On the Trivial T-Module of a Graph

Blas Fernández

University of Primorska, Andrej Marušič Institute, Koper, Slovenia blas.fernandez@famnit.upr.si

Štefko Miklavič

University of Primorska, Andrej Marušič Institute, Koper. Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia

stefko.miklavic@upr.si

Submitted: Jan 5, 2022; Accepted: May 29, 2022; Published: Jun 17, 2022 ©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Let Γ denote a finite, simple and connected graph. Fix a vertex x of Γ and let $T = T(x)$ denote the Terwilliger algebra of Γ with respect to x. In this paper we study the unique irreducible T-module with endpoint 0. We assume that this T-module is thin. The main result of the paper is a combinatorial characterization of this property.

Mathematics Subject Classifications: 05C25

1 Introduction

Terwilliger algebras of association schemes were defined by Terwilliger in [\[19\]](#page-13-0), where they were called subconstituent algebras. These noncommutative algebras are generated by the Bose-Mesner algebra of the scheme, together with matrices containing local information about the structure with respect to a fixed vertex. Since then, numerous papers appear in which the Terwilliger algebra was successfully used for studying commutative association schemes and distance-regular graphs, see [\[7,](#page-12-0) [8,](#page-12-1) [10,](#page-12-2) [11,](#page-12-3) [12,](#page-12-4) [13,](#page-12-5) [14,](#page-12-6) [15,](#page-12-7) [16,](#page-13-1) [17\]](#page-13-2) for the most recent research on the subject. However, the notion of a Terwilliger algebra could be easily generalized to an arbitrary finite, simple and connected graph. This article is a contribution to the growing literature on studies involving Terwilliger algebras of non-distance-regular graphs, see for example [\[1,](#page-12-8) [2,](#page-12-9) [3,](#page-12-10) [9,](#page-12-11) [20,](#page-13-3) [21,](#page-13-4) [22\]](#page-13-5).

Let us first recall the definition of a Terwilliger algebra (see Section [2](#page-1-0) for formal definitions). Let Γ denote a finite, simple, connected graph with vertex set X. Let $\text{Mat}_X(\mathbb{C})$ denote the C-algebra consisting of all matrices whose rows and columns are indexed by X and whose entries are in \mathbb{C} . Pick a vertex x of Γ and let $\epsilon(x)$ denote its eccentricity. Let $A \in Mat_X(\mathbb{C})$ denote the adjacency matrix of Γ and let E_i^* $(0 \leqslant i \leqslant \epsilon(x))$ denote the diagonal matrix in $\text{Mat}_X(\mathbb{C})$ whose (y, y) -entry is equal to 1 if the distance between x and y is i, and 0 otherwise $(y \in X)$. We refer to matrices E_i^* $(0 \leq i \leq \epsilon(x))$ as dual idempotents of Γ with respect to x. The Terwilliger algebra $T = T(x)$ is a matrix subalgebra of Mat_X(C) generated by the adjacency matrix of Γ and the dual idempotents of Γ with respect to x. Algebra T acts on the space of all column vectors with coordinates indexed by X. Observe that T is closed under the conjugate-transpose map, and so T is semi-simple. It follows that each T-module is a direct sum of irreducible Tmodules. Therefore, in many instances the algebra T can best be studied via its irreducible modules. We now recall an important parameter which is assigned to every irreducible T-module. Let W denote an irreducible T-module. By the *endpoint* of W we mean $\min\{\, i \mid 0 \leqslant i \leqslant \epsilon(x), E_i^*W \neq 0\}.$ We say that W is thin if $\dim E_i^*W \leqslant 1$ for every $0 \leq i \leq \epsilon(x)$. It turns out that there exists a unique irreducible T-module with endpoint 0. It was already proved in [\[18\]](#page-13-6) that this irreducible T-module is thin if Γ is distanceregular around x. The converse, however, is not true. Fiol and Garriga [\[5\]](#page-12-12) later introduced the concept of *pseudo-distance-regularity* around vertex x , which is based on giving to the vertices of the graph some weights which correspond to the entries of the (normalized) positive eigenvector. They showed that the unique irreducible T-module with endpoint 0 is thin if and only if Γ is pseudo-distance-regular around x (see also [\[4,](#page-12-13) Theorem 3.1]).

