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Abstract

We find the excluded minors for the minor-closed class of lattice path polyma-
troids as a subclass of the minor-closed class of Boolean polymatroids. Like lattice
path matroids and Boolean polymatroids, there are infinitely many excluded minors,
but they fall into a small number of easily-described types.

Mathematics Subject Classifications: 05B35

1 Introduction

We consider only polymatroids where the rank ρ(X) of each setX is a nonnegative integer,
so a polymatroid on a finite set E is a function ρ : 2E → Z that is

1. normalized, that is, ρ(∅) = 0,

2. non-decreasing, that is, if A ⊆ B ⊆ E, then ρ(A) ! ρ(B), and

3. submodular, that is, ρ(A ∪B) + ρ(A ∩B) ! ρ(A) + ρ(B) for all A,B ⊆ E.

∗AMS Simons Collaboration Grant for Mathematicians No. 519521, held by C. Chun, supported both
her work and that of T. Fife on this project.

the electronic journal of combinatorics 29(2) (2022), #P2.38 https://doi.org/10.37236/10798

https://doi.org/10.37236/10798


1 2 3 4 5

3 4 5 6

5 6 7 8

6 7 8 9 A4 = {6, 7, 8, 9}
A3 = {5, 6, 7, 8}
A2 = {3, 4, 5, 6}
A1 = {1, 2, 3, 4, 5}

Figure 1: An example of the labeling of north steps and the sets of interest in the con-
struction of a lattice path polymatroid.

Herzog and Hibi [3] treat some equivalent formulations of polymatroids, which are also
called integer polymatroids or discrete polymatroids. We often write the ground set E of
ρ as E(ρ). For a positive integer t, a t-polymatroid is a polymatroid ρ on E for which
ρ(e) ! t for all e ∈ E, or, equivalently, ρ(A) ! t|A| for all A ⊆ E. Thus, matroids are
1-polymatroids. The definitions of deletion and contraction, when cast for matroids using
the rank function, generalize directly to polymatroids (see Section 2), and the notion of
a minor carries over directly.

Let [k] denote the set {1, 2, . . . , k}. Let E be a finite set and let Ai, for i ∈ [k], be (not
necessarily distinct) subsets of E. We get a polymatroid ρ on E by, for X ⊆ E, setting

ρ(X) =
!!{i : X ∩ Ai ∕= ∅}

!!. (1.1)

Such polymatroids are Boolean polymatroids or transversal polymatroids. The class of
Boolean polymatroids is minor-closed, that is, every minor of a polymatroid in this class
is also in this class.

Lattice path polymatroids, introduced by Schweig [6], are constructed as follows. (See
Figure 1.) Take two lattice paths P and Q from (1, 0) to (n, k), where P never rises above
Q. These paths bound a region of the plane. We label each north step (a segment from
(i, j) to (i, j + 1) where i and j are integers) in this region by its first coordinate. For
each i ∈ [k], let Ai be the set of labels on the north steps in row i of this diagram, with
i = 1 indexing the lowest row. The polymatroid ρ on E = [n] given by equation (1.1) is
the lattice path polymatroid determined by the paths P and Q. A lattice path polymatroid
is any polymatroid that is isomorphic to such a polymatroid from paths. (Schweig [6, 7]
treats lattice path polymatroids via their bases, which can be represented by monomials as
follows: replace the labels 1, 2, . . . , n by the distinct variables x1, x2, . . . , xn, respectively,
and record a lattice path from (1, 0) to (n, k) as the product of the variables on its north
steps. Thus, the path in Figure 1 would be recorded as x2

4x6x7.)
Lattice path polymatroids have many interesting properties [4, 6, 7]. Most lattice

path matroids [1] are not lattice path polymatroids, but the two structures have much in
common. Lattice path polymatroids form a minor-closed class of Boolean polymatroids.
In this paper, we find the Boolean polymatroids that are excluded minors for the class
of lattice path polymatroids. That is, we find the set E of Boolean polymatroids for
which a Boolean polymatroid ρ is a lattice path polymatroid if and only if no member
of E is a minor of ρ. The set E , combined with the set of excluded minors for Boolean
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polymatroids, which was found by Matúš [5], gives a complete characterization of lattice
path polymatroids. (Note however that, as we explain in Section 2, each member of E is
a proper minor of infinitely many of the excluded minors that Matúš identified.) Lattice
path matroids [2] and Boolean polymatroids [5] have infinitely many excluded minors,
and the same is true of lattice path polymatroids: the set E is infinite. There are nine
types of excluded minors in E , and each type includes infinitely many polymatroids: four
of the types are made up of polymatroids on three elements, four other types are made
up of polymatroids on four elements, and one type is made up of polymatroids on any
number of elements greater than two.

In Section 2, we review the relevant background on polymatroids, minors, Boolean
polymatroids, and lattice path polymatroids; in particular, we state the excluded-minor
characterization of Boolean polymatroids by Matúš [5] and explain how it relates to our
results. In Section 3, we identify the type of excluded minors that can have any number
of elements three or greater. In Section 4, we identify the types of excluded minors on
three or four elements. In Section 5, specifically Theorem 13, we prove that the collection
of excluded minors identified in Sections 3 and 4 is complete.

2 Background

Let ρ be a polymatroid on E. For A ⊆ E, the deletion ρ\A and contraction ρ/A, which are
polymatroids on E −A, are given by ρ\A(X) = ρ(X) and ρ/A(X) = ρ(X ∪A)− ρ(A) for
all X ⊆ E − A. The minors of ρ are the polymatroids of the form (ρ\A)/B (equivalently,
(ρ/B)\A) for disjoint subsets A and B of E.

Let rM denote the rank function of a matroid M . If M1,M2, . . . ,Mk are matroids on
E, then the function ρ : 2E → Z given by

ρ(X) = rM1(X) + rM2(X) + · · ·+ rMk
(X),

for X ⊆ E, is a polymatroid on E. We write ρ = rM1+rM2+· · ·+rMk
to express this more

briefly. (Not all polymatroids have such decompositions into matroid rank functions.) It
is easy to check that if ρ = rM1 + rM2 + · · ·+ rMk

, then

ρ\A = rM1\A + rM2\A + · · ·+ rMk\A and ρ/A = rM1/A + rM2/A + · · ·+ rMk/A.

