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Abstract

A poset is called upper homogeneous (or “upho”) if every principal order fil-
ter of the poset is isomorphic to the whole poset. We observe that the rank and
characteristic generating functions of upho posets are multiplicative inverses of one
another.

Mathematics Subject Classifications: 06A07, 05A19

We refer to [6, §3] for basic terminology and notation for posets. A poset P is called
N-graded if we can write P as a disjoint union P = P0 ⊔ P1 ⊔ P2 ⊔ · · · such that every
maximal chain has the form p0 ⋖ p1 ⋖ p2 ⋖ · · · with pi ∈ Pi for all i. The rank function
ρ : P → N of P is then given by ρ(p) = i if p ∈ Pi. We say P has finite type if #Pi < ∞
for all i. In this case we can form the rank generating function

FP (x) :=
!

i!0

#Pi x
i =

!

p∈P

xρ(p).

Suppose further that P has a minimum element 0̂ ∈ P0. Then we define

χP (x) :=
!

p∈P

µ(0̂, p) xρ(p),

where µ(·, ·) is the Möbius function of P . The analogous χP (x) :=
"

p∈P µ(0̂, p) xρ(p) for a
finite P (or, more often, its reciprocal polynomial) is called the characteristic polynomial
of P . So we refer to χP (x) as the characteristic generating function.

The coefficients of these generating functions often have great combinatorial signifi-
cance: for example, when P = Πn is the lattice of set partitions of {1, 2, . . . , n} ordered
by refinement, the coefficients of χP (x) and FP (x) are the Stirling numbers s(n, k) and
S(n, k) of the 1st and 2nd kind, respectively.
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In this note we observe that, for a special class of posets called “upper homogeneous”
(or “upho” for short), there is a very simple relationship between the rank and character-
istic generating functions: they are multiplicative inverses.

A poset P is called upper homogeneous (upho) if we have Vp ≃ P for all p ∈ P ,
where Vp := {q ∈ P : q ! p} is the principal order filter (i.e., dual order ideal) generated
by p. Note that a nontrivial upho poset necessarily has a minimum, and is infinite if
it has more than one element. Upho posets were introduced recently by Stanley [7] in
his investigation of certain generating functions related to Stern’s diatomic array [8] and
the Fibonacci numbers [9]. Not much is known about the structure of upho posets in
general, but see [4] for a recent paper studying the rank generating functions of finite
type N-graded upho posets.

From now on, upho posets are assumed finite type N-graded. Our main result is:

Theorem 1. For P an upho poset, we have FP (x) = χP (x)
−1.

Example 2. The “grid” P = Nn is upho with FP (x) = 1
(1−x)n

and χP (x) = (1 − x)n.

(These computations follow immediately from the fact that for a Cartesian product P1×P2

we have FP1×P2(x) = FP1(x)FP2(x) and χP1×P2(x) = χP1(x)χP2(x).)

Example 3. The “infinite (rooted) n-ary tree” poset P is upho with FP (x) =
1

1−nx
and

χP (x) = 1− nx.

Example 4. Fix n ! 1 and let P be the N-graded poset with #P0 = 1, #Pi = n for all
i ! 1, and all cover relations between any two adjacent ranks (the “bowtie” poset from

[4, Figure 1] is the case n = 2 of this poset). Then P is upho and has FP (x) =
1+(n−1)x

1−x

and χP (x) =
1−x

1+(n−1)x
.

Proof of Theorem 1. Let P be upho. First we claim that for any m ! 0,

!

i!0

#{chains 0̂ = p0 < p1 < · · · < pm of P : ρ(pm) = i} xi = (FP (x)− 1)m (1)

Indeed, this is easily proved by induction: the number of ways to extend a chain 0̂ = p0 <
p1 < · · · < pm−1 with ρ(pm−1) = j to a chain 0̂ = p0 < p1 < · · · < pm with ρ(pm) = i is
the coefficient of xi−j in (FP (x)− 1), precisely because Vpm−1 ≃ P .

