A q-multisum identity arising from finite chain ring probabilities

Jehanne Dousse*
Univ Lyon, CNRS, Université
Claude Bernard Lyon 1, UMR5208
Institut Camille Jordan
F-69622 Villeurbanne, France
dousse@math.cnrs.fr

Submitted: Sep 2, 2021; Accepted: Feb 28, 2022; Published: Apr 8, 2022
(c) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

In this note, we prove a general identity between a q-multisum $B_{N}(q)$ and a sum of N^{2} products of quotients of theta functions. The q-multisum $B_{N}(q)$ recently arose in the computation of a probability involving modules over finite chain rings. Mathematics Subject Classifications: 16P10, 16P70, 33D15

1 Introduction

Probabilistic proofs of classical q-series identities constitute an intriguing part of the literature in combinatorics. A prominent example of this perspective concerns the AndrewsGordon identities $[1,10]$ which state for $1 \leqslant i \leqslant k$ and $k \geqslant 2$

$$
\begin{equation*}
\sum_{n_{1}, \ldots, n_{k-1} \geqslant 0} \frac{q^{N_{1}^{2}+\cdots+N_{k-1}^{2}+N_{1}+\cdots+N_{k-1}}}{(q)_{n_{1}} \cdots(q)_{n_{k}}}=\prod_{\substack{s=1 \\ s \neq 0, \pm i \\(\bmod 2 k+1)}}^{\infty} \frac{1}{1-q^{s}}, \tag{1}
\end{equation*}
$$

where $N_{j}=n_{j}+\cdots+n_{k-1}$. Here and throughout, we use the standard q-hypergeometric (or " q-Pochhammer symbol") notation

$$
(a)_{n}=(a ; q)_{n}:=\prod_{k=0}^{n-1}\left(1-a q^{k}\right),
$$

[^0]valid for $n \in \mathbb{N} \cup\{\infty\}$. In [9], Fulman uses a Markov chain on the nonnegative integers to prove the extreme cases $i=1$ and $i=k$ of (1). Chapman [3] cleverly extends Fulman's methods to prove (1) in full generality. In [4], Cohen explicitly computes probability laws of p^{ℓ}-ranks of finite abelian groups to give a group-theoretic proof of (1). For a generalization of this computation, see [5]. In this note, we are interested in a recent probability computation with a ring-theoretic flavor as it leads to an expression similar to the left-hand side of (1).

Our focus is on finite chain rings, a notion we now briefly recall (for further details, see Section 2 in both [2] and [12]). A ring is called a left (resp. right) chain ring if its lattice of left (resp. right) ideals forms a chain. Any finite chain ring is a local ring, i.e., it has a unique maximal ideal which coincides with its radical. Let \mathcal{R} be a finite chain ring with radical \mathcal{N}, q be the order of the residue field $\mathcal{R} / \mathcal{N}$ and N be the index of nilpotency of \mathcal{N}. Recently, the authors of [2] expressed the density $\psi(n, k, q, N)$ of free submodules \mathcal{M} of \mathcal{R}^{n} (over \mathcal{R}) of length $k:=\log _{q}(|\mathcal{M}|)$ as $n \rightarrow \infty$ as the reciprocal of the q-multisum (replacing $1 / q$ in their notation with q)

$$
\begin{equation*}
B_{N}(q):=\sum_{\substack{K_{2}, \ldots, K_{N} \geqslant 0 \\ N \mid K_{2}+\cdots+K_{N}}} \frac{q^{K_{2}^{2}+\cdots+K_{N}^{2}-\left(K_{2}+\cdots+K_{N}\right)^{2} / N}}{(q)_{k_{2}} \cdots(q)_{k_{N}}} \tag{2}
\end{equation*}
$$

where $N \geqslant 2$ is an integer and $K_{i}=\sum_{j=2}^{i} k_{j}$. Upper and lower bounds for $B_{N}(q)$ are obtained and then used to show (under suitable conditions) that $\psi(n, k, q, N)$ is at least $1-\epsilon$ where $0<\epsilon<1$ (see Theorems 6 and 8 , respectively, in [2]). Moreover, we have

$$
\begin{equation*}
B_{2}(q)=\prod_{\substack{s=1 \\ s \equiv \pm 2, \pm 3, \pm 4, \pm 5}}^{\infty} \frac{1}{(\bmod 16)}, \tag{3}
\end{equation*}
$$

which is (S.83) in [15]. In view of (1) and (3), the authors in [2] posed the following (slightly rewritten) problem.

Problem 1. Determine whether $B_{N}(q)$ can be expressed as a product of q-Pochhammer symbols.