It is easy to see that the Boolean polymatroid ρ on E given by equation (1.1), using
the nonempty sets Ai for i ∈ [k], can be written as the sum of k rank-1 matroids on E,
namely,

ρ = rU1,A1
⊕U0,E−A1

+ rU1,A2
⊕U0,E−A2

+ · · ·+ rU1,Ak
⊕U0,E−Ak

, (2.1)

where, adapting the usual notation Ur,n for uniform matroids, Ur,A is the rank-r uniform
matroid on the set A.

For completeness, we next prove a result that, while not new, is crucial to our work:
the Boolean polymatroid ρ determines the nonempty sets Ai (but, of course, not how
these sets are indexed).
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Lemma 1. Let A1, A2, . . . , Ak be (not necessarily distinct) nonempty subsets of a set E
and let ρ be the Boolean polymatroid on E given by equation (2.1). For each nonempty
subset Z of E, the multiplicity of Z in the list A1, A2, . . . , Ak can be computed from ρ.

Proof. For each e ∈ E, we define a property pe that each integer i ∈ [k] may or may not
have: i has property pe if e ∕∈ Ai. Fix X ⊆ E. Now i ∈ [k] has the properties pe with
e ∈ X and no other properties if and only if Ai = E−X. The number of i ∈ [k] that have
all the properties pe with e ∈ X, and maybe more, is k− ρ(X). By inclusion-exclusion, it
follows that the number of i ∈ [k] that have the properties pe with e ∈ X and no others is

"

Y :X⊆Y⊆E

(−1)|Y−X|#k − ρ(Y )
$
.

Since this is the number of i for which Ai = E −X, the lemma follows.

This argument is closely related to the characterization of Boolean polymatroids by
inequalities involving the rank function in Matúš [5, Lemma 2] (see Theorem 4 below).

Lemma 1 leads to a well-defined (up to relabeling the indices) notion of support: given
E and Ai, for i ∈ [k], and ρ given by equation (2.1), the support s(e) of e ∈ E is

s(e) = {i : i ∈ [k] and e ∈ Ai}.

The support of ρ is ∪e∈Es(e), which is [k] if no set Ai is empty. For example, for the
lattice path polymatroid in Figure 1, we have s(1) = s(2) = {1}, s(3) = s(4) = {1, 2},
s(5) = {1, 2, 3}, s(6) = {2, 3, 4}, s(7) = s(8) = {3, 4}, and s(9) = {4}. In the lattice path
polymatroid determined by two paths, the support s(e) shows which rows in the diagram
intersect the line x = e. Note that for any Boolean polymatroid ρ on E and all X ⊆ E,

ρ(X) =
!!!
%

e∈X

s(e)
!!!. (2.2)

There is a natural linear order on [k], namely, 1 < 2 < · · · < k, as well as on the ground
set E of a lattice path polymatroid determined by two paths, but this is not so for the
excluded minors. All orders (or orderings) that we consider are linear orders (also known
as total orders). They can be denoted by listing the elements from least to greatest, as
in x1, x2, . . . , xt, or via the conventional symbol for order, as in x1 < x2 < · · · < xt.

Since lattice path polymatroids in general are just isomorphic to those determined
by two paths, it follows that ρ is a lattice path polymatroid if and only if there is some
ordering of [k] and some ordering e1, e2, . . . , en of E so that,

(S1) for each i ∈ [n], the support s(ei) is an interval [ai, bi] in the order on [k], and,

(S2) in that order on [k], we have a1 ! a2 ! · · · ! an and b1 ! b2 ! · · · ! bn.

Such an ordering of E is a lattice path ordering of ρ, and such an ordering of [k] is a
lattice path ordering of the support of ρ. Given sets Z1, Z2, . . . , Zℓ that partition [k] such
that a lattice path ordering of the support of ρ can be obtained by taking any ordering
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of the elements of Z1 followed by any ordering of Z2 and so on, finally ending with any
ordering of the elements of Zℓ, we also refer to Z1, Z2, . . . , Zℓ as a lattice path ordering
of the support of ρ. For ease of notation, we also consider any sequence obtained from
Z1, Z2, . . . , Zℓ by adding copies of the empty set to be a lattice path ordering of the support
of ρ.

By equation (2.2), knowing the support of each element ei in a Boolean polymatroid ρ
determines ρ. Different elements in a Boolean polymatroid may have the same support, so
the map taking each element to its support need not be injective. Also, the support s(ei)
depends on the order in which we write the sets A1, A2, . . . , Ak, and changing the order by
a permutation π just replaces each support by its image under π. To determine whether
ρ is a lattice path polymatroid, we need to determine whether a lattice path ordering of
ρ exists, and its existence goes hand in hand with the existence of a compatible lattice
path ordering of the support.

From equation (2.1) and the discussion of minors before it, it follows that, in terms of
supports, deleting e from a Boolean polymatroid corresponds to deleting its support set
s(e), while contracting e from a Boolean polymatroid corresponds to deleting s(e) and,
for each element f ∈ E − e, replacing s(f) by s(f) − s(e) since contracting a nonloop
in a rank-1 matroid yields a rank-0 matroid. It now easily follows that minors of lattice
path polymatroids are lattice path polymatroids, but we get much more: if ρ is a Boolean
polymatroid and ρ\e is a lattice path polymatroid, then so is ρ/e since, given a linear order
on [k] in which the support sets for ρ\e are intervals that satisfy (S2), for the induced linear
order on [k]− s(e), the support sets for ρ/e are intervals that satisfy (S2). Thus, we have
the following lemma, which is highly atypical for minor-closed classes of polymatroids.

Lemma 2. If ρ is a Boolean polymatroid that is a not a lattice path polymatroid, then ρ
is an excluded minor for the class of lattice path polymatroids if and only if each single-
element deletion is a lattice path polymatroid.

As noted above, the class of lattice path polymatroids is a minor-closed subclass of the
class of Boolean polymatroids. The excluded-minors for the class of Boolean polymatroids
were found by Matúš. The next theorem recasts [5, Theorem 3].

Theorem 3. The excluded minors for Boolean polymatroids are the polymatroids of the
form

−cE rU1,E
+

"

X : ∅∕=X⊊E

cX rU1,X⊕U0,E−X
(2.3)

where |E| " 3, cE is a positive integer, all coefficients cX are nonnegative integers, and
cX " cE if |X| = |E|− 1.

