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Abstract

Let Γ denote a finite, simple and connected graph. Fix a vertex x of Γ and
let T = T (x) denote the Terwilliger algebra of Γ with respect to x. In this paper
we study the unique irreducible T -module with endpoint 0. We assume that this
T -module is thin. The main result of the paper is a combinatorial characterization
of this property.

Mathematics Subject Classifications: 05C25

1 Introduction

Terwilliger algebras of association schemes were defined by Terwilliger in [19], where they
were called subconstituent algebras. These noncommutative algebras are generated by the
Bose-Mesner algebra of the scheme, together with matrices containing local information
about the structure with respect to a fixed vertex. Since then, numerous papers appear in
which the Terwilliger algebra was successfully used for studying commutative association
schemes and distance-regular graphs, see [7, 8, 10, 11, 12, 13, 14, 15, 16, 17] for the
most recent research on the subject. However, the notion of a Terwilliger algebra could
be easily generalized to an arbitrary finite, simple and connected graph. This article
is a contribution to the growing literature on studies involving Terwilliger algebras of
non-distance-regular graphs, see for example [1, 2, 3, 9, 20, 21, 22].

Let us first recall the definition of a Terwilliger algebra (see Section 2 for formal
definitions). Let Γ denote a finite, simple, connected graph with vertex set X. Let
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MatX(C) denote the C-algebra consisting of all matrices whose rows and columns are
indexed by X and whose entries are in C. Pick a vertex x of Γ and let ε(x) denote its
eccentricity. Let A ∈ MatX(C) denote the adjacency matrix of Γ and let E∗i (0 6 i 6 ε(x))
denote the diagonal matrix in MatX(C) whose (y, y)-entry is equal to 1 if the distance
between x and y is i, and 0 otherwise (y ∈ X). We refer to matrices E∗i (0 6 i 6 ε(x))
as dual idempotents of Γ with respect to x. The Terwilliger algebra T = T (x) is a
matrix subalgebra of MatX(C) generated by the adjacency matrix of Γ and the dual
idempotents of Γ with respect to x. Algebra T acts on the space of all column vectors with
coordinates indexed by X. Observe that T is closed under the conjugate-transpose map,
and so T is semi-simple. It follows that each T -module is a direct sum of irreducible T -
modules. Therefore, in many instances the algebra T can best be studied via its irreducible
modules. We now recall an important parameter which is assigned to every irreducible
T -module. Let W denote an irreducible T -module. By the endpoint of W we mean
min{ i | 0 6 i 6 ε(x), E∗iW 6= 0}. We say that W is thin if dimE∗iW 6 1 for every
0 6 i 6 ε(x). It turns out that there exists a unique irreducible T -module with endpoint
0. It was already proved in [18] that this irreducible T -module is thin if Γ is distance-
regular around x. The converse, however, is not true. Fiol and Garriga [5] later introduced
the concept of pseudo-distance-regularity around vertex x, which is based on giving to the
vertices of the graph some weights which correspond to the entries of the (normalized)
positive eigenvector. They showed that the unique irreducible T -module with endpoint 0
is thin if and only if Γ is pseudo-distance-regular around x (see also [4, Theorem 3.1]).

The main result of this paper is a purely combinatorial characterization of the property,
that the irreducible T -module with endpoint 0 is thin (see Theorem 6). This characteri-
zation involves the number of walks between vertex x and vertices at some fixed distance
from x, which are of a certain shape. Our paper is organized as follows. In Sections 2
and 3 we recall basic definitions and results about Terwilliger algebras and local distance-
regularity and pseudo-distance-regularity. In Section 4 we present our main result, and
we prove it in Section 5. We conclude the paper with a couple of examples in Section 6.

2 Preliminaries

In this section we review some definitions and basic concepts. Throughout this paper,
Γ = (X,R) will denote a finite, undirected, connected graph, without loops and multiple
edges, with vertex set X and edge set R.