The main result of this paper is a purely combinatorial characterization of the property, that the irreducible T -module with endpoint 0 is thin (see Theorem [6\)](#page-5-0). This characterization involves the number of walks between vertex x and vertices at some fixed distance from x, which are of a certain shape. Our paper is organized as follows. In Sections [2](#page-1-0) and [3](#page-3-0) we recall basic definitions and results about Terwilliger algebras and local distanceregularity and pseudo-distance-regularity. In Section [4](#page-5-1) we present our main result, and we prove it in Section [5.](#page-6-0) We conclude the paper with a couple of examples in Section [6.](#page-8-0)

2 Preliminaries

In this section we review some definitions and basic concepts. Throughout this paper, $\Gamma = (X, \mathcal{R})$ will denote a finite, undirected, connected graph, without loops and multiple edges, with vertex set X and edge set \mathcal{R} .

Let $x, y \in X$. The *distance* between x and y, denoted by $\partial(x, y)$, is the length of a shortest xy-path. The *eccentricity of x*, denoted by $\epsilon(x)$, is the maximum distance between x and any other vertex of $\Gamma: \epsilon(x) = \max\{\partial(x, z) | z \in X\}.$ Let D denote the maximum eccentricity of any vertex in Γ. We call D the diameter of Γ. For an integer i we define $\Gamma_i(x)$ by

$$
\Gamma_i(x) = \{ y \in X \mid \partial(x, y) = i \}.
$$

We will abbreviate $\Gamma(x) = \Gamma_1(x)$. Note that $\Gamma(x)$ is the set of neighbours of x. Observe that $\Gamma_i(x)$ is empty if and only if $i < 0$ or $i > \epsilon(x)$.

We now recall some definitions and basic results concerning a Terwilliger algebra of Γ. Let C denote the complex number field. Let $\text{Mat}_X(\mathbb{C})$ denote the C-algebra consisting of all matrices whose rows and columns are indexed by X and whose entries are in \mathbb{C} . Let V denote the vector space over $\mathbb C$ consisting of column vectors whose coordinates are indexed by X and whose entries are in \mathbb{C} . We observe $\text{Mat}_X(\mathbb{C})$ acts on V by left multiplication. We call V the *standard module*. We endow V with the Hermitian inner product \langle , \rangle that satisfies $\langle u, v \rangle = u^{\top} \overline{v}$ for $u, v \in V$, where \top denotes transpose and denotes complex conjugation. For $y \in X$, let \hat{y} denote the element of V with a 1 in the y-coordinate and 0 in all other coordinates. We observe $\{\hat{y}|y \in X\}$ is an orthonormal basis for V .

Let $A \in Mat_X(\mathbb{C})$ denote the adjacency matrix of Γ:

$$
(A)_{xy} = \begin{cases} 1 & \text{if } \partial(x, y) = 1, \\ 0 & \text{if } \partial(x, y) \neq 1, \end{cases} \quad (x, y \in X).
$$

The *adjacency algebra of* Γ is a commutative subalgebra M of $\text{Mat}_X(\mathbb{C})$ generated by the adjacency matrix A of Γ .

We now recall the dual idempotents of Γ. To do this fix a vertex $x \in X$ and let $d = \epsilon(x)$. We view x as a base vertex. For $0 \leqslant i \leqslant d$, let $E_i^* = E_i^*(x)$ denote the diagonal matrix in $\text{Mat}_X(\mathbb{C})$ with (y, y) -entry as follows:

$$
(E_i^*)_{yy} = \begin{cases} 1 & \text{if } \partial(x,y) = i, \\ 0 & \text{if } \partial(x,y) \neq i \end{cases} \quad (y \in X).
$$