Thus, there are infinitely many excluded minors for Boolean polymatroids. To trans-
late this result into an infinite list of the excluded minors, one must take isomorphism into
account since acting on 2E with a permutation of E yields isomorphic excluded minors
that all have the form in (2.3). It follows from Theorem 3 that each Boolean polyma-
troid ρ′ on E ′ is a minor of infinitely many of these excluded minors: take any superset
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E of E ′ with |E − E ′| " 2 and let ρ be as in (2.3) where, for X ⊆ E ′, the coefficient
cX is the number of copies of rU1,X⊕U0,E′−X

when ρ′ is written as in equation (2.1); then
ρ/E−E′ = ρ′. Similarly, one can construct excluded minors for Boolean polymatroids that
have ρ′ as a deletion. Given a characterization of a proper minor-closed class of Boolean
polymatroids by its excluded minors relative to the class of Boolean polymatroids, there
is an excluded-minor characterization of the class relative to the class of all polymatroids;
however, the excluded minors relative to the class of Boolean polymatroids may, in some
cases, be more illuminating. Of course, each Boolean polymatroid that is an excluded
minor relative to the class of Boolean polymatroids is also an excluded minor relative to
the class of all polymatroids.

Besides using the excluded minors, there is another way to determine whether a poly-
matroid is Boolean. The next result is part of [5, Lemma 1].

Theorem 4. A polymatroid ρ on E is Boolean if and only if, for all X ⊆ E,
"

Y :X⊆Y⊆E

(−1)|Y−X|#ρ(E)− ρ(Y )
$
" 0.

Given these factors, it is reasonable to seek characterizations of proper minor-closed
classes of Boolean polymatroids by their excluded minors relative to the class of Boolean
polymatroids. This is exactly what we do for lattice path polymatroids.

3 Boolean cycles and a property of lattice path orderings

We start with a necessary condition for an ordering on the ground set E of a Boolean
polymatroid ρ to be a lattice path ordering of E, and so for ρ to be lattice path.

Lemma 5. Let ρ be a Boolean polymatroid on E. If ρ is a lattice path polymatroid on E
and e1, e2, . . . , en is a lattice path ordering of ρ, then the following property holds:

(S3) if S ∕= ∅ and S ⊆ s(eh) for at least one h ∈ [n], then the elements whose supports
contain S are ei, ei+1, . . . , ej−1, and ej for some i and j with 1 ! i ! j ! n.

Proof. By relabeling if needed, we can take the usual order 1, 2, . . . , k on the support of
ρ and let s(et) be the interval [at, bt] in [k]. Let i ∈ [k] be least with S ⊆ s(ei), and let
j ∈ [k] be greatest with S ⊆ s(ej). The result holds if i = j, so assume that i < j. Now
S ⊆ s(ei) ∩ s(ej) = [aj, bi]. Since ai ! ai+1 ! · · · ! aj and bi ! bi+1 ! · · · ! bj, we have
[aj, bi] ⊆ s(eh) for all h with i ! h ! j, as needed.

Recall that, by equation (2.2), a Boolean polymatroid can be given by its supports.
That is how we will define each of the excluded minors for lattice path polymatroids.

We first treat a family of excluded minors that, for each n " 3, contains infinitely
many polymatroids with n elements. We call a polymatroid in this family a Boolean
cycle, or a Boolean n-cycle, where n is the number of elements. Let n " 3. The supports
of the elements e1, e2, . . . , en of a Boolean n-cycle have the form s(ei) = Z2i−1∪Z2i∪Z2i+1,
where the indices are taken modulo 2n (thus, s(en) = Z2n−1 ∪ Z2n ∪ Z1), and
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• Z1, Z2, . . . , Z2n are pairwise disjoint, and

• for all i ∈ [n], the set Z2i−1 is nonempty.

The sets Z2i may be empty. The example of smallest rank and size is three coplanar lines,
that is, e1, e2, e3 each have rank 2 and any set of two or three of them has rank 3. Also,
three Boolean cycles have rank 4 and so can be seen as made up of faces of the four-vertex
simplex: taking all edges other than one pair of non-coplanar edges gives a 4-cycle; we
get Boolean 3-cycles from (a) two planes and the edge that neither contains and (b) a
plane and two edges not contained in it. As with the description of the excluded minors
for Boolean polymatroids in Theorem 3, the definition of Boolean n-circuits on E yields
many isomorphic polymatroids; we are, of course, interested in these polymatroids up to
isomorphism.

We now prove that each Boolean n-cycle is an excluded minor.

Lemma 6. Let ρ be a Boolean n-cycle for some integer n " 3. Then ρ is an excluded
minor for the class of lattice path polymatroids.

Proof. Suppose ρ is lattice path. Since the supports of only two elements contain Z3,
namely e1 and e2, these elements are consecutive in the lattice path ordering of ρ. Likewise,
since Z2i−1 is only contained in s(ei−1) and s(ei) for all i ∈ {3, 4, . . . , n}, the ordering on
the elements of ρ must be e1, e2, . . . , en. However s(e1) ∩ s(en) = Z1 and Z1 ⊈ s(e2), so
(S3) fails, and so ρ is not lattice path.

Take i ∈ [n]. Then ei+1, ei+2, . . . , en, e1, e2, . . . , ei−1 is a lattice path ordering of ρ\ei .
Thus, ρ is an excluded minor for the class of lattice path polymatroids by Lemma 2.

4 Excluded minors with three or four elements

In this section, we define the types of excluded minors that are not Boolean cycles. Each of
these types has three or four elements. We also prove that our collection of three-element
excluded minors is complete.

We first note that each polymatroid on a set of at most two elements is a lattice path
polymatroid; in particular, it is a Boolean polymatroid. This is because, for a polymatroid
ρ on E = {e, f} with k = ρ(E), we can let s(e) be the first ρ(e) elements, and s(f) the
last ρ(f) elements, of [k].

We turn to the Boolean excluded minors that have three elements and are not Boolean
3-cycles. They come in types T1, T2, T3, and T4, and there are infinitely many of each
type. In order to characterize these four types of Boolean polymatroids, say with elements
e, f , and g, it suffices to identify which of the areas in the Venn diagram of their supports
in Figure 2 are empty, and which are nonempty. Note that if Z = ∅ and each of W , X,
and Y is nonempty, then ρ is a Boolean 3-cycle, independent of whether or not T , U , or
V are empty.

In the following list, we assume that ρ is a Boolean polymatroid and E(ρ) = {e, f, g},
where the supports of e, f , and g are as shown in Figure 2. We view elements of a rank-k
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T U
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g

Z

W

Y X

Figure 2: Venn diagram showing the supports of elements e, f , and g in a Boolean
polymatroid, ρ.

Boolean polymatroid in terms of their supports, which are subsets of [k] and so can be
identified with faces of a simplex with k vertices, so the examples that we provide are
given as sets of faces of a simplex.

