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Abstract

A reduced word of a permutation w is a minimal length expression of w as a
product of simple transpositions. We examine formulas and (randomized) algo-
rithms for their enumeration. In particular, we prove that the Edelman-Greene
statistic, defined by S. Billey-B. Pawlowski, is typically exponentially large. This
implies a result of B. Pawlowski, that it has exponentially growing expectation. Our
result is established by a formal run-time complexity analysis of A. Lascoux-M.-
P. Schützenberger’s transition algorithm. The more general problem of Hecke word
enumeration, and its closely related question of counting set-valued standard Young
tableaux, is also investigated. The latter enumeration problem is further motivated
by work on Brill-Noether varieties due to M. Chan-N. Pflueger and D. Anderson-
L. Chen-N. Tarasca. We also state some related problems about counting compu-
tational complexity.

Mathematics Subject Classifications: 05E05, 05E14, 68Q25

1 Introduction

1.1 Reduced word combinatorics

Let Sn denote the symmetric group on {1, 2, . . . , n}. Each w ∈ Sn can be expressed as a
product of ℓ(w) simple transpositions si = (i, i+1), where ℓ(w) is the number of inversions
of w, i.e., pairs i < j such that w(i) > w(j). Such an expression w = si1si2 · · · siℓ(w)

is a
reduced word for w.
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Let Red(w) be the set of reduced words for w. R. P. Stanley [36] defined a symmetric
function Fw such that

#Red(w) = the coefficient of x1x2 · · · xℓ(w) in Fw. (1)

In connection to ibid., P. Edelman-C. Greene [13, Section 8] proved that

#Red(w) =
!

λ

aw,λf
λ, where (2)

• fλ is the number of standard Young tableaux of shape λ, that is, row and column
increasing bijective fillings of the Young diagram of λ using 1, 2, . . . , |λ|. The hook-
length formula of J. S. Frame-G. de B. Robinson-R. M. Thrall [16] states

fλ =
|λ|!"
b hb

, (3)

where the product is over all boxes b ∈ λ and hb is the hooklength of b, i.e., the
number of boxes weakly right and strictly below b.

• aw,λ counts EG tableaux : row and column increasing fillings T of λ such that reading
the entries (i1, i2, . . . , i|λ|) of T along columns, top to bottom, and right to left, gives
a reduced word si1 · · · si|λ| for w (cf. [10]).

Let w0 = n n − 1 n − 2 . . . 3 2 1 be the unique longest length permutation of Sn

(hence ℓ(w0) =
#
n
2

$
). R. P. Stanley [36] proved that, in this case, (2) is short:

#Red(w0) = f (n−1,n−2,...,3,2,1); (4)

hence #Red(w0) is computed by (3).
One measure of the brevity of (2) is the Edelman-Greene statistic on Sn,

EG(w) =
!

λ

aw,λ;

this was introduced by S. Billey-B. Pawlowski [5]. From (4), one sees EG(w0) = 1.
Permutations w such that EG(w) = 1 are vexillary. These permutations are charac-
terized by 2143-pattern avoidance: there are no indices i1 < i2 < i3 < i4 such that
w(i1), w(i2), w(i3), w(i4) are in the same relative order as 2143. For instance, w =
54278316 is not vexillary; the underlined positions give a 2143 pattern. Each such w
has shape λ(w) (defined in Section 2.2). Extending (4), whenever w is vexillary,

#Red(w) = fλ(w); (5)

see, e.g., [29, Corollary 2.8.2]. Our main result (Theorem 7) is that EG is typically large.
This implies a (weak version) of a Theorem of B. Pawlowski [32, Theorem 3.2.7]:

Theorem 1 (Average exponential growth). E[EG] = Ω(cn), for some fixed constant c > 1.
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1.2 Run-time complexity of transition

Our proof of Theorem 1 uses the transition algorithm of A. Lascoux-M. P. Schützenberger
[26] (cf. [29, Sections 2.7, 2.8]). This algorithm constructs the Lascoux-Schützenberger
transition tree T (w) whose root is w and the leaves L(w) are labelled with vexillary
permutations (with multiplicity). With this,

#Red(w) =
!

v∈L(w)

fλ(v); (6)

see Section 2 for details. Different v may give the same λ(v). After combining such terms,
(6) is the same as (2); see Lemma 6.

The (practical) efficiency of (extensions/variations of) transition has been mentioned
a number of times. S. Billey [3] calls transition “one of the most efficient methods” to
compute Schubert polynomials. See also A. Buch [9, Sections 3.4, 3.5] who discusses a
quantum cohomology version of transition that is “quite efficient” for computing Gromov-
Witten invariants (based on “practical experiments”). Another remark in this vein is
found in the abstract to Z. Hamaker-E. Marberg-B. Pawlowski [19] who develop a differ-
ent variation on the transition algorithm to “efficiently compute the decomposition” of
involution Stanley symmetric functions into Schur P -functions. On the other hand, con-
cerning the application of transition to computing the Littlewood-Richardson coefficients
[26], A. Garsia [18, p. 52] writes:

“Curiously, their algorithm (in spite of their claims to the contrary) is
hopelessly inefficient as compared with well known methods.”

He also refers to transition as “efficient” for a different purpose in his study of Red(w).
Theorem 1 is actually a reformulation of the following result which may be interpreted

as a lower-bound for the typical run-time of transition:

Theorem 2. E(#L) = Ω(cn) for a fixed constant c > 1. That is the average running
time of transition, as an algorithm to compute #Red(w), is at least exponential in n.

Theorem 7 strengthens Theorem 2 to show that the “typical” running time is expo-
nentially large. To prove Theorem 2 we use that the expected number of occurences of
a fixed pattern π ∈ Sk in w ∈ Sn is

#
n
k

$
/k!. Thus for u = 2143, this expectation is

O(n4). One shows each step of transition reduces the number of 2143 patterns by O(n3).
Using the graphical description of transition by A. Knutson and the third author [25], a
node u of T (w) has exactly one child u′ only if u′ has weakly more 2143 patterns than u
does. Consequently, T (w) has Ω(n) branch points along any root-to-leaf path and thus
exponentially many leaves. (In fact, the c > 1 from our argument is close to 1.)

Section 6 collects some remarks and questions about the related matter of the compu-
tational complexity of counting #Red(w).
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1.3 Hecke words

Section 4 studies the more general problem of counting Hecke(w,N), the set of Hecke
words of length N whose Demazure product is a given w ∈ Sn. Here, the role of Stanley’s
symmetric polynomial is played by the stable Grothendieck polynomial defined by S. Fomin
and A. N. Kirillov [15]. Using work of S. Fomin and C. Greene [14] and of A. Buch,
A. Kresch, M. Shimozono, H. Tamvakis and the third author [10], one has two analogues
of the results of Edelman-Greene [13]. However, finding useful enumeration formulas for
Hecke words is a challenge. This is even true for the case that w is vexillary.

As explained by Proposition 19, enumerating Hecke words is closely related to the
problem of counting fλ,N , the number of set-valued tableaux [8] that are N-standard of
shape λ. These are fillings T of the boxes of λ by 1, 2, . . . , N , where each entry appears
exactly once, and if one chooses precisely one entry from each box of T , one obtains a

semistandard tableau. For example, if N = 8 and λ = (3, 2), one tableau is 1,2 4,5 8
3 6,7

.

There is no algorithm to compute fλ,N that is polynomial-time in the bit-length of
the input (λ, N) (see Section 6, after Observation 39).

Problem 3. Does there exist an algorithm to compute fλ,N that is polynomial in |λ| and
N?