Next, we recall “Philip Hall’s theorem” [6, Proposition 3.8.5], which says that a poset’s
Möbius function µ(·, ·) satisfies

µ(p, q) = c0 − c1 + c2 − c3 + · · ·

where ci is the number of length i chains p = p0 < p1 < · · · < pi = q from p to q.
Hence,

χP (x) =
!

p∈P

µ(0̂, p) xρ(p)
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=
!

p∈P

#
!

m!0

(−1)m#{chains 0̂ = p0 < p1 < · · · < pm = p}
$
xρ(p)

=
!

m!0

(−1)m
!

i!0

#{chains 0̂ = p0 < p1 < · · · < pm : ρ(pm) = i} xi

=
!

m!0

(−1)m(FP (x)− 1)m =
1

1− (−(FP (x)− 1))
= FP (x)

−1,

where from the 1st to the 2nd line we used Philip Hall’s theorem, and from the 3rd to
the 4th line we used (1).

Remark 5. An alternative proof of Theorem 1 is via Möbius inversion [6, §3.7]. Define

f(p) := xρ(p) and g(p) :=
"

q!p f(q) for each p ∈ P . By Möbius inversion, 1 = xρ(0̂) ="
q∈P µ(0̂, q) g(q). But since P is upho, g(q) = xρ(q) FP (x) for all q ∈ P , so that

1 =
!

q∈P

µ(0̂, q) xρ(q) FP (x) = FP (x) ·
#
!

q∈P

µ(0̂, q) xρ(q)

$
= FP (x) · χP (x).

In other words, FP (x) = χP (x)
−1. Because these sums are infinite, [6, Proposition 3.7.2]

as stated does not literally apply; nevertheless, these manipulations can still be justified
by taking an appropriate limit in the ring of formal power series.

Möbius functions are especially well behaved for lattices, so from now on we concen-
trate on the case of P an upho lattice.

Corollary 6. Let P be an upho lattice. Then FP (x) = χP ′(x)−1, where

P ′ := {p ∈ P : p " a1 ∨ a2 ∨ · · · ∨ ak for some atoms a1, . . . , ak ∈ P}

is the finite graded sub-lattice of elements below joins of atoms. The same is true if we
replace “lattice” with “meet semilattice” everywhere.

Proof. By Theorem 1 it suffices to prove that χP (x) = χP ′(x). By supposition, an inter-
val [0̂, p] for p ∈ P is a finite lattice. Hence, by the crosscut theorem – or specifically, its
corollary [6, Corollary 3.9.5] – we will have µ(0̂, p) = 0 unless p is a join of atoms. Thus,
to record all non-zero Möbius function values we only need to consider intervals between 0̂
and joins of atoms, so χP (x) = χP ′(x), as required. The only difference when P is a meet
semilattice rather than a lattice is that some subsets of atoms may fail to have a join,
but P ′ consists precisely of all elements below subsets of atoms which do have a join.

Remark 7. A result of Gao, Guo, Seetharaman, and Seidel [4, Theorem 1.3] says that
the rank generating function of a planar upho poset P (i.e., an upho poset whose Hasse
diagram is planar) is the inverse of a polynomial. Every planar upho poset P is a meet
semilattice [4, Lemma 4.1], so Corollary 6 is another way to see that its rank generating
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function is the inverse of a polynomial. In fact, Y. Gao (private communication) pointed
out that the Möbius function of a planar upho poset P is

µ(0̂, p) =

%
&'

&(

1 if p = 0̂ or p is root-bifurcated,

−1 if p is an atom,

0 otherwise.

See [4, Definition 4.1] for the definition of root-bifurcated element, of which there are only
finitely many [4, Lemma 4.5]. Note also, by way of contrast, that Gao et al. [4, §5] showed
how rank generating functions of arbitrary upho posets can be very complicated.

Remark 8. Corollary 6 says that a lot of information about the upho lattice P is contained
in the finite graded lattice P ′ below the join of all atoms. But the whole structure of P
is not determined by P ′. For example, as suggested in Example 2, with P = Nn we have
P ′ = the rank n Boolean lattice. But a different P with P ′ = the rank n Boolean lattice is
given by P = {finite A ⊆ {1, 2, . . .} : max(A) < #A+n} (with the order being inclusion).

In spite of the fact that the extension will not in general be unique, it is still natural
to ask when one can “go in the other direction” and extend a P ′ to a P .

Question 9. Consider a finite graded lattice P ′. Can one find an upho lattice P such
that P ′ is the sub-lattice of P below the join of all atoms?

Corollary 6 says that for such a P ′ to be extendable, it must be the case that χP ′(x)−1

has all positive coefficients. So for a “random” P ′ the answer to Question 9 will be
negative. On the other hand, in Remark 8 we gave an affirmative answer when P ′ = the
rank n Boolean lattice. We now review some other examples of well-studied finite graded
lattices which give affirmative answers to Question 9.