(T1) The polymatroid ρ is type T1 if

• T , U , V , and Z are all nonempty.

◦ Example: three lines in rank four that, on the simplex, share a vertex (the vertex
does not correspond to an element of the polymatroid).

(T2) The polymatroid ρ is type T2 if

• W , X, Y , and Z are all nonempty and

• at least one of T , U , or V is empty.

◦ An example: three planes in the four-vertex simplex.

(T3) The polymatroid ρ is type T3 if

• T , U , W , and Z are all nonempty and

• V = X = Y = ∅.

◦ Example: two planes of the four-vertex simplex, along with one of the two points
on the line that the planes share on the simplex.

(T4) The polymatroid ρ is type T4 if

• T , W , Y , and Z are all nonempty and

• X = V = ∅.

◦ The set U may or may not be empty. Example with U = ∅: an element of rank
four and two lines on the corresponding simplex that share one vertex (the vertex is
not in the polymatroid). Example with U ∕= ∅: start with a similar configuration in
a four-vertex simplex, but embedded in a five-vertex simplex, with one of the lines
extended to a plane that includes the new vertex.

the electronic journal of combinatorics 29(2) (2022), #P2.38 8



T• U •

V•

fe

g

Z
•

W

Y X

T1

T U

V

fe

g

Z
•

W
•

Y• X•

T2

T• U •

V

fe

g

Z
•

W
•

Y X

T3

T• U

V

fe

g

Z
•

W
•

Y• X

T4

Figure 3: Venn diagrams showing the supports of elements e, f , and g in Boolean polyma-
troids of types T1, T2, T3, and T4. Areas shaded gray indicate that those sets are empty.
A point in an area indicates that that set is nonempty. The other sets may or may not
be empty.

Using equation (2.2), it is easy to translate these descriptions into the values of ρ.
For instance, a polymatroid ρ on E = {e, f, g} is type T1 if and only if there are positive
integers z, t, u, and v, and nonnegative integers w, x, and y, for which

ρ(e) = z + t+ w + y, ρ(f) = z + u+ w + x, ρ(g) = z + v + x+ y,

ρ(e, f) = z + t+ u+ w + x+ y, ρ(e, g) = z + t+ v + w + x+ y,

ρ(f, g) = z + u+ v + w + x+ y, ρ(E) = z + t+ u+ v + w + x+ y.

We next show that the polymatroids of these four types, along with Boolean 3-cycles,
are the 3-element Boolean excluded minors for lattice path polymatroids.

Lemma 7. A Boolean polymatroid ρ is an excluded minor for the class of lattice path
polymatroids, where |E(ρ)| = 3, if and only if ρ is type T1, T2, T3, or T4 or ρ is a Boolean
3-cycle.

Proof. It is straightforward to check that if ρ is type T1, T2, T3, or T4 or a Boolean 3-
cycle, then ρ is not lattice path. Since every two-element polymatroid is lattice path, ρ is
therefore an excluded minor for the class of lattice path polymatroids.

Assume then that ρ is a three-element excluded minor for the class of lattice path
polymatroids. Let E = {e, f, g} where the supports of these elements are shown in
Figure 2. Suppose first that Z = ∅. If W = ∅, then T, Y, V,X, U is a lattice path ordering
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of the support of ρ, which is a contradiction. By symmetry, none of W , X, Y is empty,
and ρ is a Boolean 3-cycle.

Now assume that Z ∕= ∅. If none of T , U , V is empty, then ρ is type T1, so we assume
not; say V = ∅. If each of W , X, Y is nonempty, then ρ is type T2, so we assume not.
If W = ∅, then T, Y, Z,X, U is a lattice path ordering of the support of ρ, which is a
contradiction. Therefore W ∕= ∅ and, without loss of generality, X = ∅. If T = ∅, then
Y, Z,W,U is a lattice path ordering of the support of ρ, which is a contradiction. Hence
T ∕= ∅. If Y is nonempty, then ρ is type T4, so we assume not. If U = ∅, then T,W,Z is a
lattice path ordering of the support of ρ, which is a contradiction. Therefore U ∕= ∅ and
ρ is type T3.

We now present all four-element Boolean polymatroids, other than Boolean 4-cycles,
that are excluded minors for the class of lattice path polymatroids. There are four types,
and infinitely many of each type. Let ρ be a Boolean polymatroid on four elements.

(F1) The polymatroid ρ is type F1 if the supports have the form A ∪ B, A ∪ B ∪ C,
B ∪ C ∪D, and B ∪D where

• A, B, C, and D are pairwise disjoint and

• ∅ /∈ {A,B,C}.

◦ Example with D ∕= ∅: two planes in the four-vertex simplex along with a line in
exactly one of those planes and the line in just the other plane that is coplanar with
the first line. Example with D = ∅: a vertex in a triangle, the two lines containing
that vertex, and the triangle.

(F2) The polymatroid ρ is type F2 if the supports have the form A, B, C, and D where

• A, B, and C are pairwise disjoint, and

• A ∩D, B ∩D, and C ∩D are all nonempty.

◦ Example: three noncolinear points along with the plane that contains them.

(F3) The polymatroid ρ is type F3 if the supports have the form A, A′, B, and C where

• A′ ⊆ A and A′ ∕= A, and

• B ∩ C = ∅, and
• both B and C are disjoint from A− A′, and neither is disjoint from A′.

◦ Example: two points, the line they span, and a plane that contains that line.

(F4) The polymatroid ρ is type F4 if the supports have the form A ∪B ∪C, B ∪C ∪D,
C ∪D ∪ E, and A ∪ C ∪ E where

• A, B, C, D, and E are all pairwise disjoint and nonempty.
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Figure 4: Venn diagrams showing the supports of elements in a Boolean polymatroid.
Areas shaded gray indicate that those sets are empty. A point in an area indicates that
that set is nonempty. Areas that are not gray and contain no point may be empty or
nonempty.

◦ Example: take four of the six lines in a four-vertex simplex, with the pair omitted
being skew; embed this simplex in a five-vertex simplex and replace each line by the
plane that is spanned by it and the new vertex; these four planes are the elements
of the polymatroid.

The Venn diagrams of the supports of the element for types F2 and F3 are shown in
Figure 4, where a point appears in an area for which the set is known to be nonempty,
and a darkened area indicates that the set is empty. It is straightforward to check that if
ρ is type F1, F2, F3, or F4, then ρ is not lattice path, but all of its proper minors are.