We call E_i^* the *i*-th dual idempotent of Γ with respect to x [\[19,](#page-13-0) p. 378]. We also observe (ei) $\sum_{i=0}^d E_i^* = I$; (eii) $\overline{E_i^*} = E_i^*$ $(0 \leq i \leq d)$; (eiii) $E_i^{*\top} = E_i^*$ $(0 \leq i \leq d)$; (eiv) $E_i^* E_j^* = \delta_{ij} E_i^*$
 $(0 \leq i, j \leq d)$ where I denotes the identity matrix in Mat_X(C). By these facts, matrices $E_0^*, E_1^*, \ldots, E_d^*$ form a basis for a commutative subalgebra $M^* = M^*(x)$ of $\text{Mat}_X(\mathbb{C})$. Note that for $0\leqslant i\leqslant d$ we have

$$
E_i^*V = \text{Span}\{\widehat{y} \mid y \in \Gamma_i(x)\},\
$$

and that

$$
V = E_0^* V + E_1^* V + \dots + E_d^* V
$$
 (orthogonal direct sum).

We call E_i^*V the *i*-th subconstituent of Γ with respect to x. Moreover E_i^* is the projection from V onto E_i^*V for $0 \leq i \leq d$. For convenience we define E_{-1}^* and E_{d+1}^* to be the zero matrix of ${\rm Mat}_X(\mathbb{C})$.

We recall the definition of a Terwilliger algebra of Γ. Let $T = T(x)$ denote the subalgebra of Mat_X(\mathbb{C}) generated by M, M^{*}. We call T the Terwilliger algebra of Γ with respect to x. Recall M is generated by A so T is generated by A and the dual idempotents. We observe T has finite dimension. In addition, by construction T is closed under the conjugate-transpose map and so T is semi-simple. For a vector subspace $W \subseteq V$, we denote by TW the subspace $\{Bw \mid B \in T, w \in W\}$. We now recall the lowering, the flat and the raising matrix of T.

Definition 1. Let $\Gamma = (X, \mathcal{R})$ denote a simple, connected, finite graph. Pick $x \in X$. Let $d = \epsilon(x)$ and let $T = T(x)$ be the Terwilliger algebra of Γ with respect to x. Define $L = L(x)$, $F = F(x)$ and $R = R(x)$ in $\text{Mat}_X(\mathbb{C})$ by

$$
L = \sum_{i=1}^{d} E_{i-1}^* A E_i^*, \qquad F = \sum_{i=0}^{d} E_i^* A E_i^*, \qquad R = \sum_{i=0}^{d-1} E_{i+1}^* A E_i^*.
$$

We refer to L , F and R as the lowering, the flat and the raising matrix with respect to x, respectively. Note that $L, F, R \in T$. Moreover, $F = F^{\top}, R = L^{\top}$ and $A = L + F + R$.

Observe that for $y, z \in X$ we have the (z, y) -entry of L equals 1 if $\partial(z, y) = 1$ and $\partial(x, z) = \partial(x, y) - 1$, and 0 otherwise. The (z, y) -entry of F is equal to 1 if $\partial(z, y) = 1$ and $\partial(x, z) = \partial(x, y)$, and 0 otherwise. Similarly, the (z, y) -entry of R equals 1 if $\partial(z, y) = 1$ and $\partial(x, z) = \partial(x, y) + 1$, and 0 otherwise. Consequently, for $v \in E_i^* V$ $(0 \leq i \leq d)$ we have

 $Lv \in E_{i-1}^* V$, $Fv \in E_i^* V$, $Rv \in E_{i+1}^* V$. (1)

By a T-module we mean a subspace W of V, such that $TW \subseteq W$. Let W denote a T-module. Then W is said to be *irreducible* whenever W is nonzero and W contains no T-modules other than 0 and W. Since the algebra T is semi-simple, it turns out that any T-module is an orthogonal direct sum of irreducible T-modules.

Let W be an irreducible T-module. We observe that W is an orthogonal direct sum of the nonvanishing subspaces E_i^*W for $0 \leq i \leq d$. By the *endpoint* of W we mean $\min\{i \mid 0 \leqslant i \leqslant d, E_i^*W \neq 0\}$. We say W is thin whenever the dimension of E_i^*W is at most 1 for $0 \leq i \leq d$.

Observe that the subspace $T\hat{x} = {B\hat{x} | B \in T}$ is a T-module. Suppose that W is an irreducible T-module with endpoint 0. Then, $\hat{x} \in W$, which implies that $T\hat{x} \subseteq W$. Since W is irreducible, we therefore have $T\hat{x} = W$. Hence, $T\hat{x}$ is the unique irreducible T-module with endpoint 0. We refer to $T\hat{x}$ as the *trivial T-module*.