The purpose of this note is to solve Problem 1. It turns out that the solution is slightly more involved than either (1) or (3), namely $B_{N}(q)$ is a sum of N^{2} products of quotients of theta functions (but not a single product of q-Pochhammer symbols, for general N). Before stating our main result, we recall some further standard notation:

$$
\begin{aligned}
j(x ; q) & :=(x)_{\infty}(q / x)_{\infty}(q)_{\infty}, \\
j\left(x_{1}, x_{2}, \ldots, x_{n} ; q\right) & :=j\left(x_{1} ; q\right) j\left(x_{2} ; q\right) \cdots j\left(x_{n} ; q\right), \\
J_{a, m} & :=j\left(q^{a} ; q^{m}\right), \\
\bar{J}_{a, m} & :=j\left(-q^{a} ; q^{m}\right), \\
J_{m} & :=J_{m, 3 m}=\left(q^{m} ; q^{m}\right)_{\infty} .
\end{aligned}
$$

$N \backslash 1 / q$	2	3	5	7	11
2	0.59546	0.84191	0.95049	0.97627	0.99092
3	0.47084	0.79666	0.94102	0.97295	0.99010
4	0.42109	0.78230	0.93915	0.97248	0.99002
5	0.39877	0.77759	0.93877	0.97241	0.99002
6	0.38819	0.77603	0.93870	0.97240	0.99002
7	0.38304	0.77551	0.93868	0.97240	0.99002
8	0.38050	0.77533	0.93868	0.97240	0.99002
9	0.37924	0.77528	0.93868	0.97240	0.99002
10	0.37861	0.77526	0.93868	0.97240	0.99002
100	0.37798	0.77525	0.93868	0.97240	0.99002
$(q)_{\infty}$	0.28879	0.56013	0.76033	0.83680	0.90083

Table 1: Values of $B_{N}(q)$

Note that these quantities are products of q-Pochhammer symbols. Our main result is now the following.

Theorem 2. For all $N \geqslant 2$, we have

$$
\begin{align*}
& B_{N}(q)=\frac{1}{(q)_{\infty}^{2} \bar{J}_{0, N(N+2)}} \sum_{r=0}^{N-1} \sum_{s=0}^{N-1} \frac{\left.(-1)^{r+s+1} q^{r} \begin{array}{c}
r \\
2
\end{array}\right)+\binom{s+1}{2}+r(s+1)(N+1)+r+s+1}{} J_{N^{2}(N+2)}^{3} \tag{4}\\
& j\left((-1)^{N} q^{N(N+2) r+N(N+3) / 2} ; q^{N^{2}(N+2)}\right) \\
& \times \frac{j\left(-q^{N(s-r)} ; q^{N^{2}}\right) j\left(q^{N(N+2)(r+s)+N(N+3)} ; q^{N^{2}(N+2)}\right)}{j\left((-1)^{N} q^{N(N+2) s+N(N+3) / 2} ; q^{N^{2}(N+2)}\right)} .
\end{align*}
$$

Formula (4) is of interest for at least two reasons. First, Andrews-Gordon type q multisums akin to (1) are typically evaluated as single infinite products using q-series methods such as Bailey pairs, the triple product identity or the quintuple product identity. Instances of q-multisums which evaluate to sums of infinite products seem to be less well-studied and thus certainly require further attention. For pertinent work involving character formulas of irreducible highest weight modules of Kac-Moody algebras of affine type, see $[6,7]$. Second, in order to compute asymptotics or find congruences for the coefficients of q-multisums, one would ideally prefer a single infinite product expression. In lieu of this situation, sums of infinite products are often still helpful. Indeed, contrarily to (2) which requires computing a ($N-1$)-fold sum, (4) only involves a double sum. As a comparison with Table 1 in [2], we explicitly compute $B_{N}(q)$ for $2 \leqslant N \leqslant 10$ and $N=100$ and $1 / q=2,3,5,7,11$ to five decimals with Maple using (4). Table 1 above suggests that when $q \rightarrow 0$, the limiting value of $B_{N}(q)$ is 1 . This statement is confirmed in [2, Corollary 10, (1)].

The paper is organized as follows. In Section 2, we recall one of the main results from [17], then prove Theorem 2. In Section 3, we make some concluding remarks.