5 Proof of the main result

In this section we prove our main result: when considered as a subclass of the class of
Boolean polymatroids, the set of excluded minors given in the previous two sections for
the class of lattice path polymatroids is complete.

We start with an easy result that is worth noting.

Lemma 8. If ρ is a Boolean polymatroid that is an excluded minor for the class of lattice
path polymatroids, and e and f are distinct elements of E(ρ), then s(e) ∕= s(f).

Proof. If s(e) = s(f), then any lattice path ordering of ρ\e can be extended to a lattice
path ordering of ρ by adding e directly following f .

Lemmas 9, 10, and 11 treat the case in which, in a Boolean polymatroid that is an
excluded minor, the support of some element is contained in another.

Lemma 9. Let ρ be a Boolean polymatroid that is an excluded minor for the class of
lattice path polymatroids. If e, f, g ∈ E(ρ) and s(e) ⊊ s(f) ⊊ s(g), then ρ is type F1 or
F3.

Proof. No 3-element excluded minor has such a chain, so |E(ρ)| " 4 and ρ has no minors
of types T1, T2, T3, or T4. Let C be a subset of E(ρ) of maximum size that can be ordered
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so that the support of each element is contained in the support of the next. Suppose that
|C| " 3. By Lemma 8, no two supports are equal. Let e be the element in C with the
smallest support. Then ρ\e has a lattice path ordering e1, e2, . . . , en where s(ei) = [ai, bi]
for all i, and a1 ! a2 ! · · · ! an and b1 ! b2 ! · · · ! bn. By (S3) in Lemma 5, up to
reversing the ordering on ρ\e, we may assume that s(e) ⊊ s(ek) ⊊ s(ek+1) ⊊ · · · ⊊ s(eℓ)
where 1 ! k < k + |C| − 2 = ℓ ! n. It follows that ak = ak+1 = · · · = aℓ and
bk < bk+1 < · · · < bℓ. Let [a, b] be the smallest interval such that s(e) ⊆ [a, b]. Thus,
a, b ∈ s(e) and ak ! a ! b ! bk. Also, s(e) might be a proper subset of [a, b].

We first show that s(e) is an interval in some lattice path ordering on ρ\e. To show
this, assume that s(e) ∕= [a, b]. The next two results are the key to being able to reorder
[a, b] so that s(e) is an interval and the new ordering of E(ρ) is a lattice path ordering of
ρ\e.

9.1. If p < k and s(ep) ∩ ([a, b]− s(e)) ∕= ∅, then [a, b] ⊆ s(ep).

Note that ap ! aℓ ! a and b < bℓ. If bp < b, then b /∈ s(ep), so ρ|{e, ep, eℓ} is type T4,
but that is impossible. So b ! bp, and the conclusion of 9.1 holds.

9.2. If q > ℓ and s(eq) ∩ s(e) ∕= ∅, then [a, b]− s(e) ⊆ s(eq).

If the conclusion failed, then neither a nor the first element in [a, b] − s(e) would be
in s(eq); it would follow that ρ|{e, eℓ, eq} is type T4, but that is impossible. So 9.2 holds.

With 9.1 and 9.2, we can rearrange [a, b], placing s(e) first and [a, b]− s(e) second, to
make s(e) into an interval without changing the lattice path ordering on ρ\e. So we may
assume that s(e) is the interval [a, b].

If we had a = ak, then (s(ek−1)− s(e))∩ s(ek) ∕= ∅ (otherwise inserting e between ek−1

and ek would give a lattice path ordering for ρ, which is impossible), so ρ|{ek−1, e, eℓ}
would have type T3, contrary to ρ being an excluded minor. So ak < a. Thus, [a, b]
cannot be moved to the beginning of s(ek), so either the support of some element before
ek blocks it, that is,

(i) there is a p < k with [ak, a) ∩ s(ep) ∕= ∅ and s(e) ⊈ s(ep),

or the support of some element after eℓ blocks it, and so

(ii) there is a q > ℓ with s(e) ∩ s(eq) ∕= ∅ and ak ∕∈ s(eq).

Suppose (i) occurs. If s(e) ∩ s(ep) ∕= ∅, then ρ|{e, ep, eℓ} is type T4, which is impossible.
Therefore bp < a, and ρ|{e, ep, ek, eℓ} is type F3 (since s(e) and s(ep) are disjoint, use
them as B and C). Now assume that (ii) occurs. Since ρ|{e, eℓ, eq} is not type T3 or T4,
we know that aq ! a and bq = bℓ. Since ρ|{e, ek, eq} is not type T3, we know that aq = a
and b = bk. Then ρ|{e, ek, eℓ, eq} is type F1, where D = ∅.

For a Boolean polymatroid ρ, we define its support graph G(ρ) to be the graph with
vertex set E(ρ) and edge set {ef : e, f ∈ E(ρ), e ∕= f, s(e)∩s(f) ∕= ∅}. Note that, if G(ρ)
is an n-cycle for some integer n " 4, then ρ is a Boolean n-cycle.
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Lemma 10. Let ρ be a Boolean polymatroid that is an excluded minor for the class of
lattice path polymatroids. Then G(ρ) is connected. Furthermore, if s(e) ⊊ s(f) for some
elements e, f ∈ E(ρ), then G(ρ\e) is also connected.

Proof. Suppose G has a component with vertex set A where E(ρ) − A is not empty.
Then ρ|A and ρ|(E(ρ)−A) each have lattice path orderings, and concatenating these two
orderings gives a lattice path ordering of ρ, which is a contradiction.

Suppose s(e) ⊊ s(f), and G(ρ\e) has distinct components X and Y . Then s(e) has a
nonempty intersection with s(x) and s(y) for some x ∈ V (X) and y ∈ V (Y ). Then xfy
is a path connecting X and Y in G(ρ\e), which is a contradiction.

We now consider the general case that the support of one element contains another.

Lemma 11. Let the Boolean polymatroid ρ be an excluded minor for the class of lattice
path polymatroids. If s(e) ⊊ s(f) for some e, f ∈ E(ρ), then ρ is type T3, T4, F1, F2, or
F3.

Proof. Let e1, e2, . . . , en be a lattice path ordering of ρ\e, where s(ek) = [ak, bk] with
a1 ! a2 ! · · · ! an and b1 ! b2 ! · · · ! bn. Say f is ei.

We first show

11.1. if s(e) ⊊ s(g) for some g ∈ E(ρ)− {e, ei}, then ρ is type T3, F1, or F3.

