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Abstract

Let F ⊆ 2[m] be a family of subsets of [m] = {1, 2, . . . ,m}. For S ⊆ [m], let
F|S be the trace F|S = {B ∩ S : B ∈ F}, considered as a multiset. We say F
shatters a set S ⊆ [m] if F|S has all 2|S| possible sets (i.e. complete). We say F has
a shattered set of size k if F shatters some S ⊆ [m] with |S| = k. It is well known
that if F has no shattered k-set then |F| !
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. We obtain the

same exact bound on |F| (for m large enough) when forbidding less. Namely, given
fixed positive integers t and k, for every set S ⊆ [m] with |S| = k, set families F are
such that F|S does not have both all possible sets 2S and specified additional sets
occurring at least t times. Similar results are proven for double shattering, namely
when F|S does not have all sets 2|S| appearing twice. The paper is written in matrix
notation with trace replaced by configuration.

Keywords: extremal set theory, shattered set, shattering, VC-dimension, forbid-
den configurations

Mathematics Subject Classifications: 05D05

1 Introduction

Using the notation [m] = {1, 2, . . . ,m} and 2[m] = {S : S ⊆ [m]}, we are interested in
families of subsets of [m] say A ⊆ 2[m]. We say that A shatters a set S ⊆ [m] if all 2|S| sets
appear in the trace A|S = {B ∩S : B ∈ A} which will be interpreted as a multiset. This
paper uses matrix notation. There is a natural correspondence between a family A ⊆ 2[m]
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of subsets of [m] and an m-rowed (0,1)-matrix A that have no repeated columns. The
correspondence has the ith column of A being the incidence vector of the ith set Ai ∈ A,
with a 1 in row j if j ∈ Ai and a 0 in row j if j /∈ Ai. It is convenient to say a matrix is
simple if it is a (0,1)-matrix with no repeated columns so that a simple m-rowed matrix
A corresponds to a set system A ⊆ 2[m]. Define ‖A‖ to be the number of columns in A
so that ‖A‖ = |A|.

We define F to be a configuration in A if there is a submatrix of A that is a row
and column permutation of F . Thus a configuration is the combinatorial equivalent of
a submatrix. F need not be simple. Define F ≺ A if F is a configuration in A. For a
set of rows S, define A|S to be the submatrix of A given by rows S. Let Kk denote the
k × 2k matrix corresponding to 2[k], hence the adjective complete. Then A shatters S if
K|S| ≺ A|S.
Definition 1. We say A has VC-dimension k if

k = max{|S| : A shatters S}.

Thus if A has VC-dimension k and A is the associated simple matrix, then Kk ≺ A
and Kk+1 ∕≺ A. Let F be a family of forbidden configurations and define

Avoid(m,F) = {A : A is m-rowed and simple, F ∕≺ A for all F ∈ F}.

The extremal problem becomes

forb(m,F) = max{‖A‖ : A ∈ Avoid(m,F)}.

The following Theorem has proved remarkably useful in a variety of contexts.

Theorem 2. Sauer [8], Perles, Shelah [9], Vapnik, Chervonenkis [10].
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The goal of this paper is to show that there are many columns you can add to Kk

without changing the bound. Initial investigations (Theorem 1.2 in [5]) were hampered
by trying to prove base cases. We use stability results to overcome this.

Let A be an m1×n1 matrix and let B be an m2×n2 matrix. Where m1 = m2, use the
notation [A|B] to denote the concatenation of A,B with n1+n2 columns, and define t ·A
to be the concatenation of t copies of A: [A|A| · · · |A] with tn1 columns. Use the notation
A × B to denote the (m1 +m2) × (n1n2) matrix with all possible columns formed from
one column from A placed on top of one column from B. Let 1p0q be the column of p 1s
on top of q 0s. The following are our two main results. The notation KT

2 refers to the
4× 2 matrix that is the transpose of K2. The matrix F1 appears in Theorem 4. Let

KT
2 =

#

$$%

1 1
1 0
0 1
0 0

&

''( , F1 =

#

%
1 1 1 0
1 0 0 1
0 1 0 0

&

( .
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Theorem 3. Assume k ! 4 and t ! 1. There exists an mk (depending on k and t) so
that for m > mk we have

forb(m, [Kk|t · (KT
2 ×Kk−4)]) = forb(m,Kk).

The proof is in Section 2. The case [Kk|t · (1202 ×Kk−4)] with t = 1 is Theorem 1.2
in [5]. We also considered 2 ·Kk with success.

Theorem 4. Assume k ! 3 and t ! 1. There exists an mk (depending on k and t) so
that for m > mk we have

forb(m, [2 ·Kk|t · (F1 ×Kk−3)]) = forb(m, 2 ·Kk) = forb(m,Kk+1).

The proof is in Section 3. Theorem 1.7 in [5] proves the case [2 ·Kk|t · (F1 ×Kk−3)])
with t = 1. There are a number of results [1], [4] where a critical substructure determines
the bound and adding a few columns does not alter the bound.

A useful proof technique is called standard induction [1]. Assume A is simple. Permute
the rows and columns of A so that r becomes the first row. After deleting row r there
may be repeated columns which we place in Cr in the following standard decomposition
of A:

A =
r →

)
0 · · · 0 1 · · · 1
Br Cr Cr Dr

*
, (2)

where Br are the columns that appear with a 0 in row r but don’t appear with a 1, and
Dr are the columns that appear with a 1 but not a 0. We note both [BrCrDr] and Cr

are simple (m − 1)-rowed matrices. If we assume A ∈ Avoid(m,F), then [BrCrDr] ∈
Avoid(m− 1,F) and

‖A‖ = ‖[BrCrDr]‖+ ‖Cr‖ " forb(m− 1,F) + ‖Cr‖. (3)

This means any upper bound on ‖Cr‖ (as a function of m) automatically yields an upper
bound on forb(m,F) by induction. Of course Cr ∈ Avoid(m−1,F) but more is true. Let
A ∈ Avoid(m,F). Define the inductive children of F as the minimal set of configurations
F ′ which must be avoided in Cr. Potential candidates for an inductive child would be
configurations F ′ such that [0 1] × F ′ cannot appear in A, i.e. there is an F ∈ F with
F ≺ [0 1]×F ′. The uniqueness of the minimal set follows from the following requirement:
if we have two configurations F ′, F ′′ with F ′ ≺ F ′′ then F ′′ /∈ F ′. We ask for F ′ to be
minimal to avoid having an unwieldy set. With this definition, Cr ∈ Avoid(m − 1,F ′)
and ‖Cr‖ " forb(m− 1,F ′).