Clearly, (3) gives a solution when N = |λ|. Using a theorem of C. Lenart [27], there
exists an |λ|O(1) algorithm for any λ and where N = |λ|+ k, if k is fixed (Proposition 21).

Recent work of M. Chan-N. Pflueger [11] and D. Anderson-L. Chen-N. Tarasca [2]
motivates study of fλ,N in terms of Brill-Noether varieties. We remark on two manifestly
nonnegative formulas for the Euler characteristics of these varieties (Corollary 26).

1.4 Randomization

Section 5 gives three randomized algorithms to estimate #Red(w) and/or #Hecke(w,N)
using importance sampling. That is, let S be a finite set. Assign s ∈ S probability ps.
Let Z be a random variable on S with Z(s) = 1/ps. Then

E(Z) =
!

s∈S

ps ×
1

ps
= #S.

Using this, one can devise simple Monte Carlo algorithms to estimate #S. The idea
goes back to at least a 1951 article of H. Kahn-T. E. Harris [21], who furthermore credit
J. von Neumann. The application to combinatorial enumeration was popularized through
D. Knuth’s article [22] which applies it to estimating the number of self-avoiding walks in a
grid. An application to approximating the permanent was given by L. E. Rasmussen [33].
More recently, J. Blitzstein-P. Diaconis [6] develop an importance sampling algorithm to
estimate the number of graphs with a given degree sequence. We are suggesting another
avenue of applicability, to core objects of algebraic combinatorics.
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2 The Graphical Transition Algorithm

2.1 Preliminaries

The graph G(w) of a permutation w ∈ Sn is the n × n grid, with a • placed in position
(i, w(i)) (in matrix coordinates). The Rothe diagram of w is given by

D(w) = {(i, j) : 1 ! i, j ! n, j < w(i), i < w−1(j)}.

Pictorially, this is described by striking out boxes below and to the right of each • in
G(w). D(w) consists of the remaining boxes. If it exists, the connected component in-
volving (1, 1) is the dominant component. The essential set of w consists of the maximally
southeast boxes of each connected component of D(w), i.e.,

Ess(w) = {(i, j) ∈ D(w) : (i+ 1, j), (i, j + 1) ∕∈ D(w)}.

If it exists, the accessible box is the southmost then eastmost essential set box not in the
dominant component. For example, if w = 54278316 ∈ S8, D(w) is depicted by:

Also, Ess(w) = {(1, 4), (2, 3), (5, 3), (5, 6), (6, 1)}, and the accessible box is at (5, 6). The
Lehmer code of w ∈ S∞, denoted code(w) is the vector (c1, c2, . . . , cL) where ci equals the
number of boxes in row i of the Rothe diagram of w. We will assume L is minimum (i.e.,
code(w) does not have trailing zeros). By this convention, code(id) = ().

Fulton’s criterion [17, Remark 9.17] states that u is vexillary if and only if there does
not exist two essential set boxes where one is strictly northwest of the other. Thus, using
the above picture of D(w) we can see that w is not vexillary because of, e.g., (1, 4) and
(5, 6).

2.2 Description of T (w)

Transition was invented by A. Lascoux-M. P. Schützenberger’s [26]; see also the exposition
[29, Sections 2.7.3, 2.7.4, 2.8.1]. We use the graphical description given in [25] and its
elaboration in [1]. There are some minor choices in describing this Lascoux-Schützenberger
transition tree, and those of [25, 1] differ slightly from [26, 29].

We describe the graphical version of the transition algorithm to compute #Red(w).
The root of the tree is labelled by D(w). If w is vexillary, stop. Otherwise, there exists an
accessible box. (If not, D(w) consists only of the dominant component and, by Fulton’s
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criterion, w is vexillary, a contradiction.) The pivots of D(w) are the maximally southeast
•’s of G(w), say b1, b2, . . . , bt that are northwest of the accessible box e.

If w is not vexillary, the children of w are defined as follows. For each i = 1, 2, . . . , t, let
Ri be the rectangle defined by bi and e. Remove bi and its rays from G(w) to form G(i)(w).
Order the boxes {vi}mi=1 in English reading order. Move v1 strictly north and strictly west
to the closest position not occupied by another box of D(w) or a ray from G(i)(w). Now,
iterate this procedure with v2, v3, . . .. At each step, vj may move to a position vacated by
earlier moves. The result is the diagramD(w(i)) of some permutation w(i). TheseD(w(i))’s
are the children of D(w). We call the transformation D(w) → D(w(i)) a marching move.

Example 4. Continuing our example, the pivots of w are (1, 5), (2, 4) and (3, 2). We now
obtain the child corresponding to the pivot b2 = (2, 4):

w remove hook at (2, 4)

X

X

w(2) = 56274318

We have indicated by “X” the boxes that have moved. This process constructs one of the
three children of w. In Figure 1 we draw the remainder of T (w).

If u is vexillary we define λ(u) graphically by pushing all boxes of D(u) northwest
along the diagonal that it sits until a partition shape is reached; see [24, Section 3.2].
Concluding our running example, from Figure 1 we have

#Red(54278316) = fλ(54672318) + fλ(56274318) + fλ(65342718) + fλ(64532718)

= f 4,3,3,3,1,1 + f 4,4,3,2,1,1 + f 5,4,2,2,1,1 + f 5,3,3,2,1,1

= 730158.

This result is a mild variation of [29, Proposition 2.8.1] (cf. [26]) using the marching
moves. We make no claim of originality.

Theorem 5 (cf. [26, 29, 25]). #Red(w) =
%

v∈L(w) f
λ(v).

Proof: We follow [1, Section 5.2], which elaborates on the notions from [25] in the case of
Schubert polynomials Sw. We refer to [29, Chapter 2] for background.

Let (r, c) be the accessible box of w ∈ Sn and set k = w−1(c). Also let w′ = w · (r, k).
Transition gives this recurrence for the Schubert polynomials :

Sw = xrSw′ +
!

w′′

Sw′′ , (7)
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a

XX
XX

X

X

X

X
a

X
X a

X
X

Figure 1: T (w) for w = 54278316. The a indicates the accessible box of each node. The
X’s describe which boxes of the parent moved. From this tree, we compute #Red(w) =
730158.
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where the summation is over the children w′′ of w in T (w).
Let 1N × w ∈ SN+n send j &→ j for 1 ! j ! n and j &→ w(j −N + 1) +N for j " N .

Then
Fw = lim

N→∞
S1N×w ∈ Z[[x1, x2, . . . ]].

1

Moreover, since w ∈ Sn then

Fw(x1, x2, . . . , xn, 0, 0, . . .) = S1n×w(x1, x2, . . . , xn, 0, 0, . . .). (8)

Now, by repeated application of (7) to 1n × w,

S1n×w = J(x1, x2, . . . , x2n) +
!

v∈L(w)

S1n×v, (9)

where J(x1, x2, . . . , xn, 0, 0, . . .) ≡ 0.
Hence by setting xi = 0 for i > n in (9) we obtain, using (8) that

Fw(x1, . . . , xn) =
!

v∈L(w)

Fv(x1, . . . , xn). (10)

Let sα(x1, . . . , xn) be the Schur polynomial for a shape α. Since v ∈ L(w) is vexillary,

Fv(x1, . . . , xn) = sλ(v)(x1, . . . , xn);

see, e.g., [29, Section 2.8.1]. Hence

Fw(x1, . . . , xn) =
!

v∈L(w)

sλ(v)(x1, . . . , xn). (11)

We have that [x1x2 · · · xℓ(w)]Fw = #Red(w) and [x1x2 · · · xℓ(w)]sλ(v)(x1, . . . , xn) = fλ(v).
Now the result follows from these two facts combined with (11).