Example 10. Fix n ! 1 and a prime p, and let P be the set of subgroups of Zn of index
a power of p ordered by reverse inclusion. Then P is an upho lattice [7], and P ′ = the
lattice of subspaces of (Z/pZ)n. One can compute directly (e.g. using Hermite normal
form) that FP (x) = 1

(1−x)(1−xp)···(1−xpn−1)
, or deduce this from the well-known formula

χP ′(x) = (1− x)(1− xp) · · · (1− xpn−1) together with Corollary 6.

Example 11. Fix n ! 1 and let P be the poset whose elements are partitions of sets of
the form {1, 2, . . . , k} (for some k ! n) into n blocks, with π1 " π2 if for every B1 ∈ π1

there is some B2 ∈ π2 with B1 ⊆ B2. Then P is an upho lattice (where the rank of
a partition of {1, 2, . . . , k} into n blocks is k − n), and P ′ = Πn+1. Again, one can
compute directly FP (x) =

"
k!n S(k, n)x

k−n = 1
(1−x)(1−2x)···(1−nx)

, or deduce this from

χP ′(x) = (1− x)(1− 2x) · · · (1− nx) together with Corollary 6.

Example 12. V. Reiner (private communication) explained that taking P to be the “dual
braid monoid” of a finite Coxeter group [1], we have P ′ = the corresponding “noncrossing
partition lattice.” The rank generating function and Möbius function connection for this
particular example is explored in [5] (see also [2]).
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Remark 13. A finite graded poset P of rank n with a minimum and a maximum is called
uniform if, for each i = 0, 1, . . . , n, all principal order filters Vp for p ∈ P with ρ(p) = n− i
are isomorphic to the same fixed poset Qi. The rank n Boolean lattice, the lattice of
subspaces of (Z/pZ)n, and Πn+1 are all uniform. It is known (see [3, Theorem 6] and [6,
Exercise 3.130(a)]) that, for such a P , the matrices of the 1st and 2nd kind Whitney
numbers for these Qi are inverses of one another. This generalizes the fact that the
matrices (s(i, j))i=1,...,n

j=1,...,n and (S(i, j))i=1,...,n
j=1,...,n of the 1st and 2nd kind Stirling numbers are

inverses. Theorem 1 seems superficially quite similar to this fact about uniform posets,
but we do not see any direct connection. However, it would definitely be reasonable to
look at other sequences of uniform lattices in search of affirmative answers to Question 9.

We conclude with one additional, interesting corollary of Theorem 1:

Corollary 14. Let P be an upho meet semilattice. Then for any m ! 1,
!

(p1,...,pm)∈Pm,

p1∧···∧pm=0̂

xρ(p1)+···+ρ(pm) = FP (x)
m · FP (x

m)−1.

Proof. This is what we get by combining [6, Exercise 3.89] and Theorem 1. Namely, for
each p ∈ P , set

f(p) :=
!

(p1,...,pm)∈Pm,
p1∧···∧pm=p

xρ(p1)+···+ρ(pm)

and g(p) :=
"

q!p f(q). Then by Möbius inversion

!

(p1,...,pm)∈Pm,

p1∧···∧pm=0̂

xρ(p1)+···+ρ(pm) = f(0̂) =
!

q∈P

µ(0̂, q) g(q).

But since P is upho, we have

g(q) =
!

(p1,...,pm)∈Pm,
p1∧···∧pm!q

xρ(p1)+···+ρ(pm) =
!

(p1,...,pm)∈Pm,
p1,...,pm!q

xρ(p1)+···+ρ(pm) = (xρ(q) FP (x))
m

for all q ∈ P , so that
!

(p1,...,pm)∈Pm,

p1∧···∧pm=0̂

xρ(p1)+···+ρ(pm) =
!

q∈P

µ(0̂, q) (xρ(q) FP (x))
m

= FP (x)
m · χP (x

m) = FP (x)
m · FP (x

m)−1,

where in the last line we applied Theorem 1.

Corollary 14 could in theory be useful for addressing Question 9. As mentioned,
already Corollary 6 implies that for a finite graded lattice P ′ to be extendable to an upho
lattice P , χP ′(x)−1 must have all positive coefficients. Corollary 14 says that additionally
χP ′(x)−m · χP ′(xm) must have all positive coefficients, for all m ! 1.
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