Remark 5. F is the only inductive child of F × [0 1].

Sometimes the interest in Theorem 2 is the exact bound forb(m,Kk) and sometimes
the interest is in the asymptotic bound Θ(mk−1). Theorem 3 considers what columns can
be added to Kk and still have the same exact bound. The analogous asymptotic question,
what columns can be added toKk and still have the bound Θ(mk−1), is completely settled:
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Theorem 6. [1] Let k be given and let B be an k × (k + 1) matrix with one column
of each column sum. Then forb(m, [Kk|t · (Kk\B)]) is Θ(mk−1). Also if F is a k-rowed
configuration and Kk ≺ F , then forb(m,F ) is Θ(mk−1) if and only if there is a t and
k× (k+1) matrix B with one column of each column sum where F ≺ [Kk|t · (Kk\B)].

Using the notation K2
4 to refer to the 4× 6 simple matrix of all columns of sum 2, we

obtain from Theorem 6 that forb(m, [K4|K2
4 ]) is Θ(m4). The construction Im/4 × Im/4 ×

Icm/4 × Icm/4 has Θ(m4) columns and avoids 2 ·K2
4 . Thus adding all six columns of K2

4 to
K4 cannot preserve the bound. Theorem 3 only answers the question for two columns of
sum 2 and we pose remaining questions in Section 5. You may note that increasing t value
in Theorem 3 does not increase the bound. The following result is proved in Section 4
showing some elementary cases where increasing t does affect the bound. It is imagined
that this is typically the case.

Theorem 7. Let F be a k × ℓ forbidden configuration and t ! 1 be an integer. Then
there exists a number M so that forb(m, (t+ 1) · F ) > forb(m, t · F ) when m > M .

2 Extensions of Kk with the same bound

We will need the following fact concerning the bound (1) of Theorem 2 that follow readily
from Pascal’s identity.

forb(m,Kk) = forb(m− 1, Kk) + forb(m− 1, Kk−1). (4)

The following is a simple example of what we do.

Theorem 8. forb(m, {[K2|1101], [K2|02]}) = ⌈3
2
m⌉ > forb(m,K2).

Proof. Let A ∈ Avoid(m, {[K2|1101], [K2|02]}). Assume ‖A‖ > forb(m,K2). Then there
exist rows i, j with K2 ≺ A|{i,j}. To avoid both [K2|1101] and [K2|02], the only column
of A|{i,j} appearing more than once is

+
1
1

,
and so we can delete from A rows i, j and 3

columns to obtain a simple matrix A′ ∈ Avoid(m− 2, {[K2|1101], [K2|02]}).
A construction would be to take Icm/2 and replace each 0 by the 2 × 3 matrix

+
0 1 0
0 0 1

,

and replacing each 1 by the 2 × 3 block of 1’s to obtain an m × 3
2
m simple matrix in

Avoid(m, {[K2|1101], [K2|02]}). If m is odd, we note that the outlined construction works
for m+ 1 and delete a row.

Note that if the bound forb(m,K2) is exceeded then there is a pair of rows i, j so that
that K2 ≺ A|{i,j} and hence [2 · 1101] ∕≺ A|{i,j} and [2 · 02] ∕≺ A|{i,j}. The consequence is
that we can delete at most 3 columns and two rows from A to obtain a simple matrix A′.
This idea is repeated in Lemma 9 and is crucial for Theorem 3.

Consider the following matrices:

F2 =

#

%
1 0
0 1
0 0

&

( , F3 =

#

%
1 1
0 1
0 0

&

( , F4 =

#

%
1 1
1 0
0 1

&

( .

We note that the inductive children of [K4|t ·KT
2 ] are [K3|t ·F2], [K3|t ·F3] and [K3|t ·F4].
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Lemma 9. Let F = {[K3|t·F2], [K3|t·F3], [K3|t·F4]}. Let A ∈ Avoid(m,F) with a triple of
rows S = {i, j, k} with (t+1)·F2 ∕≺ A|S, (t+1)·F3 ∕≺ A|S and (t+1)·F4 ∕≺ A|S. Then we can
delete one row and at most 4t columns and obtain a simple matrix A′ ∈ Avoid(m− 1,F).

Proof. Let A ∈ Avoid(m,F) with a triple of rows S = {i, j, k} with (t + 1) · F2 ∕≺ A|S,
(t+1) ·F3 ∕≺ A|S and (t+1) ·F4 ∕≺ A|S. Using case analysis, we will show that 4 (of the 8
possible) columns of A|S are restricted to occur at most t times (columns in short supply)
and the other 4 columns have no restriction (we use the notation that those columns
are in long supply denoted l.s.). Indeed, suppose that 0211 is in long supply. Since
(t+1) ·F2 ∕≺ AS, the columns 1102 and 011101 are in short supply. Since (t+1) ·F3 ∕≺ AS,
the columns 0112 and 110111 are in short supply. We reach analogous conclusions if we
assume 1201 is in long supply. There is only one case up to row permutations:

A|{i,j,k}
i
j
k

" t#

%
1
0
0

&

(

" t#

%
0
1
0

&

(

" t#

%
1
0
1

&

(

" t#

%
0
1
1

&

(

l.s.#

%
0
0
0

&

(

l.s.#

%
0
0
1

&

(

l.s.#

%
1
1
0

&

(

l.s.#

%
1
1
1

&

( (5)

It is unusual in these investigations that there is only one case as in (5) to consider when
forbidding configurations. Deleting row i and the at most 4t columns in short supply
yields a simple matrix A′ ∈ Avoid(m− 1,F) with ‖A′‖ ! ‖A‖ − 4t.

Lemma 10. Given t, there exists an m3 so that for m > m3, forb(m,F) = forb(m,K3).