3 Proof of Theorems 1 and 2

3.1 On the distribution of EG(w)

Lemma 6. For any w ∈ Sn, EG(w) = #L(w).

Proof. Combining results of [36, 13] gives

Fw(x1, . . . , xℓ(w)) =
!

λ

aw,λsλ(x1, . . . , xℓ(w)) (12)

where the sum is over partitions λ of size ℓ(w), and aw,λ is defined in Section 1.
The Schur polynomials sλ(x1, . . . , xℓ(w)) for |λ| = ℓ(w) are a basis of the vector space

Λ
(ℓ(w))
Q [x1, . . . , xℓ(w)] of degree ℓ(w) symmetric polynomials in {x1, . . . , xℓ(w)}. Since (12)

and (11) (where n = ℓ(w)) are linear combinations for the same vector, we are done.

1In the conventions of [36], the limit is an expression for Fw−1 .
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In view of Lemma 6, Theorems 1 and 2 are equivalent. It is easy to see that Theorem 1
follows from our main result:

Theorem 7. Fix 0 < γ < 1
2
. There exists α > 0 such that for n sufficiently large,

P(EG(w) " 2αn) " 1− 1

n2γ
.

Our goal is therefore to prove Theorem 7. To do so we need some preparatory results.
Let Nπ,n(w) be the number of π patterns contained in w ∈ Sn.

Proposition 8. Suppose in T (w) that the node u has exactly one child u′. Then

N2143,n(u
′) " N2143,n(u).

Proof of Proposition 8: Let the accessible box zu of u be in position (x, y). By definition
of D(u), there is a • of G(u) at C = (x, y′) for some y′ > y, and there is a • at B = (x′, y)
for some x′ > x. Let b1 be the unique pivot of D(u), i.e., the southeastmost • that is
northwest of zu (as in Section 2.2). Suppose b1 is at position A = (c, d). Thus, c < x and
d < y.

By definition of the transition algorithm, all •’s of G(u) and G(u′) are in the same
position, except A,B,C in G(u) are respectively replaced by A′, B′, C ′ in G(u′) where

A = (c, d) &→ A′ = (x, d)

B = (x′, y) &→ B′ = (c, y)

C = (x, y′) &→ C ′ = (x′, y′)

Schematically, the march move looks as follows (we have thickened the moving •’s).

✉c
d y y′

x

x′

zu ❀

" ✉" ✉

✉ "c
d y y′

x

x′

✉ " ✉
Claim 9. If there are two •’s, other than {B,C}, that are weakly south and weakly east
of zu then one • must be (strictly) southeast of the other.

Proof of Claim 9: Suppose not. Then let the two •’s be at (q, r) and (m,n) where q > m
and r < n. Then there is a box z ∕= zu of D(u) in position (m, q), which is weakly
south and weakly east of zu. Since zu is not in the dominant component of D(u), then
z cannot be in that component either. Therefore, zu is not the accessible box of D(u), a
contradiction.
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Claim 10. There is no • of G(u) strictly north of row c and strictly between columns d
and y. Similarly, there is no • of G(u) strictly west of column d and strictly between rows
c and x.

Proof of Claim 10: We prove only the first sentence of the claim, as the second sentence is
analogous. Suppose not; we may assume this • is maximally southeast with the assumed
properties. Then A = (c, d) and this • are two pivots for D(u), which implies u has at
least two children, contradicting the hypothesis of the Proposition.

Let Fu consist of all embedding positions i1 < i2 < i3 < i4 of a 2143-pattern in u.
Also, let F ′

u be the subset of Fu consisting of those i1 < i2 < i3 < i4 such that

{i1, i2, i3, i4} ∩ {c, x, x′} = ∅

(i.e., the positions do not involve the rows of A,B or C). Let

F ′′
u = Fu \ F ′

u.

Similarly, we define Fu′ , F ′
u′ and F ′′

u′ in exactly the same way, except with respect to u′.
Since F ′

u = F ′
u′ , it suffices to establish an injection

ψ : F ′′
u ↩→ F ′′

u′ .

In what follows, we will let •i refer to the • in the diagram corresponding to the “i” in the
2143 pattern, for 1 ! i ! 4. In addition, if i1 is in the row of A we will write “A = •2”,
etc. We define now ψ in cases:

Case 1: (B = •1 or B = •2) The •4 and •3 appear strictly right of column y. This
contradicts Claim 9. Hence, no elements of F ′′

u fall into this case.

Case 2: (C = •1 or C = •2) •4 and •3 appear strictly southeast of zu. As in Case 1, this
contradicts Claim 9. Again, no elements of F ′′

u fall into this case.

Case 3: (A = •1) Let •2 be at position (r, s). Hence r < c and s > d. If moreover,
s < y we contradict the first sentence of Claim 10. Hence, s > y. We must have that
•2 ∕∈ {A,B,C} and •4 and •3 are strictly to the right of column y.
Subcase 3a: (•4 and •3 are both strictly south of row x) This contradicts Claim 9.
Subcase 3b: (•4 and •3 are both strictly north of row x) Thus {•3, •4} ∩ {A,B,C} = ∅.
The 2143 pattern [•2, A, •4, •3] is destroyed by the marching move, i.e., [•2, A′, •4, •3] is
not a 2143 pattern in u′. Now, in u′ we now have the 2143 pattern [•2, B′, •4, •3]. Hence
we define

ψ([•2, A, •4, •3]) := [•2, B′, •4, •3].

Subcase 3c: (•4 is strictly north of row x and •3 is strictly south of row x). Since s > y,
C ∕= •3. Hence {•3, •4} ∩ {A,B,C} = ∅. The 2143 pattern [•2, A, •4, •3] is destroyed
by the marching move. However, in u′ we now have the 2143 pattern [•2, B′, •4, •3]. We
again define

ψ([•2, A, •4, •3]) := [•2, B′, •4, •3].
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Subcase 3d: (•3 is in row x and •4 is strictly above row x) Then in fact •3 = C while
•4 ∕∈ {A,B,C}. In this case,

ψ([•2, A, •4, C]) := [•2, B′, •4, C ′].

Subcase 3e: (•4 is in row x and •3 is strictly south of row x) Thus •4 = C and •3 is strictly
southeast of zu. This contradicts Claim 9.

Case 4: (A = •2) Let the 1 be at position (r, s). Hence r > c and s < d. If r ! x then we
contradict the second sentence of Claim 10. Hence r > x. We have that •4 and •3 are in
rows strictly south of x. Moreover, there must be a box e of D(u) in the row of •4 and
the column of •3 that is therefore strictly south of zu. Since the columns of •4 and •3
are strictly east of column d, the box e is not part of the dominant component of D(u).
Hence, zu cannot be the accessible box, a contradiction. Thus, no elements of F ′′

u are in
this case.

Case 5: (A = •3) Hence, in u, •2, •1, •4 are strictly north of row c. Thus {•1, •2, •4} ∩
{A,B,C} = ∅ and •2, •1, •4 remain in the same place in u′. Set

ψ([•2, •1, •4, A]) := [•2, •1, •4, A′].

Case 6: (A = •4) •3 is strictly south of the row of A. If it is also weakly north of x, we
contradict the second sentence of Claim 10. Hence •3 is strictly south of x, i.e., the row
of e. Now, •2, •1, •3 are the same position in u and u′ and {•1, •2, •3} ∩ {A,B,C} = ∅.
Here,

ψ([•2, •1, A, •3]) := [•2, •1, A′, •3].