If ρ is not type F1 or F3, then Lemma 9 gives s(ei) ⊈ s(g) and s(g) ⊈ s(ei) for all such g.
First assume that all such g satisfy s(e) = s(ei)∩s(g). By Lemma 5, it follows that either
ei−1 or ei+1 is such a g. If g = ei−1, then s(e) = [ai, bi−1], so e1, e2, . . . , ei−1, e, ei, . . . , en is a
lattice path ordering of ρ; if g = ei+1, then s(e) = [ai+1, bi], so e1, e2, . . . , ei, e, ei+1, . . . , en
is a lattice path ordering of ρ; both conclusions are impossible, so s(e) ⊊ s(ei) ∩ s(g).
Therefore ρ|{e, ei, g}, and so ρ, is type T3.

Now assume that if ej ∈ E(ρ)− {e, ei}, then s(e) ∕⊆ s(ej) .
Next we show that

11.2. if s(e) ∩ s(ej) = ∅ for all ej ∈ E(ρ)− {e, ei}, then ρ is type F2.

If i = 1, then s(e) ⊆ [a1, a2), so we can reorder this interval so that e, e1, e2, . . . , en
is a lattice path ordering of ρ; that is a contradiction, so i > 1. Similarly, i < n. By
Lemma 10, neither s(ei−1) nor s(ei+1) is disjoint from s(ei). However, both are disjoint
from s(e), and so from each other (since s(e) ⊊ s(ei)), so ρ|{e, ei−1, ei, ei+1}, and so ρ, is
type F2 where s(ei) is D.

Now assume that s(e) ∩ s(ej) ∕= ∅ for some ej ∈ E(ρ)− {e, ei}.
Up to reversing the lattice path ordering of ρ\e, we may assume that s(e)∩s(ei+1) ∕= ∅.

Let the supports of ei, ei+1, and e be represented by the supports of e, f , and g, respectively
in Figure 2. Then Z ∕= ∅ and, since s(e) is properly contained in s(ei), both V and X are
empty, and either T or W is nonempty. Now Y ∕= ∅ since s(e) ⊈ s(ei+1). If T and W are
both nonempty, then ρ|{e, ei, ei+1}, and so ρ, is type T4. The remaining cases are where
the supports of ei, ei+1, and e are as shown in the Venn diagrams in Figure 5, where U
may be empty or nonempty.
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Figure 5: Venn diagram showing the supports of ei, ei+1, and e.

The case in Figure 5(a) has Z = [ai+1, bi]. Now s(e) cannot be an interval since
otherwise e1, e2, . . . , ei, e, ei+1, . . . , en would be a lattice path ordering of ρ. Since no
reordering of T ∪ Y having T before Y is a lattice path ordering,

• i > 1, and

• there is a j < i with s(ej) ∩ Y ∕= ∅ and T ∕⊆ s(ej).

Thus, s(ej)∩Z = ∅. If s(ej)∩T ∕= ∅, then the proper minor ρ|{e, ej, ei} is type T4, which
is impossible. Thus, s(ej) ∩ T = ∅, and so ρ|{e, ej, ei, ei+1}, and hence ρ, is type F3.

The case in Figure 5(b) has Y = [ai, ai+1) and W ∪ Z = [ai+1, bi]. Now s(e) cannot
be an interval since otherwise e1, e2, . . . , ei−1, e, ei, . . . , en would be a lattice path ordering
of ρ. Likewise, we cannot reorder the support of ρ\e to get a lattice path ordering of the
support of ρ, so either

(i) there is a j < i with s(ej) ∩W ∕= ∅ and Z ∕⊆ s(ej), or

(ii) there is a j > i+ 1 with s(ej) ∩ Z ∕= ∅ and W ∕⊆ s(ej).

Suppose j < i satisfies (i). Then Y ⊆ s(ej) and either s(ej) ∩ Z is empty and
ρ|{e, ej, ei+1} is a Boolean 3-cycle, or s(ej)∩Z is not empty and ρ|{e, ej, ei+1} is type T2.
This is impossible since this is a proper minor of ρ. Thus, (ii) must occur.

From (ii), we get s(ej) ∩ Y = ∅. If s(ej) ∩W ∕= ∅, then the proper minor ρ|{e, ei, ej}
is type T4, which is impossible. Thus, s(ej)∩W = ∅. Then s(ej)∩ s(ei) ⊆ Z. The proper
minor ρ|{e, ei+1, ej} is not type T1, so s(ej) = U ∪Z ′ for some Z ′ ⊆ Z. Then U ∕= ∅, since
otherwise s(ej) ⊊ s(ei+1) ⊊ s(ei), and ρ is type F1 or F3 by Lemma 9, as desired. Let
Z ′′ = Z\Z ′, which may be empty. Then s(e) = Y ∪Z ′∪Z ′′, and s(ei) = Y ∪Z ′∪Z ′′∪W ,
and s(ei+1) = Z ′∪Z ′′∪W ∪U , and s(ej) = Z ′∪U . The only set in {U,W, Y, Z ′, Z ′′} that
may be empty is Z ′′. If Z ′′ ∕= ∅, then the proper minor ρ|{e, ei+1, ej} would be type T4,
which is impossible. Thus, Z ′′ = ∅, and so ρ|{e, ei, ei+1, ej}, and hence ρ, is type F1.

We prove one last lemma before proving the main result.

Lemma 12. Let ρ be a Boolean polymatroid that is an excluded minor for the class
of lattice path polymatroids. Let e1, e2, . . . , en be a lattice path ordering of ρ\e for some
e ∈ E(ρ). If ∅ ∕= s(ei) ∩ s(ei+1) ⊆ s(e) ⊆ s(ei) ∪ s(ei+1) for some i ∈ {1, 2, . . . , n}, then
s(c) ⊊ s(d) for some c, d ∈ E(ρ).
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Proof. Suppose that s(c) ∕⊆ s(d) for all c, d ∈ E(ρ). Then ai < ai+1 ! bi < bi+1. Note
that if j /∈ {i, i + 1}, then [ai+1, bi] ∕⊆ s(ej) = [aj, bj], since if j < i, then bj < bi, so
bi ∕∈ s(ej), while if j > i+ 1, then ai+1 < aj, so ai+1 ∕∈ s(ej).

Let f and g represent ei and ei+1, respectively, in Figure 2. From the hypothesis,
T ∪X = ∅ and Z ∕= ∅. Sets W and Y are both nonempty since s(e) is not contained in
either s(ei) or s(ei+1). Sets U and V are also nonempty since s(e) contains neither s(ei)
nor s(ei+1).

