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Abstract

We consider maps on genus-g surfaces with n (labeled) faces of prescribed even
degrees. It is known since work of Norbury that, if one disallows vertices of degree
one, the enumeration of such maps is related to the counting of lattice points in the
moduli space of genus-g curves with n labeled points and is given by a symmetric
polynomial Ng,n(ℓ1, . . . , ℓn) in the face degrees 2ℓ1, . . . , 2ℓn. We generalize this by
restricting to genus-g maps that are essentially 2b-irreducible for b ! 0, which loosely
speaking means that they are not allowed to possess contractible cycles of length
less than 2b and each such cycle of length 2b is required to bound a face of degree
2b. The enumeration of such maps is shown to be again given by a symmetric

polynomial N̂
(b)
g,n(ℓ1, . . . , ℓn) in the face degrees with a polynomial dependence on

b. These polynomials satisfy (generalized) string and dilaton equations, which for
g " 1 uniquely determine them. The proofs rely heavily on a substitution approach
by Bouttier and Guitter and the enumeration of planar maps on genus-g surfaces.

Mathematics Subject Classifications: 05C10, 05C30

1 Introduction

The enumeration of maps on surfaces (or fatgraphs or ribbon graphs) has a long history in
mathematics and physics. Since the seminal results of Tutte in the sixties (including [26])
many families of maps have been enumerated using a great variety of tools, including loop
equations and analytic combinatorics, character theory of the symmetric group, random
matrix theory and tree bijections. Among these are many families corresponding to maps
with restrictions on the face degrees and on the girth, i.e. the length of the shortest cycle,
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or the essential girth, which is the girth of the universal cover in the case of higher-genus
maps. For instance, loopless triangulations are maps with all faces restricted to be of
degree three and (essential) girth at least two. Until recently the constraints on the
minimal girth were always rather small (2, 3 or 4). This changed with the discovery by
Bernardi & Fusy of a tree encoding of planar maps with arbitrarily large minimal girth
[5, 6] which relies on the existence of canonical orientations on the edges of such maps (see
also [2]). Planar maps with the slightly stronger constraint of d-irreducibility, meaning
that they are required to have girth at least d and that the only cycles of length d are
contours of a face of degree d, were enumerated by Bouttier & Guitter in [9, 8]. Relying
on a slice decomposition they also obtain a tree encoding, that is similar to the case with
girth constraints.

The unified treatment of maps with girth or irreducibility constraint presents the
opportunity to study the dependence of the map enumeration not only on the number of
faces and their degrees but also on the girth parameter. This is the goal of the current
work. As we will see this dependence is especially simple if we restrict our attention to
maps with even face degrees and no vertices of degree one. In particular, the number of
2b-irreducible planar maps with n labeled faces of even degrees 2ℓ1, . . . , 2ℓn will be shown
to depend polynomially on b and ℓ1, . . . , ℓn. The same is true for higher-genus maps when
they are required to be essentially 2b-irreducible, meaning that their universal cover is
2b-irreducible.

The appearance of polynomials in the enumeration of maps with control on the face
degrees, but without girth constraints, was already observed by Norbury in [22] and is
closely linked to the decorated moduli space of genus g curves with n labeled points. In
the limit of large face degrees one can think of these maps as approximating the ribbon
graphs with real edge lengths that appear in Kontsevich’s proof [20] of Witten’s conjecture.
In particular, the coefficients of the leading order monomials in the face degrees encode
intersection numbers of the first Chern classes of certain tautological bundles over moduli
space. The polynomials derived in this work for essentially 2b-irreducible maps should
contain more information since one may examine the leading order monomials not only
in the face degrees but also in the irreducibility parameter b. As will be demonstrated
in the follow-up work [10], the homogeneous parts of top degree of these polynomials,
seen as function of the face degrees as well as b, precisely compute certain volumes of
ribbon graphs with real edge lengths and real girth constraints. We will observe that such
volumes are in turn closely (but still mysteriously) related to the Weil-Petersson volumes
of hyperbolic surfaces.

1.1 Main results

A genus-g map is a (multi)graph that is properly embedded in a surface of genus g, viewed
up to orientation-preserving homeomorphisms of the surface. Here properly embedded
means that edges only meet at their endpoints and that the complement of the graph is
a disjoint union of topological disks. We denote the set of vertices, edges, and faces of a
map m by V(m), E(m) and F(m) respectively. A map is rooted if it is equipped with a
distinguished oriented edge, the root edge. Given a set M of maps with labeled faces and
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Figure 1: (a) Example of a planar map that is 2-irreducible but not 4-irreducible because
it has a simple cycle of length 4 (indicated in orange) that does not bound a face. (b) A
genus-1 map that is essentially 4-irreducible but not essentially 6-irreducible, because its
universal cover (c) has a simple cycle of length 6 that does not bound a face.

"M the corresponding set of rooted maps, we enumerate M via the formula

‖M‖ =
!

m∈M

1

|Aut(m)| =
!

m∈ !M

1

2|E(m)| ,

where Aut(m) is the group of orientation-preserving automorphisms of the map m pre-
serving the face labels. In many cases there are no non-trivial automorphisms, for instance
when the maps are planar and have three or more faces. For a family M of such maps
we thus have that ‖M‖ is simply the cardinality of M.

A planar map (or genus-0 map) is called 2b-irreducible [9] for 2b ! 0 if it contains no
simple cycle of length smaller than 2b, i.e. it has girth at least 2b, and every simple cycle
of length 2b is the boundary of a face of degree 2b (see Figure 1a). By construction every
map is 0-irreducible. A genus-g map with g ! 1 is said to be essentially 2b-irreducible if
its universal cover viewed as an infinite planar map is 2b-irreducible (Figure 1b & c).

For g, b ! 0 and n ! 1 (provided n ! 3 if g = 0) and ℓ1, . . . ℓn ! max(b, 1) we denote

by M(b)
g,n(ℓ1, . . . , ℓn) the set of essentially 2b-irreducible genus-g maps with n labeled faces

of degrees 2ℓ1, . . . , 2ℓn. Let M̂(b)
g,n(ℓ1, . . . , ℓn) be the subset of such maps that contain no

vertex of degree 1. Our first result is that ‖M̂(b)
g,n(ℓ1, . . . , ℓn)‖ is polynomial in the face

degrees, apart from a small correction in the planar case when all degrees are equal to 2b
(see Figure 2 for an example).

Theorem 1. For every g, b ! 0 and n ! 1 (provided n ! 3 if g = 0) there exists a

symmetric polynomial N̂
(b)
g,n(ℓ1, . . . , ℓn) of degree n + 3g − 3 in ℓ21, . . . , ℓ

2
n such that for all

ℓ1, . . . ℓn ! max(b, 1),

‖M̂(b)
g,n(ℓ1, . . . , ℓn)‖ = N̂ (b)

g,n(ℓ1, . . . , ℓn) + 1{g=0, n!4, ℓ1=···=ℓn=b}
(n− 1)!

2
(−1)n (1)

and

‖M(b)
g,n(ℓ1, . . . , ℓn)‖ =

ℓ1!

p1=b

A
(b)
ℓ1,p1

· · ·
ℓn!

pn=b

A
(b)
ℓn,pn

‖M̂(b)
g,n(p1, . . . , pn)‖, (2)
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Figure 2: Illustration of the enumeration of 2b-irreducible planar maps with four faces
of degrees 2ℓ1, 2ℓ2, 2ℓ3, 2ℓ4 for (ℓ1, ℓ2, ℓ3, ℓ4) = (2, 2, 2, 2) and (3, 2, 2, 2) respectively. Some
simple cycles that are relevant for the irreducibility constraints are represented as dotted
curves. The number of inequivalent face labelings is indicated in red. As one may check the
enumeration matches the formula ‖M̂(b)

0,4‖ = ℓ21+ℓ22+ℓ23+ℓ24−(3b2+3b+1)+31{ℓ1=···=ℓ4=b}.

where A
(b)
ℓ,p = 1ℓ=p=b +

p
ℓ

"
2ℓ
ℓ−p

#
1ℓ!p>b. Moreover, for fixed g and n, the dependence of

N̂
(b)
g,n(ℓ1, . . . , ℓn) on b, ℓ1, . . . , ℓn is polynomial of degree 2n+ 6g − 6.

Examples of the polynomials for small g and n are listed in Table 1. Next we show that
the polynomials N̂

(b)
g,n and N̂

(b)
g,n+1 satisfy two linear equations, which in the case of genus

0 and 1 completely characterize them in a recursive fashion.

Theorem 2. For every g, b ! 0 and n ! 1 (provided n ! 3 if g = 0) the polynomials of
Theorem 1 satisfy the “string equation”

N̂
(b)
g,n+1(ℓ1, . . . , ℓn, 1) =

n!

j=1

ℓj!

k=b+1

2k N̂ (b)
g,n(ℓ1, . . . , ℓj−1, k, ℓj+1, . . . , ℓn)

−
n!

j=1

ℓjN̂
(b)
g,n(ℓ1, . . . , ℓn) (3)

and the “dilaton equation”

N̂
(b)
g,n+1(ℓ1, . . . , ℓn, 1)− N̂

(b)
g,n+1(ℓ1, . . . , ℓn, 0) = (n+ 2g − 2) N̂ (b)

g,n(ℓ1, . . . , ℓn). (4)

In the planar and toroidal case these equations together with N̂
(b)
0,3(ℓ1, ℓ2, ℓ3) = 1 and

N̂
(b)
1,1(ℓ1) = 1

12
ℓ21 − 1

12
uniquely determine the symmetric polynomials N̂

(b)
g,n for g = 0, 1

and all n. In general N̂
(b)
g,1(ℓ1) is independent of b.

These theorems generalize results of Norbury in [22, 23] that deal with the case b =
0 albeit in a broader setting where the faces degrees are allowed to be odd as well.
Remarkably the string and dilaton equations for essentially 2b-irreducible maps differ from
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g n N̂
(b)
g,n(ℓ1, . . . , ℓn)

0 3 1
4 m(1) − (3b2 + 3b+ 1)
5 1

2
m(2) + 2m(1,1) −

"
6b2 + 6b+ 5

2

#
m(1) + (10b4 + 20b3 + 20b2 + 10b+ 2)

6 1
6
m(3) +

3
2
m(2,1) + 6m(1,1,1) −

"
5b2 + 5b+ 7

3

#
m(2) − (18b2 + 18b+ 9)m(1,1)

+
"
30b4 + 60b3 + 65b2 + 35b+ 49

6

#
m(1)

−
$

215b6

6
+ 215b5

2
+ 1085b4

6
+ 365b3

2
+ 340b2

3
+ 40b+ 6

%

1 1 1
12
m(1) − 1

12

2 1
24
m(2) +

1
12
m(1,1) − 1

8
m(1) +

$
− b4

24
− b3

12
+ b2

24
+ b

12
+ 1

12

%

3 1
72
m(3) +

1
12
m(2,1) +

1
6
m(1,1,1) −

$
b2

24
+ b

24
+ 1

9

%
m(2) − 1

3
m(1,1)

+
$
− b4

12
− b3

6
+ b2

8
+ 5b

24
+ 19

72

%
m(1)

+
$

b6

18
+ b5

6
+ 2b4

9
+ b3

6
− 5b2

18
− b

3
− 1

6

%

2 1 1
6912

m(4) − 13
5760

m(3) +
119

11520
m(2) − 143

8640
m(1) +

1
120

2 1
34560

m(5) +
29

17280
m(3,2) +

1
2304

m(4,1) − 1
1280

m(4) − 317
17280

m(2,2) − 73
8640

m(3,1)

+ 17
2304

m(3) +
61

1280
m(2,1) − 1009

34560
m(2) − 1543

17280
m(1,1) +

137
2880

m(1)

+
$
− b10

34560
− b9

6912
+ b8

2880
+ 13b7

5760
− 7b6

11520
− 119b5

11520
− 31b4

17280
+ 143b3

8640
+ b2

480
− b

120
− 1

40

%

Table 1: The first few polynomials N̂
(b)
g,n(ℓ1, . . . , ℓn). They are expressed in terms of

the basis m(α1,...,αp)(ℓ1, . . . , ℓn) =
&

(β1,...,βn)
ℓ2β1

1 ℓ2β2

2 · · · ℓ2βn
n of symmetric even polyno-

mials, where the sum runs over permutations (β1, . . . , βn) of (α1, . . . ,αp, 0, . . . , 0). For
example, m(1)(ℓ1) = ℓ21, m(2)(ℓ1, ℓ2) = ℓ41 + ℓ42, m(1,1)(ℓ1, ℓ2, ℓ3) = ℓ21ℓ

2
2 + ℓ21ℓ

2
3 + ℓ22ℓ

2
3 and

m(3,1)(ℓ1, ℓ2, ℓ3) = ℓ61ℓ
2
2 + ℓ61ℓ

2
3 + ℓ62ℓ

2
1 + ℓ62ℓ

2
3 + ℓ63ℓ

2
1 + ℓ63ℓ

2
2.
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their b = 0 counterpart only in the lower bound of the inner sum in the string equation (3).
The way we arrive to these equations, however, is quite different from the methods used by
Norbury, which are obtained with the help of a topological recursion formula satisfied by
genus-g maps without vertices of degree one. No such recursion formula is known when an
irreducibility constraint is present. Instead, we rely heavily on the substitution approach
by Bouttier & Guitter [9, 8], which generalizes the approach of Tutte [26] and Mullin &
Schellenberg [21] for triangulations respectively quadrangulations with an irreducibility
constraint to arbitrary maps with controlled face degrees. Using known results on the
enumeration of genus-g maps it allows us to obtain sufficiently manageable generating
functions for essentially 2b-irreducible maps. A cautionary note: the results of Theorem
1 and 2 in the case g ! 1 depend on the enumeration of genus-g maps in terms of certain
moments, summarized in Section 3.4, that stem from topological recursion [14] or matrix
models [3, 1]. We leave it to the reader to judge the level of rigor of these sources.