Let x, y ∈ X. The distance between x and y, denoted by ∂(x, y), is the length of
a shortest xy-path. The eccentricity of x, denoted by ε(x), is the maximum distance
between x and any other vertex of Γ: ε(x) = max{∂(x, z) | z ∈ X}. Let D denote the
maximum eccentricity of any vertex in Γ. We call D the diameter of Γ. For an integer i
we define Γi(x) by

Γi(x) = {y ∈ X | ∂(x, y) = i} .

We will abbreviate Γ(x) = Γ1(x). Note that Γ(x) is the set of neighbours of x. Observe
that Γi(x) is empty if and only if i < 0 or i > ε(x).
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We now recall some definitions and basic results concerning a Terwilliger algebra of
Γ. Let C denote the complex number field. Let MatX(C) denote the C-algebra consisting
of all matrices whose rows and columns are indexed by X and whose entries are in C.
Let V denote the vector space over C consisting of column vectors whose coordinates
are indexed by X and whose entries are in C. We observe MatX(C) acts on V by left
multiplication. We call V the standard module. We endow V with the Hermitian inner
product 〈 , 〉 that satisfies 〈u, v〉 = u>v for u, v ∈ V , where > denotes transpose and
denotes complex conjugation. For y ∈ X, let ŷ denote the element of V with a 1 in the
y-coordinate and 0 in all other coordinates. We observe {ŷ|y ∈ X} is an orthonormal
basis for V .

Let A ∈ MatX(C) denote the adjacency matrix of Γ:

(A)xy =

{
1 if ∂(x, y) = 1,

0 if ∂(x, y) 6= 1,
(x, y ∈ X).

The adjacency algebra of Γ is a commutative subalgebra M of MatX(C) generated by the
adjacency matrix A of Γ.

We now recall the dual idempotents of Γ. To do this fix a vertex x ∈ X and let
d = ε(x). We view x as a base vertex. For 0 6 i 6 d, let E∗i = E∗i (x) denote the diagonal
matrix in MatX(C) with (y, y)-entry as follows:

(E∗i )yy =

{
1 if ∂(x, y) = i,
0 if ∂(x, y) 6= i

(y ∈ X).

We call E∗i the i-th dual idempotent of Γ with respect to x [19, p. 378]. We also observe (ei)∑d
i=0 E

∗
i = I; (eii) E∗i = E∗i (0 6 i 6 d); (eiii) E∗>i = E∗i (0 6 i 6 d); (eiv) E∗iE

∗
j = δijE

∗
i

(0 6 i, j 6 d) where I denotes the identity matrix in MatX(C). By these facts, matrices
E∗0 , E

∗
1 , . . . , E

∗
d form a basis for a commutative subalgebra M∗ = M∗(x) of MatX(C). Note

that for 0 6 i 6 d we have

E∗i V = Span{ŷ | y ∈ Γi(x)},

and that

V = E∗0V + E∗1V + · · ·+ E∗dV (orthogonal direct sum).

We call E∗i V the i-th subconstituent of Γ with respect to x. Moreover E∗i is the projection
from V onto E∗i V for 0 6 i 6 d. For convenience we define E∗−1 and E∗d+1 to be the zero
matrix of MatX(C).

We recall the definition of a Terwilliger algebra of Γ. Let T = T (x) denote the subalgebra
of MatX(C) generated by M , M∗. We call T the Terwilliger algebra of Γ with respect
to x. Recall M is generated by A so T is generated by A and the dual idempotents.
We observe T has finite dimension. In addition, by construction T is closed under the
conjugate-transpose map and so T is semi-simple. For a vector subspace W ⊆ V , we
denote by TW the subspace {Bw | B ∈ T,w ∈ W}. We now recall the lowering, the flat
and the raising matrix of T .
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Definition 1. Let Γ = (X,R) denote a simple, connected, finite graph. Pick x ∈ X.
Let d = ε(x) and let T = T (x) be the Terwilliger algebra of Γ with respect to x. Define
L = L(x), F = F (x) and R = R(x) in MatX(C) by

L =
d∑

i=1

E∗i−1AE
∗
i , F =

d∑
i=0

E∗iAE
∗
i , R =

d−1∑
i=0

E∗i+1AE
∗
i .