Since the row of A′ is x the output is a 2143 pattern in u′.

Case 7: (B = •4) Let •3 be at (r, s). Thus r > x′ and s < y. There must be a box
e ∈ D(w) in position (x′, s). Now, •2 and •1 are in columns strictly left of s and strictly
above row r. Hence e cannot be in the dominant component of D(w). Thus, since e is
further south than zu, the latter is not accessible, a contradiction. So, no elements of F ′′

u

appear in this case.

Case 8: (B = •3) Let •4 be in position (r, s).
Subcase 8a: (r < c) Therefore, •1 and •2 are also strictly above row c. Since •1, •2 and
•4 stay in the same place in u and u′ and B′ is in row c in u′. Moreover, {•1, •2, •4} ∩
{A,B,C} = ∅. We may define

ψ([•2, •1, •4, B]) := [•2, •1, •4, B′].

Subcase 8b: (x < r < x′) This contradicts Claim 9.
Subcase 8c: (r = c) This implies A = •4, which is impossible.
Subcase 8d: (c < r < x) We may assume A ∕= •1, •2 since those cases are handled by
Case 3 and Case 4. Now, •1 and •2 are strictly west of column y and strictly north of row
x. By the assumption that A = b1 is the (unique) pivot, combined with Claim 10, both
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•1 and •2 are strictly northwest of A. Thus, •1 and •2 are in the same place in u′, and
{•1, •2, •4} ∩ {A,B,C} = ∅. Since A′ is in row x, it make sense to let

ψ([•2, •1, •4, B]) := [•2, •1, •4, A′].

Subcase 8e: (r = x) Hence C = •4. For the same reasons as in Subcase 8d, both •1
and •2 are strictly northwest of A. Thus, •1 and •2 are in the same place in u′ and
{•1, •2} ∩ {A,B,C} = ∅. In this case set

ψ([•2, •1, C,B]) := [•2, •1, B′, A′].

Case 9: (C = •3) Let •4 be in position (r, s). Hence s > y′.
Subcase 9a: (r < c) Hence •1, •2 and •4 remain in the same place in u′ and {•1, •2, •4} ∩
{A,B,C} = ∅. Since C ′ is further south than C, we may set

ψ([•2, •1, •4, C]) := [•2, •1, •4, C ′].

Subcase 9b: (c < r < x) We may also assume that A ∕= •1 and A ∕= •2, since those are
handled in Case 3 and Case 4, respectively. Thus {•1, •2, •4} ∩ {A,B,C} = ∅. Here,

ψ([•2, •1, •4, C]) := [•2, •1, •4, C ′].

Subcase 9c: (r = c) Then A = •4, which is impossible.

Case 10: (C = •4) We may assume that A ∕= •1, •2 (Case 3 and Case 4) and also B ∕= •3
(Case 8). Therefore {•1, •2, •3} ∩ {A,B,C} = ∅. Let •3 be in position (r, s).
Subcase 10a: (y < s < y′) This contradicts Claim 9.
Subcase 10b: (s = y) This means •3 = B, a situation we have ruled out/refer to Case 8.
Subcase 10c: (s < y) If moreover r > x′ then there exists e ∈ D(w) in position (x′, s),
which is therefore strictly south of zu. Since column s is strictly east of the column of
•2, e is not in the dominant component. Hence zu is not accessible, a contradiction. Now
r ∕= x′ (since we assumed B ∕= •3). Thus, x < r < x′ and it follows that •3 is in the
same place in u′. By the reasoning of the first paragraph of Subcase 8d, •1, •2 are strictly
northwest of A. Hence •1, •2 also remain in the same place in u′. Summing up, since B′

is in row c, we may define

ψ([•2, •1, C, •3]) := [•2, •1, B′, •3].

ψ is well-defined: The above cases handle each of the possibilities for A,B,C being one
of 1, 2, 3, 4. Our definition of ψ is shown to send an element of F ′′

u to an element of F ′′
u′ .

We also need that if an element of F ′′
u occurs in two cases, ψ sends them to the same

element of F ′′
u′ . By inspection, the only overlapping situations are Subcase 3d↔Subcase

9b and Subcase 8d↔Case 10. In both these cases we define ψ to be consistent on the
overlap.
ψ is an injection: This is by inspection of pairs of subcases where ψ’s output was given.
By our choice of notation, if •i appears in the description of the input to ψ, it cannot be
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equal to A,B or C and hence in the output, it cannot be equal to A′, B′ or C ′ (as {A,B,C}
and {A′, B′, C ′} occupy the same rows). Therefore, if in two cases, some coordinate of
the two outputs differ symbolically, those outputs cannot be equal. After ruling out these
pairs, we are left with a few to check:
Subcase 3b, Subcase 3c: These differ in the fourth coordinate since in the former case, •3
is strictly north of row x and in the latter case, •3 is strictly south of row x.
Case 5 and Subcase 8d: These differ in the third coordinate since in the former case, •4
appears above row c whereas in the latter case, •4 is below row c.
Subcase 9a and Subcase 9b: These differ in the third coordinate for the same reason as
the previous pair.

Lemma 11. Let w ∈ Sn and suppose u → u′ in T (w). Then

N2143,n(u)−N2143,n(u
′) ! 2n3 + 3n2 − n.

Proof of Lemma 11: Since u → u′ in T (w), exactly three positions a, i, j differ between u
and u′. We are claiming that

N2143,n(u)−N2143,n(u
′) !

&
3

3

'
4

&
n

1

'
+

&
3

2

'
6

&
n

2

'
+

&
3

1

'
4

&
n

3

'
= 2n3 + 3n2 − n. (13)

Let t1 < t2 < t3 < t4 be the indices of a 2143-pattern in u. First suppose {t1, t2, t3, t4} ∩
{a, i, j} = ∅. Clearly, t1 < t2 < t3 < t4 are indices of a 2143-pattern in u′. Therefore this
case does not contribute to N2143,n(u)−N2143,n(u

′).
Next assume #({t1, t2, t3, t4}∩ {a, i, j}) = 1. There are

#
3
1

$
choices for which of a, i or

j is in {t1, t2, t3, t4}. Then there are at most
#
n
3

$
choices for {t1, t2, t3, t4}\{a, i, j}. Finally

there are 4 choices for which k satisfies tk ∈ {a, i, j}. Therefore, this case contributes at
most

#
3
1

$
4
#
n
3

$
to N2143,n(u)−N2143,n(u

′), thus explaining the third term of (13).
Similar arguments explain the first and second terms of (13) as the contributions to

N2143,n(u)−N2143,n(u
′) from the cases that

#({t1, t2, t3, t4} ∩ {a, i, j}) = 3 and #({t1, t2, t3, t4} ∩ {a, i, j}) = 2,

respectively. The lemma thus follows.
The following is known; see work of M. Bona [7] and of S. Janson, B. Nakamura, and

D. Zeilberger [20]. The proof being not difficult, we include it for completeness.

Lemma 12. For any π ∈ Sk, the expected number of occurrences of π as a pattern in
w ∈ Sn (selected using the uniform distribution) is

#
n
k

$
/k!.

Proof of Lemma 12: For an increasing sequence I = {i1 < i2 < . . . < ik} (in [1, n]), let

XI(w) =

(
1 if π is a pattern at the positions of I;

0 otherwise.
(14)
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Thus, Nπ,n =
%

I XI . There are
#
n
k

$
(n− k)! permutations such that I has pattern π. By

linearity of expectation,

E[Nπ,n] =
!