Proof. Let A ∈ Avoid(m,F) with ‖A‖ > forb(m,K3) so that K3 ≺ A|S for some triple
of rows S. Hence (t + 1) · F2 ∕≺ A|S, (t + 1) · F3 ∕≺ A|S and (t + 1) · F4 ∕≺ A|S. Using
Lemma 9, we may delete one row and 4t columns to obtain a matrix A

′ ∈ Avoid(m−1,F)
with ‖A′‖ ! ‖A‖ − 4t. To continue, we need ‖A′‖ > forb(m − 1, K3). Using (1), (4) we
have forb(p,K3) − forb(p − 1, K3) = p for all p and so we need m − 1 ! 4t to obtain
‖A′‖ > forb(m − 1, K3). We wish to repeat this process m − m1/2 times deleting a
row and at most 4t columns at each step, to obtain at the final step a simple matrix
A′′′ ∈ Avoid(m1/2,F) with ‖A′′′‖ = ‖A‖−4t(m−m1/2). For this to work we needm1/2 ! 4t
and so we choose m3 ! ⌈(4t)2⌉ so that at each intermediate simple matrix A′′ on m′′ rows
has m′′ ! 4t. Similarly, with this requirement on m3, we can ensure m′′ > m1/2 ! 4t
which yields the number of columns ‖A′′‖ ! ‖A‖− 4t(m−m′′) > forb(m′′, K3) using (1),
(4). Hence each intermediate matrix A′′ has K3 ≺ A′′ and so the process can proceed to
A′′′. There is a further restriction on m3 given below but for this part of the argument it
suffices to have m3 ! ⌈(4t)2⌉. Now ‖A′′′‖ = ‖A‖ − 4t(m −m1/2) !

-
m
2

.
− 4t(m −m1/2)

which, for fixed t, is a quadratic in m. The bound for (t + 1) · K3 on m1/2 rows is
t+3
3

-
m1/2

3

.
+
-
m1/2

2

.
+
-
m1/2

1

.
+
-
m1/2

0

.
[3] which is Θ(m3/2) while ‖A′′′‖ is quadratic. Som3 can

be chosen so that ‖A′′′‖ > forb(m1/2, (t+1) ·K3). Also choose m3 to satisfy m3 ! ⌈(4t)2⌉.
Thus we will obtain (t + 1) · K3 ≺ A′′′. Then [K3|t · F1] ≺ (t + 1) · K3 ≺ A′′′ ≺ A,
contradicting A ∈ Avoid(m,F).
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This doesn’t directly solve [K4|t ·KT
2 ] by standard induction and (4) since that would

require a base case for forb(m, [K4|t · KT
2 ]). The following stability lemma is crucial to

our bounds. It says that for A ∈ Avoid(m,F) where K3 ≺ A, we have that ‖A‖ is less
that the expected bound forb(m,K3) by a large amount.

Lemma 11. Let F = {[K3|t · F2], [K3|t · F3], [K3|t · F4]}. Let A ∈ Avoid(m,F). Assume
there is a set S of 3 rows with (t+1) ·F2 ∕≺ A|S, (t+1) ·F3 ∕≺ A|S and (t+1) ·F4 ∕≺ A|S.
Assume m > m3 + 1. Then ‖A‖ " forb(m,K3)−m+ 4t.

Proof. Assume A ∈ Avoid(m,F) and ‖A‖ > forb(m,K3)−m+4t. Assume (t+1) ·F2 ∕≺
A|S, (t+1) ·F3 ∕≺ A|S and (t+1) ·F4 ∕≺ A|S. Then, using Lemma 9 (m > m3 +1) we can
delete one row and at most 4t columns to obtain a simple matrix A′ ∈ Avoid(m− 1,F).
Then using (4) and assuming m > 4t, ‖A′‖ > forb(m,K3)−m+4t−4t = forb(m−1, K3).
By Lemma 10 there is then an F ∈ F with F ≺ A′ ≺ A, a contradiction.

We can now prove our main result that gives a surprising number of columns we can
append to Kk and still have the same bound. No column α can be added to K3 and
still have forb(m, [K3|α]) = forb(m,K3) since, without loss of generality, α has 2 1’s
and then 3 · 12 ≺ [K3|α] but forb(m, 3 · 12) = 4

3

-
m
2

.
+

-
m
1

.
+

-
m
0

.
> forb(m,K3) (e.g.

Theorem 17). This idea works for larger k so that for k = 4 we can only add columns
of 2 1’s and 2 0’s if we want the bound forb(m,K4). It also indicates why we need to
have the hypothesis m > mk for some mk. We offer no insight on the exact value of mk.
Theorem 3 is somewhat anticipated in [5] for the case t = 1 (Theorems 1.3,1.4 in [5]), but
the more general results were handicapped searching for base cases which the proof here
has avoided. The columns we add to Kk are t copies of the 2k−3 columns KT

2 ×Kk−4.

Lemma 12. Assume k ! 5. The inductive child of [Kk|t · (KT
2 ×Kk−4)] is

[Kk−1|t · (KT
2 ×Kk−5)].

Proof. Apply Remark 5 and [Kk|t · (KT
2 ×Kk−4)] = [Kk−1|t · (KT

2 ×Kk−5)]× [0 1].

Proof of Theorem 3. We use induction on k and m but with a stronger induction hypothe-
ses and prove three facts in turn. We will establish constants ck,mk with mk > mk−1 for
k ! 4. The constant m3 already exists in Lemma 10.

The overall induction is on k. The base cases for Claim 1(3) and Claim 2(3) are
Lemma 10 and the base case for Claim 3(3) is Lemma 11. Claim 1(k) will follow from
Claim 2(k − 1) and induction on m with base case mk−1. Claim 2(k) will follow from
Claim 1(k) and Claim 3(k − 1) and induction on m with base case mk. Claim 3(k) will
follow from Claim 2(k) and Claim 3(k−1). The case k = 4 needs some special treatment.

Claim 1(k). There exists ck so that for m ! mk−1, forb(m, [Kk|t · (KT
2 × Kk−4)]) "

forb(m,Kk) + ck.

Claim 2(k). There exists an mk so that for m > mk, forb(m, [Kk|t · (KT
2 × Kk−4)]) =

forb(m,Kk).
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Claim 3(k). Assume A ∈ Avoid(m, [Kk|t · (KT
2 ×Kk−4)]). Assume there is some k-tuple

S of rows so that (t + 1) · (KT
2 × Kk−4) ∕≺ A. Then there exist a constant mk so that

‖A‖ " forb(m,Kk)−m+ 4t for m > mk.