Restricting the face degrees to be strictly larger than 2b in Theorem 1 and 2 leads to
analogous results for genus-g maps with a constraint on the essential girth, i.e. the girth
of the universal cover. In particular, if Ĝ(!b)

g,n (ℓ1, . . . , ℓn) denotes the set of genus-g maps
with n labeled faces (n ! 3 if g = 0) of degrees 2ℓ1, . . . , 2ℓn ! 2b, no vertices of degree
one, and essential girth at least 2b > 0, then

‖Ĝ(!b)
g,n (ℓ1, . . . , ℓn)‖ = N̂ (b−1)

g,n (ℓ1, . . . , ℓn)

is polynomial in b, ℓ1, . . . , ℓn. If Ĝ(b)
g,n(ℓ1, . . . , ℓn) is the corresponding set with essential

girth exactly 2b then

‖Ĝ(b)
g,n(ℓ1, . . . , ℓn)‖ = N̂ (b−1)

g,n (ℓ1, . . . , ℓn)− 1{ℓ1,...,ℓn>b}N̂
(b)
g,n(ℓ1, . . . , ℓn),

which is again polynomial when restricted to ℓ1, . . . , ℓn > b.

1.2 Questions

Our main results are easily stated and very much analogous to the enumeration of maps
without irreducibility constraint, but the proofs rely on some tedious computations. This
makes one suspect that a simpler combinatorial understanding is yet to be discovered.
Here we list several natural open questions in this direction.

1. Do Theorem 1 and Theorem 2 generalize to essentially 2b-irreducible
maps including odd face degrees? The methods we used to prove the results
based on generating function should in principle work when odd face degrees are
included, but the computations would become significantly more complicated. In
the case b = 0 it is known from the work of Norbury [22, Theorem 1] that general
maps without vertices of degree 1 are enumerated by polynomials in the boundary
length, where the polynomials depends on g and n as well as on the parity of the
face degrees (i.e. the number of odd face degrees).
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2. Does the enumeration of essentially 2b-irreducible maps admit a topo-
logical recursion?
It is far from clear whether essentially 2b-irreducible maps admit a combinatorial
decomposition like the one underlying Tutte’s equation for general maps, because
most natural decompositions one may consider do not preserve the irreducibility
constraint. As alluded to above, in the case b = 0 and general face degrees (even

and odd) a recursion formula for the polynomials N
(0)
g,n is known [22, Theorem 4] and

can be traced back to Tutte’s equation. It is connected to the fact [23, Theorem
2] that the polynomials appear as the coefficients of the Eynard-Orantin invariants
of the plane curve xy − y2 = 1. The string and dilaton equations are naturally
associated to this curve [15, 23]. Given the resemblance to the string and dilaton
equations for essentially 2b-irreducible maps, one might hope to guess a plane curve
whose invariants encode the polynomials N̂

(b)
g,n. In [24] the equations associated to a

fairly broad family of plane curves were determined, but unfortunately they do not
include the specific string and dilaton equations from Theorem 2.

3. Do the string and dilaton equation have a combinatorial explanation? In
the case b = 0 one can give a combinatorial interpretation to N̂

(0)
g,n+1(ℓ1, . . . , ℓn, 1)

and N̂
(0)
g,n+1(ℓ1, . . . , ℓn, 0) as the counting of certain maps with a distinguished face of

degree 2 or with a distinguished vertex [23]. Such an interpretation is troublesome
when b > 1, since Theorem 1 only holds for maps with face degrees that are 2b
or greater. Does there exist a generalized notion of essential 2b-irreducibility that
extends the validity of Theorem 1 to the case where one or several faces have degree
less than 2b?

4. Are there bijective interpretations to the generating functions of essen-
tially 2b-irreducible maps of genus g ! 1? As mentioned before planar maps
with control on the girth can be studied via the existence of certain canonical ori-
entations which in turn give rise to bijections with certain decorated trees [5, 6, 2].
This has recently been extended to the toroidal case [16] (see also [7] for a special
case), where the encoding is via certain decorated unicellular toroidal maps. In
the case of 2b-irreducible planar maps it was shown in [9, Section 6] that an iter-
ative decomposition into slices leads to similar encodings by decorated trees. The
higher-genus cases however are much less developed, due to a lack of good canonical
orientations or slice decompositions.

1.3 Outline

We start in Section 2 by formulating a sufficient criterion for essential 2b-irreducibility, that
can easily be checked in a skeleton decomposition of a map. This turns the enumeration
of essentially 2b-irreducible maps into a problem of counting lattice points in convex
polyhedra that are associated to the possible skeletons. Although performing this counting
in general is hard, it gives a glimpse of the appearance of polynomials in the enumeration,
due to general results on the counting of lattice points in convex polyhedra. In Section
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3 we start afresh by summarizing the substitution approach of Bouttier & Guitter and
generalize it to arbitrary genus. With the help of enumeration results of arbitrary genus-g
maps with control on the (even) face degrees, we derive relatively succinct expressions
for the generating functions of essentially 2b-irreducible genus-g maps (with vertices of
arbitrary degree). In Section 4 we perform a further substitution to disallow vertices
of degree one and derive Theorem 1 from general properties of the generating functions.
Finally, the string and dilaton equations are verified on the level of the generating functions
in Section 5.
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2 A first glimpse of the enumeration

Let m be a map on an oriented closed surface S of genus g ! 1 and let π : S∞ → S be
the universal cover of S, such that S∞ has the topology of the plane. Then there exists
a unique infinite planar map m∞ on S∞ corresponding to the lift of m along π. With
a slight abuse of notation we will also denote by π the mappings π : F(m∞) → F(m)
and π : E(m∞) → E(m) that send faces and edges of m∞ to their counterpart in m. A
mapping D : S∞ → S∞ is called a deck transformation if π ◦D = π. The set of all deck
transformations forms a group under composition that is isomorphic to the fundamental
group of S. Again we will abuse notation by using the same symbol for the mappings
D : F(m∞) → F(m∞) and D : E(m∞) → E(m∞) describing the permutation of faces and
edges under the deck transformation.

Recall that we call m essentially 2b-irreducible if m∞ is 2b-irreducible, following e.g.
[7, Section 2]. This definition can be impractical, since it involves a criterion on the
lengths of the infinitely many simple cycles of m∞. We start by formulating an equivalent
criterion that only involves checking the lengths of finitely many paths in m, the essentially
simple cycles in m. We call a closed path in m an essentially simple cycle if it lifts to
a simple cycle in m∞ that encloses at most one face in π−1(f) ⊂ F(m∞) for each face
f ∈ F(m). Informally, it is a (non-backtracking, contractible) cycle on m that bounds a
simply-connected region.

Lemma 3. For g, b ! 1, a genus-g map m with faces of degree at least 2b is essentially
2b-irreducible if and only if each essentially simple cycle of m has length at least 2b with
equality only if it is the contour of a face of degree 2b.

Proof. The latter condition is clearly necessary for the map to be 2b-irreducible. In order
to prove that it is sufficient, let m be a genus-g map and let 2k ! 2 be its essential girth,
i.e. the length of the shortest cycle in the universal cover m∞ of m. We claim that the
simple cycles of length 2k in m∞ are precisely the lifts of essentially simple cycles of length
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2k in m. Let us first see how this proves the lemma. Suppose that each essentially simple
cycle of m has length at least 2b with equality only if it bounds a face of degree 2b. Then
we must have k ! b. If k > b, then m∞ is clearly 2b-irreducible because it has no simple
cycles of length 2b or shorter. If k = b, the claim implies that each simple cycle of length
2b in m∞ corresponds to the contour of a face, and therefore m∞ is 2b-irreducible. So in
both cases m is essentially 2b-irreducible.

To establish the claim we follow [9, Section 3.1] and introduce Ck(m∞) to be the set of
outermost cycles of length 2k in m∞, i.e. the cycles whose interior is not fully contained
in a different cycle of length 2k. Up to deck transformations there are only finitely many
cycles of length 2k on m∞, so that in particular there is a bound on the number of faces
enclosed by any cycle of length 2k in m∞. Since every cycle of length 2k is either outermost
or its interior is contained in the strictly larger interior of another cycle of length 2k, it
follows that the interior of each cycle of length 2k in m∞ is contained in that of at least
one outermost cycle in Ck(m∞). In particular, Ck(m∞) is non-empty.

In [9, Section 3.1] it was shown that two distinct outermost cycles in a planar map,
like m∞, cannot overlap, i.e. must have disjoint interiors. In particular, the interior of
an outermost cycle C ∈ Ck(m∞) cannot contain two distinct lifts f1, f2 ∈ (π)−1(f) of a
single face f of m. To see this, let D : S∞ → S∞ be a deck transformation such that
D(f1) = f2. Then D(C) is an outermost cycle different from C (if it were identical the
deck transformation D would have a finite orbit, but this cannot happen for a closed
surface). If C encircles f1, then D(C) encircles f2, implying that C cannot encircle f2.

It follows that each cycle in Ck(m∞) corresponds to a lift of an essentially simple cycle
in m. The same is then true for any simple cycle of length 2k in m∞ that is not outermost,
since its interior is contained in that of an outermost cycle. This establishes the claim
and concludes the proof.

Applied to a genus-g map m without vertices of degree one and all faces of degree
at least 2b, Lemma 3 states in the case g ! 1 that m is essentially 2b-irreducible if and
only if each essentially simple cycle enclosing at least two faces has length larger than 2b.
The requirements on the lengths of essentially simple cycles that enclose a single face are
automatically satisfied. If m is planar it is 2b-irreducible if and only if each simple cycle
that encloses at least two faces on both sides has length larger than 2b. In particular, the
requirement to be essentially 2b-irreducible is non-trivial only when the number of faces
is n ! 2 for g ! 1 and n ! 4 for g = 0 (assuming face degrees to be at least 2b).

A natural way to approach the enumeration of these maps is via the skeleton decompo-
sition. The skeleton of a genus-g map m without vertices of degree one is the genus-g map
Skel(m) obtained by deleting each vertex of degree two and merging its incident edges (see
Figure 3a). In case m is rooted we take Skel(m) to be rooted on the edge into which the

root edge of m was merged (with the same orientation). If we denote by "̂M(b)
g,n(ℓ1, . . . , ℓn)

the set of rooted maps corresponding to M̂(b)
g,n(ℓ1, . . . , ℓn), we may express the enumeration
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Figure 3: (a) A rooted genus-0 map m with four labeled faces and its skeleton s = Skel(m)
together with a labeling of its edges. (b) A complete collection c1, c2 of relevant simple
cycles of s. (c) The face-edge incidence matrix A(1) and the cycle-edge enclosure matrix
A(2) associated to s. (d) The vector b appearing on the right-hand side of the linear
equation.

of the latter as

‖M̂(b)
g,n(ℓ1, . . . , ℓn)‖ =

!

m∈ !̂M(b)
g,n(ℓ1,...,ℓn)

1

2|E(m)| =
!

m∈ !̂M(b)
g,n(ℓ1,...,ℓn)

1{root degree of m is at least 3}

2|E(Skel(m))|

=
!

s

C
(b)
ℓ1,...,ℓn

(s)

2|E(s)| , (5)

where the last sum is over all rooted genus-g maps s with n labeled faces and all vertices
of degree at least 3,

C
(b)
ℓ1,...,ℓn

(s) = |{m ∈ "̂M(b)
g,n(ℓ1, . . . , ℓn) : root degree at least 3 and Skel(m) = s}| (6)

and the root degree of m is the degree of the vertex at the origin of the root edge. As we
will demonstrate in the proposition below, C

(b)
ℓ1,...,ℓn

(s) counts integer points in a certain
convex polytope.

To understand this, we note that for fixed skeleton s with edges e1, . . . , ek, k = |E(s)|,
the set of all rooted genus-g maps m with root degree at least 3 and Skel(m) = s is in
bijection with positive integer vectors x = (x1, . . . , xk) ∈ Zk

>0 by setting xi to be the
number of edges of m that are merged into the edge ei of s. Imposing that the n faces of
m have degrees 2ℓ1, . . . , 2ℓn describes a set of n linear equalities on x.

It is not hard to see that the essential irreducibility constraint turns into a finite
system of linear inequalities on x. Indeed, there is a one-to-one correspondence between
the essentially simple cycles of m and those of its skeleton s. Letting c1, . . . , cp be a
complete list of essentially simple cycles of s that enclose at least two faces (see Figure
3b), the map m is essentially 2b-irreducible if and only if the integers x summed over the
edges of each cycle ci exceed 2b. One may conveniently turn these inequalities on x into
linear equalities by introducing auxiliary variables xk+1, . . . , xk+p, one for each cycle cp.

We may then rely on quite general results (see e.g. [12] for a gentle introduction)

about counting integer points in polyhedra to learn something about C
(b)
ℓ1,...,ℓn

(s). In order
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to state the result in our case, we need to introduce some terminology. A function Zk → Q
is quasi-polynomial of degree m if it can be expressed as a (k-variate) polynomial of degree
m with coefficients that are periodic functions Zk → Q. A function Zk → Q is piecewise
quasi-polynomial of degree m if one may subdivide Zk into finitely many polyhedral regions
such that restricted to each region it is quasi-polynomial and the maximal degree over all
regions is m.

Proposition 4. ‖M̂(b)
g,n(ℓ1, . . . , ℓn)‖ is piecewise quasi-polynomial in b, ℓ1, . . . , ℓn of degree

2n+ 6g − 6. It is also of degree 2n+ 6g − 6 in ℓ1, . . . , ℓn alone.