I

E[XI ] =

&
n

k

'2

(n− k)!/n!,

and the lemma follows.

Lemma 13. Let T be a rooted tree with the property that along any path from the root to
a leaf there are d nodes with at least two children. Then that tree has at least 2d leaves.

Proof of Lemma 13: Arbitrarily left-right order the descendants of the root of T . After
pruning, if necessary, we may assume each node as at most two children. Along any path
from the root to a leaf, record “S” if a node has one child, and “L” if one steps to the left
child and “R” if one goes to the right child. Thus, each leaf is uniquely encoded by an
{S, L,R} sequence. By hypothesis, each such sequence has at least d from {L,R}. Also,
each of the 2d-many {L,R}-sequences must be a subsequence of a unique leaf sequence.
Hence there are at least 2d leaves.
Proof of Theorem 7: By Chebyshev’s inequality, for any t ∈ R>0, P(|Nπ,n − µ| " tσ) !
1/t2, and hence

P(Nπ,n " µ− tσ) " 1− 1/t2.

For π = 2143, µ =
#
n
4

$
/4!. Let t = nγ for the fixed choice 0 < γ < 1

2
. Thus, we obtain

P

)
N2143,n

2n3 + 3n2 + n
"

#
n
4

$
/4!− nγσ

2n3 + 3n2 + n

*
" 1− 1

n2γ
. (15)

Define a random variable Q : Sn → Z!0 by

Q(w) = min
u∈L(w)

#{v appears in a path from w to u in T (w) : ∃v′ ∕= v′′, v → v′, v → v′′}.

By Proposition 8 and Lemma 11,

Q(w) " N2143,n(w)

2n3 + 3n2 + n
. (16)

Combining (15) and (16) gives

P

)
Q "

#
n
4

$
/4!− nγσ

2n3 + 3n2 + n

*
" 1− 1

n2γ
.

By [20, Section 4.1], the r-th central moment for Nπ,n, i.e., E[(Nπ,n − E(Nπ,n))
r], is a

polynomial in n of degree ⌊r(k − 1
2
)⌋ where, recall, π ∈ Sk. Hence Var(N2143,n) ∈ O(n7)

and σ ∈ O(n3.5). Therefore there exists α > 0 such that for n sufficiently large

P(Q " αn) " 1− 1

n2γ
. (17)

Finally, by Lemma 6 and Lemma 13,

EG(w) = #L(w) " 2Q(w). (18)

The desired equality holds by (17) and (18) combined.
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3.2 Remarks

M. Bona [7] proves that the sequence of random variables

+Xn :=
N2143,n − E[N2143,n],

Var(N2143,n)

is asymptotically normal, i.e., Xn converges in distribution to the standard normal variable
N(0, 1). In particular, this means that for any ε > 0, for any a, b ∈ R, there exists N ∈ N
such that for all n " N , |P( -Xn ∈ [a, b]) − P(N(0, 1) ∈ [a, b])| < ε. Thus one could
use Bona’s theorem to prove a more refined version of Theorem 7. However, this does
not affect our basic conclusions, so we opted to state a result/proof that only appeals to
Chebyshev’s inequality.

Using the relations

sisj = sjsi for |i− j| " 2, and sisi+1si = si+1sisi+1 (19)

one can transform between any two reduced words

si1si2 · · · siℓ ⇐⇒ sj1sj2 · · · sjℓ ∈ Red(w);

see, e.g., [29, Proposition 2.1.6]. Hence, it follows that

{i1, i2, . . . , iℓ} = {j1, j2, . . . , jℓ}. (20)

Let σ(n) = 214365 · · · 2n 2n − 1 ∈ S2n. This next fact is well-known to experts (for
example, an anonymous referee states one can derive it from [28, Theorem 9]). We give a
proof here for sake of completeness and make no claims of originality.

Proposition 14. aσ(n),λ = fλ.

Proof. Fix any partition λ of size 2n− 1. Consider any row and column increasing filling
T of λ, using each of the labels {1, 3, 5, . . . , 2n − 1} precisely once. Let Aλ be the set of
these tableaux. Also, let Bλ be the set of EG tableaux for the coefficient aσ(n),λ. Red(σ

(n))
consists of all n! rearrangements of the factors of s1s3 · · · s2n−1. Hence, the column reading
word of any T ∈ Aλ gives a reduced word for w. Thus, Aλ ⊆ Bλ. By (20), if S ∈ Bλ, it
must use each label of {1, 3, 5, . . . , 2n − 1} exactly once. Since S must also be row and
column increasing, we see S ∈ Aλ. This gives Aλ = Bλ.

Given T ∈ Aλ(= Bλ), let φ(T ) ∈ SYT(λ) be the standard Young tableau of shape λ
obtained by sending label i in T to

.
i
2

/
. Clearly, φ : Aλ → SYT(λ) is a bijection. Hence

aσ(n),λ = #Aλ = #SYT(λ) = fλ.

Let inv(n) be the number of involutions of Sn. The following shows that the worst
case and average case running time of transition is quite different:

Corollary 15. #L(σ(n)) = inv(n) ∼
#
n
e

$n/2 e
√
n

(4e)
1
4
.
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Proof. The equality holds since

#L(σ(n)) = EG(σ(n)) =
!

λ

fλ = inv(n). (21)

The first equality of (21) is Lemma 6, the second is Proposition 14 and the third is textbook
(e.g., [37, Corollary 7.13.9]). The asymptotic statement is [23, Section 5.1.4].

Conjecture 16. aw,λ ! fλ.

Since the original preprint version of this paper was posted to the arXiv, this conjecture
has been proved by G. Orelowitz [31].

4 Counting Hecke words

A sequence (i1, i2, . . . , iN) is a Hecke word for w ∈ Sn if si1 + si2 + · · · + siN = w where + is
the Demazure product defined by

u + si =

(
usi if ℓ(usi) = ℓ(u) + 1

u otherwise.

Therefore, N " ℓ(w). Let Hecke(w,N) denote the set of Hecke words for w of lengthN .

4.1 Two generalizations of the Edelman-Greene formula (2)

We now give two formulas for computing Hecke(w,N). Both are known to experts, but
we are unaware of any specific place that they appear in the literature.

We need three (stable) Grothendieck polynomial formulas from the literature. For the
purposes of this paper, the reader may take these formulas as definitions.

First, S. Fomin-A. N. Kirillov [15] prove the following combinatorial formula for the
stable Grothendieck polynomial Gw:

Gw =
!

(i,j)

(−1)ℓ(w)−|j|xj, (22)

where i = (i1, . . . , iN) ∈ Hecke(w,N), and j = (j1 ! j2 ! · · · ! jN) are positive integers
satisfying jt < jt+1 whenever it ! it+1. This is a formal power series in x1, x2, . . ..

Second, S. Fomin-C. Greene [14, Theorem 1.2] states that, up to change of conventions,

Gw =
!

λ

(−1)|λ|−ℓ(w)bw,λsλ, (23)

where bw,λ be the number of row strictly increasing and column weakly increasing tableaux
of shape λ whose top to bottom, right to left, column reading word is a Hecke word for w.

Third, C. Lenart [27] gave an expression for the symmetric Grothendieck polynomial :

Gµ(x1, x2, . . . , xt) =
!

λ

(−1)|λ|−|µ|gµ,λsλ(x1, . . . , xt) (24)
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where µ ⊆ λ ⊆ 0µ. Here 0µ is the unique maximal partition with t rows obtained by adding
at most i − 1 boxes to row i of µ for 2 ! i ! t. In addition, gµ,λ counts the number of
Lenart tableaux, i.e., column and row strict tableaux of shape µ/λ with entries in the i-th
row restricted to 1, 2, . . . , i− 1 for each i.