We refer to L, F and R as the lowering, the flat and the raising matrix with respect to x,
respectively. Note that L, F,R ∈ T . Moreover, F = F>, R = L> and A = L+ F +R.

Observe that for y, z ∈ X we have the (z, y)-entry of L equals 1 if ∂(z, y) = 1 and
∂(x, z) = ∂(x, y)−1, and 0 otherwise. The (z, y)-entry of F is equal to 1 if ∂(z, y) = 1 and
∂(x, z) = ∂(x, y), and 0 otherwise. Similarly, the (z, y)-entry of R equals 1 if ∂(z, y) = 1
and ∂(x, z) = ∂(x, y) + 1, and 0 otherwise. Consequently, for v ∈ E∗i V (0 6 i 6 d) we
have

Lv ∈ E∗i−1V, Fv ∈ E∗i V, Rv ∈ E∗i+1V. (1)

By a T -module we mean a subspace W of V , such that TW ⊆ W . Let W denote a
T -module. Then W is said to be irreducible whenever W is nonzero and W contains no
T -modules other than 0 and W . Since the algebra T is semi-simple, it turns out that any
T -module is an orthogonal direct sum of irreducible T -modules.

Let W be an irreducible T -module. We observe that W is an orthogonal direct sum
of the nonvanishing subspaces E∗iW for 0 6 i 6 d. By the endpoint of W we mean
min{i | 0 6 i 6 d, E∗iW 6= 0}. We say W is thin whenever the dimension of E∗iW is at
most 1 for 0 6 i 6 d.

Observe that the subspace T x̂ = {Bx̂ | B ∈ T} is a T -module. Suppose that W is
an irreducible T -module with endpoint 0. Then, x̂ ∈ W , which implies that T x̂ ⊆ W .
Since W is irreducible, we therefore have T x̂ = W . Hence, T x̂ is the unique irreducible
T -module with endpoint 0. We refer to T x̂ as the trivial T -module.

3 Distance-regularity and pseudo-distance-regularity

Recall graph Γ = (X,R) from Section 2. In this section we recall the notions of (local)
distance-regularity and (local) pseudo-distance-regularity of Γ. To do this, fix x ∈ X and
let d denote the eccentricity of x.

Assume for a moment that y ∈ Γi(x) (0 6 i 6 d) and let z be a neighbour of y. Then,
by the triangle inequality,

∂(x, z) ∈ {i− 1, i, i+ 1} ,

and so z ∈ Γi−1(x) ∪ Γi(x) ∪ Γi+1(x). For y ∈ Γi(x) we therefore define the following
numbers:

ai(x, y) = |Γi(x) ∩ Γ(y)| , bi(x, y) = |Γi+1(x) ∩ Γ(y)| , ci(x, y) = |Γi−1(x) ∩ Γ(y)| .
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We say that x ∈ X is distance-regularized (or that Γ is distance-regular around x) if the
numbers ai(x, y), bi(x, y) and ci(x, y) do not depend on the choice of y ∈ Γi(x) (0 6 i 6 d).
In this case, the numbers ai(x) = ai(x, y), bi(x) = bi(x, y) and ci(x) = ci(x, y) are called
the intersection numbers of x.

The concept of pseudo-distance-regularity around a vertex of a graph was introduced
in [6] by Fiol, Garriga and Yebra as a natural generalization of distance regularity around
a vertex. We now recall this definition.

Let A ∈ MatX(C) denote the adjacency matrix of Γ. Let ρ(A) denote the spectral
radius of A and let υ ∈ V denote a Perron-Frobenius vector of A. For z ∈ X let υz denote
the z-coordinate of υ. For y ∈ Γi(x) (0 6 i 6 d) we define numbers a∗i (x, y), b∗i (x, y) and
c∗i (x, y) as follows:

a∗i (x, y) =
∑

z∈Γ(y)∩Γi(x)

υz
υy
, b∗i (x, y) =

∑
z∈Γ(y)∩Γi+1(x)

υz
υy
, c∗i (x, y) =

∑
z∈Γ(y)∩Γi−1(x)

υz
υy
.