Now W ∪ Y ∪ Z is not an interval since otherwise e1, e2, . . . , ei, e, ei+1, ei+2, . . . , en
would be a lattice path ordering on ρ, which is false. Note that [ai, ai+1) = U ∪W and
[ai+1, bi] = Z and (bi, bi+1] = V ∪ Y . Since no reordering of the support of ρ\e gives a
lattice path ordering of ρ, and no support other than s(e), s(ei), and s(ei+1) contains Z,
there is some element ej in E(ρ)− {e, ei, ei+1} such that either

(i) j < i and s(ej) ∩W ∕= ∅ and U ∕⊆ s(ej), or

(ii) j > i+ 1 and s(ej) ∩ Y ∕= ∅ and V ∕⊆ s(ej).

Up to reversing the order on ρ\e, we can assume that (i) holds. Then s(ej)∩(Z∪Y ∪V ) = ∅.
Consider ρ|{e, ej, ei}. Some element in W is in the supports of all of these, aj < ai,
and some element in U is in s(ei) but not in s(e) ∪ s(ej) and Y is nonempty and is
disjoint from s(ei) ∪ s(ej). Therefore the proper minor ρ|{ej, ei, e} is type T1, which is a
contradiction.

We now prove the main result.

Theorem 13. A polymatroid is lattice path if and only if it is Boolean and contains no
minor that is a Boolean n-cycle, with n > 2, or a type T1, T2, T3, T4, F1, F2, F3, or F4

polymatroid.

Proof. The class of lattice path polymatroids is minor-closed and is contained in the class
of Boolean polymatroids. Since none of the polymatroids listed above is lattice path, a
polymatroid is not lattice path if it has any of these as a minor.

If the list in the theorem is not complete, let ρ be an excluded minor for the class of
lattice path polymatroids that is a Boolean polymatroid but not among those identified
above. Since ρ is Boolean and is an excluded minor, by Lemmas 1 and 8 each element in
E(ρ) can be identified by its support. Since every polymatroid with at most two elements
is lattice path, |E(ρ)| " 3. By Lemma 7, |E(ρ)| " 4.

Let G = G(ρ). By Lemma 10, G is connected. Let e be a vertex of lowest degree that
is not a cut vertex. Let e1, e2, . . . , en be a lattice path ordering on ρ\e, where s(ei) = [ai, bi]
for all i and a1 ! a2 ! · · · ! an and b1 ! b2 ! · · · ! bn. Since G\e is connected and
Lemma 11 implies that no support contains another, ai−1 < ai ! bi−1 < bi for each
i ∈ {2, 3, . . . , n}. Furthermore, G contains e1e2 . . . en as a path, although this may not be
an induced path. We show that

13.1. the degree d(e) > 1.

Suppose d(e) = 1. Then s(e) ∩ [a1, bn] is contained one of the following sets:
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(i) [a1, a2),

(ii) (bn−1, bn], or

(iii) (bi−1, ai+1) for some i ∈ {2, 3, . . . , n− 1}.

These options yield the contradictions (i) e, e1, e2, . . . , en is a lattice path ordering of ρ, (ii)
e1, e2, . . . , en, e is a lattice path ordering of ρ, (iii) ρ|{e, ei−1, ei, ei+1} is type F2. Thus 13.1
follows.

Next we show that in the support graph G,

13.2. if e is adjacent to non-adjacent vertices ei and ej, where i < j, then e is adjacent
to some ek where i < k < j.

Suppose e is adjacent to ei and ej but to none of ei+1, ei+2, . . . , ej−1. Take a shortest
path P between ei and ej in the graph that G induces on {ei, ei+1, . . . , ej}. Then P
together with e forms an induced cycle in G with at least four vertices, and ρ|V (P )∪ {e}
is a Boolean m-cycle for some integer m " 4. This contradiction proves 13.2.

Next we show that

13.3. d(e) " 3.

Suppose d(e) = 2, and let ei and ej be adjacent to e, where i < j. By 13.2, eiej is
an edge in G. Let f represent ei and g represent ej in Figure 2. If Z = ∅, then W , X,
and Y are all nonempty, so ρ|{e, ei, ej} is a Boolean 3-cycle, which is a contradiction.
Thus, Z ∕= ∅. Then Z is contained in the support of every element in ei, ei+1, . . . , ej, so
j = i + 1. Since ρ|{e, ei, ei+1} is not type T1 or T2, some set in {T, U, V } is empty and
therefore some set in {W,X, Y } is empty. Since no element has its support contained in
the support of another element, at least one of the following statements must hold:

(i) T ∪X = ∅ and U , V , W , and Y are all nonempty;

(ii) U ∪ Y = ∅ and T , V , W , and X are all nonempty; or

(iii) V ∪W = ∅ and T , U , X, and Y are all nonempty.

If (i) occurs, then we get a contradiction by Lemma 12. Up to reversing the order on ρ\e,
we may assume that (ii) occurs. If i ∕= 1, then s(ei−1) ∩ (ei) ∕= ∅ while s(ei−1) ∩ s(e) = ∅,
so s(ei−1) ∩ X ∕= ∅. Then bi−1 " ai+1, and W ⊆ s(ei−1), contrary to e and ei−1 not
being adjacent. So i = 1 and e, e1, e2, . . . , en−1 is a lattice path ordering of ρ, which is a
contradiction. This completes the proof of 13.3.

Assume that e is adjacent to ei, ej, and ek, with i < j < k, and to no eh with i < h < j
or j < h < k. By 13.2, both eiej and ejek are edges in G. Let f represent ei and g
represent ej in Figure 2. If Z = ∅, then W , X, and Y are all nonempty, and ρ|{e, ei, ej}
is a Boolean 3-cycle, which is impossible. Thus, Z ∕= ∅, i.e., s(e) ∩ s(ei) ∩ s(ej) ∕= ∅.
Thus, s(e) ∩ s(eh) ∕= ∅ for all h with i ! h ! j. The same argument shows that
s(e) ∩ s(ej) ∩ s(ek) ∕= ∅, and so s(e) ∩ s(eh) ∕= ∅ for all h with j ! h ! k. Thus, j = i+ 1
and k = i+ 2.

We show that
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Figure 7: Venn diagram showing the supports of elements a, b, c, and d.

13.4. eiei+2 is an edge in G.