Since Hecke(w, ℓ(w)) = Red(w), our first formula (25) below generalizes (2). Our
second point is that in contrast with (5), even for vexillary permutations, (25) is not
short.

Proposition 17. There is a manifestly nonnegative combinatorial formula

#Hecke(w,N) =
!

λ,|λ|=N

bw,λf
λ. (25)

Let M " 1. There is a vexillary permutation π ∈ S2M with ℓ(π) = M2 such that

#{λ ∈ par(M2 +M) : bπ,λ > 0} " par(M),

where par(M) is the number of partitions of size M . That is when w = π and N = M2+M ,
(25) has at least par(M)-many terms. Moreover,

!

λ:|λ|=M2+M

bπ,λ " inv(M).

Proof. Looking at (22), for any i = Hecke(w,N), the sequence (1, 2, . . . , N) can be used
for j. Hence,

(−1)N−ℓ(w)#Hecke(w,N) = [x1x2 · · · xN ]Gw. (26)

Combining (26) and (23) gives (25).
Pick µ = M ×M and fix t " M2 +M . Therefore 0µ = t×M . Hence, by (24),

(−1)M [x1 · · · xM2+M ]GM×M(x1, . . . , xt) =
!

λ

gM×M,λf
λ. (27)

Here the sum is over µ ⊆ λ ⊆ 0µ with |λ| = M2 + M . Now, each such λ is of the form

(M × M,λ) where λ ∈ par(M) and is contained in M × M . Notice that gM×M,λ " fλ,
since for each such λ we can obtain a Lenart-tableau by filling the λ part with 1, 2, . . . ,M
to obtain a standard tableau, in all possible ways. Hence, using [37, Corollary 7.13.9],

!

λ∈Par(M2+M)

gM×M,λ "
!

λ:|λ|=M

fλ = inv(M).

Finally, let π = M + 1,M + 2, . . . , 2M, 1, 2, 3 . . . ,M ∈ S2M . This is a vexillary
permutation π with λ(π) = M ×M . By, e.g., [24, Lemma 5.4],

Gπ(x1, . . . , xt, 0, 0, . . . , ) = GM×M(x1, . . . , xt, 0, 0, . . .).

Since the Schur polynomials form a basis of the ring of symmetric polynomials, the right-
hand sides of (24) and (23) coincide, i.e., bπ,λ = gM×M,λ for every λ. The result follows.
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Example 18. Let w = 31524 = s4s2s3s1. Using (25) we obtain

#Hecke(w, 5) =

)
1 2 4
1 3

, 1 2 4
3 4

*
f 3,2+

1

223 1 2 4
3
3

, 1 2 4
1
3

4

556f 3,1,1

+

1

223 1 2
3 4
3

, 1 2
1 4
3

4

556f 2,2,1

= 2f 3,2 + 2f 3,1,1 + 2f 2,2,1 = 32,

which the reader may confirm by direct check.

For our second formula, we use work of A. Buch, A. Kresch, M. Shimozono, H. Tam-
vakis and the third author [10] that proves

Gw =
!

λ

(−1)ℓ(w)−|λ|cw,λGλ where Gλ =
!

T

(−1)|T |−|λ|xT (28)

and the latter sum is over all semistandard set-valued tableaux of shape λ [8]. Above,
cw,λ is the number of row and column strict tableaux of shape λ whose top to bottom,
right to left, column reading word is a Hecke word for w.

This next generalization of (2) is also manifestly nonnegative. It specializes in the
vexillary case in a tantalizing way.

Proposition 19.

#Hecke(w,N) =
!

λ:ℓ(w)"|λ|"N

cw,λf
λ,N . (29)

If w is vexillary, then
#Hecke(w,N) = fλ(w),N .

Proof. In view of (26) and (28) we have

(−1)N−ℓ(w)#Hecke(w,N) = [x1x2 · · · xN ]Gw

= [x1x2 · · · xN ]
!

λ

(−1)ℓ(w)−|λ|cw,λGλ

=
!

λ:|λ|"N

(−1)ℓ(w)−|λ|cw,λ[x1x2 · · · xN ]Gλ

=
!

λ:|λ|"N

(−1)ℓ(w)−|λ|cw,λ(−1)N−|λ|fλ,N

=
!

λ:|λ|"N

(−1)N+ℓ(w)cw,λf
λ,N ,

proving (29). For the second statement, by [34, Lemma 5.4], when w is vexillary then
Gw = Gλ, and the above sequence of equalities simplifies, as desired.
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Example 20. Again let w = 31524 as in Example 18. Now applying (29) gives

#Hecke(w, 5) =

)
1 2
3 4

*
f (2,2),5 +

)
1 2 4
3

*
f (3,1),5 +

)
1 2 4
3 4

*
f (3,2),5

= 10 + 17 + 5 = 32,

in agreement with Example 18. One can check the fλ,N computations either directly, or
by using

fλ,N = [x1 · · · xN ]Gλ (30)

combined with (24).

Proposition 19 is our central motivation for Problem 40.

Proposition 21. Fix k. There is an |µ|O(1) algorithm to compute fµ,N where N ! |µ|+k.

Proof. We use (30) combined with (24) and describe the possible Lenart tableaux. First,
we look for µ ⊆ λ ⊆ µ where |λ| = |µ| + k. Such λ correspond to a choice of k rows
r1 ! r2 ! . . . ! rk to add a box, among ℓ(µ)+k−1 choices (rows 2, 3, . . . , ℓ(µ)+k). There
are

#
ℓ(µ)+2k−2

k

$
∈ |µ|O(1) many ways to do this. For each such choice, it takes constant time

to verify that λ is a partition. For those cases, we construct a possible Lenart tableau T
by filling row ri in at most (ri − 1)k ways. Since ri ! ℓ(µ) + k, there are |µ|O(1)-many
possible row strictly increasing tableaux T . It remains to determine if T is actually a
Lenart tableau, which takes constant time (since k is fixed). Finally, to each tableau, we
must compute fλ via (3). This takes |λ|O(1)-time. Now, since |λ| = |µ|+ k and k is fixed,
it also takes |µ|O(1)-time. Moreover,

log(fλ) ! log |λ|! ∈ O(|µ| log |µ|).

Hence, summing the at most
#
ℓ(µ)+2k−2

k

$
hook-length calculations, also takes |µ|O(1)-time,

as desired.

Example 22. We elaborate on the proof of Theorem 21 in the case k = 2. Here we look
for µ ⊆ λ ⊆ µ where |λ| = |µ| + 2. Such λ correspond to a choice of two rows r1 ! r2
to add a box, among ℓ(µ) + 1 choices (rows 2, 3, . . . , ℓ(µ) + 2). If r1 = r2, gµ,λ =

#
r2−1
2

$
.

Otherwise if r1 < r2, there are
#
ℓ(µ)+1

2

$
many choices. Assuming λ is a partition, there are

two cases. If the two boxes are in different columns gµ,λ = (r1 − 1)(r2 − 1). Otherwise, if
they are in the same column (and hence r2 = r1+1), then gµ,λ =

#
r2−1
2

$
. Now apply (24).

For λ = δ100 = (100, 99, . . . , 3, 2, 1) and N =
#
100
2

$
+2, this procedure exactly computes

fλ,N = #Hecke(w0, N) = 3.75 . . .× 107981.