Observe that a∗i (x, y) + b∗i (x, y) + c∗i (x, y) = ρ(A).
We say that vertex x ∈ X is pseudo-distance-regularized (or that Γ is pseudo-distance-

regular around x) if the numbers a∗i (x, y), b∗i (x, y) and c∗i (x, y) do not depend on the choice
of y. In this case, they are denoted by a∗i (x), b∗i (x) and c∗i (x) and they are called the
pseudo-intersection numbers of Γ with respect to x. Moreover, the array

0 c∗1(x) · · · c∗d−1(x) c∗d(x)
0 a∗1(x) · · · a∗d−1(x) a∗d(x)

b∗0(x) b∗1(x) · · · b∗d−1(x) 0


is called the pseudo-intersection array of Γ with respect to x.

Assume now that Γ is distance-regular around x. By [6, Proposition 3.2], Γ is also
pseudo-distance-regular around x. However, the converse of this result is not true. In
particular, it was shown in [6] that the cartesian product P3� · · ·�P3 of r paths of length
3 has pseudo-distance-regularized vertices which are not distance-regularized. For the
convenience of the reader we would also like to present another example.

Example 2. Let Γ be the connected graph with vertex set X = {1, 2, 3, 4, 5, 6} and edge
set R = {{1, 2} , {1, 3} , {2, 4} , {2, 5} , {3, 5} , {3, 6}}. See Figure 1. Let A denote the
adjacency matrix of Γ. It is easy to see that ρ(A) =

√
5 and υ = (2

√
5
√

5 1 2 1)> is
a Perron-Frobenius vector of A. Consider vertex 1 ∈ X and note that ε(1) = 2. It is
straightforward to check that Γ is pseudo-distance-regular around 1 with the following
pseudo-intersection array: 

0 2√
5

√
5

0 0 0√
5 3√

5
0


However, Γ is not distance-regular around 1. Namely, vertex 4 ∈ Γ2(1) has only one
neighbour in Γ(1), while vertex 5 ∈ Γ2(1) has two neighbours in Γ(1).
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As already mentioned in the Introduction, it was proved in [18] that if Γ is distance-
regular around x, then the trivial T -module is thin. Fiol and Garriga [5] later proved the
following result (see also [4, Theorem 3.1]).

Theorem 3. Let Γ = (X,R) be as in Section 2. Fix x ∈ X and let T = T (x) denote the
corresponding Terwilliger algebra. Then, the trivial T -module is thin if and only if Γ is
pseudo-distance-regular around x.

4 The main result and some products in T

Recall graph Γ = (X,R) from Section 2. In this section we state our main result. To do
this we need the following definition.

Definition 4. Let Γ = (X,R) denote a finite, simple and connected graph. Pick x, y, z ∈
X and let P = [y = x0, x1, . . . , xj = z] denote a yz-walk. The shape of P with respect to
x is a sequence of symbols t1t2 . . . tj, where ti ∈ {f, `, r}, and such that ti = r if ∂(x, xi) =
∂(x, xi−1)+1, ti = f if ∂(x, xi) = ∂(x, xi−1) and ti = ` if ∂(x, xi) = ∂(x, xi−1)−1 (1 6 i 6
j). We will be using exponential notation for the shapes containing several consecutive
identical symbols. For instance, instead of rrrrfff``r we simply write r4f 3`2r. For a
positive integer i, let ri`(y), rif(y) and ri(y) respectively denote the number of xy-walks
of the shape ri`, rif and ri with respect to x. We also define r0`(y) = r0f(y) = 0 for
every y ∈ X, and r0(y) = 1 if y = x and r0(y) = 0 otherwise.

For the rest of the paper we adopt the following notation.

Notation 5. Let Γ = (X,R) denote a finite, simple, connected graph with vertex set X,
edge set R and diameter D. Let A ∈ MatX(C) denote the adjacency matrix of Γ. Fix
a vertex x ∈ X and let d denote the eccentricity of x. Let E∗i ∈ MatX(C) (0 6 i 6 d)
denote the dual idempotents of Γ with respect to x. Let V denote the standard module of
Γ and let T = T (x) denote the Terwilliger algebra of Γ with respect to x. Let T x̂ denote
the unique irreducible T -module with endpoint 0. Let L = L(x), F = F (x) and R = R(x)
denote the lowering, the flat and the raising matrix of T , respectively. For y ∈ X, let the
numbers ri`(y), rif(y) and ri(y) be as defined in Definition 4.