Proof. Let s be a fixed genus-g rooted map with n labeled faces, k edges and no vertices
of degree less than three, and c1, . . . , cp a complete list of essentially simple cycles as
above. In the case g = 0 we assume one side of each cycle ci is designated as the interior
(the result will not depend on this choice). When g ! 1 we call the interior of ci the

simply-connected region surrounded by ci. We claim that C
(b)
ℓ1,...,ℓn

(s) takes the form of
a vector partition function, meaning that it counts positive integer solutions to a linear
equation,

C
(b)
ℓ1,...,ℓn

(s) = |{x ∈ Zk+p
>0 : Ax = b}|, (7)

where A is an (n+ p)× (k + p) matrix of full rank with non-negative integer entries de-
pending only on s, while b ∈ Zn+p

>0 depends linearly on b, ℓ1, . . . , ℓn. This puts us precisely

in the setting of [25, Theorem 1]1 (see also [4, Theorem 2]) which states that C
(b)
ℓ1,...,ℓn

(s)

is a piecewise quasi-polynomial in b, ℓ1, . . . , ℓn of degree k−n. By (5), ‖M̂(b)
g,n(ℓ1, . . . , ℓn)‖

amounts to a finite sum of such functions C
(b)
ℓ1,...,ℓn

(s), so it is piecewise quasi-polynomial as
well. Its degree is equal to k−n where k is the maximal number of edges in a skeleton. This
maximum is achieved when all vertices are of degree three, in which case k = 3n+6g− g.
This gives the claimed statement.

It remains to prove (7). Let A(1) be the face-edge incidence matrix of dimension n×k,

meaning that A
(1)
ij is determined by whether the edge ej is incident on both sides to the

ith face (A
(1)
ij = 2), on one side (A

(1)
ij = 1), or is not incident (A

(1)
ij = 0). The matrix A(2)

of dimension p× k indicates which edges are surrounded by the cycles ci. More precisely,
we set A

(2)
ij = 1 if the edge ej is not part of the cycle ci but is contained in its interior

and A
(2)
ij = 0 otherwise. Let ℓ ∈ Zn be the vector of face half-degrees ℓ1, . . . , ℓn. Finally

the vector m = (m1, . . . ,mp) ∈ Zp is defined by setting mi = −b +
&

ℓj where the sum
is over the faces in the interior of the cycle ci. See Figure 3c for an example. The matrix
A and the vector b are given by

A =

'
A(1) 0
A(2) Ip

(
, b =

'
2ℓ
m

(
.

Under the bijection described above between (x1, . . . , xk) ∈ Zk
>0 and maps m with skeleton

s, it is clear that
&k

j=1 A
(1)
ij xj = 2ℓi implements the face constraints correctly. In terms

1Note that we require x > 0 while the theorem applies to the situation x ! 0, but this difference
amounts to a shift by one in b.
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of (x1, . . . , xk), the length Li of the cycle in m corresponding to ci is given by Li =
&

xj

where the sum is over the edges ej in ci. Computing the sum of the degrees of the faces

in the interior of ci in two ways leads to the identity Li +2
&E

j=1 A
(2)
ij xj = 2b+2mi. The

map m is essentially 2b-irreducible precisely if Li > 2b for each i = 1, . . . , p. This is clearly
equivalent to the existence of xk+1, . . . , xk+p ∈ Z>0 such that xk+i +

&k
j=1 A

(2)
ij xj = mi.

Hence (7) really counts the maps in (6).

In principle, we could prove Theorem 1 for any fixed choice of g and n by tabulating
the finitely many genus-g skeleton maps with n faces, solving the vector partition function
(7) for each skeleton and observe that miraculously the piecewise quasi-polynomials add
up to a regular polynomial. As an illustration, let us look at g = 0 and n = 3, in which
case the irreducibility does not play a role. There are precisely 7 different labeled skeleton
maps with three labeled faces (modulo rerooting) and for each of them C

(b)
ℓ1,ℓ2,ℓ3

(s) is an
indicator function. Adding them all up we indeed find

‖M̂(b)
0,3(ℓ1, ℓ2, ℓ3)‖ = 1{ℓ3<ℓ1+ℓ2, ℓ2<ℓ1+ℓ3, ℓ1<ℓ2+ℓ3} + 1{ℓ3>ℓ1+ℓ2} + 1{ℓ2>ℓ1+ℓ3} + 1{ℓ1>ℓ2+ℓ3}

+ 1{ℓ3=ℓ1+ℓ2} + 1{ℓ2=ℓ1+ℓ3} + 1{ℓ1=ℓ2+ℓ3} = 1.

Even when implemented on a computer the same exercise becomes intractable already for
moderately large n or g.

3 Generating functions of essentially 2b-irreducible maps

For b ! 0 and g ! 0 let M(b)
g be the set of essentially 2b-irreducible genus-g maps with

faces of arbitrary even degree and "M(b)
g the set of such maps that are rooted. For our

purpose we exclude planar maps with one or two faces from M(b)
0 and "M(b)

0 . For b ! 1,
the 2b-irreducible genus-g partition function is given by the formal generating function

F (b)
g (xb, xb+1, . . .) =

!

m∈M(b)
g

1

|Aut(m)|
)

f∈F(m)

xdeg(f)/2 =
!

m∈ !M(b)
g

1

2|E(m)|
)

f∈F(m)

xdeg(f)/2. (8)

For b = 0 we set

F (0)
g (x0, x1, . . .) =

!

m∈M(0)
g

1

|Aut(m)|(1 + x0)
|V(m)|

)

f∈F(m)

xdeg(f)/2 (9)

and we let Fg(x1, x2 . . .) = F
(0)
g (0, x1, x2, . . .) be the standard generating function of maps

without vertex weights.
Even though we are working with an infinite number of formal generating variables

xb, xb+1, . . ., there is no need to pay attention to convergence issues. In fact, we could
set an upper limit 2d on the face degrees and only consider generating functions in the
variables xb, . . . , xd and it would not affect the expressions and proofs as long as d > b.
Since this upper limit will not play any role in the results while introducing clutter in the
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exposition, we choose to omit it in the following. In any case we have (for b " ℓi " d)
that

‖M(b)
g,n(ℓ1, . . . , ℓn)‖ =

∂nF
(b)
g

∂xℓ1 · · · ∂xℓn

(0, 0, . . .). (10)

The goal of this section is to obtain manageable expressions for the partition functions.
We start with the genus-0 case, where the enumeration problem has been largely solved
by Bouttier and Guitter in [9, 8] using a substitution approach that we summarize here.

3.1 Substitution approach in planar case

In a rooted map the face to the right of the root edge is called the outer face and all
other faces are inner faces. The outer degree is the degree of its outer face. Let "M(b)

0,ℓ

be the set of 2b-irreducible rooted planar maps with outer degree 2ℓ with the additional
requirement in the case ℓ = b that any cycle of length 2b bounds an inner face of degree
2b. Let also "G(!b)

0,ℓ be the set of rooted planar maps with outer degree 2ℓ and girth at least

2b. Contrary to M(b)
0 , we do include maps with one or two faces in "M(b)

0,ℓ and
"G(!b)
0,ℓ . The

corresponding generating functions are denoted

F
(b)
0,ℓ (xb, xb+1, . . .) =

!

m∈ !M(b)
0,ℓ

)

f∈F ′(m)

xdeg(f)/2,

G
(!b)
0,ℓ (xb, xb+1, . . .) =

!

m∈!G(!b)
0,ℓ

)

f∈F ′(m)

xdeg(f)/2,

where F ′(m) denotes the faces of m excluding the degree-2ℓ outer face. The only 2b-
irreducible maps of outer degree ℓ " b are rooted plane trees and, in the case ℓ = b, the
rooted map consisting of a single cycle of length 2b. Hence

F
(b)
0,ℓ (xb, xb+1, . . .) = Cat(ℓ) + xb 1ℓ=b for 1 " ℓ " b. (11)

It is shown in [9, Section 3] that these generating functions satisfy the relations

G
(!b)
0,ℓ (xb, xb+1, . . .) = F

(b−1)
0,ℓ (0, xb, xb+1, . . .), (12)

G
(!b)
0,ℓ (xb, xb+1, . . .) = F

(b)
0,ℓ (G

(b)
0,b(xb, xb+1, . . .), xb+1, xb+2, . . .), (13)

G
(b)
0,b(xb, xb+1, . . .) = G

(!b)
0,b (xb, xb+1, . . .)− Cat(b). (14)

The first identity expresses that the planar maps of girth at least 2b are precisely those
maps that are (2b − 2)-irreducible and have no inner face of degree 2b − 2. The second
and most non-trivial identity holds because any planar map of girth at least 2b can be
obtained from a 2b-irreducible planar map by gluing maps of girth 2b inside its faces of
degree 2b. The last identity follows from the fact that a planar map of girth at least 2b
and outer degree 2b has girth exactly 2b unless it is a tree. These relations are illustrated
in Figure 4 in the case b = 2.
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Figure 4: Example in the case b = 2 and ℓ = 3. (a) A (2b − 2)-irreducible rooted map

in "M(b−1)
0,ℓ . (b) A rooted map of girth at least 2b in G(!b)

0,ℓ is a (2b − 2)-irreducible map
without faces of degree 2b− 2. The outermost cycles of length 2b (excluding the faces of
degree 2b) are highlighted in orange. (c) Removing the interior of the outermost cycles
gives a 2b-irreducible map. (d) The excised maps have outer degree 2b and girth 2b.

According to [9, Section 3.2] the power series xb (→ G
(b)
0,b(xb, xb+1, . . .) has a composi-

tional inverse, allowing one to determine F
(b)
0,ℓ in terms of F

(b−1)
0,ℓ for any b ! 1. By iteration

one can find formal power series X
(b)
j (xb, xb+1, . . .), j = 1, . . . , b, such that

F
(b)
0,ℓ (xb, xb+1, . . .) = F0,ℓ(X

(b)
1 , X

(b)
2 , . . . , X

(b)
b , xb+1, . . .), (15)

where F0,ℓ(x1, x2, . . .) = F
(0)
0,ℓ (0, x1, x2, . . .) is the generating function of all (bipartite)

planar maps with outer degree 2ℓ.

3.2 Partition function of 2b-irreducible planar maps

Using universal properties of the generating function of planar maps, it possible to
determine the left-hand side of (15) without explicitly constructing the power series

X
(b)
1 , . . . , X

(b)
b . In fact, it is sufficient to know that such power series exist and that

F
(b)
0,ℓ satisfies the conditions (11). The results of [9, Section 3.3] may be summarized as

follows. Let

Uk(x1, x2, . . .) =
∞!

j=k+1

'
2j − 1

j + k

(
xjR

j+k, (16)

where R(x1, x2, . . .) = 1 + · · · is the formal power series determined by

R = 1 +
∞!

j=1

'
2j − 1

j

(
xjR

j. (17)

Then F0,ℓ is given by

F0,ℓ(x1, x2, . . .) = Rℓ

ℓ!

k=0

2k + 1

2ℓ+ 1

'
2ℓ+ 1

ℓ− k

(
(1{k=0} − UkR

−k1{k>0}). (18)
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When b ! 1, one may perform the substitutions (15) and introduce the power series

R(b)(xb, xb+1, . . .) ≡ R(X
(b)
1 , . . . , X

(b)
b , xb+1, . . .),

U
(b)
k (xb, xb+1, . . .) ≡ Uk(X

(b)
1 , . . . , X

(b)
b , xb+1, . . .).

The conditions (11) for 0 " ℓ < b can be solved for U
(b)
k , leading to the expressions [9,

Equations (3.15) & (3.17)]

U
(b)
k =

*
−
&k

m=0 (−1)k+m
"
k+m
2m

#
Cat(m)(R(b))k−m for 1 " k < b,

&∞
j=k+1

"
2j−1
j+k

#
xj(R

(b))j+k for k ! b.
(19)

Finally the condition (11) for ℓ = b uniquely determines R(b) by

Z(b)(R(b); xb+1, · · · ) = xb,

Z(b)(r; xb+1, · · · ) := r 1{b=0} −
b!

ℓ=0

(−1)b−ℓ

'
b+ ℓ

2ℓ

(
Cat(ℓ)rb−ℓ

−
∞!

j=b+1

'
2j − 1

j + b

(
xjr

b+j. (20)

The first term of Z(b) is included to obtain a correct criterion in the case b = 0 as well.
To see this, note that

x0 = Z(0)(R(0); x1, . . .) = R(0) − 1−
∞!

j=1

'
2j − 1

j

(
xj(R

(0))j (21)

is solved by

R(0)(x0, x1, . . .) = (1 + x0)R
"
x1, (1 + x0) x2, (1 + x0)

2 x3, . . .
#
. (22)

By Euler’s formula

|V(m)| = 2 + |E(m)|− |F(m)| = 2 +
!

f∈F(m)

(1
2
deg(f)− 1),

the substitution xk (→ (1+x0)
k−1xk for k ! 1 is the correct one to insert a weight (1+x0)

per vertex. We will see in the Proposition below that the overall normalization of the
partition function also comes out right in this case.

Combining various results of [9] leads to an explicit expression for the second derivative

of F
(b)
0 , i.e. the partition function with two distinguished faces.

Proposition 5. For b ! 0 the partition function of 2b-irreducible planar maps with at
least three faces satisfies for ℓ, ℓ′ ! max(b, 1),

∂2F
(b)
0

∂xℓ1∂xℓ2

(xb, xb+1, . . .) =
3x2

b + 2x3
b

2(1 + xb)2
1ℓ1=ℓ2=b
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+

+ R(b)

1+x01{b=0}

dr

,2
i=1

$
1ℓi=b +

"
2ℓi−1
ℓi+b

#
rℓi+b

%

r2b+1
. (23)

Proof. We treat four cases separately: ℓ1, ℓ2 > b > 0; ℓ1 > ℓ2 = b > 0; ℓ1 = ℓ2 = b > 0;
ℓ1, ℓ2 > b = 0.
Case ℓ1, ℓ2 > b: According to [9, Equation (9.17)] the generating function of 2b-
irreducible maps with two distinguished faces of degrees 2ℓ1, 2ℓ2 > 2b with a marked
edge on both faces reads

(ℓ1 − b)(ℓ2 − b)

'
2ℓ1

ℓ1 − b

('
2ℓ2

ℓ2 − b

(
(R(b))ℓ1+ℓ2

ℓ1 + ℓ2
.