3 Distance-regularity and pseudo-distance-regularity

Recall graph $\Gamma = (X, \mathcal{R})$ from Section [2.](#page-1-0) In this section we recall the notions of (local) distance-regularity and (local) pseudo-distance-regularity of Γ. To do this, fix $x \in X$ and let d denote the eccentricity of x.

Assume for a moment that $y \in \Gamma_i(x)$ $(0 \leq i \leq d)$ and let z be a neighbour of y. Then, by the triangle inequality,

$$
\partial(x, z) \in \{i - 1, i, i + 1\}\,,\,
$$

and so $z \in \Gamma_{i-1}(x) \cup \Gamma_i(x) \cup \Gamma_{i+1}(x)$. For $y \in \Gamma_i(x)$ we therefore define the following numbers:

$$
a_i(x,y) = |\Gamma_i(x) \cap \Gamma(y)|, \quad b_i(x,y) = |\Gamma_{i+1}(x) \cap \Gamma(y)|, \quad c_i(x,y) = |\Gamma_{i-1}(x) \cap \Gamma(y)|.
$$

We say that $x \in X$ is distance-regularized (or that Γ is distance-regular around x) if the numbers $a_i(x, y)$, $b_i(x, y)$ and $c_i(x, y)$ do not depend on the choice of $y \in \Gamma_i(x)$ $(0 \leq i \leq d)$. In this case, the numbers $a_i(x) = a_i(x, y), b_i(x) = b_i(x, y)$ and $c_i(x) = c_i(x, y)$ are called the *intersection numbers of x*.

The concept of pseudo-distance-regularity around a vertex of a graph was introduced in [\[6\]](#page-12-14) by Fiol, Garriga and Yebra as a natural generalization of distance regularity around a vertex. We now recall this definition.

Let $A \in Mat_X(\mathbb{C})$ denote the adjacency matrix of Γ. Let $\rho(A)$ denote the spectral radius of A and let $v \in V$ denote a Perron-Frobenius vector of A. For $z \in X$ let v_z denote the z-coordinate of v. For $y \in \Gamma_i(x)$ $(0 \leq i \leq d)$ we define numbers $a_i^*(x, y)$, $b_i^*(x, y)$ and $c_i^*(x, y)$ as follows:

$$
a_i^*(x,y) = \sum_{z \in \Gamma(y) \cap \Gamma_i(x)} \frac{\upsilon_z}{\upsilon_y}, \quad b_i^*(x,y) = \sum_{z \in \Gamma(y) \cap \Gamma_{i+1}(x)} \frac{\upsilon_z}{\upsilon_y}, \quad c_i^*(x,y) = \sum_{z \in \Gamma(y) \cap \Gamma_{i-1}(x)} \frac{\upsilon_z}{\upsilon_y}.
$$

Observe that $a_i^*(x, y) + b_i^*(x, y) + c_i^*(x, y) = \rho(A)$.

We say that vertex $x \in X$ is pseudo-distance-regularized (or that Γ is pseudo-distanceregular around x) if the numbers $a_i^*(x, y)$, $b_i^*(x, y)$ and $c_i^*(x, y)$ do not depend on the choice of y. In this case, they are denoted by $a_i^*(x)$, $b_i^*(x)$ and $c_i^*(x)$ and they are called the pseudo-intersection numbers of Γ with respect to x. Moreover, the array

$$
\begin{Bmatrix}\n0 & c_1^*(x) & \cdots & c_{d-1}^*(x) & c_d^*(x) \\
0 & a_1^*(x) & \cdots & a_{d-1}^*(x) & a_d^*(x) \\
b_0^*(x) & b_1^*(x) & \cdots & b_{d-1}^*(x) & 0\n\end{Bmatrix}
$$

is called the *pseudo-intersection array of* Γ with respect to x.

Assume now that Γ is distance-regular around x. By [\[6,](#page-12-14) Proposition 3.2], Γ is also pseudo-distance-regular around x. However, the converse of this result is not true. In particular, it was shown in [\[6\]](#page-12-14) that the cartesian product $P_3 \Box \cdots \Box P_3$ of r paths of length 3 has pseudo-distance-regularized vertices which are not distance-regularized. For the convenience of the reader we would also like to present another example.

