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Abstract

In this note, we prove a general identity between a q-multisum BN (q) and a
sum of N2 products of quotients of theta functions. The q-multisum BN (q) recently
arose in the computation of a probability involving modules over finite chain rings.

Mathematics Subject Classifications: 16P10, 16P70, 33D15

1 Introduction

Probabilistic proofs of classical q-series identities constitute an intriguing part of the liter-
ature in combinatorics. A prominent example of this perspective concerns the Andrews-
Gordon identities [1, 10] which state for 1 ! i ! k and k " 2

!

n1,...,nk−1!0

qN
2
1+···+N2

k−1+N1+···+Nk−1

(q)n1 · · · (q)nk

=
∞"

s=1
s ∕≡0,±i (mod 2k+1)

1

1− qs
, (1)

where Nj = nj + · · ·+ nk−1. Here and throughout, we use the standard q-hypergeometric
(or “q-Pochhammer symbol”) notation

(a)n = (a; q)n :=
n−1"

k=0

(1− aqk),
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valid for n ∈ N∪{∞}. In [9], Fulman uses a Markov chain on the nonnegative integers to
prove the extreme cases i = 1 and i = k of (1). Chapman [3] cleverly extends Fulman’s
methods to prove (1) in full generality. In [4], Cohen explicitly computes probability
laws of pℓ-ranks of finite abelian groups to give a group-theoretic proof of (1). For a
generalization of this computation, see [5]. In this note, we are interested in a recent
probability computation with a ring-theoretic flavor as it leads to an expression similar
to the left-hand side of (1).

Our focus is on finite chain rings, a notion we now briefly recall (for further details, see
Section 2 in both [2] and [12]). A ring is called a left (resp. right) chain ring if its lattice
of left (resp. right) ideals forms a chain. Any finite chain ring is a local ring, i.e., it has a
unique maximal ideal which coincides with its radical. Let R be a finite chain ring with
radical N , q be the order of the residue field R/N and N be the index of nilpotency of
N . Recently, the authors of [2] expressed the density ψ(n, k, q,N) of free submodules M
of Rn (over R) of length k := logq(|M|) as n → ∞ as the reciprocal of the q-multisum
(replacing 1/q in their notation with q)

BN(q) :=
!

K2,...,KN!0
N |K2+···+KN

qK
2
2+···+K2

N−(K2+···+KN )2/N

(q)k2 · · · (q)kN
, (2)

where N " 2 is an integer and Ki =
#i

j=2 kj. Upper and lower bounds for BN(q) are
obtained and then used to show (under suitable conditions) that ψ(n, k, q,N) is at least
1− ε where 0 < ε < 1 (see Theorems 6 and 8, respectively, in [2]). Moreover, we have

B2(q) =
∞"

s=1
s≡±2,±3,±4,±5 (mod 16)

1

1− qs
, (3)

which is (S.83) in [15]. In view of (1) and (3), the authors in [2] posed the following
(slightly rewritten) problem.

Problem 1. Determine whether BN(q) can be expressed as a product of q-Pochhammer
symbols.

The purpose of this note is to solve Problem 1. It turns out that the solution is slightly
more involved than either (1) or (3), namely BN(q) is a sum of N2 products of quotients
of theta functions (but not a single product of q-Pochhammer symbols, for general N).
Before stating our main result, we recall some further standard notation:

j(x; q) := (x)∞(q/x)∞(q)∞,

j(x1, x2, . . . , xn; q) := j(x1; q)j(x2; q) · · · j(xn; q),

Ja,m := j(qa; qm),

Ja,m := j(−qa; qm),

Jm := Jm,3m = (qm; qm)∞.
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N \ 1/q 2 3 5 7 11
2 0.59546 0.84191 0.95049 0.97627 0.99092
3 0.47084 0.79666 0.94102 0.97295 0.99010
4 0.42109 0.78230 0.93915 0.97248 0.99002
5 0.39877 0.77759 0.93877 0.97241 0.99002
6 0.38819 0.77603 0.93870 0.97240 0.99002
7 0.38304 0.77551 0.93868 0.97240 0.99002
8 0.38050 0.77533 0.93868 0.97240 0.99002
9 0.37924 0.77528 0.93868 0.97240 0.99002
10 0.37861 0.77526 0.93868 0.97240 0.99002

100 0.37798 0.77525 0.93868 0.97240 0.99002

(q)∞ 0.28879 0.56013 0.76033 0.83680 0.90083

Table 1: Values of BN(q)

Note that these quantities are products of q-Pochhammer symbols. Our main result is
now the following.