Subtracting the contribution of the maps with only two faces (R(b) = 1) and compensating
for the marked edges we thus have

∂2F
(b)
0

∂xℓ1∂xℓ2

=
1

2ℓ1

1

2ℓ2
(ℓ1 − b)(ℓ2 − b)

'
2ℓ1

ℓ1 − b

('
2ℓ2

ℓ2 − b

(
(R(b))ℓ1+ℓ2 − 1

ℓ1 + ℓ2

=

'
2ℓ1 − 1

ℓ1 + b

('
2ℓ2 − 1

ℓ2 + b

(
(R(b))ℓ1+ℓ2 − 1

ℓ1 + ℓ2
, (24)

which agrees with the right-hand side of (23).
Case ℓ1 > ℓ2 = b: According to [9, Equation (3.26)],

∂F
(b)
0,ℓ1

∂xb

=

'
2ℓ1

ℓ1 − b

(
(R(b))ℓ1−b.

Subtraction of the contribution with just two faces and compensation for the root on the
outer face yields

∂2F
(b)
0

∂xℓ1∂xℓ2

=
1

2ℓ1

'
2ℓ1

ℓ1 − b

("
(R(b))ℓ1−b − 1

#
=

'
2ℓ1 − 1

ℓ1 + b

(
(R(b))ℓ1−b − 1

ℓ1 − b
,

in agreement with (23).
Case ℓ1 = ℓ2 = b: According to [9, Equation (9.1)] the generating function of rooted
2b-irreducible maps with outer face of degree 2b is given by

Hb(xb, xb+1, . . .) = 2xb +
bx3

b

1 + xb

−Xb(xb, xb + 1, . . .),

where xb (→ Xb(xb, xb+1, . . .) is the functional inverse of xb (→ G
(b)
0,b(xb, xb+1, . . .). With the

help of (12), (14) and (24) we find

∂G
(b)
0,b

∂xb

=
∂F

(b−1)
0,b

∂xb

= (R(b−1))2b.
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It follows that

∂Xb

∂xb

(xb, xb+1, . . .) =

-
∂G

(b)
0,b

∂xb

(Xb, xb+1, . . .)

.−1

=
"
R(b−1)(Xb, xb+1, . . .)

#−2b

=
"
R(b)(xb, xb+1, . . .)

#−2b
,

where the last equality is a direct consequence of the substitution approach. Hence,

∂2F
(b)
0

∂x2
b

=
1

2b

∂Hb

∂xb

− 1

2b

∂Hb

∂xb

(0, 0, . . .) =
3x2

b + 2x3
b

2(1 + xb)2
+

1− (R(b))−2b

2b
,

again agrees with (23).
Case ℓ1, ℓ2 > b = 0: It is well-known (see for example [11, Theorem 1.1]) that the
generating function of arbitrary bipartite planar maps with even face degrees and two
distinguished faces of degree 2ℓ1, 2ℓ2 ! 2 and weight 1 + x0 per vertex is given by

'
2ℓ1 − 1

ℓ1

('
2ℓ1 − 1

ℓ1

(
(R(0))ℓ1+ℓ2

ℓ1 + ℓ2
,

where R(0) satisfies (21). Subtracting the contribution with only two faces (R(0) = 1+x0),
this agrees with (23).

Apart from a small correction when all faces are of degree 2b the partition function
∂2F0

∂xℓ1
∂xℓ2

with two distinguished faces of degree 2ℓ1 and 2ℓ2 is completely expressed in terms

of

R(b)(xb, xb+1, . . .) = 1 +
∂2F

(b)
0

∂xb+1∂xb

(xb, xb+1, . . .). (25)

This enumerates all 2b-irreducible maps with two marked faces of degrees 2b+ 2 and 2b,
where the 1 takes into account the unique such map with only two faces. In [9, Section
4] the quantity R(b) − 1 is interpreted as the generating function of certain 2b-irreducible
slices and a combinatorial interpretation of its equation (20) can be understood via a slice
decomposition. This interpretation will not play a role in this work, but it is certainly
something one would like to understand better for other topologies and when vertices of
degree one are disallowed.

3.3 Substitution approach for higher genus

Recall that we call m essentially 2b-irreducible if m∞ is 2b-irreducible. The generating
function of such maps is given by F

(b)
g in (8). Similarly we say m has essential girth 2b

if m∞ has girth 2b. Denoting the set of rooted, respectively unrooted, maps of essential
girth at least 2b by "G(!b)

g respectively G(!b)
g , we introduce the generating function

G(!b)
g (xb, xb+1, . . .) =

!

m∈G(b)
g

1

|Aut(m)|
)

f∈F(m)

xdeg(f)/2 =
!

m∈!G(b)
g

1

2|E(m)|
)

f∈F(m)

xdeg(f)/2.

The substitution approach of Bouttier & Guitter extends to the following relation between
these generating functions.
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Proposition 6. For g ! 1 and b ! 1 we have the identities of formal power series

F (b−1)
g (0, xb, xb+1, . . .) = G(!b)

g (xb, xb+1, . . .)

= F (b)
g (G

(b)
0,b(xb, xb+1, . . .), xb+1, xb+2, . . .). (26)

Proof. The first identity just expresses the fact that the maps of essential girth at least 2b
are precisely the essentially (2b− 2)-irreducible maps that have no faces of degree 2b− 2.
To deduce the second identity we will show that these maps can also be obtained by gluing
maps inside the faces of degree 2b of essentially 2b-irreducible maps. Denoting by Fb(m)
the set of faces of m of degree 2b, let us consider the mapping

Glue :
/
(m, (mf )f∈Fb(m)) : m ∈ "M(b)

g , mf ∈ "G(b)
0,b

0
→ "G(!b)

g

defined by taking m′ = Glue(m, (mf )f∈Fb(m)) to be the rooted map obtained from m by
gluing mf inside the face f of m for each face f of degree 2b. To perform the gluing we
select an arbitrary but deterministic algorithm to distinguish an edge on each face f of
degree 2b to which the root edge of mf is glued. Let m′∞ be the universal cover of m′.
Applying the encircling lemma of [9, Section 3.1] to m′∞ shows that m′∞ has girth at least

2b, so indeed m′ ∈ "G(!b)
g .

Now let m′ ∈ "G(!b)
g be an arbitrary rooted map of essential girth at least 2b and m′∞

its universal cover. As in Lemma 3, let Cd(m′∞) be the set of outermost cycles of length
2b in m′∞. If the essential girth of m′ is larger than 2b then Cd(m′∞) is empty, while if
the essential girth is 2b the proof of Lemma 3 shows that Cd(m′∞) comprises of the lifts
of a finite collection of essentially simple cycles c1, . . . , cp in m′ that have non-overlapping
interiors. If the root edge of m′ is not contained in one of these interiors, then we may
unambiguously construct a rooted map m′′ by removing the interiors of these cycles,
leaving faces of degree 2b in their place. By construction, its universal cover m′′∞ has
girth 2b and the only cycles of length 2b are the boundaries of a face of degree 2b, so m′′ is
essentially 2b-irreducible. The regions that have been excised from m′ are by construction
planar, of girth 2b, and have outer degree 2b.

If m′ = Glue(m, (mf )f∈Fd(m)) then the cycles c1, . . . , cp are easily seen to correspond to
the boundaries of the maps mf inside m′. Hence the construction above reproduces the
original map, i.e. m′′ = m, while the excised maps are precisely (mf )f∈Fd(m). Therefore

Glue is injective and the image of Glue is given by the subset "G(!b)
g,out ⊂ "G(!b)

g of maps whose
root edge is not contained in the interior of a cycle of length 2b.

As explained in [9, Section 3.1] the mapping Glue preserves the collection of face
degrees via the identities

|Fb(m
′)| =

!

f∈Fb(m)

|F ′
b(mf )|, |Fk(m

′)| = |Fk(m)|+
!

f∈Fb(m)

|F ′
k(mf )| for k > b,

where Fk(m) denotes the set of faces of m of degree 2k and similarly for F ′
k(m) but

excluding the outer face. It follows that we have

F (b)
g (G

(b)
0,b(xd, xd+1, . . .), xd+1, xd+2, . . .)
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=
!

m∈ !M(b)
g

(mf )f∈Fb(m)

1

2|E(m)|x
!

f∈Fb(m) |F ′
b(mf )|

b

)

j>b

x
|Fj(m)|+

!
f∈Fb(m) |F ′

j(mf )|
j

=
!

m′∈!G(!b)
g,out

1

2|Eout(m′)|
)

j!b

x
|Fj(m

′)|
j

=
!

m′∈!G(!b)
g

1

2|E(m′)|
)

j!b

x
|Fj(m

′)|
j

= G(!b)
g (xb, xb+1, . . .),

where Eout(m′) denotes the set of edges of m′ that are not contained in the interior of a
cycle of length 2b. This proves the second identity in (26).

As in the planar case one may use the compositional inverse of the power series xb (→
G

(b)
0,d(xb, xb+1, . . .) to determine F

(b)
g in terms of F

(b−1)
g for any b ! 1. By iteration one

finds that

F (b)
g (xb, xb+1, . . .) = F (0)

g (0, X
(b)
1 , X

(b)
2 , . . . , X

(b)
b , xb+1, . . .)

= Fg(X
(b)
1 , X

(b)
2 , . . . , X

(b)
b , xb+1, . . .), (27)

where X
(b)
j (xb, xb+1, . . .), 1 " j " b, are the same formal power series as appeared in (15)

in the planar case.

3.4 Partition function for 2b-irreducible genus-g maps

The partition function Fg(x1, x2, . . .) of genus-g maps with even faces can be extracted
from topological recursion, see [14, Chapter 3] for an overview. The relevant spectral
curve is given in terms of Uk(x1, x2, . . .) from (16) and R(x1, x2, . . .) by

2

*
x(z) =

√
R(z + 1

z
)

y(z) = − 1
2
√
R

"
z − 1

z
−

&∞
k=1 UkR

−k(z2k+1 − z−2k−1)
#
.

(28)

Alternatively one may express y(z) as

y(z) = − 1

2
√
R

(z − 1
z
)

∞!

p=0

M̄p (z +
1
z
− 2)p (29)

2Note that [14, Chapter 3] deals more generally with maps that are not necessarily bipartite and that
the notation differs from the one used here, although the curves agree. For convenience we include a
dictionary (where the left-hand sides are Eynard’s notation):

t = 1, t2j = xj , γ =
√
R, u1 = R−1/2, M+,0 = M̄0/R,

u2k+1 = −UkR
−k−1/2, u2k = 0, M+,k = (−1)kM−,k = −R−k/2M̄k/M̄0 for k ! 1.
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in terms of the moments

M̄p(x1, x2, . . .) = 1p=0 −
∞!

k=0

'
2k + p+ 1

2p+ 1

(
Uk R

−k. (30)

Note that for p ! 0 fixed,
"
2k+p+1
2p+1

#
may be interpreted as a polynomial in k of degree 2p+1

that vanishes at all integer values with absolute value smaller than p/2. According to [14,
Theorem 3.4.6 & Corollary 3.5.1] the partition functions Fg for g ! 1 are expressible in
terms of the moments via

F1 = − 1

12
log M̄0, Fg = Pg

'
1

M̄0

,
M̄1

M̄0

, . . . ,
M̄3g−3

M̄0

(
for g ! 2, (31)

where Pg(m0, . . . ,m3g−3) is a universal polynomial with rational coefficients for each g ! 2.
More precisely Pg is of the form

Pg(m0, . . . ,m3g−3) = P̃g(0, . . . , 0)−m2g−2
0 P̃g(m1, . . . ,m3g−3) (32)

for some polynomial P̃g(m1, . . . ,m3g−3) such that P̃g(µ, µ
2, . . . , µ3g−3) is of degree 3g − 3

in µ. For example, in the genus-2 case we find with the help of [14, Section 3.5.2] the
polynomial

P2 =
1

240
− m2

0

30720

"
2016m3

1 + 1086m2
1 − 3480m2m1 + 407m1 − 860m2 + 1400m3 + 128

#
.

Similar results have been obtained from Hermitian matrix models, see [3, 1].
The expression (31) in terms of moments is convenient because we know the result of

substituting xj → X
(b)
j (xb, xb+1, . . .) for 1 < j " b in R and Uk. With the help of (19)

and (30) we find for b ! 1 that

M̄ (b)
p (xb, xb+1, . . .) ≡ M̄p(X

(b)
1 , . . . , X

(b)
b , xb+1, . . .)

= 1p=0 −
∞!

k=1

'
2k + p+ 1

2p+ 1

(
U

(b)
k (R(b))−k (33)

=
b−1!

k=0

'
2k + p+ 1

2p+ 1

( k!

m=0

(−1)k+m

'
k +m

2m

(
Cat(m)(R(b))−m

−
∞!

k=b

'
2k + p+ 1

2p+ 1

( ∞!

j=k+1

'
2j − 1

j + k

(
xj(R

(b))j. (34)

To rewrite these sums we make use of the following lemma.

Lemma 7. For each p ! 0, there exists a unique polynomial Qp(b, j) such that

j−1!

k=b

'
2k + 1 + p

2p+ 1

('
2j − 1

j + k

(
=

'
2j − 1

j + b

(
Qp(b, j) for j > b ! 0, (35)
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b−1!

k=m

'
2k + 1 + p

2p+ 1

(
(−1)k+m

'
k +m

2m

(

= −(−1)b+m

'
b+m

2m

(
Qp(b,−m) for b > m ! 0. (36)

The polynomial Qp(b, j) is of degree 2p + 1 in b and degree p + 1 in j and satisfies
Qp(b,−b) = 0.

Proof. We apply Gosper’s algorithm [18] to the sum in (35). Let us denote the summand
by

t(k) =

'
2k + 1 + p

2p+ 1

('
2j − 1

j + k

(

and introduce the polynomials

p(k) =

'
2k + 1 + p

2p+ 1

(
, q(k) = j − k − 1, r(k) = j + k.