2 Proof of Theorem 2

Before the proof of Theorem 2, we need to recall some background from the important work of Hickerson and Mortenson [17]. First, we employ the Hecke-type series

$$
\begin{equation*}
f_{a, b, c}(x, y, q):=\left(\sum_{r, s \geqslant 0}-\sum_{r, s<0}\right)(-1)^{r+s} x^{r} y^{s} q^{a\binom{r}{2}+b r s+c\binom{s}{2} .} \tag{5}
\end{equation*}
$$

Next, consider the Appell-Lerch series

$$
\begin{equation*}
m(x, q, z):=\frac{1}{j(z ; q)} \sum_{r \in \mathbb{Z}} \frac{(-1)^{r} q^{\binom{r}{2}} z^{r}}{1-q^{r-1} x z}, \tag{6}
\end{equation*}
$$

where $x, z \in \mathbb{C}^{*}:=\mathbb{C} \backslash\{0\}$ with neither z nor $x z$ an integral power of q in order to avoid poles. One of the main results in [17] expresses (5) in terms of (6). Let

$$
\begin{align*}
g_{a, b, c}\left(x, y, q, z_{1}, z_{0}\right) & :=\sum_{t=0}^{a-1}(-y)^{t} q^{c\binom{t}{2}} j\left(q^{b t} x ; q^{a}\right) m\left(-q^{a\binom{b+1}{2}-c\binom{a+1}{2}-t\left(b^{2}-a c\right)} \frac{(-y)^{a}}{(-x)^{b}}, q^{a\left(b^{2}-a c\right)}, z_{0}\right) \\
& +\sum_{t=0}^{c-1}(-x)^{t} q^{a\binom{t}{2}} j\left(q^{b t} y ; q^{c}\right) m\left(-q^{c\binom{b+1}{2}-a\binom{c+1}{2}-t\left(b^{2}-a c\right)} \frac{(-x)^{c}}{(-y)^{b}}, q^{c\left(b^{2}-a c\right)}, z_{1}\right) . \tag{7}
\end{align*}
$$

Following [17], we use the term "generic" to mean that the parameters do not cause poles in the Appell-Lerch sums or in the quotients of theta functions.

Theorem 3 ([17], Theorem 1.3). Let n and p be positive integers with $(n, p)=1$. For generic $x, y \in \mathbb{C}^{*}$,

$$
f_{n, n+p, n}(x, y, q)=g_{n, n+p, n}(x, y, q,-1,-1)+\frac{1}{\overline{J_{0, n p(2 n+p)}}} \theta_{n, p}(x, y, q),
$$

where

$$
\begin{aligned}
\theta_{n, p}(x, y, q) & :=\sum_{r^{*}=0}^{p-1} \sum_{s^{*}=0}^{p-1} q^{n\binom{(-(n-1) / 2}{2}+(n+p)(r-(n-1) / 2)(s+(n+1) / 2)+n\binom{s+(n+1) / 2}{2}}(-x)^{r-(n-1) / 2} \\
& \times \frac{(-y)^{s+(n+1) / 2} J_{p^{2}(2 n+p)}^{3} j\left(-q^{n p(s-r)} \frac{x^{n}}{y^{n}} ; q^{n p^{2}}\right) j\left(q^{p(2 n+p)(r+s)+p(n+p)}(x y)^{p} ; q^{p^{2}(2 n+p)}\right)}{j\left(q^{p(2 n+p) r+p(n+p) / 2} \frac{(-y)^{n+p}}{(-x)^{n}}, q^{p(2 n+p) s+p(n+p) / 2} \frac{(-x)^{n+p}}{(-y)^{n}} ; q^{p^{2}(2 n+p)}\right)} .
\end{aligned}
$$

Here, $r:=r^{*}+\{(n-1) / 2\}$ and $s:=s^{*}+\{(n-1) / 2\}$ with $0 \leqslant\{\alpha\}<1$ denoting the fractional part of α.

We can now prove Theorem 2.

Proof of Theorem 2. The first step is to recognize $B_{N}(q)$ in a different context. For $N \geqslant 1$, consider the string function of level N of the affine Lie algebra $A_{1}^{(1)}$ (e.g., see $[14,19]$)

$$
\begin{equation*}
\mathcal{C}_{m, \ell}^{N}(q)=\frac{q^{\frac{m^{2}-\ell^{2}}{4 N}}}{(q)_{\infty}} \sum_{\substack{\mathbf{n} \in \mathbb{Z}^{N-1} \\ \frac{m+\ell}{2 N}+\left(C^{-1} \mathbf{n}\right)_{1} \in \mathbb{Z}}} \frac{q^{\mathbf{n} C^{-1}\left(\mathbf{n}-\mathbf{e}_{\ell}\right)^{T}}}{(q)_{n_{1}} \cdots(q)_{n_{N-1}}}, \tag{8}
\end{equation*}
$$