Below is an implication scheme for the inductive argument with k = 3, 4, 5, . . .. The
base case k = 4 uses Lemmas 10 and 11, rendering these the de facto base cases.

Claim 1(3) → Claim 2(3) → Claim 3(3)
(m > m3) (m > m3)

↙ ↙ ↓

Claim 1(4) → Claim 2(4) → Claim 3(4)
(m ! m3) (m > m4) (m > m4)

↙ ↙ ↓

Claim 1(5) → Claim 2(5) → Claim 3(5)
(m ! m4) (m > m5) (m > m5)

...
...

...

Proof of Claim 1(k). There exists a ck ! 0 with forb(mk−1, [Kk|t · (KT
2 × Kk−4)]) =

forb(mk, Kk) + ck establishing a base case. We use mk−1 to determine ck where m3 is
determined in Lemma 10. We determine values for mk that also must satisfy mk > mk−1

for k ! 4. We use induction on m for m ! mk−1. The base case for m = mk−1 is given.
Assume m ! mk−1. Assume A ∈ Avoid(m, [Kk|t · (KT

2 ×Kk−4)]).
First assume k = 4. We use induction on m assuming m ! m3. The inductive children

of [K4|t·KT
2 ] are F = {[K3|t·F2], [K3|t·F3], [K3|t·F4]}. Then applying standard induction

to A we have Cr ∈ Avoid(m− 1,F). By Lemma 10, ‖Cr‖ " forb(m,K3). Note that this
will require m4 > m3. Now [BrCrDr] ∈ Avoid(m− 1, [K4|t ·KT

2 ]) and so by induction on
m for Claim 1(4),

‖A‖ = ‖BrCrDr‖+‖Cr‖ " forb(m−1, K4)+c4+forb(m−1, K3) = forb(m,K4)+c4, (6)

(using (4)) which yields Claim 1(4).
Next, assume k ! 5. We use induction on m assuming m ! mk−1. Apply standard

induction so that Cr ∈ Avoid(m−1, [Kk−1|t · (KT
2 ×Kk−5)]). By using Claim 2(k−1), we

deduce that ‖Cr‖ " forb(m−1, Kk−1). Now [BrCrDr] ∈ Avoid(m−1, [Kk|t·(KT
2 ×Kk−4)])

and so by induction on m for Claim 1(k), ‖[BrCrDr]‖ " forb(m − 1, Kk) + ck. Hence
‖A‖ = ‖Cr‖+ ‖[BrCrDr]‖ " forb(m,Kk) + ck (using (4)) establishing Claim 1(k).

Proof of Claim 2(k). Assume A ∈ Avoid(m, [Kk|t · (KT
2 × Kk−4)]). If Kk ∕≺ A, then

‖A‖ " forb(m,Kk) as desired. So assume there is a k-tuple of rows S so that Kk ≺ A|S.
Then (t+1)·(KT

2 ×Kk−4) ∕≺ A|S. We are able to deduce that Cr|S\r has special behaviour.
Note we are not trying to prove that Kk−1 ≺ Cr|S\r.
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For k = 4, then if (t+1)·F2 ≺ Cr|S\r then (t+1)·KT
2 ≺ A|S. SinceK4 ≺ A|S, we obtain

[K4|t ·KT
2 ] ≺ A|S, a contradiction. Thus (t+1) ·F2 ∕≺ Cr|S\r. Similarly (t+1) ·F3 ∕≺ Cr|S\r

and (t+ 1) · F4 ∕≺ Cr|S\r. Then Lemma 11 yields ‖Cr‖ " forb(m,K3)−m+ 4t. We have
‖[BrCrDr]‖ " forb(m− 1, Kk) + c4 by Claim 1(4). Thus we have

‖A‖ " ‖[BrCrDr]‖+ ‖Cr‖

" forb(m− 1, K4) + c4 + forb(m− 1, K3)−m+ 4t " forb(m,K4),

which establishes Claim 2(4) for m > c4 + 4t. So we take m4 ! c4 + 4t. Here is where we
need that c4 does not depend on m4 but on m3.

For k ! 5, we have (t+ 1) · (KT
2 ×Kk−5) ∕≺ Cr|S\r else (t+ 1) · (KT

2 ×Kk−4) ≺ A|S, a
contradiction. Apply Claim 3(k− 1) to Cr to obtain ‖Cr‖ " forb(m,Kk−1)−m+4t. We
have ‖[BrCrDr]‖ " forb(m− 1, Kk) by induction on m. Thus for k ! 4, we have

‖A‖ " ‖[BrCrDr]‖+ ‖Cr‖

" forb(m− 1, Kk) + ck + forb(m− 1, Kk−1)−m+ 4t " forb(m,Kk),

which establishes Claim 2(k) for m > ck + 4t. So we take mk ! ck + 4t. Again we recall
ck depends on mk−1 and not mk.

Proof of Claim 3(k). Let A ∈ Avoid(m, [Kk|t · (KT
2 × Kk−4)]) with some k-tuple S of

rows so that (t + 1) · (KT
2 × Kk−4) ∕≺ A. Apply standard induction. We will first show

‖Cr‖ " forb(m− 1, Kk−1)−m+ 4t.
For k = 4, we note that the inductive children of (t+ 1) ·KT

2 are {(t+ 1) · F2,
(t+1) ·F3, (t+1) ·F4}. Thus when applying standard induction, we deduce that if S are
the k rows with (t + 1) · (KT

2 ) ∕≺ A then (t + 1) · F2 ∕≺ Cr|S\r and (t + 1) · F3 ∕≺ Cr|S\r
and (t+ 1) · F4 ∕≺ Cr|S\r. Assume m4 > m3. By Lemma 11, we deduce ‖Cr‖ " forb(m−
1, K3)−m+ 4t.

For k ! 5, we have (t+1) · (KT
2 ×Kk−4) ∕≺ A|S and so (t+1) · (KT

2 ×Kk−5) ∕≺ Cr|S\r.
Assume mk > mk−1. By Claim 3(k − 1), ‖Cr‖ " forb(m− 1, Kk−1)−m+ 4t, for k ! 5.