Then the ratio of consecutive summands satisfies

t(k + 1)

t(k)
=

q(k)

r(k + 1)

p(k + 1)

p(k)
. (37)

According to Gosper, there exists a solution to T (k + 1) − T (k) = t(k) of the form of a
hypergeometric term if and only if there exists a polynomial s(k) of degree 2p that solves
the recurrence equation

p(k) = q(k)s(k + 1)− r(k)s(k). (38)

First we observe that s(k) (→ q(k)s(k + 1) − r(k)s(k) determines an injective linear
mapping (working in the ring of polynomials in j) from polynomials of degree 2p to those
of degree 2p+1. We thus need to determine the one-dimensional cokernel of the mapping,
in other words we need a single linear condition satisfied by all polynomials of the form
q(k)s(k + 1)− r(k)s(k). A convenient way to achieve this is to change the polynomial to
a differential operator and to seek a formal power series V (x) satisfying

0 = [s(1 + ∂x)q(∂x)− s(∂x)r(∂x)]V (x)
11
x=0

=
2
e−xs(∂x)e

x((j − 1)− ∂x)− s(∂x)(j + ∂x)
3
V (x)

11
x=0

= s(∂x) [e
x((j − 1)− ∂x)− (j + ∂x)]V (x)

11
x=0

.

It is now easy to find a power series solution independent of s(k),

V (x) = e−x/2(cosh(x/2))2j−1,

which has coefficients that are polynomials in j. To determine whether p(k) is in the
image, we need to check that p(∂x)V (x)|x=0 = 0. We may calculate

p(∂x)V (x)|x=0 = p(∂x − 1
2
)ex/2V (x)|x=0

the electronic journal of combinatorics 29(2) (2022), #P2.45 21



= p(∂x − 1
2
)(cosh(x/2))2j−1|x=0,

but this vanishes because p(ℓ− 1
2
) is an odd polynomial in ℓ while the formal power series

(cosh(x/2))2j−1 is even in x. We conclude that there exists a polynomial s(k) of degree
2p in k whose coefficients are polynomials in j solving (38).

In this case T (k) = r(k)t(k)s(k)/p(k) and therefore (35) is satisfied with

Qp(b, j) =
T (j)− T (b)"

2j−1
j+b

# = −r(b)s(b) = −(j + b)s(b), (39)

which is indeed polynomial in b and j. This finishes the proof of the first identity. It also
follows directly from (39) that Qp(b, j) is of degree 2p+1 in b and satisfies Qp(b,−b) = 0.

In order to determine the degree of Qp(b, j) in j we perform an asymptotic analysis of
the summand in (35) as k, j → ∞ for b, p fixed. Using Stirling’s approximation we easily
find that there exists a smooth convex function f : (0,∞) → R with global maximum at4

p+ 1/2 such that

log

5

6
"
2k+1+p
2p+1

#"
2j−1
j+k

#

"
2j−1
j+b

#
jp+

1
2

7

8 j,k→∞−−−−→
k∼y

√
j
f(y).

Approximating the sum in (35) by an integral, this implies that logQp(b, j) ∼ (p+1) log j
as j → ∞ for any p, b fixed and therefore Qp(b, j) is of degree p+ 1 in j.

For the second sum, note that

'
2k + 1 + p

2p+ 1

(
(j + k + 1) = p(k)r(k + 1)

(38)
= q(k)s(k + 1)r(k + 1)− r(k + 1)r(k)s(k)

(39)
= r(k + 1)Qp(k, j)− q(k)Qp(k + 1, j)

= (j + k + 1)Qp(k, j)− (j − k − 1)Qp(k + 1, j)

is an equality between polynomials in j and k. Setting j = −m, we easily find that

'
2k + 1 + p

2p+ 1

(
(−1)k+m

'
k +m

2m

(

=(−1)k+m

'
k +m

2m

(
Qp(k,−m)− (−1)k+m+1

'
k + 1 +m

2m

(
Qp(k + 1,−m)

for k ! m ! 0. Summing over k from m to b − 1 and using that Qp(m,−m) = 0 yields
precisely the identity (36).

The first few polynomials are given by

Q0(b, j) = b+ j,

Q1(b, j) =
2

3
(b+ j)

"
b2 + j − 1

#
,
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Q2(b, j) =
1

30
(b+ j)

"
4b4 + b2(8j − 15) + (j − 1)(8j − 11)

#
,

Q3(b, j) =
1

315
(b+ j)

$
4b6 + b4(12j − 35) + b2(24j2 − 90j + 91)

+ 6(j − 1)(j − 2)(4j − 5)
%
.

With these polynomials in hand the moments can be expressed rather concisely.

Proposition 8. The partition functions F
(b)
g (xb, xb+1, . . .) for g ! 1 and b ! 0 are given

by

F
(b)
1 = − 1

12
log M̄

(b)
0 , F (b)

g = Pg

-
1

M̄
(b)
0

,
M̄

(b)
1

M̄
(b)
0

, . . . ,
M̄

(b)
3g−3

M̄
(b)
0

.
for g ! 2, b ! 1, (40)

F
(0)
1 = − 1

12
log

M̄
(0)
0

1 + x0

,

F (0)
g = (1 + x0)

2−2gPg

-
1

M̄
(0)
0

,
M̄

(0)
1

M̄
(0)
0

, . . . ,
M̄

(0)
3g−3

M̄
(0)
0

.
for g ! 2, (41)

where

M̄ (b)
p (xb, xb+1, . . .) = Qp(b, r ∂r) r

−b Z(b)(r; xb+1, xb+2, . . .)
111
r=R(b)(xb,xb+1,...)

(42)

with Z(b) as given in (20).

Proof. With the help of Lemma 7 the expression (34) for b ! 1 evaluates to

M̄ (b)
p (xb, xb+1, . . .) =

b−1!

m=0

b−1!

k=m

'
2k + p+ 1

2p+ 1

(
(−1)k+m

'
k +m

2m

(
Cat(m)(R(b))−m

−
∞!

j=b+1

j−1!

k=b

'
2k + p+ 1

2p+ 1

('
2j − 1

j + k

(
x2j(R

(b))j.

= −
b−1!

m=0

Qp(b,−m)(−1)b+m

'
b+m

2m

(
Cat(m)(R(b))−m

−
∞!

j=b+1

Qp(b, j)

'
2j − 1

j + b

(
x2j(R

(b))j.

= Qp(b, r ∂r) r
−b Z(b)(r; xb+1, xb+2, . . .)

111
r=R(b)(xb,xb+1,...)

.

Performing the substitution (27) in (31) gives the desired result for b ! 1.
It remains to check the case b = 0. Euler’s formula

|V(m)| = 2− 2g + |E(m)|− |F(m)| = 2− 2g +
!

f∈F(m)

(1
2
deg(f)− 1)
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implies that

F (0)
g (x0, x1, . . .) = (1 + x0)

2−2gFg(x1, (1 + x0)x2, (1 + x0)
2x3, . . .).

Defining M̄
(0)
p in terms of M̄p via

M̄ (0)
p (x0, x1, . . .) = (1 + x0) M̄p(x1, (1 + x0)x2, (1 + x0)

2x3, . . .), (43)

we see that F
(0)
g is indeed given by (41). To check that M̄

(0)
p is given by (42), we note

that (19) and (22) together imply that

U
(0)
k (x0, x1, . . .) = (1 + x0)

k+1Uk(x1, (1 + x0)x2, (1 + x0)
2x3, . . .).

Therefore

M̄ (0)
p (x0, x1, . . .) = (1 + x0)

-
1{p=0}

−
∞!

k=1

'
2k + 1 + p

2p+ 1

(
Uk(x1, (1 + x0)x2, . . .)R(x1, (1 + x0)x2, . . .)

−k

.

= R(0) 1{p=0} −
∞!

k=0

'
2k + 1 + p

2p+ 1

(
U

(0)
k (R(0))−k,

where we used that U
(0)
0 = R(0) − (1 + x0) by (21). Now we may insert the expression

(19) for U
(0)
k and apply Lemma 7. Since Qp(0, 1) = 1{p=0}, in this way we obtain

M̄ (0)
p (x0, x1, . . .) = Qp(0, r ∂r)

-
r − 1−

∞!

j=1

'
2j − 1

j

(
xjr

j

.111
r=R(0)(x0,x1,...)

(21)
= Qp(0, r ∂r)Z

(0)(r; x1, x2, . . .)
111
r=R(0)(x0,x1,...)

.

This concludes the proof.

One may even express the moments entirely in terms of R(b) and its xb-derivatives as is
shown in the next lemma.

Lemma 9. For any p ! 0, there exists a polynomial Tp(b, r0, · · · , rp+1) homogeneous of
degree 2p in r0, . . . , rp+1 such that for any b ! 0,

M̄ (b)
p (xb, xb+1, . . .) =

(R(b))1−b

(∂xb
R(b))2p+1

Tp(b, R
(b), ∂xb

R(b), · · · , ∂p+1
xb

R(b)). (44)

Proof. Since R (→ Z(b)(R; xb+1, xb+2, . . .) and xb (→ R(b)(xb, xb+1, . . .) are compositional
inverses (see (20)), it follows from Lagrange inversion (or more explicitly [19, Theorem
1]) that

(∂xb
R(b))2k−1∂

kZ(b)

∂Rk
(R(b); xb+1, xb+2, . . .)
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is a homogeneous polynomial in ∂xb
R(b), · · · , ∂k

xb
R(b) of degree k − 1.

The expression for M̄
(b)
p in Proposition 8 can also be written as

M̄ (b)
p (xb, xb+1, . . .) = r−b Qp(b,−b+ r ∂r)Z

(b)(r; xb+1, xb+2, . . .)
111
r=R(b)(xb,xb+1,...)

.

Since Qp(−b, b) = 0 and Qp(b, j) is of degree p + 1 in j by Lemma 7, it corresponds to a
linear expression in

(R(b))k−b∂
kZ(b)

∂Rk
(R(b); xb+1, xb+2, . . .) for k = 1, . . . , p+ 1

with coefficients that are polynomials in b. Combining both statements, we conclude that

(∂xb
R(b))2p+1(R(b))b−1M̄ (b)

p (xb, xb+1, . . .)

is a homogeneous polynomial of degree 2p in R(b) and its first p + 1 derivatives with
coefficients that are polynomials in b.

The first few polynomials read

T0 = 1,

T1 =
2

3
b(b− 1)r21 −

2

3
r0r2,

T2 =
1

30
(2b+ 1)b(b− 1)(2b− 3)r41 −

1

30
(8b2 − 16b+ 5)r0r

2
1r2 +

4

5
r20r

2
2 −

4

15
r20r1r3,

T3 =
1

315
(b− 2)(b− 1)b(b+ 1)(2b− 3)(2b+ 1)r61 −

2

105
(b− 2)b(2b2 − 2b+ 1)r0r2r

4
1

+
2

35
(4b2 − 12b+ 7)r20r

2
1r

2
2 −

2

105
(4b2 − 12b+ 7)r20r

3
1r3 −

8

7
r32

+
16

21
r30r1r3r2 −

8

105
r30r

2
1r4.

In particular, Proposition 8 leads to the following explicit expressions for the generating
functions of genus-1 and genus-2 essentially 2b-irreducible maps with b ! 1,

F
(b)
1 (xb, xb+1, . . .) = − 1

12
log

(R(b))1−b

∂xb
R(b)

,

F
(b)
2 (xb, xb+1, . . .) =

1

240
+ r2b0

9
(34b2 − 32b+ 3) r22

2880r21
+

(43b4 − 62b3 + 50b2 − 19b+ 6) r2
1440r0

+
(−86b6 + 258b5 − 413b4 + 396b3 − 263b2 + 108b− 36) r21

8640r20

− (3b− 1)(4b− 1)r3
720r1

+
r32r0
90r41

− 7r3r2r0
480r31

+
r4r0
288r21

:
, rk :=

∂kR(b)

∂xk
b

.

the electronic journal of combinatorics 29(2) (2022), #P2.45 25



4 Generating functions without vertices of degree one

Let M̂(b)
g ⊂ M(b)

g be the set of essentially 2b-irreducible maps of genus-g with no vertices

of degree 1 and "̂M(b)
g ⊂ "M(b)

g the set of such maps that are rooted by distinguishing
an oriented edge. For b ! 1 the 2b-irreducible genus-g partition function is the formal
generating function

F̂ (b)
g (x̂b, x̂b+1, . . .) =

!

m∈M̂(b)
g

1

|Aut(m)|
)

f∈F(m)

x̂deg(f)/2 =
!

m∈ !̂M(b)
g

1

2|E(m)|
)

f∈F(m)

x̂deg(f)/2,

where F(m) is the set of faces of m and |E(m)| is the number of edges. We will also
consider the case b = 0 where x̂0 appears in the weight assigned to the vertices of the map
and the partition function includes all genus-g maps (with vertices of degree one allowed),

F̂ (0)
g (x̂0, x̂2, . . .) =

!

m∈M(0)
g

1

|Aut(m)|
)

v∈V(m)

(x̂0 + 1{deg(v)!2})
)

f∈F(m)

x̂deg(f)/2.

Note that setting x̂0 = 0 gives the conventional generating function F̂g(x̂1, x̂2, . . .) =

F̂
(0)
g (0, x̂0, x̂1, . . .) of genus-g maps without vertices of degree one. It is useful to think of

F
(0)
g (x0, x1, . . .) as the generating functions of maps in which the vertices are bi-colored,

say in black and white, such that a black vertex carries weight 1 and a white vertex
weight x0. The generating function F̂

(0)
g (x̂0, x̂1, . . .) then has the same interpretation,

except black vertices are required to have degree at least two.
With these definitions we have for any b, g ! 0, n ! 1 (provided n ! 3 if g = 0) and

ℓ1, . . . , ℓn ! max(b, 1),

‖M̂(b)
g,n(ℓ1, . . . , ℓn)‖ =

∂nF̂
(b)
g

∂x̂ℓ1 · · · ∂x̂ℓn

(0, 0, . . .). (45)

Proposition 10. The partition functions F
(b)
g and F̂

(b)
g for g ! 0 and b ! 0 are related

via

F (b)
g (xb, xb+1, . . .) = F̂ (b)

g (x̂b, x̂b+1, . . .)
111
x̂p=

!∞
ℓ=p xℓA

(b)
ℓ,p

,

F̂ (b)
g (x̂b, x̂b+1, . . .) = F (b)

g (xb, xb+1, . . .)
111
xℓ=

!∞
p=ℓ x̂pB

(b)
p,ℓ

,

A
(b)
ℓ,p = 1ℓ=p=b +

p

ℓ

'
2ℓ

ℓ− p

(
1ℓ!p>b,

B
(b)
p,ℓ = 1p=ℓ=b + (−1)p−ℓ

'
p+ ℓ− 1

p− ℓ

(
1p!ℓ>b.
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Figure 5: (a) A genus-1 map (left) and its core (right) together with the trees (in orange)
associated to the corners of the core. (b) Similar but for a bi-colored genus-1 map.