where $\mathbf{n}=\left(n_{1}, \ldots, n_{N-1}\right), \mathbf{e}_{i}$ is the i-th standard unit vector in $\mathbb{Z}^{N-1}\left(\right.$ with $\left.\mathbf{e}_{0}=\mathbf{e}_{N}=0\right)$, C is the A_{N-1} Cartan matrix whose inverse C^{-1} is given by

$$
\left(C^{-1}\right)_{i, j}=\min (i, j)-\frac{i j}{N},
$$

and $\left(C^{-1} \mathbf{n}\right)_{1}$ is the first entry in the vector $C^{-1} \mathbf{n}$. A straightforward computation (see the proof of Theorem 5 in [2]) yields

$$
\begin{equation*}
B_{N}(q)=\sum_{\substack{\mathbf{n} \in \mathbb{Z}^{N-1} \\\left(C^{-1} \mathbf{n}\right)_{1} \in \mathbb{Z}}} \frac{q^{\mathbf{n} C^{-1} \mathbf{n}^{T}}}{(q)_{n_{1}} \cdots(q)_{n_{N-1}}} \tag{9}
\end{equation*}
$$

Comparing (8) when $\ell=0$ and m is divisible by $2 N$ with (9), we have for all $N \geqslant 2$,

$$
\begin{equation*}
B_{N}(q)=q^{\frac{-m^{2}}{4 N}}(q)_{\infty} \mathcal{C}_{m, 0}^{N}(q) \tag{10}
\end{equation*}
$$

Next, by Example 1.3 on page 386 of [17], we have

$$
\mathcal{C}_{m, 0}^{N}(q)=\frac{1}{(q)_{\infty}^{3}} f_{1, N+1,1}\left(q^{1+m / 2}, q^{1-m / 2}, q\right)
$$

Thus from (10), we deduce that for all $N \geqslant 2$ and m divisible by $2 N$,

$$
\begin{equation*}
B_{N}(q)=\frac{q^{\frac{-m^{2}}{4 N}}}{(q)_{\infty}^{2}} f_{1, N+1,1}\left(q^{1+m / 2}, q^{1-m / 2}, q\right) \tag{11}
\end{equation*}
$$

By Theorem 3, we have

$$
\begin{aligned}
f_{1, N+1,1}\left(q^{1+m / 2}, q^{1-m / 2}, q\right)=g_{1, N+1,1} & \left(q^{1+m / 2}, q^{1-m / 2}, q,-1,-1\right) \\
& +\frac{1}{\overline{J_{0, N(N+2)}}} \theta_{1, N}\left(q^{1+m / 2}, q^{1-m / 2}, q\right)
\end{aligned}
$$

Now, observe that

$$
g_{1, N+1,1}\left(q^{1+m / 2}, q^{1-m / 2}, q,-1,-1\right)=0
$$

as there are no poles in the Appell-Lerch series

$$
m\left(q^{N(N+1) / 2+m(N+2) / 2}, q^{N(N+2)},-1\right)
$$

and

$$
m\left(q^{N(N+1) / 2-m(N+2) / 2}, q^{N(N+2)},-1\right)
$$

(indeed, this is true whenever $m(N+2) / 2 \not \equiv \pm N(N+1) / 2(\bmod N(N+2))$, which is always the case when $m \equiv 0(\bmod 2 N))$ and $j\left(q^{1+m / 2} ; q\right)=j\left(q^{1-m / 2} ; q\right)=0$. Thus,

$$
B_{N}(q)=\frac{q^{\frac{-m^{2}}{4 N}}}{(q)_{\infty}^{2} \bar{J}_{0, N(N+2)}} \theta_{1, N}\left(q^{1+m / 2}, q^{1-m / 2}, q\right)
$$

We now take $m=0$. The factor $q^{\frac{-m^{2}}{4 N}}$ disappears and $\theta_{1, N}(q, q, q)$ is given as in (4). This proves the result.

3 Concluding remarks

There are several avenues for further study. First, Table 1 suggests that as $N \rightarrow \infty$, the limiting value of $B_{N}(q)$ is strictly larger than $(q)_{\infty}$. This is a stronger statement than [2, Corollary 10, (2)]. Thus, it would be desirable to compute both asymptotics for $B_{N}(q)$ and the correct limiting value of $\psi(n, k, q, N)$ as $N \rightarrow \infty$. Second, for $N=2,3$ and 4 , one can reduce the number of products of quotients of theta functions occurring in Theorem 2 by first invoking Theorems 1.9-1.11 in [17], then performing routine (yet possibly involved) simplifications [8]. In these cases, we require that $m \equiv 0(\bmod 2 N)$, $m \not \equiv 0(\bmod N(N+2))$ and, if m is odd, $m \not \equiv \pm(N+1)(\bmod 2(N+2))$. For example, one can recover (3) in this manner. The details are left to the interested reader. Third, given that (10) is a key step in the proof of Theorem 2, it is natural to wonder if string functions which generalize (8) (see $[11,13]$) can also be realized in terms of computing an appropriate probability. For recent related works on string functions, see [16, 18]. Finally, can Theorem 2 be understood via Markov chains, group theory or, possibly, Hall-Littlewood functions [20]?