By Claim 2(k), ‖[BrCrDr]‖ " forb(m,Kk). For k ! 4 we have shown ‖Cr‖ " forb(m−
1, Kk−1)−m+ 4t. Then using (4), we obtain Claim 3(k).

Claim 2(k) yields the desired result.

As noted in Section 5, it is open for what B is forb(m, [K4|B]) = forb(m,K4) except
it is known that the columns of B must have column sum 2 and we cannot have all 6
columns of sum 2 in B.

3 Extensions of 2 · Kk with the same bound

In much the same spirit as in Section 2, we will show that many columns can be concate-
nated with 2 ·Kk without changing the bound. There are new values for mk determined
in this section and independent of Section 2.
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Note forb(m, 2 ·Kk) = forb(m,Kk+1) [6] and so

forb(m, 2 ·Kk) = forb(m− 1, 2 ·Kk) + forb(m− 1, 2 ·Kk−1). (7)

When we replaceKk by 2·Kk we are able to add many more columns than in Theorem 3
without changing the bound for forb(m, 2 ·Kk).

Let

F ′ =

/)
2 ·K2|t ·

)
1 0 0

0 1 0

**
,

)
2 ·K2|t ·

)
1 1 0

1 0 1

**
,

)
2 ·K2|t ·

)
1 1 0

1 0 0

**0
. (8)

The inductive children of [2 ·K3|t ·F1] are F ′. Note that forb(m, t ·F1) is Θ(m2) which is
much less that forb(m, 2 ·K3) which is Θ(m3). The following Lemma relates to Lemma 9.

Lemma 13. Let A ∈ Avoid(m,F ′) and m ! 2. Assume there is a pair of rows S = {i, j}
with 2 ·K2 ≺ A|S. Then we can delete one row and at most 2t columns from A to get a
matrix A′ ∈ Avoid(m− 1,F ′).

Proof. If A has i
j

+
1
1

,
and i

j

+
1
0

,
in long supply, then i

j

+
0
1

,
and i

j

+
0
0

,
are in short supply.

In the same way, if A has i
j

+
1
1

,
and i

j

+
0
0

,
in long supply, then i

j

+
1
0

,
and i

j

+
0
1

,
are in short

supply. When we note that (F ′)c = F ′ (the notation refers to the (0,1)-complements of
the matrices), we find that only two column types can be in long supply on rows i, j. In
any of these cases, we can delete row i and at most 2t columns (columns of short supply)
to find a submatrix A′ of A with A′ ∈ Avoid(m− 1,F ′).

The following result has proof analogous to Lemma 10 but now for 2 ·Kk.

Lemma 14. Let F ′ be as in (8). There exists an m2 so that for m > m2, we have
forb(m,F ′) = forb(m, 2 ·K2).

Proof. Suppose, for the sake of contradiction, that forb(m,F ′) > forb(m, 2 ·K2) with m >
m2. Then we can find a simple matrix A ∈ Avoid(m,F ′) which has ‖A‖ > forb(m, 2 ·K2)
so that on some choice of two rows i, j, we have 2 ·K2 ≺ A|{i,j}. By Lemma 13, we can
delete one row and up to 2t columns to find a submatrix A′ ∈ Avoid(m − 1,F ′) which
has ‖A′‖ > forb(m, 2 ·K2)− 2t (whenever m > m2 > 2t). We are using forb(p, 2 ·K2) =
forb(p,K3) which yields forb(p, 2·K2)−forb(m−1, 2·K2) = p, in analogy with Lemma 10.
At each of them−m1/2 steps of deletion, we will require that the number of rows is greater
than 2t. Ensure m2 > ⌈(2t)2⌉ to guarantee this. Repeat the process of deletion m−m1/2

times to obtain a matrix A′′ on m1/2 rows and
-
m
2

.
− 2t(m−m1/2) columns. Taking m2 >

⌈(2t)2⌉ guarantees we can do these deletions. Now forb(m1/2, (t + 2) ·K2) =
t+3
2

-
m1/2

2

.
+-

m1/2

1

.
+

-
m1/2

0

.
[1], and so for m large enough, we have ‖A′′‖ > forb(m1/2, (t + 2) · K2).

Hence, we choose m2 large enough so this is true as well as satisfying m2 > ⌈(2t)2⌉. Then
for some (and in fact any) F ∈ F ′, we have F ≺ (t+2)·K2 ≺ A′′ ≺ A, a contradiction.

Lemma 15. Let F ′ be as in Lemma 13. Let A ∈ Avoid(m,F ′) and m > m2, where m2

is as in Lemma 14. Assume that there is a set S of two rows so that t ·
+
1 0 0
0 1 0

,
∕≺ A|S and

t ·
+
1 1 0
1 0 1

,
∕≺ A|S and t ·

+
1 1 0
1 0 0

,
∕≺ A|S. Then ‖A‖ " forb(m, 2 ·K2)−m+ 2t.
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Proof. Suppose, on the contrary that ‖A‖ > forb(m, 2 ·K2)−m+ 2t. By Lemma 13, we
may delete one row and up to 2t columns to obtain an (m− 1)-rowed submatrix A′ of A
with A′ ∈ Avoid(m−1,F ′) and ‖A′‖ > forb(m, 2 ·K2)−m+2t−2t = forb(m−1, 2 ·K2).
Since m > m2, this contradicts Lemma 14.

Remark 16. Assume k ! 4. The inductive child of [2 ·Kk|t · (F1 ×Kk−3)] is [2 ·Kk−1|t ·
(F1 ×Kk−4)].

Theorem 4 is anticipated in Theorem 1.7 in [5] for the case t = 1 but progress in [5]
was stopped by difficulty with base cases.

Proof of Theorem 4: The proof is a variation on the proof of Theorem 3 with the same
induction arguments on m and k. We will be determining constants mk, ck where we
require mk > mk−1 for k = 3, 4, . . . and m2 is determined in Lemma 14. The constant ck
will be determined from mk−1. We use three inductive claims where the basic induction
is on k. The base cases for Claim 1(2) and Claim 2(2) are Lemma 14 and the base case
for Claim 3(2) is Lemma 15. Claim 1(k) will follow from Claim 2(k − 1) and induction
on m with base case mk−1. Claim 2(k) will follow from Claim 1(k) and Claim 3(k − 1)
and induction on m with base case mk.