Proof. We focus first on the case b ! 1. The core Core(m) of a map m that is not a
tree is the map obtained by repeatedly removing vertices of degree one and the incident

edges (Figure 5a). Given a rooted 2b-irreducible genus-g map m ∈ "̂Mg one may construct
another map m′ by inserting any number of trees into the corners of the map except for
the corners that belong to a face of degree 2b. Then m′ will also be 2b-irreducible since
no new cycles have been produced and m = Core(m′). Vice versa, any map m′ ∈ "Mg that
is rooted on an edge contained in its core Core(m′) can be obtained in this way from the

map Core(m′) ∈ "̂Mg. The number of ways one can insert trees into the corners of a face
of degree 2p to obtain a face of degree 2ℓ is

A
(b)
ℓ,p = 1ℓ=p=b +

p

ℓ

'
2ℓ

ℓ− p

(
1ℓ!p>b. (46)

Therefore

F (b)
g (xb, xb+1, . . .) =

!

m′∈ !M(b)
g

1

2|E(m′)|
)

f∈F(m′)

xdeg(f)/2

=
!

m′∈ !M(b)
g

1{root in Core(m′)}

2|E(Core(m′))|
)

f∈F(m′)

xdeg(f)/2

=
!

m∈ !̂M(b)
g

1

2|E(m)|
)

f∈F(m)

∞!

ℓ=deg(f)/2

A
(b)
ℓ,deg(f)/2 xℓ

= F̂ (b)
g (x̂b, x̂b+1, . . .)

111
x̂p=

!p
ℓ=b xℓA

(b)
ℓ,p

.

In the case b = 0, we make use of the interpretation of F
(0)
g and F̂

(0)
g as generating

functions of maps in which the vertices are bi-colored. We let the core Core(m) of such a
map m be defined as before, except that we do not remove white vertices of degree one
(Figure 5b). Then the argument above works in this case as well: any map m′ with bi-
colored vertices is uniquely obtained from the map m = Core(m′) without white vertices
of degree one by inserting trees in the corners of m. The same computation therefore
verifies that

F (0)
g (x0, x1, . . .) = F̂ (0)

g (x̂0, x̂1, . . .)
111
x̂p=

!p
ℓ=0 xℓA

(0)
ℓ,p

.
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For the reverse substitution we note that the hypergeometric identity

ℓ!

p=k

p

ℓ

'
2ℓ

ℓ− p

(
(−1)p−k

'
p+ k − 1

p− k

(
= 1ℓ=k

implies that for any m ! b ! 0, the matrix (A
(b)
ℓ,p)

m
ℓ,p=b is invertible and its inverse is given

by (B
(b)
p,ℓ)

m
ℓ,p=b.

Since the partition functions F
(b)
g given in Propositions 5 and 8 are expressed almost

entirely in terms of R(b)(xb, xb+1, . . .), we shall focus first on the analogue of R(b) when
vertices of degree 1 are suppressed.

4.1 The building block R̂(b)

It follows from Proposition 10 and (25) that

R̂(b)(x̂b, x̂b+1, . . .) := R(b) − 1
111
xℓ=

!∞
p=ℓ x̂pB

(b)
p,ℓ

=
∂2F

(b)
0

∂xb+1∂xb

111
xℓ=

!∞
p=ℓ x̂pB

(b)
p,ℓ

=
∂2F̂

(b)
0

∂x̂b+1∂x̂b

. (47)

Hence, if b ! 1, R̂(b) enumerates 2b-irreducible planar maps with no vertices of degree one
and two distinguished faces of degree 2b + 2 respectively 2b. In the case b = 0 it is the
generating function of planar maps with a distinguished face of degree 2 and a marked
vertex in which each non-marked vertex v carries weight x̂0 + 1{deg(v)!2}. To describe the

analogue of equation (20) satisfied by R̂(b) we introduce two formal power series that play
a central role in the following.

Let I(b, ℓ; r) and J(b; r) be the (hypergeometric) formal power series in r defined by

I(b, ℓ; r) =
∞!

p=0

rp

(p!)2

p−1)

m=0

(ℓ2 − (b−m)2) = 2F1(ℓ− b,−ℓ− b; 1;−r), (48)

J(b; r) =
∞!

p=1

(−1)p+1rp

p!(p− 1)!

p−2)

m=0

(b−m)(b−m− 1) = r 2F1(1− b,−b; 2;−r), (49)

where 2F1 is the hypergeometric function 2F1(a, b; c; z) =
&∞

n=0
(a)n(b)n

(c)n
zn

n!
in terms of the

rising Pochhammer symbol (a)n = a(a + 1) · · · (a + n − 1). Clearly the coefficients of
I(b, ℓ; r) are polynomials in b and ℓ2 and those of J(b; r) are polynomials in b. The
notations I and J are chosen because of the resemblance of their expansion to those of
certain Bessel functions I0 and J1. Indeed, selecting the homogeneous part in b and ℓ of
top degree in the coefficients of I(b, ℓ; r) gives

Ihom(b, ℓ; r) =
∞!

p=0

rp

(p!)2
(ℓ2 − b2)p = I0

$
2
4

(ℓ2 − b2)r
%
, (50)
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where I0 is a modified Bessel function of the first kind. Similarly, selecting the top degree
monomials in the coefficient of J(b; r) yields

Jhom(b; r) =
∞!

p=1

(−1)p+1rp

p!(p− 1)!
b2p−2 =

√
r

b
J1(2b

√
r), (51)

where J1 is a Bessel function of the first kind. We will not use these relations here, but
they play an important role in the follow-up work [10].

Proposition 11. For b ! 0 the formal power series R̂(b) is the unique solution to
Ẑ(b)(R̂(b); x̂b, x̂b+1, . . .) = 0, where

Ẑ(b)(r; x̂b, x̂b+1, . . .) := J(b, r)−
∞!

ℓ=b

I(b, ℓ; r) x̂ℓ. (52)

Proof. We claim that Ẑ(b) and Z(b) are related via

Ẑ(b)(r; x̂b, x̂b+1, . . .) = −x̂b + Z(b)(1 + r; xb+1, xb+2)
111
xℓ=

!∞
p=ℓ x̂pB

(b)
p,ℓ

. (53)

Combined with (47) and the fact that R(b) is uniquely determined by Z(b)(R(b); xb+1, . . .) =
xb, this proves the proposition.

To verify the identity we evaluate the right-hand side of (53) using (20) to

(1 + r)1{b=0} −
b!

ℓ=0

(−1)b−ℓ

'
b+ ℓ

2ℓ

(
Cat(ℓ)(1 + r)b−ℓ

− x̂b −
∞!

j=b+1

'
2j − 1

j + b

(
(1 + r)b+j

∞!

p=j

x̂pB
(b)
p,j

= J̃(b, r)−
∞!

p=b

Ĩ(b, p; r) x̂p,

where

J̃(b; r) = (1 + r)1{b=0} −
b!

ℓ=0

(−1)b−ℓ

'
b+ ℓ

2ℓ

(
Cat(ℓ)(1 + r)b−ℓ, (54)

Ĩ(b, p; r) = 1{b=p} +

p!

ℓ=b+1

(−1)p−ℓ

'
p+ ℓ− 1

p− ℓ

('
2ℓ− 1

ℓ+ b

(
(1 + r)ℓ+b. (55)

It remains to show that J̃(b, r) = J(b, r) and Ĩ(b, p; r) = I(b, p; r) for p ! b ! 0, which we
could do by appealing to known hypergeometric identities. Instead we choose to provide
self-contained proofs involving generating functions and Lagrange inversion, since the
intermediate expressions will be of use later on. We note that J̃(0; r) = J(0; r) = r, while
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for b ! 1 we may use the well-known generating function 1−
√
1−4t
2t

=
&∞

ℓ=0 Cat(ℓ)t
ℓ of the

Catalan numbers to compute the generating function

U(z) ≡ U(r; z) =
∞!

b=1

J̃(b; r)zb

= 1−
∞!

ℓ=0

∞!

b=ℓ

zb(−1)b−ℓ

'
b+ ℓ

2ℓ

(
Cat(ℓ)(1 + r)b−ℓ

= 1−
∞!

ℓ=0

Cat(ℓ)zℓ(1 + z + rz)−2ℓ−1

= 1− (1 + z + rz)−11−
√
1− 4t

2t

111
t= z

(1+z+rz)2

= 1−
1 + z + rz −

4
(1 + z + rz)2 − 4z

2z
.

Since U(r; z) = rz +O(z2) is the power series solution to

U

(1− U)(r + U)
= z, (56)

Lagrange inversion [17] easily gives (see also [9, Equation (5.16)])

J̃(b; r) =
1

b
[ub−1](1− u)b(r + u)b =

∞!

p=1

rp
1

b

'
b

p

(
[ub−1](1− u)bub−p

=
∞!

p=1

(−1)p−1rp
1

b

'
b

p

('
b

p− 1

(

for b ! 1. Expanding the binomials gives precisely J(b, r) in (49).
Since Ĩ(b, b; r) = I(b, b; r) = 1, it remains to demonstrate Ĩ(b, p; r) = I(b, p; r) for

p > b ! 0. To this end we examine the generating function

∞!

p=b+1

Ĩ(b, p; r)yp =
∞!

ℓ=b+1

'
2ℓ− 1

ℓ+ b

(
(1 + r)ℓ+b yℓ

(1 + y)2ℓ
.

With the help of the identity

∞!

ℓ=b+1

'
2ℓ− 1

ℓ+ b

(
tℓ =

t−b

√
1− 4t

'
1−

√
1− 4t

2

(2b+1

,

and the rational parametrization

t =
(1 + r)y

(1 + y)2
, y =

Ũ(1− Ũ)

1 + r − Ũ
such that

1−
√
1− 4t

2
=

Ũ

1 + y
,
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this reduces to

∞!

p=b+1

Ĩ(b, p; r)yp =
Ũ2b+1

yb
1

1 + y − 2Ũ
=

Ũ b+1(1 + r − Ũ)b

(1− Ũ)b+1

1

1− rŨ
(1+r−Ũ)(1−Ũ)

. (57)

Writing R(u) = (1 + r − u)/(1− u), the formal power series

Ũ(r; y) =
1 + y −

4
(1− y)2 − 4ry

2
= (r + 1)y +O(y2)

is the unique solutions to Ũ = yR(Ũ). Writing ψ(u) = ub+1(1 + r − u)b(1 − u)−b−1,
Lagrange inversion in the form [17, Equation (2.1.4)] then gives

Ĩ(b, ℓ; r) = [yℓ]
ψ(Ũ)

1− yR′(Ũ)

= [uℓ]ψ(u)R(u)ℓ

= [uℓ−b−1](1 + r − u)b+ℓ(1− u)−b−ℓ−1

=
ℓ+b!

p=0

rp
'
b+ ℓ

p

('
p+ ℓ− b− 1

p

(
.

Again, after expanding the binomials we recover I(b, ℓ; r) in (48).

Lemma 12. For ℓ ! b ! 0 we have the identity

∂R̂(b)

∂x̂ℓ

= I(b, ℓ; R̂(b))
∂R̂(b)

∂x̂b

. (58)

Proof. This follows directly from taking derivatives of the equation

Ẑ(b)(R̂(b); x̂b, x̂b+1, . . .) = 0.

The following result gives a compact expression for the coefficients of R̂(b), allowing
in particular to deduce that they are polynomials in b and the square face degrees. The
result is analogous to formulas in [8, Section 2.3-2.4], that were obtained via combinatorial
means, but here we give an algebraic proof. To state the result we introduce the formal
power series inverse

z (→ J−1(b; z) = z + 1
2
b(b− 1)z2 + 1

12
b(b− 1)2(5b+ 2)z3 + · · ·

to r (→ J(b; r), whose coefficient of zk is easily seen to be a polynomial in b of degree
2k − 2.
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Lemma 13. For b ! 0, k ! 1 and ℓ1, . . . , ℓk ! b and f(r) any formal power series with
f ′(0) ∕= 0,

∂kf(R̂(b))

∂x̂ℓ1 · · · ∂x̂ℓk

(0, 0, . . .) = k! [zk]

+ J−1(b;z)

0

dr f ′(r)
k)

i=1

I(b, ℓi; r) (59)

is a polynomial in b, ℓ21, . . . , ℓ
2
k that is symmetric and of degree k − 1 in ℓ21, . . . , ℓ

2
k.

Proof. We claim that for any k ! 0,

∂kf(R̂(b))

∂x̂ℓ1 · · · ∂x̂ℓk

= f(0)1{k=0} +
∂k

∂x̂k
b

+ R̂(b)

0

dr f ′(r)
k)

i=1

I(b, ℓi; r), (60)

from which the required identity follows by evaluation at x̂b = x̂b+1 = · · · = 0, where we
use that R̂(b) = J−1(b, x̂b) when x̂ℓ = 0 for all ℓ > b. We verify the claim by induction on
k, noting that the base case k = 0 is trivially satisfied. If (60) holds for k ! 0, then

∂k+1f(R̂(b))

∂x̂ℓ1 · · · ∂x̂ℓk+1

=
∂k

∂x̂k
b

∂

∂x̂ℓk+1

+ R̂(b)

0

dr f ′(r)
k)

i=1

I(b, ℓi; r) =
∂k

∂x̂k
b

∂f(R̂(b))

∂x̂ℓk+1

k)

i=1

I(b, ℓi; R̂
(b))

Lem. 12
=

∂k

∂x̂k
b

∂f(R̂(b))

∂x̂b

k+1)

i=1

I(b, ℓi; R̂
(b)) =

∂k+1

∂x̂k+1
b

+ R̂(b)

0

dr f ′(r)
k+1)

i=1

I(b, ℓi; r),

verifying the induction step.
The power series coefficients of J−1(b; z) and I(b, ℓi; r) are polynomials in b, ℓ21, . . . , ℓ

2
k

and therefore the same is true for the right-hand side of (59). To see that it is of degree
k − 1 in ℓ21, . . . , ℓ

2
k, we note that the top-degree monomials arise from the contribution

k![zk]

+ z

0

dr f ′(0)
k)

i=1

I(b, ℓi; r) = f ′(0)(k − 1)![rk−1]
k)

i=1

I(b, ℓi; r)

and use that the power series coefficient [rp]I(b, ℓi; r) is polynomial ℓ2i of degree p.