We are now ready to state our main result.

Theorem 6. With reference to Notation 5, the following (i)–(iii) are equivalent:

(i) T x̂ is thin.

(ii) Γ is pseudo-distance-regular around x.

(iii) For every integer i (0 6 i 6 d) there exist scalars αi, βi, such that for every
y ∈ Γi(x) the following hold:

ri+1`(y) = αi r
i(y), rif(y) = βi r

i(y).
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Recall that the equivalency of (i) and (ii) of the above theorem was already proved (see
Theorem 3). Therefore, we will focus on the equivalency of (i) and (iii) in the rest of this
paper. We first evaluate several products in the Terwilliger algebra T that we will need
later. The next result is straightforward to prove (using elementary matrix multiplication,
comment below Definition 1, and (1)) and is therefore left to the reader.

Lemma 7. With reference to Notation 5, pick y ∈ X. Then the following (i)–(iii) hold
for an integer i > 0.

(i) The y-entry of Rix̂ is equal to the number ri(y).

(ii) The y-entry of LRix̂ is equal to the number ri`(y).

(iii) The y-entry of FRix̂ is equal to the number rif(y).

Proposition 8. With reference to Notation 5, the vector Rix̂ is nonzero for 0 6 i 6 d.

Proof. Pick 0 6 i 6 d and y ∈ Γi(x) (note that Γi(x) is nonempty). By Lemma 7(i), the
y-entry of Rix̂ is equal to the number ri(y). Note that by the definition of ri(y) and by
the choice of y, we have that ri(y) > 0. The result follows.

5 Proof of the main theorem

With reference to Notation 5, in this section we prove our main theorem. We also display
a basis of T x̂ and the matrix representing the action of the adjacency matrix on this basis
in the case when T x̂ is thin.

Lemma 9. With reference to Notation 5, the following (i), (ii) are equivalent:

(i) T x̂ is thin.

(ii) The set {Rix̂ : 0 6 i 6 d} is a basis of T x̂.

In particular, if the above equivalent conditions (i), (ii) hold, then E∗i (T x̂) is spanned by
Rix̂ and dim (E∗i (T x̂)) = 1 for 0 6 i 6 d.

Proof. As Ri ∈ T for 0 6 i 6 d, we have that Rix̂ ∈ T x̂ for 0 6 i 6 d. Furthermore, by
Proposition 8 and (1), the vectors Rix̂ are nonzero, pairwise orthogonal and Rix̂ ∈ E∗i (T x̂)
for 0 6 i 6 d. Assume first that T x̂ is thin. Then E∗i (T x̂) is spanned by Rix̂ for 0 6 i 6 d.
This proves that the set {Rix̂ : 0 6 i 6 d} is a basis of T x̂. Conversely, assume that
{Rix̂ : 0 6 i 6 d} is a basis of T x̂. Then the subspace E∗i (T x̂) is spanned by Rix̂, and so
dim (E∗i (T x̂)) = 1 for 0 6 i 6 d. This implies that T x̂ is thin. The result follows.
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Proof of Theorem 6. As already mentioned, the equivalency of Theorem 6(i) and Theorem
6(ii) follows from Theorem 3. We proceed by showing the equivalency of Theorem 6(i)
and Theorem 6(iii).

(i) implies (iii)
Assume that T x̂ is thin. Recall that by Lemma 9 the set {Rix̂ : 0 6 i 6 d} is a basis

of T x̂, E∗i (T x̂) is spanned by Rix̂ and dim (E∗i (T x̂)) = 1 for 0 6 i 6 d. Consequently, by
(1) and since L, F ∈ T , we have that

LRi+1x̂ ∈ E∗i (T x̂), FRix̂ ∈ E∗i (T x̂)

for every 0 6 i 6 d. It follows from the above comments that for every 0 6 i 6 d there
exist scalars αi, βi, such that

LRi+1x̂ = αiR
ix̂, FRix̂ = βiR

ix̂.