Claim 1(k). There exists ck so that for m ! mk−1, forb(m, [2 · Kk|t · (F1 × Kk−3)]) "
forb(m, 2 ·Kk) + ck.

Claim 2(k). There is a constantmk so that forb(m, [2·Kk|t·(F1×Kk−3)]) = forb(m, 2·Kk)
for m > mk.

Claim 3(k). Assume that A ∈ Avoid(m, [2 · Kk|t · (F1 × Kk−3)]) has some k-set S of
rows so that t · (F1 ×Kk−3) ∕≺ A|S. Then there is a constant mk so that if m > mk, then
‖A‖ " forb(m, 2 ·Kk)−m+ 2t.

Our proof will handle k = 3 and k ! 4 separately.

Proof of Claim 1(k). We compute ck from mk−1 using

forb(mk−1, [2 ·Kk|t · (F1 ×Kk−3)]) = forb(mk−1, 2 ·Kk) + ck, (9)

where m2 is determined in Lemma 14. As in proof of Theorem 3, we prove Claim 1(k) for
all m > mk−1. Note that in all cases ck depends on mk−1 and moreover (9) provides the
base case for induction on m. For proving Claim 1(k) for k ! 4, we need Claim 2(k− 1).

We will first prove Claim 1(3). The inductive children of [2 ·K3|t ·F1] are precisely F ′

as in Lemma 13. Using standard induction and by Lemma 14 for m− 1 > m2, we obtain
‖Cr‖ " forb(m− 1,F ′) = forb(m− 1, 2 ·K2). Now BrCrDr ∈ Avoid(m− 1, [2 ·K3|t ·F1])
and by induction on m in (9), ‖BrCrDr‖ " forb(m − 1, 2 · K3) + c3. Using (7) and
‖A‖ = ‖BrCrDr‖+ ‖Cr‖ proves Claim 1(3).

To prove Claim 1(k) for k ! 4 we note the inductive child of [2 ·Kk|t · (F1 ×Kk−3)]
is [2 · Kk−1|t · (F1 × Kk−4)] by Remark 5. By Claim 2(k − 1), there exists a constant
mk−1 so that ‖Cr‖ " forb(m − 1, 2 · Kk−1) for m ! mk−1. By our standard induction
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BrCrDr ∈ Avoid(m − 1, [2 · Kk|t · (F1 × Kk−3)]) and so by induction on m, BrCrDr "
forb(m− 1, 2 ·Kk) + c3. By (7),

‖A‖ " ‖BrCrDr‖+ ‖Cr‖ " forb(m− 1, 2 ·Kk) + ck + forb(m− 1, 2 ·Kk−1)

= forb(m, 2 ·Kk) + ck

yielding Claim 1(k).

Proof of Claim 2(k). We first handle k = 3 and use Claim 1(3). Let A ∈ Avoid(m, [2 ·
K3|t · F1]). If 2 ·K3 ∕≺ A, then ‖A‖ " forb(m, 2 ·K3) so we may assume that 2 ·K3 ≺ A
on some triple S = {r, i, j} of rows so that t · F1 ∕≺ A|S. As in the proof of Theorem 3,
we show that Cr|S\r has some structure but we do not try to show that 2 ·Kk−1 ≺ Cr|S\r.
Observe that t ·

+
1 0 0
0 1 0

,
∕≺ Cr|S\r and t ·

+
1 1 0
1 0 1

,
∕≺ Cr|S\r and t ·

+
1 1 0
1 0 0

,
∕≺ Cr|S\r. Apply

Lemma 15 with m > m2 to obtain ‖Cr‖ " forb(m− 1, 2 ·K3)−m + 2t. By Claim 1(3),
‖[BrCrDr]‖ " forb(m− 1, 2 ·K3) + c3. Applying (7) proves Claim 2(3).

For general k ! 4, we use Claim 1(k) and Claim 3(k− 1). Let A ∈ Avoid(m, [2 ·Kk|t ·
(F1×Kk−3)]) and assume, as above, that 2 ·Kk ≺ A on some k-tuple S of rows. Let r ∕∈ S
be a row in A and observe that the row r decomposition of A has [t · (F1 ×Kk−4)] ∕≺ Cr

so that Claim 3(k − 1) applies. Hence ‖Cr‖ " forb(m − 1, 2 · Kk−1) − m + 2t. By
Claim 1(k), ‖[BrCrDr]‖ " forb(m − 1, 2 ·Kk) + ck. Then ‖A‖ = ‖[BrCrDr]‖ + ‖Cr‖ "
forb(m− 1, 2 ·Kk) + ck + forb(m− 1, 2 ·Kk−1)−m+ 2t. Choosing mk ! ck + 2t, proves
Claim 2(k).

Proof of Claim 3(k). Assume that A ∈ Avoid(m, [2 ·Kk|t · (F1 ×Kk−3)]) has some k-set
S of rows so that t · (F1 ×Kk−3) ∕≺ A|S.

First assume k = 3. The proof will use Claim 2(3). Let S = {r, i, j}. Then t ·+
1 0 0
0 1 0

,
∕≺ A|S\r and t ·

+
1 1 0
1 0 1

,
∕≺ Cr|S\r and t ·

+
1 1 0
1 0 0

,
∕≺ Cr|S\r else t · (F1 × Kk−3) ≺ A|S,

a contradiction. Thus by Lemma 15, ‖Cr‖ " forb(m − 1, 2 · K2) −m + 2t for m > m2.
Observe that by Claim 2(3) and induction on m, ‖[BrCrDr]‖ " forb(m− 1, 2 ·K3). Thus
‖A‖ = ‖[BrCrDr]‖+ ‖Cr‖ " forb(m− 1, 2 ·K3) + forb(m− 1, 2 ·K2)−m+ 2t. Applying
(7) proves Claim 3(3).

Assume k ! 4. The proof will use Claim 2(k) and Claim 3(k − 1). Proceed as above
with t · (F1 ×Kk−3) ∕≺ A|S and a row r standard decomposition of A with r ∈ S. With
[BrCrDr] ∈ Avoid(m − 1, [2 · Kk|t · (F1 × Kk−3)]) then Claim 2(k) yields ‖[BrCrDr]‖ "
forb(m − 1, 2 · Kk) for m > mk. Since [2 · Kk−1|t · (F1 × Kk−3)] ∕≺ A|S, we deduce
that [2 · Kk−1|t · (F1 × Kk−4)] ∕≺ Cr|S\r. Thus by Claim 3(k − 1) we have that ‖Cr‖ "
forb(m− 1, 2 ·Kk−1)−m+ ck−1. Applying (7) proves Claim 3(k).