4.2 Generating functions for arbitrary genus

All ingredients are in place to perform the substitution of Proposition 10 in the partition
functions of Proposition 5 and Proposition 10.

Proposition 14. For b ! 0 the partition functions of essentially 2b-irreducible maps with
no vertices of degree one are given by (with ℓ1, ℓ2 ! max(b, 1))

∂

∂x̂ℓ1

∂

∂x̂ℓ2

F̂
(b)
0 (x̂b, x̂b+1, . . .) =

3x̂2
b + 2x̂3

b

2(1 + x̂b)2
1ℓ1=ℓ2=b +

+ R̂(b)

x̂01{b=0}

dr
I(b, ℓ1; r)I(b, ℓ2; r)

(1 + r)2b+1
, (61)

F̂
(b)
1 (x̂b, x̂b+1, . . .) = − 1

12
log M̂

(b)
0 for b ! 1, (62)
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F̂ (b)
g (x̂b, x̂b+1, . . .) = Pg

-
1

M̂
(b)
0

,
M̂

(b)
1

M̂
(b)
0

, . . . ,
M̂

(b)
3g−3

M̂
(b)
0

.
for b ! 1, g ! 2, (63)

F̂
(0)
1 (x̂0, x̂1, . . .) = − 1

12
log

M̂
(0)
0

1 + x̂0

,

F̂ (0)
g (x̂0, x̂1, . . .) = (1 + x̂0)

2−2gPg

-
1

M̂
(0)
0

,
M̂

(0)
1

M̂
(0)
0

, . . . ,
M̂

(0)
3g−3

M̂
(0)
0

.
for g ! 2,

where

M̂ (b)
p = Qp(b, (1 + r) ∂r) (1 + r)−b Ẑ(b)(r; x̂b, x̂b+1, . . .)

111
r=R̂(b)(x̂b,x̂b+1,...)

. (64)

Proof. We start with the genus-0 case. Proposition 5 and Proposition 10 together imply
that

∂2F̂
(b)
0

∂x̂p1∂x̂p2

=
∞!

ℓ1=p1

∞!

ℓ2=p2

B
(b)
p1,ℓ1

B
(b)
p2,ℓ2

∂2F
(b)
0

∂xℓ1∂xℓ2

=
3x̂2

b + 2x̂3
b

2(1 + x̂b)2
1ℓ1=ℓ2=b +

+ R̂(b)+1

1+x̂01{b=0}

dr

,2
i=1

;&∞
ℓi=pi

B
(b)
pi,ℓi

$
1{ℓi=b} +

"
2ℓi−1
ℓi+b

#
rℓi+b

%<

r2b+1
.

Using (55) and shifting the integration variable by one, reproduces (61).
In the light of Proposition 8, to verify the formulas for the higher-genus partition

functions it suffices to check that

M̂ (b)
p (x̂b, x̂b+1, . . .) = M̄ (b)

p (xb, xb+1, . . .)
111
xℓ=

!∞
p=ℓ x̂pB

(b)
p,ℓ

is given correctly by (64), which follows easily from (53) andQp(b,−b) = 0 (Lemma 7).

In the planar case we can use this to find an expression for the coefficients of F̂
(b)
0 that

treats all faces on equal footing and is the analogue of [8, Equation (3.2)] when vertices
of degree one are suppressed.

Proposition 15. For any b ! 0 the number of planar 2b-irreducible maps with no vertices
of degree one and n ! 3 labeled faces of degrees 2ℓ1, . . . , 2ℓn ! max(2b, 2) satisfies

‖M̂(b)
0,n(ℓ1, . . . , ℓn)‖ = N̂

(b)
0,n(ℓ1, . . . , ℓn) + 1{n!4, ℓ1=···=ℓn=b}

(n− 1)!

2
(−1)n, (65)

N̂
(b)
0,n(ℓ1, . . . , ℓn) = (n− 2)![zn−2]

+ J−1(b;z)

0

dr

,n
i=1 I(b, ℓi; r)

(1 + r)2b+1
. (66)

In particular, N̂
(b)
0,n(ℓ1, . . . , ℓn) is a polynomial in b, ℓ21, . . . , ℓ

2
n that is symmetric in ℓ21, . . . , ℓ

2
n

of degree n− 3.
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Proof. Recall from (45) that

‖M̂(b)
0,n(ℓ1, . . . , ℓn)‖ =

∂

∂x̂ℓ1

· · · ∂

∂x̂ℓn

F̂
(b)
0

111
x̂b=x̂b+1=···=0

,

whose value we should be able to deduce from (61). A simple calculation shows that for
n ! 3, '

∂

∂x̂b

(n−2
3x̂2

b + 2x̂3
b

2(1 + x̂b)2

11111
x̂b=0

= (−1)n
(n− 1)!

2
1{n!4},

so (65) is satisfied with

N̂
(b)
0,n(ℓ1, . . . , ℓn) =

∂

∂x̂ℓ3

· · · ∂

∂x̂ℓn

+ R̂(b)

0

dr
I(b, ℓ1; r)I(b, ℓ2; r)

(1 + r)2b+1

11111
x̂b=x̂b+1=···=0

.

Applying Lemma 13 to the power series

f(r) =

+ r

0

dr
I(b, ℓ1; r)I(b, ℓ2; r)

(1 + r)2b+1
= r +O(r2), (67)

we conclude that N̂
(b)
0,n is a polynomial in b, ℓ21, . . . , ℓ

2
n that is symmetric in ℓ21, . . . , ℓ

2
n of

degree n− 3 and can be expressed as (66).

For the higher-genus case, it is convenient to make use of the expressions for the
moments derived in Lemma 9. After substitution these become

M̂ (b)
p (x̂b, x̂b+1, . . .) =

(1 + R̂(b))1−b

(∂x̂b
R̂(b))2p+1

Tp(b, 1 + R̂(b), ∂x̂b
R̂(b), · · · , ∂p+1

x̂b
R̂(b)). (68)

Proposition 16. For any g, n ! 1, b ! 0 and ℓ1, . . . , ℓn ! max(b, 1) we have

‖M̂(b)
g,n(ℓ1, . . . , ℓn)‖ = N̂ (b)

g,n(ℓ1, . . . , ℓn),

where

N̂ (b)
g,n(ℓ1, . . . , ℓn) =

∂nF̂
(b)
g

∂x̂ℓ1 · · · ∂x̂ℓn

(0, 0, . . .) (69)

is a polynomial in b, ℓ21, . . . , ℓ
2
n that is symmetric in ℓ21, . . . , ℓ

2
n.

Proof. From the definition of M̄
(b)
p in (33) we deduce that M̄

(b)
p (0, 0, . . .) = 1{p=0} since

U
(b)
k (0, 0, . . .) = 0 for all k ! 1. Hence we also have M̂p(0, . . .) = Tp(b, 1, 0, . . . , 0) = 1p=0.

Note further that R̂(b)(0, . . .) = 0, ∂x̂b
R̂(b)(0, . . .) = 1. It then follows easily from the

expressions (62), (63) and (68) that N̂
(b)
g,n(ℓ1, . . . , ℓn) is a polynomial in the variables

-
)

i∈I

∂

∂x̂ℓi

.
∂k

∂x̂k
b

R̂(b)

11111
x̂b=x̂b+1=...=0

, I ⊂ {1, . . . , n}, k ! 0.

Since each of these is polynomial in ℓ21, . . . , ℓ
2
n by Lemma 13, the same is true for the

power series coefficient N̂
(b)
g,n(ℓ1, . . . , ℓn) in (69). The latter is symmetric in ℓ1, . . . , ℓn by

construction. Together with (45) this concludes the proof.
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4.3 Proof of Theorem 1

We have already established all ingredients for the proof of Theorem 1. The first state-
ment on the existence of a symmetric polynomial N̂

(b)
g,n satisfying (1) has been asserted in

Proposition 15 for g = 0 and Proposition 16 for g ! 1. These propositions also demon-
strate that the dependence of N̂

(b)
g,n on b is polynomial. It follows from Proposition 4 that

the degree of the polynomial N̂
(b)
g,n both in ℓ1, . . . , ℓn and in b, ℓ1, . . . , ℓn is 2n + 6g − 6.

Finally, the relation between ‖M(b)
g,n(ℓ1, . . . , ℓn)‖ and ‖M̂(b)

g,n(ℓ1, . . . , ℓn)‖ in (2) is a direct
consequence of (10), (45) and Proposition 10.

5 String and dilaton equations

The string and dilaton equations will be seen to be a consequence of the following special
properties of the formal power series I(b, ℓ; r) and J(b; r).

Lemma 17. The formal power series I(b, ℓ; r) and J(b; r) satisfy

(i) I(b, 1; r) = (1 + r)b+1 ∂
∂r
((1 + r)−bJ(b; r)) for b ! 0,

(ii) I(b, 1; r)− I(b, 0; r) = J(b; r) for b ! 0,

(iii) (1 + r)b+1 ∂
∂r
(1 + r)−bI(b, ℓ; r) = −ℓ I(b, ℓ; r) +

&ℓ
k=1 2k I(b, k; r)−

&b
k=1 2k I(b, k; r)

for ℓ, b ! 0.

Proof. Recall from the proof of Proposition 11 that

I(b, ℓ; r) = [ub+ℓ](1− u)b−ℓ(r + u)b+ℓ, (b+ ℓ ! 0)

J(b; r) =
1

b
[ub−1](1− u)b(r + u)b. (b ! 1)

Note that we only proved the first relation for ℓ > b ! 1, but since the coefficients of r on
both sides are polynomial in b and ℓ it must be valid for any b, ℓ ∈ Z such that b+ ℓ ! 0.

Property (i) is clearly satified in case b = 0 since I(0, 1; r) = 1 + r and J(0, r) = r.
For b ! 1 it follows from examining the coefficient of ub−1 in

(1 + r)b+1 ∂

∂r

'
(1 + r)−b1

b
(1− u)b(r + u)b

(
= (1− u)b+1(r + u)b−1

and the fact that I(b,−ℓ; r) = I(b, ℓ; r).
For Property (ii) we use the identity

p−1)

m=0

(1− b+m)(1 + b−m)−
p−1)

m=0

(−b+m)(b−m) = (−1)p−1p

p−2)

m=0

(b−m− 1)(b−m),

which is easily checked by noting that the three terms have most factors in common. The
required identity then follows directly from the definitions (48) and (49) by comparing
the coefficients.
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The coefficients of r on the both of the identity in Property (iii) are polynomials in ℓ
and b, so it is sufficient to check the equality for ℓ > b ! 0. To this end we rewrite (57) as

Kb(r; y) := (1 + r)−b

∞!

p=b+1

I(b, p; r)yp =

-
Ũ(1 + r − Ũ)

(1 + r)(1− Ũ)

.b
Ũ

1− Ũ − rŨ
1+r−Ũ

=

'
1− T

1 + T

(b
1− T

2T
, T (r; y) =

1

1 + y

4
(1− y)2 − 4ry.

We may easily check that

(1 + r)
∂T

∂r
=

1 + y

1− y
y
∂T

∂y
,

implying that Kb(r; y) satisfies the same first-order linear differential equation. Hence

∞!

p=b+1

(1 + r)b+1 ∂

∂r
((1 + r)−bI(b, p; r)) yp = (1 + r)b+1∂Kb

∂r
= (1 + r)b

1 + y

1− y
y
∂Kb

∂y

=
∞!

p=b+1

I(b, p; r)
1 + y

1− y
p yp.

Extracting the coefficient of yℓ, ℓ > b, on both sides gives precisely the claimed identity.

We will use these properties to prove the string and dilaton equations for essentially 2b-
irreducible genus-g maps. We treat the planar case and the higher genus case separately,
because of the differences in the expressions we have for their partition functions listed in
Proposition 14.

5.1 The planar case

In the planar case we are stuck with having (at least) two distinguished faces in the
generating function, so if we want to treat all faces on equal footing it is more convenient
to use directly the expression (66) for the polynomial N̂

(b)
0,n.

Proposition 18. The polynomials N̂
(b)
0,n(ℓ1, . . . , ℓn) satisfy the string and dilaton equations

for n ! 3 and b ! 0,

N̂
(b)
0,n+1(ℓ1, . . . , ℓn, 1) =

n!

j=1

ℓj!

k=b+1

2k N̂
(b)
0,n(ℓ1, . . . , ℓj−1, k, ℓj+1, . . . , ℓn)

−
n!

j=1

ℓjN̂
(b)
0,n(ℓ1, . . . , ℓn),

N̂
(b)
0,n+1(ℓ1, . . . , ℓn, 1)− N̂

(b)
0,n+1(ℓ1, . . . , ℓn, 0) = (n− 2)N̂

(b)
0,n(ℓ1, . . . , ℓn).
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Proof. Using the shorthand notations

[zn−1]f(r) = [zn−1]f(J−1(b; z)),

+
dr f(r) =

+ r

0

ds f(s), J ′(b; r) = ∂
∂r
J(b; r), (70)

we observe that any formal power series f(r) satisfies

(n− 1)[zn−1]

+
dr f(r)J ′(b; r) = (n− 1)[zn−1]

+
dz f(r)

= [zn−2]f(r) = [zn−2]

+
dr f ′(r), (71)

(n− 1)[zn−1]

+
dr f(r)J(b; r) = (n− 1)[zn−1]

-
J(b; r)

+
dr f(r)

−
+

dr J ′(b; r)

+
dr f(r)

.