The result now follows from Lemma 7.

(iii) implies (i)
Let W denote the vector subspace of V spanned by the vectors Rix̂ (0 6 i 6 d). Since

x̂ ∈ E∗0V , it follows from (1) that Rix̂ ∈ E∗i V for 0 6 i 6 d. By construction and since
Rd+1x̂ = 0, it is clear that W is closed under the action of R. Moreover, by (eiv) from
Section 2, the subspace W is invariant under the action of the dual idempotents as well.
From Definition 1 and (1) it is easy to see that Lx̂ = Fx̂ = 0.

Recall that by the assumption, for every integer 0 6 i 6 d there exist scalars αi, βi,
such that for every y ∈ Γi(x) we have

ri+1`(y) = αi r
i(y), rif(y) = βi r

i(y).

It follows from Lemma 7 that LRi+1x̂ = αiR
ix̂ and FRix̂ = βiR

ix̂, and so W is invariant
under the action of L and F . Since A = L + F + R, it follows that W is A-invariant as
well. Recall that algebra T is generated by A and the dual idempotents, and so W is a
T -module. Note that Rix̂ ∈ T x̂ for 0 6 i 6 d, and so W ⊆ T x̂. As W is nonzero and T x̂
is irreducible, we thus have W = T x̂. It is clear that W is thin, since by construction and
(1), the subspace E∗iW is spanned by Rix̂. This finishes the proof.

Theorem 10. With reference to Notation 5, assume that Γ satisfies the equivalent con-
ditions of Theorem 6. Then the set

B =
{
Rix̂ | 0 6 i 6 d

}
is a basis of T x̂. Moreover, the matrix representing the action of A on T x̂ with respect to
the (ordered) basis B is given by

0 α0

1 β1 α1

1
. . . . . .
. . . . . . αd−2

1 βd−1 αd−1

1 βd


.
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Proof. By Theorem 6(iii), for every integer 0 6 i 6 d there exist scalars αi, βi, such that
for every y ∈ Γi(x) we have

ri+1`(y) = αi r
i(y), rif(y) = βi r

i(y).

It follows from Lemma 7 that LRix̂ = αi−1R
i−1x̂ and FRix̂ = βiR

ix̂. Recall that A =
L+ F +R, and so the result follows (note also that β0 = 0).

6 Examples

With reference to Notation 5, in this section we present some examples. We first consider
graphs which are distance-regular around x.

6.1 Distance-regularized vertices

With reference to Notation 5, assume that Γ is distance-regular around x, with the cor-
responding intersection numbers ai(x), bi(x), ci(x) (0 6 i 6 d). Then it is easy to see that
for every y ∈ Γi(x) (0 6 i 6 d) we have

ri(y) =
i∏

j=1

cj(x), ri+1`(y) = bi(x)
i+1∏
j=1

cj(x), rif(y) = ai(x)
i∏

j=1

cj(x).

Therefore, for every y ∈ Γi(x) we have that ri+1`(y) = αir
i(y) and rif(y) = βir

i(y) with
αi = bi(x)ci+1(x) and βi = ai(x). By Theorem 6, the trivial T -module T x̂ is thin.

6.2 Bipartite graphs

With reference to Notation 5, assume that Γ is bipartite. Observe that in this case
rif(y) = 0 for every 0 6 i 6 d and for every y ∈ Γi(x). Therefore, we have the following
result.

Corollary 11. With reference to Notation 5, assume that Γ is bipartite. Then T x̂ is thin
if and only if for 0 6 i 6 d there exist scalars αi, such that for every y ∈ Γi(x) we have
ri+1`(y) = αir

i(y).

Proof. Immediately from Theorem 6 and the above observation.

Consider graph Γ from Example 2 (see also Figure 1), and observe that Γ is bipartite.
Fix vertex 1 ∈ X and note that d = 2. It is easy to see that for every y ∈ Γi(1) (0 6 i 6 2)
we have ri+1`(y) = αir

i(y), where α0 = 2, α1 = 3 and α2 = 0. As Γ is bipartite, it follows
from Corollary 11 that T 1̂ is thin.
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Figure 1: Graph Γ from Example 2.