Acknowledgements

The authors thank Ole Warnaar for pointing out references [11, 13, 14], and the referee for a careful reading and helpful suggestions.

References

[1] G.E. Andrews, An analytic generalization of the Rogers-Ramanujan identities for odd moduli, Proc. Nat. Acad. Sci. U.S.A. 74 (1974), 4082-4085.
[2] E. Byrne, A-L Horlemann, K. Khathuria and V. Weger, Density of free modules over finite chain rings, arXiv:2106.09403, 2021.
[3] R. Chapman, A probabilistic proof of the Andrews-Gordon identities, Discrete Math. 290 (2005), no. 1, 79-84.
[4] H. Cohen, On the p^{k}-rank of finite abelian groups and Andrews' generalization of the Rogers-Ramanujan identities, Nederl. Akad. Wetensch. Indag. Math. 47 (1985), no. 4, 377-383.
[5] C. Delaunay, Averages of groups involving p^{ℓ}-rank and combinatorial identities, J. Number Theory 131 (2011), no. 3, 536-551.
[6] J. Dousse, I. Konan, Generalisations of Capparelli's and Primc's identities, I: coloured Frobenius partitions and combinatorial proofs, arXiv:1911.13191, 2020.
[7] J. Dousse, I. Konan, Multi-grounded partitions and character formulas, Adv. Math. 400 (2022), 108275, 41 pp.
[8] J. Frye, F.G. Garvan, Automatic proof of theta-function identities, Elliptic integrals, elliptic functions and modular forms in quantum field theory, 195-258, Texts Monogr. Symbol. Comput., Springer, Cham, 2019.
[9] J. Fulman, A probabilistic proof of the Rogers-Ramanujan identities, Bull. London Math. Soc. 33 (2001), no. 4, 397-407.
[10] B. Gordon, A combinatorial generalization of the Rogers-Ramanujan identities, Amer. J. Math. 83 (1961), 393-399.
[11] G. Hatayama, A.N. Kirillov, A.. Kuniba, M. Okado, T. Takagi and Y. Yamada, Character formulae of $\widehat{s l_{n}}$-modules and inhomogeneous paths, Nuclear Phys. B 536 (1999), no. 3, 575-616.
[12] T. Honold, I. Landjev, Linear codes over finite chain rings, Electron. J. Combin. 7 (2000), \#R11.
[13] A. Kuniba, T. Nakanishi and J. Suzuki, Characters in conformal field theories from thermodynamic Bethe ansatz, Modern Phys. Lett. A 8 (1993), no. 18, 1649-1659.
[14] J. Lepowsky, M. Primc, Structure of the standard modules for the affine Lie algebra $A_{1}^{(1)}$, Contemp. Math., 46. Amer. Math. Soc., Providence, RI, 1985.
[15] J. McLaughlin, A. Sills and P. Zimmer, Rogers-Ramanujan-Slater type identities, Electron. J. Combin. 15 (1998), \#DS. 15.
[16] E. Mortenson, On Hecke-type double-sums and general string functions for the affine Lie algebra $A_{1}^{(1)}$, arXiv:2110.02615, 2021.
[17] E. Mortenson, D. Hickerson, Hecke-type double sums, Appell-Lerch sums, and mock theta functions, I, Proc. Lond. Math. Soc. (3) 109 (2014), no. 2, 382-422.
[18] E. Mortenson, O. Postnova and D. Solovyev, On string functions and double-sum formulas, arXiv:2107.06225, 2021.
[19] A. Schilling, O. Warnaar, Conjugate Bailey pairs: from configuration sums to fractional-level string functions to Bailey's lemma, Recent developments in infinitedimensional Lie algebras and conformal field theory (Charlottesville, VA, 2000), 227255, Contemp. Math., 297, Amer. Math. Soc., Providence, RI, 2002.
[20] J. Stembridge, Hall-Littlewood functions, plane partitions, and the RogersRamanujan identities, Trans. Amer. Math. Soc. 319 (1990), no. 2, 469-498.

[^0]: *Partially supported by ANR COMBINé ANR-19-CE48-0011 and the Impulsion grant of IdexLyon.
 ${ }^{\dagger}$ Partially supported by Enterprise Ireland CS20212030.

