσσ +
∑
σ∈Θ

bσα(σ).

Then since γ and the σ̂ are in ker ∂∆,i, so is γ′. Further, since each α(σ) ∈ ZΥi, so is γ′.
But ∂∆,i restricted to Υi is equal to ∂Υ,i, which is injective. It follows that

γ =
∑
σ∈∆i

bσσ =
∑
σ∈Θ

bσσ̂.

We thus have an isomorphism
π : ZΘ

∼−−→ ker ∂∆,i
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determined by σ 7→ σ̂ with inverse given by setting elements of Υi equal to 0:∑
σ∈∆i

bσσ 7−−→
∑
σ∈Θ

bσσ.

Next, we claim there is a commutative diagram with exact rows

ZΘ ZΘ cok L̃ 0

Z∆i ker ∂∆,i Ki(∆) 0

L̃

ι π∼

Li

where ι is the natural inclusion. To check commutativity of the square on the left, let θ ∈
Θ. Then by definition of L̃ and the fact that ι(θ) is supported on Θ,

Liι(θ) = ρ+ L̃θ

for some ρ ∈ ZΥi. We then have π−1(ρ + L̃θ) = L̃θ, as required. Hence, there is a

well-defined vertical mapping cok L̃ → Ki(∆) on the right. By the snake lemma, that
mapping is an isomorphism if and only if the mapping

ZΘ→ Z∆i/ kerLi

given by composing ι with the quotient mapping is surjective. Therefore, to finish the
proof, it suffices to show that for all γ ∈ Υi, there exists δ ∈ ZΘ such that γ + δ ∈ kerLi
(so then γ = −δ mod kerLi).

Now kerLi = ker ∂∆,i+1∂
t
∆,i+1 = ker ∂t∆,i+1. To get a description of ker ∂t∆,i+1, consider

the exact sequence

Z∆i+1

∂∆,i+1−−−→ Z∆i → cok ∂∆,i+1 → 0.

Applying the left-exact functor Hom(·,Z), gives the exact sequence

Z∆i+1

∂t∆,i+1←−−− Z∆i ← (cok ∂∆,i+1)∗ ← 0, (9)

where we have identified Z∆i and Z∆i+1 with their duals (using the bases ∆i and ∆i+1,
respectively). There is an exact sequence,

0→ ker ∂∆,i/ im ∂∆,i+1 → Z∆i/ im ∂∆,i+1 → Z∆i/ ker ∂∆,i → 0,

i.e,
0→ H̃i(∆)→ cok ∂∆,i+1 → Z∆i/ ker ∂∆,i → 0. (10)

However,
Z∆i/ ker ∂∆,i

∼−−→ im ∂∆,i = im ∂Υ,i ' ZΥi

using (7) and the fact that ∂Υ,i is injective. Since ZΥi is free, sequence (10) splits:

cok ∂∆,i+1 ≈ H̃i(∆)⊕ ZΥi, (11)
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with each γ ∈ Υi identified with its class in cok ∂∆,i+1. Given γ ∈ Υi, let γ∗ : ZΥi →
Z be the dual function. Then use isomorphism (11), to identify γ∗ with an element
of (cok ∂∆,i+1)∗. The image of γ∗ in Z∆i under the mapping in (9) is

γ +
∑
θ∈Θ

aθ(γ)θ,

which by exactness of (9) is an element of ker ∂t∆,i+1. Letting δ :=
∑

θ∈Θ aθ(γ)θ, we see
that γ + δ ∈ ker ∂t∆,i+1, as required.

Remark 42. Theorem 30 generalizes Theorem 3.4 of [8]. Remark 3.5 of [8] considers the
case where ∆ is the 6-vertex simplex, i = 2, and Υ is a certain triangulation of the real
projective plane (shown in Fig. 3 of [10]). In this case,

H̃1(∆) = 0 6= H̃1(Υ) = Z/2Z,

and
K2(∆) = (Z/6Z)4 6' ZΘ/ im L̃ ' (Z/12Z)⊕ (Z/6Z)3 ⊕ (Z/2Z).

This example is given in [8] to show that the condition H̃i−1(∆) = H̃i−1(Υ) = 0 in
Theorem 3.4 cannot be dropped. Here, it serves the same purpose for the more relaxed
hypothesis H̃i−1(∆) = H̃i−1(Υ) of Theorem 30.
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