4.2 Application to Euler characteristics of Brill-Noether varieties (after [2,
11])

Counting standard set-valued tableaux has been given geometric impetus through work
of [2, 11] on Brill-Noether varieties. More precisely, following [11, Definition 1.2], let
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g, r, d ∈ Z!0. Suppose α = (α0 ! α1 ! · · · ! αr) and β = (β0 ! β1 ! · · · ! βr) be
sequences in Zr+1

!0 . Let CP = CP(g, r, d,α, β) be the skew Young diagram with boxes

{(x, y) ∈ Z2 : 0 ! y ! r,−αy ! x < g − d+ r + βr−y}.

Example 23. If g = 45, d = 43, r = 3,α = (0, 1, 1, 4), β = (0, 0, 1, 3) then

CP =

Let χ(Gr,α,β
d (X, p, q)) be the algebraic Euler characteristic of the Brill-Noether variety

Gr,α,β
d (X, p, q).

Theorem 24 (M. Chan-N. Pfleuger [11]). (−1)g−|CP|χ(Gr,α,β
d (X, p, q)) = fCP,g.

Given λ/µ, construct a (321-avoiding) permutation wλ/µ by filling all boxes in the same
northwest-southeast diagonal with the same entry, starting with 1 on the northeastmost
diagonal and increasing consecutively as one moves southwest. Call this filling Tλ/µ. Let
(r1, r2, . . . , r|λ/µ|) be the left-to-right, top-to-bottom, row reading word of Tλ/µ. Define
wλ/µ = sr1sr2 · · · sr|λ/µ| .

Example 25. If λ/µ = (12, 10, 9, 9)/(4, 3, 3, 0) be CP from Example 23. Then

Tλ/µ = 8 7 6 5 4 3 2 1
10 9 8 7 6 5 4
11 10 9 8 7 6

15 14 13 12 11 10 9 8 7

The reading word is

(8, 7, 6, 5, 4, 3, 2, 1, 10, 9, 8, 7, 6, 5, 4, 11, 10, 9, 8, 7, 6, 15, 14, 13, 12, 11, 10, 9, 8, 7)

and wλ/µ = 9, 1, 2, 11, 3, 12, 16, 4, 5, 6, 7, 8, 10, 13, 14, 15 ∈ S16.

Earlier, in [2], a cancellative combinatorial formula for χ(Gr,α,β
d (X, p, q)) is given. In

[11], another cancellative formula is given, as a signed sum involving counts of (ordinary)
skew standard Young tableaux. See [11, Theorem 6.6] (and the discussion of [14] in [11,
Section 6]) as well as [2, Theorem A, Theorem C].

Proposition 26. Let wCP is a 321-avoiding permutation defined as above. Then:

(−1)g−|CP|χ(Gr,α,β
d (X, p, q)) =

!

λ,|λ|=g

bwCP,λf
λ,

and
(−1)g−|CP|χ(Gr,α,β

d (X, p, q)) =
!

λ:|CP |"|λ|"g

cwCP,λf
λ,g.
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Proof. By [8, Section 2], Gwν/µ
= Gν/µ :=

%
T (−1)|T |−|ν/µ|xT , where the sum is over

semistandard set-valued tableaux of skew shape ν/µ. Therefore if f ν/µ,N is the number
of standard set-valued tableaux of this shape with N entries then

f ν/µ,N = #Hecke(wν/µ, N). (31)

Now combine this with Theorem 24, Proposition 17 and 19.

The second formula expresses (−1)g−|CP|χ(Gr,α,β
d (X, p, q)) as a cancellation-free sum of

Euler characteristics of other Brill-Noether varieties. Is there a geometric explanation of
this?

5 Three importance sampling algorithms

5.1 Estimating #Red(w)

Define a random variable Yw for w ∈ Sn, as follows:

if w is vexillary then
Yw = fλ(w)

else
C = {w′ is a child of w in T (w)}
Choose W ′ ∈ C uniformly at random
Yw = #C × Yw′

Proposition 27. Let w ∈ Sn. Then E(Yw) = #Red(w).

Proof. We induct on h = h(w) " 0, the height of T (w), i.e., the maximum length of any
path from the root to a leaf. In the base case, h = 0, w is vexillary and thus, by (5),

E(Yw) = fλ(w) = #Red(w).

Our induction hypothesis is that E(Yu) = #Red(u) whenever h(u) < h(w). Now

E(Yw) =
!

w′∈C

E(Yw|W ′ = w′)P(W ′ = w′)

=
1

#C

!

w′∈C

E(Yw|W ′ = w′)

=
1

#C

!

w′∈C

E(#C × Yw′)

=
!

w′∈C

E(Yw′)

=
!

w′∈C

#Red(w′) (induction hypothesis)

=#Red(w).
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The last equality is by construction of the transition algorithm and Theorem 5.

Example 28. Let w = 43817625 ∈ S8. We have the following sequence of transition
steps

43817625
3→ 53817426

1→ 53827146
3→ 63825147

2→ 63842157
2→ 73642158.

The number of children is indicated at each stage. The final permutation is vexillary, and
fλ(73642158) = f 6,4,2,2,1 = 243243. Hence one sample is 3×1×3×2×2×243243 = 8756748.
Using sample size 2 × 103 gives an estimate of 2.09(±0.04) × 106, versus #Red(w) =
2085655.2

Example 29. Let w = σ(n) = 2143 · · · 2n 2n − 1. When n = 10 (so σ(n) ∈ S20), using
sample size 105 gives an estimate of 3.63(±0.02) × 106, which is close to the exact value
10! = 3628800. When n = 30 (σ(n) ∈ S60), using sample size 2 × 106 one estimates
2.18(±0.49)× 1032 whereas 30! = 2.65 . . .× 1032.

Example 30 (Estimating the number of skew standard Young tableaux). We continue
Example 25. Let fλ/µ be the number of standard Young tableaux of shape λ/µ. By a
result of S. Billey-W. Jockusch-R. P. Stanley [4, Corollary 2.4], Fwλ/µ

= sλ/µ. Taking

the coefficient of x1x2 · · · x|λ/µ| on both sides implies #Red(wλ/µ) = fλ/µ. One has the
textbook determinantal formula

fλ/µ = |λ/µ|! det
&

1

(λi − µj − i+ j)!

't

i,j=1

. (32)

So fλ/µ = 73064598262110 ≈ 7.31 × 1013. A 104 sample size estimate is 7.30(±0.04) ×
1013.

5.2 Estimating #Hecke(w,N)

We propose a different importance sampling algorithm, to compute #Hecke(w,N). For
N < ℓ(w) the random variable Zw,N is equal to 0 and for N " ℓ(w), it is recursively
defined by:

if w = id then
if N = 0 then Zw,N = 1 else Zw,N = 0

else
D = {i : w(i) > w(i+ 1)}
Choose I ∈ D and θ ∈ {0, 1} independently and uniformly at random
if θ = 0 then Zw,N = 2#D × Zw,N−1 else Zw,N = 2#D × ZwsI ,N−1

Proposition 31. Let w ∈ Sn and N " ℓ(w). Then E(Zw,N) = #Hecke(w,N).

2The “(±0.04)” refers to the standard error of the mean. All estimates are based on twelve trials of an
indicated sample size. Code is available at https://github.com/ICLUE/reduced-word-enumeration
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Proof. First we claim

#Hecke(w,N) =

7
89

8:

1 if w = id and N = 0

0 if w = id and N > 0
%

i∈D(#Hecke(wsi, N−1)+#Hecke(w,N−1)) otherwise.

(33)
The unique Hecke word for w = id is the empty word; this explains the first two cases.