Claim 2(k) yields the desired result.

4 Multiple copies of a configuration

It is interesting to consider t · F for various F and show that increasing t increases the
bound. This contrasts with Theorems 3 and 4 where
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forb(m, [G|t·F ]) = forb(m,G) for choices ofG,F . Note that forb(m, t·F ) is asymptotically
less than forb(m,G) in these cases.

There are many examples of forbidden configurations with a parameter t where the
upper bound currently known depends on t such as in Theorem 17 but we are lacking
constructions in general to show how forb depends on t in many other cases. Note that
our proof of Theorem 7 will spend the bulk of the time on F consisting of a single column.

Theorem 17. [2] Let p > q be given. Then for large enough m and t > 2

forb(m, t · 1p0q) "
p−11

i=0

!
m

i

"
+

!
1 +

t− 2

p+ 1

"!
m

p

"
+

m1

i=m−q+1

!
m

i

"

with equality for m, p, t satisfying
-
p+1−i
p−i

.
divides

-
m−i
p−i

.
for i = 1, 2, . . . , p− 1.

The leading term in forb(m, t ·1p0q) is (1+
t−2
p+1

)m
p

p!
when the divisibility conditions are

satisfied. Note that for a constant ℓ, the expression
-
m−ℓ
p

.
is a polynomial in m of degree

mp and the leading term in
-
m−ℓ
p

.
is mp

p!
with other terms O(mp−1). Constructions rely on

Keevash [7].

Theorem 18. [7] Let p, t be given. There exists a simple matrix A, all of whose columns
sums are p + 1, with A ∈ Avoid(m, (λ + 1) · 1p) and ‖A‖ = λ

p+1

-
m
p

.
for m, p, t satisfying-

p+1−i
p−i

.
divides

-
m−i
p−i

.
for i = 1, 2, . . . , p− 1.

The finite nature of the divisibility conditions ensures that there exists a constant
cp "

2p−1
i=1

-
p+1−i
p−i

.
such that the divisibility conditions are always satisfied for some m′ ∈

{m− cp,m− cp + 1, . . . ,m}. Then the construction A′ ∈ Avoid(m′, (λ+ 1) · 1p) with all
column sums p + 1, can be made into a matrix A ∈ Avoid(m, (λ + 1) · 1p) by appending
m −m′ < cp rows of 0’s and so the leading term (in m) for ‖A‖ by this construction is
still ( λ

p+1
)m

p

p!
.

Lemma 19. Given t, p, there exist constants c1,M so that, for m > M ,

!
2 +

t− 3

p+ 1

"
mp

p!
− c1m

p−1 " forb(m, t · 1p0p) (10)

Proof. We can construct a matrix A ∈ Avoid(m, t · 1p0p) with ‖A‖ having leading term
(2+ t−3

p+1
)m

p

p!
by forming A from all columns of sum 1, 2, . . . , p and m− p,m− p+1, . . . ,m

as well as the above matrix of Theorem 18 with λ replaced by t− 3.

We expect this construction is optimal (when the divisibility conditions are satisfied).
The case p = q of Theorem 17 has only been solved for p = q = 2 (see ArXiv reference in
[2]) .
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Definition 20. For A ∈ Avoid(m, t · 1p0p), let a
+
p be the number of columns of sum p or

m− p, let a+p+1 be the number of columns of sum p+ 1 or m− p− 1 and let aother be the
number of columns of sum in {p+ 2, p+ 3, . . . ,m− p− 2}.

We may ignore columns of at most p − 1 1’s and columns of at least m − p + 1 1’s
which have no configuration 1p0p.

For the following lemma, we use the pigeonhole argument of Lemma 2.2 of [2]. We are
counting the occurrences of the configuration 1p0p and note that any set of 2p rows can
have at most

-
2p
p

.
(t− 1) such configurations. The result is more than what is needed for

the proof of Theorem 7 but can be viewed as a weak stability result. Namely matrices
close to the bounds have the number of columns of each type a+p , a

+
p+1, aother close to

their expected values arising from the known design based constructions with a+p = 2
-
m
p

.
,

a+p+1 =
t−3
p+1

-
m
p

.
and aother = 0.

Lemma 21. Let m, p, t be given and let A ∈ Avoid(m, t · 1p0p) with a+p + a+p+1 + aother !
(2 + t−3

p+1
)
-
m
p

.
− c1m

p−1 with c1 as in Lemma 19. Then, there is some M so that, for
m > M , we have

!
p

p

"!
m− p

p

"
a+p +

!
p+ 1

p

"!
m− p− 1

p

"
a+p+1 +

!
p+ 2

p

"!
m− p− 2

p

"
aother

"
!
m

2p

"!
2p

p

"
(t− 1). (11)

Further, there exist constants c2, c3, c4, c5 > 0 so that

2

!
m

p

"
− c2m

p−1 " a+p " 2

!
m

p

"
, (12)

t− 3

p+ 1

!
m

p

"
− c3m

p−1 " a+p+1 "
t− 3

p+ 1

!
m

p

"
+ c4m

p−1, and (13)

aother " c5m
p−1 (14)

whenever m > M .

Proof. The upper bound on a+p (12) follows from the simplicity of A. It yields

a+p+1 + aother !
t− 3

p+ 1

!
m

p

"
− c1m

p−1. (15)

A column of column sum k has
-
k
p

.-
m−k
p

.
configurations 1p0p and for p+2 " k " m−p−2

we check
-
k
p

.-
m−k
p

.
!