Theorem 2. For all N " 2, we have

BN(q) =
1

(q)2∞J0,N(N+2)

N−1!

r=0

N−1!

s=0

(−1)r+s+1q(
r
2)+(

s+1
2 )+r(s+1)(N+1)+r+s+1J3

N2(N+2)

j((−1)NqN(N+2)r+N(N+3)/2; qN2(N+2))
(4)

× j(−qN(s−r); qN
2
)j(qN(N+2)(r+s)+N(N+3); qN

2(N+2))

j((−1)NqN(N+2)s+N(N+3)/2; qN2(N+2))
.

Formula (4) is of interest for at least two reasons. First, Andrews-Gordon type q-
multisums akin to (1) are typically evaluated as single infinite products using q-series
methods such as Bailey pairs, the triple product identity or the quintuple product identity.
Instances of q-multisums which evaluate to sums of infinite products seem to be less
well-studied and thus certainly require further attention. For pertinent work involving
character formulas of irreducible highest weight modules of Kac-Moody algebras of affine
type, see [6, 7]. Second, in order to compute asymptotics or find congruences for the
coefficients of q-multisums, one would ideally prefer a single infinite product expression.
In lieu of this situation, sums of infinite products are often still helpful. Indeed, contrarily
to (2) which requires computing a (N −1)-fold sum, (4) only involves a double sum. As a
comparison with Table 1 in [2], we explicitly compute BN(q) for 2 ! N ! 10 and N = 100
and 1/q = 2, 3, 5, 7, 11 to five decimals with Maple using (4). Table 1 above suggests that
when q → 0, the limiting value of BN(q) is 1. This statement is confirmed in [2, Corollary
10, (1)].

The paper is organized as follows. In Section 2, we recall one of the main results from
[17], then prove Theorem 2. In Section 3, we make some concluding remarks.
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2 Proof of Theorem 2

Before the proof of Theorem 2, we need to recall some background from the important
work of Hickerson and Mortenson [17]. First, we employ the Hecke-type series

fa,b,c(x, y, q) :=
$!

r,s!0

−
!

r,s<0

%
(−1)r+sxrysqa(

r
2)+brs+c(s2). (5)

Next, consider the Appell-Lerch series

m(x, q, z) :=
1

j(z; q)

!

r∈Z

(−1)rq(
r
2)zr

1− qr−1xz
, (6)

where x, z ∈ C∗ := C \ {0} with neither z nor xz an integral power of q in order to avoid
poles. One of the main results in [17] expresses (5) in terms of (6). Let

ga,b,c(x, y, q, z1, z0) :=
a−1!

t=0

(−y)tqc(
t
2)j(qbtx; qa)m

$
−qa(

b+1
2 )−c(a+1

2 )−t(b2−ac) (−y)a

(−x)b
, qa(b

2−ac), z0

%

+
c−1!

t=0

(−x)tqa(
t
2)j(qbty; qc)m

$
−qc(

b+1
2 )−a(c+1

2 )−t(b2−ac) (−x)c

(−y)b
, qc(b

2−ac), z1

%
.

(7)
Following [17], we use the term “generic” to mean that the parameters do not cause poles
in the Appell-Lerch sums or in the quotients of theta functions.

Theorem 3 ([17], Theorem 1.3). Let n and p be positive integers with (n, p) = 1. For
generic x, y ∈ C∗,

fn,n+p,n(x, y, q) = gn,n+p,n(x, y, q,−1,−1) +
1

J0,np(2n+p)

θn,p(x, y, q),

where

θn,p(x, y, q) :=

p−1!

r∗=0

p−1!

s∗=0

qn(
r−(n−1)/2

2 )+(n+p)(r−(n−1)/2)(s+(n+1)/2)+n(s+(n+1)/2
2 )(−x)r−(n−1)/2

×
(−y)s+(n+1)/2J3

p2(2n+p)j(−qnp(s−r) xn

yn
; qnp

2
)j(qp(2n+p)(r+s)+p(n+p)(xy)p; qp

2(2n+p))

j(qp(2n+p)r+p(n+p)/2 (−y)n+p

(−x)n
, qp(2n+p)s+p(n+p)/2 (−x)n+p

(−y)n
; qp2(2n+p))

.