Thus assume w ∕= id and N " ℓ(w). Suppose that (i1, i2, . . . , iN) ∈ Hecke(w,N).

Claim 32. iN is the position of a descent of w, i.e., w(iN) > w(iN + 1).

Proof of Claim 32: Consider w′ := si1 + si2 + · · · + siN−1
. Either ℓ(w′) = ℓ(w) or ℓ(w′) =

ℓ(w) − 1. In the former case then if iN is the position of an ascent of w′ = w then
w = w′ + siN would create a descent at that position, a contradiction. In the latter case,
w′ had an ascent at position iN which becomes a descent in w′ + siN = w′siN .

Claim 32 implies the existence of a bijection

Hecke(w,N)
∼→

)
;

i∈D

Hecke(wsi, N − 1)× {i}
*

∪
)
;

i∈D

Hecke(w,N − 1)× {i}
*
, (34)

defined by (i1, i2, . . . , iN−1, iN) ∈ Hecke(w,N) &→ ((i1, i2, . . . , iN−1), iN).
3 Therefore, by

taking cardinalities on both sides of (34) we obtain the third case of (33).
Returning to proposition itself, we induct on N " 0. The case N = 0 holds by the

first case of (33) and the definition Zw,N = 0 if N < ℓ(w). For N > 0,

E(Zw,N) =
!

i∈D

E(Zw,N |I = i, θ = 0)P(I = i)P(θ = 0)

+
!

i∈D

E(Zw,N |I = i, θ = 1)P(I = i)P(θ = 1)

=
!

i∈D

E(2#D × Zw,N−1)
1

#D
× 1

2
+
!

i∈D

E(2#D × Zwsi,N−1)
1

#D
× 1

2

=
!

i∈D

(E(Zw,N−1) + E(Zwsi,N−1))

=
!

i∈D

(#Hecke(w,N − 1) + #Hecke(wsi, N − 1))

= #Hecke(w,N),

where we have applied induction (on N) and the third case of (33).

Example 33. One can explicitly generate all 2030964 elements of Hecke(351624, 13). A
2000 sample size estimate is 2.04(±0.10)× 106.

3 If N = ℓ(w), then Hecke(w,N) = Red(w) and Hecke(w,N − 1) = ∅. In this case, (34) reduces to the
bijection Red(w)

∼→
!

i∈D Red(wsi)× {i}.
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Example 34. By [34, Corollary 1.3],

#Hecke

&
w0,

&
n

2

'
+ 1

'
=

#
n
2

$ <#
n
2

$
+ 1

=

n
×#Red(w0). (35)

For n = 10, #Hecke(w0, 46) = 5.65 . . . × 1028. Using sample size 108, we obtained an
estimate of ≈ 4.26(±1.94)× 1028.

The Z-algorithm restricts to an algorithm to compute #Red(w). However, the Y-
algorithm of Subsection 5.1 sometimes has better convergence in this case. This suggests
a “hybrid” algorithm. Define Hw,N to be 0 if N < ℓ(w). Otherwise,

if N = ℓ(w) then Hw,N = Yw

else if w = id then
if N = 0 then Hw,N = 1 else Hw,N = 0

else
D = {i : w(i) > w(i+ 1)}
Choose I ∈ D and θ ∈ {0, 1} independently and uniformly at random
if θ = 0 then Hw,N = 2#D × Hw,N−1 else Hw,N = 2#D × HwsI ,N−1

Proposition 35. Let w ∈ Sn. Then E[Hw,N ] = #Hecke(w,N).

We omit the proof, as it is a straightforward modification of the argument for Propo-
sition 31, using Proposition 27.

Example 36. Let w = 361824795 ∈ S9; hence ℓ(w) = 12. Using sample size 106 with the
Z algorithm gives #Hecke(w, 25) ≈ 5.98(±0.04)×1016. The estimate from the H algorithm
(with the same sample size) is #Hecke(w, 25) ≈ 6.02(±0.08)×1016. For Example 34, with
108 samples, the H algorithm estimates #Hecke(w0, 46) as 6.09(±4.69)× 1028.

Example 37. We use Proposition 21 to compute #Hecke(w0,
#
n
2

$
+ 2). When n = 7,

#Hecke(w0, 23) = 2.54 . . . × 1012. A 106 sample size estimate is 2.60(±0.22) × 1012. For
n = 10, #Hecke(w0, 47) = 6.01 . . .× 1030. A 108 sample size estimate is ≈ 4.04(±2.17)×
1030.

Example 38 (Skew set-valued tableaux). To estimate fλ/µ,N for

λ/µ = (12, 10, 9, 9)/(4, 3, 3, 0) and N = 45,

we use (31) and the Z-algorithm with sample size 107 to predict

fλ/µ,45 = #Hecke(wλ/µ, 45) ≈ 1.30(±0.03)× 1033.

This is backed by the estimate 1.29(±0.06)× 1033 using the H-algorithm with sample size
106. We have thus estimated the value of (−1)g−|CP|χ(Gr,α,β

d (X, p, q)) for the parameters
of Example 23. There are a number of ways to theoretically compute this value ([2], [11],
Proposition 26). What is the exact value?
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6 Remarks and questions about computational complexity

The exponential average run-time of transition (Theorem 2) does not imply computing
#Red(w) is hard. Suppose one encodes a permutation w by its Lehmer code code(w) =
(c1, c2, . . . , cL). What is the worst case complexity of computing #Red(w) given input
code(w)?

L. Valiant [38] introduced the complexity class #P of problems that count the number
of accepting paths of a non-deterministic Turing machine running in polynomial time in
the length of the input. Let FP be the class of function problems solvable in polynomial
time on a deterministic Turing machine. It is basic theory that FP ⊆ #P.

Observation 39 (cf. [30, Section 3]). #Red(w) ∕∈ #P. In particular, #Red(w) ∕∈ FP.

Proof. Let θn be the vexillary permutation with code(θn) = (n, n). Then, using (5),

#Red(θn) = f (n,n) = Cn :=
1

n+ 1

&
2n

n

'
. (36)

The middle equality is textbook: there is a bijection between standard Young tableaux of
shape (n, n) and Dyck paths from (0, 0) to (2n, 0); both are enumerated by the Catalan
number Cn. Now, #Red(θn) is doubly exponential in the input length O(log n). No
such problem can be in #P; see [30, Section 3] which also inspired this observation.
(#Red(w) ∕∈ FP is true from this argument for the simple reason that it takes exponential
time just to write down the output.)

By Observation 39’s reasoning, (36) shows there is no algorithm to compute fλ,N that
is polynomial-time in the bit-length of the input (λ, N).

A counting problem P is #P-hard if any problem in #P has a polynomial-time counting
reduction to P . Is #Red(w) ∈ #P-hard?

Observation 39 is dependent on the choice of encoding. For example, if one encodes a
permutation w ∈ Sn in the inefficient one-line notation, the input takes O(n log n) space.
Since ℓ(w) !

#
n
2

$
is polynomial in the input length, it follows that #Red(w) ∈ #P; see

[35].

Problem 40. Does there exist an nO(1)-algorithm to compute #Red(w)?

It is easy to see that #Red(u) ! #Red(usi) whenever ℓ(usi) = ℓ(u) + 1. Hence,
#Red(w) is maximized at w = w0. So, by (4), log(#Red(w)) ∈ nO(1). Thus, unlike
Observation 39, there is no easy negative solution to Problem 40 (and any negative solution
implies FP ∕= #P, which is a famous open problem). Indeed, in the vexillary case (5), the
hook-length formula (3) gives a nO(1)-algorithm for #Red(w).
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