-
p+2
p

.-
m−p−2

p

.
. The configurations 1p0p can appear on 2p rows in up

to
-
2p
p

.
orderings but at most t− 1 times to avoid t · 1p0p. The pigeonhole principle then

gives (11).
While m > (p+ 2)(2p− 1)/p, we have that

-
p+1
p

.-
m−p−1

p

.
<

-
p+2
p

.-
m−p−2

p

.
. Hence

!
m− p

p

"
a+p +

!
p+ 1

p

"!
m− p− 1

p

"
(a+p+1 + aother) "

!
m

2p

"!
2p

p

"
(t− 1).
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Substitute a+p+1 + aother ! (2 + t−3
p+1

)
-
m
p

.
− a+p − c1m

p−1 and rearrange to obtain

!
m− p− 1

p

"!
m

p

"
(2(p+ 1) + t− 3)−

!
m

2p

"!
2p

p

"
(t− 1)− c1m

p−1(p+ 1)

!
m− p− 1

p

"

"
!!

p+ 1

p

"!
m− p− 1

p

"
−

!
m− p

p

""
a+p .

The expressions are polynomials in m when p is viewed as constant. Here, the left side
of the inequality has a leading term 2p

p!2
m2p, whereas the right side sees a+p multiplied by

a polynomial with a leading term p
p!
mp (from p

-
m
p

.
). Thus ap = 2

-
m
p

.
+ O(mp−1) and so

there exists a constant c2 so that the lower bound in (12) holds.
Next, substitute the lower bound for a+p into (11) to obtain

!
p+ 1

p

"!
m− p− 1

p

"
a+p+1 +

!
p+ 2

p

"!
m− p− 2

p

"
aother

"
!
m

2p

"!
2p

p

"
(t− 1)−

!
p

p

"!
m− p

p

"
(2

!
m

p

"
− c2m

p−1)

Now (15) can be multiplied by −
-
p+1
p

.-
m−p−1

p

.
and added to the above inequality

to obtain an inequality for aother. The coefficient of aother on the left side becomes-
p+2
p

.-
m−p−2

p

.
−

-
p+1
p

.-
m−p−1

p

.
which has leading term p2+p

2
mp and the right hand side

has leading term that is a multiple of m2p−1 (the terms m2p cancel) and so for some con-
stant c5 we obtain the upper bound on aother in (14). Combining this with (15) yields a
constant c3 for which the lower bound on a+p+1 in (13) holds.

Combining the hypothesis a+p +a+p+1+aother ! (2+ t−3
p+1

)
-
m
p

.
−c1m

p−1 with lower bounds

for a+p and aother yields the upper bound in (13) with a suitable constant c4.

Theorem 22. Let m, p, t be given. Then

!
2 +

t− 3

p+ 1

"!
m

p

"
− c1m

p−1 " forb(m, t · 1p0p) "
!
2 +

t− 3

p+ 1

"!
m

p

"
+ (c4 + c5)m

p−1.

Proof. Use Lemma 19 for the lower bound and use the upper bounds on ap+, ap+1+ aother
arising in Lemma 21 to obtain the upper bound.

We now can prove Theorem 7.

Proof of Theorem 7: Assume first ℓ ! 2. Assume forb(m, t ·F ) = forb(m, (t+1) ·F ). Take
an extremal matrix A ∈ Avoid(m, t · F ) with ‖A‖ = forb(m, t · F ) = forb(m, (t + 1) · F )
and a m × 1 column α not in A. Consider A′ = [A|α]. Then (t + 1) · F ≺ A′ on some
((t + 1)ℓ)-set of columns of A′. Since ℓ ! 2, we can take a tℓ-subset of these columns
which does not include the column α, on which t · F ≺ A, a contradiction.
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Assume ℓ = 1 and F = 1p0q with p ! q. The case where p > q can be verified via the
exact bounds in [2] and the construction ideas. So, let p = q. By Theorem 22, note that

forb(m, t · F ) "
!
2 +

t− 3

p+ 1

"!
m

p

"
+ (c4 + c5)m

p−1,

while

forb(m, (t+ 1) · F ) !
!
2 +

t− 2

p+ 1

"!
m

p

"
− c1m

p−1.

Form large enough, we obtain forb(m, (t+1)·F ) > forb(m, t·F ), concluding the proof.

5 Problems

We were only able to add 2 different columns of sum 2 (but each taken multiple times)
to K4 in Theorem 3. Is this the best we can do?

Problem 23. Let

F5 =

#

$$%

1 1 1
1 0 0
0 1 0
0 0 1

&

''( , F6 =

#

$$%

1 0
1 0
0 1
0 1

&

''( , F7 =

#

$$%

1 1 1 0 0
1 0 0 1 0
0 1 0 1 1
0 0 1 0 1

&

''( .

Show that forb(m, [K4|F5]) > forb(m,K4) and forb(m, [K4|F6]) > forb(m,K4).

Constructions are hard to come by. Note that forb(m, t·F6) is Θ(m2) and forb(m, t·F5)
is conjectured to be Θ(m2) ([1]). It is possible that even forb(m, [K4|t·F7]) = forb(m,K4).
We need some new constructions!

Although in the case of extensions of Kk we could not add columns of column sum 1
or k − 1, this is not obvious when extending 2 ·Kk. We note that F1 has two columns of
sum 1 that can be added to 2 ·K3 without changing the bound. Similarly F1 × [0 1] has
two columns of sum 1 that can be added to 2 ·K4 without changing the bound.

Note we do not know the bound for [2 ·K3|t · I3] although we expect it may be larger
than forb(m, 2 ·K3) while forb(m, [t · I3]) is known to be quadratic [1].

Problem 24. Show that forb(m, [2 ·K3|I3]) > forb(m, 2 ·K3).

In [4], a number of extensions to 2 · 1102 are shown to have the same bound as
forb(m,1102) (Theorem 3.2 in [4]). In these cases we call 1102 a critical substructure.
You might guess that forb(m, [K3|1102]) = forb(m, 2 · 1102) but this is not the case since
3 · 02 ≺ [K3|1102] and hence forb(m, [K3|1102]) ! forb(m, 3 · 02) =

4
3

-
m
2

.
+
-
m
1

.
+
-
m
0

.
. We

have to be careful looking for substructures yielding big bounds.

Problem 25. Show that there exists a constant c so that forb(m, {[K3|t·03], [K3|t·13}) "
forb(m,K3) + c.

This would, by an easy induction, show that forb(m, {[Kk|t · 0k], [Kk|t · 1k]}) "
forb(m,Kk)+cmk−2. Even better would be to show that forb(m, {[K3|t ·03], [K3|t ·13]}) =
forb(m,K3).
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