= (n− 1)[zn−2]

+
dr f(r)− [zn−2]

+
dr f(r)

= (n− 2)[zn−2]

+
dr f(r). (72)

More generally we thus have for any formal power series f(r) and h(r) that

(n−1)[zn−1]

+
dr f(r) ∂

∂r
(h(r)J(b; r)) = [zn−2]

+
dr ((n− 1)f(r)h′(r) + f ′(r)h(r)) . (73)

According to Proposition 15 we have for n ! 3 that

N̂
(b)
0,n+1(1, ℓ1, . . . , ℓn)

(66)
= (n− 1)![zn−1]

+
dr (1 + r)−1−2bI(b, 1; r)

n)

i=1

I(b, ℓi; r),

which with the help of Lemma 17(i) and (73) gives

N̂
(b)
0,n+1(1, ℓ1, . . . , ℓn) = (n− 1)![zn−1]

+
dr (1 + r)−b( ∂

∂r
(1 + r)−bJ(b; r))

n)

i=1

I(b, ℓi; r)

(73)
= (n− 2)![zn−2]

+
dr

-
(n− 1)( ∂

∂r
(1 + r)−b)(1 + r)−b

n)

i=1

I(b, ℓi; r)

+ (1 + r)−b ∂
∂r
(1 + r)−b

n)

i=1

I(b, ℓi; r)

.

= (n− 2)![zn−2]

+
dr(1 + r)−b

n!

j=1

-
)

i ∕=j

I(b, ℓi; r)

.
∂
∂r
(1 + r)−bI(b, ℓj; r).
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Applying Lemma 17(iii) we thus find

N̂
(b)
0,n+1(1, ℓ1, . . . , ℓn) = (n− 2)![zn−2]

+
dr(1 + r)−1−2b

×
n!

j=1

-
)

i ∕=j

I(b, ℓi; r)

.5

6−ℓjI(b, ℓj; r) +

ℓj!

k=b+1

2k I(b, k; r)

7

8

(66)
=

n!

j=1

ℓj!

k=b+1

2k N̂
(b)
0,n(ℓ1, . . . , ℓj−1, k, ℓj+1, . . . , ℓn)−

n!

j=1

ℓjN̂
(g)
0,n(ℓ1, . . . , ℓn).

For the dilaton equation we use Lemma 17(ii) to calculate

N̂
(b)
0,n+1(ℓ1, . . . , ℓn, 1)− N̂

(b)
0,n+1(ℓ1, . . . , ℓn, 0)

(66)
= (n− 1)![zn−1]

+
dr (I(b, 1; r)− I(b, 0; r)) (1 + r)−1−2b

n)

i=1

I(b, ℓi; r)

Lem. 17(ii)
= (n− 1)![zn−1]

+
dr J(b; r)(1 + r)−1−2b

n)

i=1

I(b, ℓi; r)

(72)
= (n− 2) (n− 2)![zn−2]

+
dr(1 + r)−1−2b

n)

i=1

I(b, ℓi; r)

(66)
= (n− 2)N̂

(b)
0,n(ℓ1, . . . , ℓn),

valid for any n ! 3, which concludes the proof.

5.2 The higher-genus case

For genus 1 and higher we do not have an explicit formula for the polynomials N̂
(b)
g,n like

in the planar case. The natural route to take is therefore to reformulate the string and
dilation equations on the level of generating functions. This however poses an immediate
problem, because the equations involve an evaluation where one of the face (half-)degrees
is set to 0 or 1, which does not make sense combinatorially in a 2b-irreducible map when
b > 1.

Luckily, we can salvage the situation as follows. Let Ř(b)(x̂0, x̂1, . . .) be the power series
solution to Ž(b)(Ř(b); x̂0, x̂1, . . .) = 0 where

Ž(b)(r; x̂0, x̂1, . . .) = J(b, r)−
∞!

ℓ=0

I(b, ℓ; r)x̂ℓ, (74)

i.e. we have extended the definition of Ẑ(b) by including generating variables x̂0, . . . x̂b−1.

Then we let F̌
(b)
g (x̂0, x̂1, . . .) for g ! 1 and M̌p(x̂0, x̂1, . . .) for p ! 0 be defined by ex-

pressions (62)-(64) of Proposition 14, but with R̂(b) and Ẑ(b) replaced by Ř(b) and Ž(b).
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Lemmas 12 and 13 apply equally well to Ř(b), while Proposition 16 extends to the identity

N̂ (b)
g,n(ℓ1, . . . , ℓn) =

∂nF̌
(b)
g

∂x̂ℓ1 · · · ∂x̂ℓn

(0, 0, . . .), (75)

now valid for arbitrary non-negative ℓ1, . . . , ℓn.

Lemma 19. Introducing the first-order linear partial differential operators

Dstr =
∂

∂x̂1

−
∞!

ℓ=0

x̂ℓ

-
−ℓ

∂

∂x̂ℓ

+
ℓ!

k=1

2k
∂

∂x̂k

−
b!

k=1

2k
∂

∂x̂k

.
,

Ddil =
∂

∂x̂1

− ∂

∂x̂0

−
∞!

ℓ=0

x̂ℓ
∂

∂x̂ℓ

,

we have
DstrŘ(b) = 1 + Ř(b), DdilŘ(b) = 0. (76)

Proof. With the help of Lemmas 12 and 17, we may evaluate

DstrŘ(b) =

-
I(b, 1; Ř(b))−

∞!

ℓ=0

x̂ℓ

9
− ℓI(b, ℓ; Ř(b))

+
ℓ!

k=0

2kI(b, k; Ř(b))−
b!

k=0

2kI(b, k; Ř(b))

:.
∂Ř(b)

∂x̂b

Lem. 17(i),(iii)
= (1 + Ř(b))b+1∂Ř

(b)

∂x̂b

∂

∂r
(1 + r)−b

-
J(b; r)−

∞!

ℓ=0

x̂ℓI(b, ℓ; r)

.11111
r=Ř(b)

= 1 + Ř(b) + (1 + Ř(b))b+1 ∂

∂x̂b

(1 + Ř(b))−b

-
J(b; Ř(b))−

∞!

ℓ=0

x̂ℓI(b, ℓ; Ř
(b))

.

= 1 + Ř(b),

where in the last equality we used the definition Ž(b)(Ř(b); x̂0, x̂1, . . .) = 0 of Ř(b). Similarly

DdilŘ(b) Lem. 12
=

-
I(b, 1; Ř(b))− I(b, 0; Ř(b))−

∞!

ℓ=0

x̂ℓI(b, ℓ; Ř
(b))

.
∂Ř(b)

∂x̂b

Lem. 17(ii)
=

-
J(b; Ř(b))−

∞!

ℓ=0

x̂ℓI(b, ℓ; Ř
(b))

.
∂Ř(b)

∂x̂b

= 0,

which vanishes by the definition of Ř(b).

Lemma 20. For any p, b ! 0 the power series M̌
(b)
p (x̂0, x̂1, . . .) satisfies D

strM̌
(b)
p = 0 and

DdilM̌
(b)
p = −M̌

(b)
p .
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Proof. First we rewrite the analogue of (64) by introducing an additional formal variable
s via

M̌ (b)
p = Qp(b, (1 + r) ∂r) (1 + r)−b Ž(b)(r; x̂0, x̂1, . . .)

111
r=Ř(b)

= Qp(b, (1 + s) ∂s) (1 + s)−b(1 + Ř(b))−bŽ(b)( (1 + s)(1 + Ř(b))− 1; x̂0, x̂1, . . .)
111
s=0

. (77)

Applying Lemma 17 to the definition (74) we easily find that

DstrŽ(b)(r; x̂0, . . .) = −(1 + r)b+1 ∂

∂r

"
(1 + r)−bŽ(b)(r; x̂0, . . .)

#
, (78)

DdilŽ(b)(r; x̂0, . . .) = −Ž(b)(r; x̂0, . . .). (79)

Therefore, with the help of Lemma 19, we have the identity

Dstr (1 + s)−b(1 + Ř(b))−bŽ(b)( (1 + s)(1 + Ř(b))− 1; x̂0, x̂1, . . .)

=
;
(DstrŘ(b)) (1 + s)

∂

∂r

"
(1 + r)−bŽ(b)(r; x̂0, . . .)

#

+ (1 + r)−bDstrŽ(b)(r; x̂0, . . .)
<

r=(1+s)(1+Ř(b))−1

Lem. 19
=

;
(1 + r)

∂

∂r

"
(1 + r)−bŽ(b)(r; x̂0, . . .)

#

+ (1 + r)−bDstrŽ(b)(r; x̂0, . . .)
<

r=(1+s)(1+Ř(b))−1

of formal power series in s, x̂0, x̂1, . . .. As a consequence of (78) it vanishes and therefore

the same is true for Dstr applied to M̌
(b)
p given in (77). Similarly, since DdilŘ(b) = 0, we

have

Ddil(1 + s)−b(1 + Ř(b))−bŽ(b)( (1 + s)(1 + Ř(b))− 1; x̂0, x̂1, . . .)

= (1 + r)−bDdilŽ(b)(r; x̂0, . . .)
111
r=(1+s)(1+Ř(b))−1

(79)
= −(1 + s)−b(1 + Ř(b))−bŽ(b)( (1 + s)(1 + Ř(b))− 1; x̂0, x̂1, . . .).

This entails that M̌
(b)
p from (77) satisfies DdilM̌

(b)
p = −M̌

(b)
p .

Proposition 21. The polynomials N̂
(b)
g,n satisfy for any g, n ! 1 and b, ℓ1, . . . , ℓn ! 0 the

identities

N̂
(b)
g,n+1(ℓ1, . . . , ℓn, 1) =

n!

j=1

;
− ℓjN̂

(b)
g,n(ℓ1, . . . , ℓn)

+

ℓj!

k=1

2k N̂ (b)
g,n(ℓ1, . . . , ℓj−1, k, ℓj+1, . . . , ℓn)
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−
b!

k=1

2k N̂ (b)
g,n(ℓ1, . . . , ℓj−1, k, ℓj+1, . . . , ℓn)

<
,

N̂
(b)
g,n+1(ℓ1, . . . , ℓn, 1)− N̂

(b)
g,n+1(ℓ1, . . . , ℓn, 0) = (n+ 2g − 2) N̂ (b)

g,n(ℓ1, . . . , ℓn).

Proof. Combining our definition of F̌
(b)
g in terms of the moments M̌

(b)
p with Lemma 20,

we easily find

DstrF̌
(b)
1 = − 1

12
Dstr log M̌0 = 0,

DstrF̌ (b)
g = DstrPg

'
1

M̌0

,
M̌1

M̌0

, . . . ,
M̌3g−3

M̌0

(
= 0 (g ! 2).

Hence, for any g, n ! 1 evaluating (75) at ℓn+1 = 1 gives

N̂
(b)
g,n+1(ℓ1, . . . , ℓn, 1) =

∂n

∂x̂ℓ1 · · · ∂x̂ℓn

∂

∂x̂1

F̌ (b)
g

111
x̂0=x̂1=...=0

=
∂n

∂x̂ℓ1 · · · ∂x̂ℓn

∞!

ℓ=0

x̂ℓ

-
−ℓ

∂

∂x̂ℓ

+
ℓ!

k=1

2k
∂

∂x̂k

−
b!

k=1

2k
∂

∂x̂k

.
F̂ (b)
g

11111
x̂0=x̂1=...=0

=
n!

j=1

;
− ℓjN̂

(b)
g,n(ℓ1, . . . , ℓn) +

ℓj!

k=1

2k N̂ (b)
g,n(ℓ1, . . . , ℓj−1, k, ℓj+1, . . . , ℓn)

−
b!

k=1

2k N̂ (b)
g,n(ℓ1, . . . , ℓj−1, k, ℓj+1, . . . , ℓn)

<
.

On the other hand DdilF̌
(b)
1 = − 1

12
Ddil log M̌0 =

1
12
, while for g ! 2 we find with the help

of (32) that

DdilF̌ (b)
g = −DdilM̌2−2g

0 P̃g

'
M̌1

M̌0

, . . . ,
M̌3g−3

M̌0

(

= −(2g − 2)M̌2−2g
0 P̃g

'
M̌1

M̌0

, . . . ,
M̌3g−3

M̌0

(

= (2g − 2)F̌ (b)
g − (2g − 2)P̃g(0, . . . , 0).

Finally, for any g, n ! 1 we obtain

N̂
(b)
g,n+1(ℓ1, . . . , ℓn, 1)− N̂

(b)
g,n+1(ℓ1, . . . , ℓn, 0)

=
∂n

∂x̂ℓ1 · · · ∂x̂ℓn

'
∂

∂x̂1

− ∂

∂x̂0

(
F̌ (b)
g

111
x̂0=x̂1=...=0

=
∂n

∂x̂ℓ1 · · · ∂x̂ℓn

-
2g − 2 +

∞!

ℓ=0

x̂ℓ
∂

∂x̂ℓ

.
F̌ (b)
g

111
x̂0=x̂1=...=0

= (2g − 2 + n)N̂ (b)
g,n(ℓ1, . . . , ℓn).
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5.3 Proof of Theorem 2

The string and dilaton equations have been proven in Proposition 18 for g = 0 and
Proposition 21 for g ! 1. The polynomials N̂

(b)
0,3(ℓ1) and N̂

(b)
g,1(ℓ1) for g ! 1 are independent

of b because of the remark just below Lemma 3: the criterion for being essentially 2b-
irreducible only puts restrictions on the lengths of essentially simple cycles enclosing at
least two faces, of which there are none in M̂0,3 and M̂g,1. A straightforward computation

shows that N̂
(b)
0,3(ℓ1, ℓ2, ℓ3) = 1 and N̂

(b)
1,1(ℓ1) = (ℓ21 − 1)/12. The fact that the string and

dilaton equations uniquely determine the symmetric polynomials N̂
(b)
0,n and N̂

(b)
1,n for n > 1

in terms of N̂
(b)
0,3 and N̂

(b)
1,1 follows from the same reasoning as in [13, Section 4.1].
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