Here, r := r∗ + {(n − 1)/2} and s := s∗ + {(n − 1)/2} with 0 ! {α} < 1 denoting the
fractional part of α.

We can now prove Theorem 2.
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Proof of Theorem 2. The first step is to recognize BN(q) in a different context. ForN " 1,

consider the string function of level N of the affine Lie algebra A
(1)
1 (e.g., see [14, 19])

CN
m,ℓ(q) =

q
m2−ℓ2

4N

(q)∞

!

n∈ZN−1
!0

m+ℓ
2N

+(C−1n)1∈Z

qnC
−1(n−eℓ)

T

(q)n1 · · · (q)nN−1

, (8)

where n = (n1, . . . , nN−1), ei is the i-th standard unit vector in ZN−1 (with e0 = eN = 0),
C is the AN−1 Cartan matrix whose inverse C−1 is given by

(C−1)i,j = min(i, j)− ij

N
,

and (C−1n)1 is the first entry in the vector C−1n. A straightforward computation (see
the proof of Theorem 5 in [2]) yields

BN(q) =
!

n∈ZN−1
!0

(C−1n)1∈Z

qnC
−1nT

(q)n1 · · · (q)nN−1

. (9)

Comparing (8) when ℓ = 0 and m is divisible by 2N with (9), we have for all N " 2,

BN(q) = q
−m2

4N (q)∞CN
m,0(q). (10)

Next, by Example 1.3 on page 386 of [17], we have

CN
m,0(q) =

1

(q)3∞
f1,N+1,1(q

1+m/2, q1−m/2, q).

Thus from (10), we deduce that for all N " 2 and m divisible by 2N ,

BN(q) =
q

−m2

4N

(q)2∞
f1,N+1,1(q

1+m/2, q1−m/2, q). (11)

By Theorem 3, we have

f1,N+1,1(q
1+m/2, q1−m/2, q) = g1,N+1,1(q

1+m/2, q1−m/2, q,−1,−1)

+
1

J0,N(N+2)

θ1,N(q
1+m/2, q1−m/2, q).

Now, observe that
g1,N+1,1(q

1+m/2, q1−m/2, q,−1,−1) = 0

as there are no poles in the Appell-Lerch series

m(qN(N+1)/2+m(N+2)/2, qN(N+2),−1)
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and
m(qN(N+1)/2−m(N+2)/2, qN(N+2),−1)

(indeed, this is true whenever m(N + 2)/2 ∕≡ ±N(N + 1)/2 (mod N(N + 2)), which is
always the case when m ≡ 0 (mod 2N)) and j(q1+m/2; q) = j(q1−m/2; q) = 0. Thus,

BN(q) =
q

−m2

4N

(q)2∞J0,N(N+2)

θ1,N(q
1+m/2, q1−m/2, q).

We now take m = 0. The factor q
−m2

4N disappears and θ1,N(q, q, q) is given as in (4). This
proves the result.

3 Concluding remarks

There are several avenues for further study. First, Table 1 suggests that as N → ∞,
the limiting value of BN(q) is strictly larger than (q)∞. This is a stronger statement
than [2, Corollary 10, (2)]. Thus, it would be desirable to compute both asymptotics for
BN(q) and the correct limiting value of ψ(n, k, q,N) as N → ∞. Second, for N = 2, 3
and 4, one can reduce the number of products of quotients of theta functions occurring
in Theorem 2 by first invoking Theorems 1.9–1.11 in [17], then performing routine (yet
possibly involved) simplifications [8]. In these cases, we require that m ≡ 0 (mod 2N),
m ∕≡ 0 (mod N(N + 2)) and, if m is odd, m ∕≡ ±(N + 1) (mod 2(N + 2)). For example,
one can recover (3) in this manner. The details are left to the interested reader. Third,
given that (10) is a key step in the proof of Theorem 2, it is natural to wonder if string
functions which generalize (8) (see [11, 13]) can also be realized in terms of computing
an appropriate probability. For recent related works on string functions, see [16, 18].
Finally, can Theorem 2 be understood via Markov chains, group theory or, possibly,
Hall-Littlewood functions [20]?
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