6.3 Trees

With reference to Notation 5, assume that Γ is a tree. Observe that in this case (as Γ
is also bipartite) we have ri(y) = 1 and rif(y) = 0 for every 0 6 i 6 d and for every
y ∈ Γi(x). Therefore, by Theorem 6, T x̂ is thin if and only if for 0 6 i 6 d there exist
scalars αi, such that for every y ∈ Γi(x) we have ri+1`(y) = αi. Note however that
ri+1`(y) = |Γ(y) ∩ Γi+1(x)| = bi(x, y). It follows that the trivial module T x̂ is thin if
and only if the intersection numbers bi(x, y) do not depend on the choice of y ∈ Γi(x).
As ai(x, y) = 0 and ci(x, y) = 1 for every y ∈ Γi(x), we have the following corollary of
Theorem 6.

Corollary 12. With reference to Notation 5, assume that Γ is a tree. Then T x̂ is thin if
and only if Γ is distance-regular around x.

6.4 Cartesian product P3� · · ·�P3

Let us first recall the definition of cartesian product of graphs. Let Γ1 and Γ2 be finite
simple graphs with vertex set X1 and X2, respectively. Then the cartesian product of
Γ1 and Γ2, denoted by Γ1�Γ2, has vertex set X1 ×X2. Vertices (x1, x2) and (y1, y2) are
adjacent in Γ1�Γ2 if and only if either x1 = y1 and x2, y2 are adjacent in Γ2, or x2 = y2

and x1, y1 are adjacent in Γ1.
With reference to Notation 5, in this subsection we consider graph Γ = P3� · · ·�P3,

the C artesian product of n copies of the path P3 on 3 vertices (cf. [6, p. 188]). Assume
that the vertex set and the edge set of P3 are {0, 1, 2} and {{0, 1}, {1, 2}}, respectively.
Then the vertex set of Γ is

X = {(y1, y2, . . . , yn) | yi ∈ {0, 1, 2} for each 1 6 i 6 n}.

Vertices y = (y1, y2, . . . , yn) and z = (z1, z2, . . . , zn) are adjacent in Γ if and only if y and
z differ in exactly one coordinate (say coordinate i), and |yi − zi| = 1. Note that Γ is
bipartite. We assume that vertex x from Notation 5 is vertex x = (0, 0, . . . , 0). Observe
that d = 2n and that for 0 6 i 6 2n we have

Γi(x) = {(y1, y2, . . . , yn) ∈ X | y1 + y2 + · · ·+ yn = i}.
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For 1 6 i 6 n let us denote by ei the vertex of Γ, which has i-th coordinate equal to 1, and
all other coordinates equal to 0. For vertices y = (y1, y2, . . . , yn), z = (z1, z2, . . . , zn) ∈ X
let y+z denote the n-tuple (y1 +z1, y2 +z2, . . . , yn +zn). Note that y+z is not necessarily
contained in X. Furthermore, let us define A(y) = {j | 1 6 j 6 n, yj = 0}, B(y) = {j |
1 6 j 6 n, yj = 1} and C(y) = {j | 1 6 j 6 n, yj = 2}. Note that

|A(y)|+ |B(y)|+ |C(y)| = n, |B(y)|+ 2|C(y)| = ∂(x, y). (2)

Assume now that y = (y1, y2, . . . , yn) ∈ Γi(x). Then ri(y) equals to the number of
walks between x and y in the n-dimensional integer lattice, where for each step of the
walk the only possible directions are along one of the “vectors” ej (0 6 j 6 n). This
shows that

ri(y) =

(
i

y1

)(
i− y1

y2

)(
i− y1 − y2

y3

)
· · ·
(
i− y1 − · · · − yn−1

yn

)
=

i!(i− y1)!(i− y1 − y2)! · · · (i− y1 − y2 − · · · − yn−1)!

y1!(i− y1)!y2!(i− y1 − y2)! · · · yn−1!(i− y1 − y2 − · · · − yn−1)!yn!