Suppose not. Then the supports of e, ei, ei+1, and ei+2 are as shown in Figure 6. Since
ρ has no restriction that is type T1, at least one of Q, T ∪W , and V ∪X is empty, as is
at least one of R ∪ T , U , and P ∪ V . Since no restriction of ρ is type T2, either P = ∅ or
R = ∅; also, either W = ∅ or X = ∅. No support contains another support, so Q ∕= ∅ and
U ∕= ∅. Since s(e) ⊈ s(ei+1), at least one of T , W , and R is nonempty. Similarly at least
one of P , V , and X is nonempty. After possibly reversing the order on ρ\e, it follows that
R, T , V , and X are empty, and P , Q, S, U , W , and Z are nonempty. Now Lemma 12
gives a contradiction since ∅ ∕= s(ei) ∩ s(ei+1) ⊆ s(e) ⊆ s(ei) ∪ s(ei+1). This proves 13.4.

Let the elements in {e, ei, ei+1, ei+2} be represented by {a, b, c, d} in Figure 7. We show
that

13.5. Z = ∅.
Suppose Z ∕= ∅. No restriction of ρ to any set of three elements in {a, b, c, d} is type

T1. Hence, for each triple {x, y, z} ⊆ {a, b, c, d}, at least one set in s(x) − (s(y) ∪ s(z))
and s(y) − (s(x) ∪ s(z)) and s(z) − (s(x) ∪ s(y)) is empty. Without loss of generality,
s(d)− (s(a)∪ s(b)) = O ∪U = ∅, and at least one of L∪Q, M ∪P , and N is also empty.
Hence, at least one of L ∪Q ∪ O, M ∪ P ∪ O, and N ∪ U ∪ O is empty. Up to changing
the labels of a, b, c, and d, we may assume that N ∪ O ∪ U = ∅. Since no element has
its support contained in another by Lemma 11, each of the following sets is nonempty:
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P ∪Y , Q∪W , T ∪Y , and R∪W . Since neither ρ|{a, b, c} nor ρ|{a, b, d} is type T2, both
S ∪ V and S ∪X are empty.

Since no support contains another, none of the following sets is empty: L∪Q, M ∪P ,
L ∪ R, M ∪ T , R ∪ T , and P ∪ Q. Since neither ρ|{a, c, d} nor ρ|{b, c, d} is type T1, it
follows that at least one of L, P , and T is empty and at least one of M,Q, and R is empty.
Since neither ρ|{a, c, d} nor ρ|{b, c, d} is type T2, it follows that at least one of Q, R, and
Y is empty and at least one of P , T , and W is empty. Thus,

(i) if P = ∅, then R = ∅ and L, M , Q, T ,W , and Y are all nonempty;

(ii) if T = ∅, then Q = ∅ and L, M , P , R, W , and Y are all nonempty;

(iii) if L = ∅, then M∪W ∪Y = ∅ and P , Q, R, and T are all nonempty, and ρ|{a, b, c, d}
is type F4, where A = Q, B = R, C = Z, D = T , and E = P .

Since (iii) gives a contradiction and (ii) is obtained from (i) by switching the labels on a
and b, we assume that (i) holds. Note that b, c, d, a is a lattice path ordering of ρ|{a, b, c, d}
and M,T, Y, Z,W,Q, L is a lattice path ordering of the support of ρ|{a, b, c, d}. Up to
reversing the lattice path ordering on ρ\e, where ei < ei+1 < ei+2, the fact that L,
M , Q, T , W , and Y are all nonempty implies that (b, c, d, a) is one of (e, ei, ei+1, ei+2),
(ei, e, ei+1, ei+2), (ei, ei+1, e, ei+2), and (ei, ei+1, ei+2, e)}.

By Lemma 12, e ∕∈ {c, d}, so e ∈ {a, b}. Then s(ei)∩ s(ei+2) = [ai+2, bi] is either Y ∪Z
or Z ∪W , both of which are nonempty. Then

s(ei) ∩ s(ei+2) ⊆ s(ei+1) ⊆ s(ei) ∪ s(ei+2).

We next show that ei and ei+2 are consecutive elements in a lattice path ordering of ρ\ei+1
,

but that is impossible by Lemma 12, and so that will complete the proof of 13.5. The
two options for (b, c, d, a) show that s(ei) ∩ s(ei+2) ∕⊆ s(e). Now [ai+2, bi] ∕⊆ s(ei−1) since
bi > bi−1. Similarly, [ai+2, bi] ∕⊆ s(ei+3). Thus, ei and ei+2 are the only elements in ρ\ei−1

that contain [ai+2, bi] in their supports, and so, as claimed, they must be consecutive in
the lattice path ordering on ρ\ei+1

by Lemma 5. Thus we have shown 13.5.
We show that

13.6. s(x) ∩ s(y) ∩ s(z) = ∅ for every triple {x, y, z} ⊆ {a, b, c, d}.
Suppose s(a) ∩ s(b) ∩ s(c) is nonempty. Then X ∕= ∅. Since ρ|{a, b, c} is not type T1,

at least one of the sets L ∪Q, M ∪ P , and N ∪ U is empty. Up to relabeling a, b, and c,
we may assume that N ∪ U = ∅. Since ρ|{a, b, c} is not type T2, at least one of the sets
R ∪ W , S ∪ V , and T ∪ Y is empty. Two of those options yield the contradiction that
some support contains another, so S ∪ V = ∅; avoiding other instances of some support
containing another implies that L∪Q, R∪W , T ∪Y , and M ∪P are all nonempty. Then

s(a) = L ∪Q ∪R ∪W ∪X,

s(c) = R ∪W ∪X ∪ T ∪ Y,

s(b) = X ∪ T ∪ Y ∪M ∪ P.
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Thus L∪Q,R∪W,X, T ∪Y,M ∪P is a lattice path ordering of the support of ρ|{a, b, c}.
Now s(d) = Q∪W ∪ Y ∪P ∪O. If Q∪W and Y ∪P are both nonempty, then ρ|{a, b, d}
is a Boolean 3-cycle, which is a contradiction. Therefore either Q∪W or Y ∪P is empty.
Hence either s(a)∩s(d) = ∅ or s(b)∪s(d) = ∅, which is a contradiction. Then 13.6 follows
by symmetry.

Thus, the sets V , W , X, Y , and Z in Figure 7 are empty. Since s(y)∩ s(z) ∕= ∅ for all
{y, z} ⊆ {a, b, c, d}, the following sets are nonempty: P , Q, R, S, T , and U . Therefore
ρ|{a, b, c} is a Boolean 3-cycle. This contradiction completes our proof.
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