=
i!

y1!y2! · · · yn−1!yn!
=

i!

2|C(y)| .

Observe also that

Γ(y) ∩ Γi+1(x) = {y + ej | j ∈ A(y)} ∪ {y + ej | j ∈ B(y)}.

Moreover, for j ∈ A(y) we have |C(y+ej)| = |C(y)|, and for j ∈ B(y) we have |C(y+ej)| =
|C(y)|+ 1. It follows that

ri+1`(y) =
∑

j∈A(y)

ri+1(y + ej) +
∑

j∈B(y)

ri+1(y + ej)

=
|A(y)|(i+ 1)!

2|C(y)| +
|B(y)|(i+ 1)!

2|C(y)|+1
=

(i+ 1)!

2|C(y)|

(
|A(y)|+ |B(y)|

2

)
.

Finally, it follows from (2) that |A(y)|+ |B(y)|/2 = (2n− i)/2, and so

ri+1`(y) =
(i+ 1)!(2n− i)

2|C(y)|+1
.

This shows that for every y ∈ Γi(x) (0 6 i 6 2n) we have ri+1`(y) = αir
i(y), where

αi = (i + 1)(2n − i)/2 is independent on the choice of y ∈ Γi(x). As Γ is bipartite, it
follows from Corollary 11 that T x̂ is thin.

6.5 A construction

In this subsection we show how to construct new graphs, that satisfy the equivalent
conditions of Theorem 6 for a certain vertex. To do this, let Γ and Σ denote finite, simple
graphs with vertex set X and Y , respectively. Assume that Γ is connected. Fix a vertex
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w

Figure 2: Graph H obtained from the cartesian product Γ�P2 where Γ is the graph from
Example 2 and P2 denotes the path on 2 vertices.

x ∈ X and consider the Cartesian product Γ�Σ. Let H denote a graph obtained by
adding a new vertex w to the graph Γ�Σ, and connecting this new vertex w with all
vertices (x, y), where y is an arbitrary vertex of Σ. See for example Figure 2.

Note that for an arbitrary vertex (x′, y′) of H different from w, the distance between
w and (x′, y′) in H is equal to the distance between x and x′ in Γ plus one:

∂H(w, (x′, y′)) = ∂Γ(x, x′) + 1.

It follows that dH = d+ 1, where dH is the eccentricity of w in H and d is the eccentricity
of x in Γ. Moreover, for 1 6 i 6 dH we have

Hi(w) = Γi−1(x)× Y = {(u, y) | u ∈ Γi−1(x), y ∈ Y }.

In what follows, we use subscripts to distinguish the number of walks of a particular
shape in H and in Γ. For example, for x′ ∈ Γi(x), we denote the number of walks from
x to x′ of shape ri` with respect to x by ri`Γ(x′). For (x′, y′) ∈ Hi(w), we denote the
number of walks from w to (x′, y′) of shape ri` with respect to w by ri`H((x′, y′)). It is
easy to see that for (x′, y′) ∈ Hi(w) (1 6 i 6 dH) we have

riH((x′, y′)) = ri−1
Γ (x′), ri+1`H((x′, y′)) = ri`Γ(x′),

rifH((x′, y′)) = ri−1fΓ(x′) + |Σ(y′)|ri−1
Γ (x′), (3)

where Σ(y′) is the set of neighbours of y′ in Σ. Assume now that for vertex x of Γ the
equivalent conditions of Theorem 6 are satisfied, and that Σ is regular with valency k. It
follows from (3) that for 1 6 i 6 dH and for every (x′, y′) ∈ Hi(w) we have

ri+1`H((x′, y′)) = ri`Γ(x′) = αi−1r
i−1
Γ (x′) = αi−1r

i
H((x′, y′))

and
rifH((x′, y′)) = ri−1fΓ(x′) + |Σ(y′)|ri−1

Γ (x′) = (βi−1 + k)ri−1
Γ (x′).

As we also have r`H(w) = |Y | = |Y |r0
H(w) and fH(w) = 0, we see that vertex w of

H satisfies the condition of Theorem 6(iii). Therefore, by Theorem 6, the trivial T (w)-
module is thin.
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