Example 2. Let Γ be the connected graph with vertex set $X = \{1, 2, 3, 4, 5, 6\}$ and edge set $\mathcal{R} = \{\{1, 2\}, \{1, 3\}, \{2, 4\}, \{2, 5\}, \{3, 5\}, \{3, 6\}\}\$. See Figure [1.](#page-9-0) Let A denote the set $\kappa = {\{1,2\},\{1,3\},\{2,4\},\{2,5\},\{3,5\},\{3,6\}}$. See Figure 1. Let A denote the adjacency matrix of Γ . It is easy to see that $\rho(A) = \sqrt{5}$ and $v = (2\sqrt{5}\sqrt{5} \ 1 \ 2 \ 1)^{\top}$ is a Perron-Frobenius vector of A. Consider vertex $1 \in X$ and note that $\epsilon(1) = 2$. It is straightforward to check that Γ is pseudo-distance-regular around 1 with the following pseudo-intersection array:

$$
\begin{Bmatrix} 0 & \frac{2}{\sqrt{5}} & \sqrt{5} \\ 0 & 0 & 0 \\ \sqrt{5} & \frac{3}{\sqrt{5}} & 0 \end{Bmatrix}
$$

However, Γ is not distance-regular around 1. Namely, vertex $4 \in \Gamma_2(1)$ has only one neighbour in $\Gamma(1)$, while vertex $5 \in \Gamma_2(1)$ has two neighbours in $\Gamma(1)$.

As already mentioned in the Introduction, it was proved in [\[18\]](#page-13-6) that if Γ is distanceregular around x, then the trivial T -module is thin. Fiol and Garriga [\[5\]](#page-12-12) later proved the following result (see also [\[4,](#page-12-13) Theorem 3.1]).

Theorem 3. Let $\Gamma = (X, \mathcal{R})$ be as in Section [2.](#page-1-0) Fix $x \in X$ and let $T = T(x)$ denote the corresponding Terwilliger algebra. Then, the trivial T-module is thin if and only if Γ is pseudo-distance-regular around x.

4 The main result and some products in T

Recall graph $\Gamma = (X, \mathcal{R})$ from Section [2.](#page-1-0) In this section we state our main result. To do this we need the following definition.

Definition 4. Let $\Gamma = (X, \mathcal{R})$ denote a finite, simple and connected graph. Pick $x, y, z \in \mathcal{R}$ X and let $P = [y = x_0, x_1, \ldots, x_i = z]$ denote a yz-walk. The shape of P with respect to x is a sequence of symbols $t_1t_2 \ldots t_j$, where $t_i \in \{f, \ell, r\}$, and such that $t_i = r$ if $\partial(x, x_i) =$ $\partial(x, x_{i-1}) + 1, t_i = f$ if $\partial(x, x_i) = \partial(x, x_{i-1})$ and $t_i = \ell$ if $\partial(x, x_i) = \partial(x, x_{i-1}) - 1$ $(1 \leq i \leq i)$ j). We will be using exponential notation for the shapes containing several consecutive identical symbols. For instance, instead of $rrrrfff\ell\ell r$ we simply write $r^4f^3\ell^2r$. For a positive integer *i*, let $r^{i}(\mathbf{y})$, $r^{i}(\mathbf{y})$ and $r^{i}(\mathbf{y})$ respectively denote the number of xy-walks of the shape $r^{i}\ell$, $r^{i}f$ and r^{i} with respect to x. We also define $r^{0}\ell(y) = r^{0}f(y) = 0$ for every $y \in X$, and $r^0(y) = 1$ if $y = x$ and $r^0(y) = 0$ otherwise.

For the rest of the paper we adopt the following notation.

Notation 5. Let $\Gamma = (X, \mathcal{R})$ denote a finite, simple, connected graph with vertex set X, edge set R and diameter D. Let $A \in Mat_X(\mathbb{C})$ denote the adjacency matrix of Γ . Fix a vertex $x \in X$ and let d denote the eccentricity of x. Let $E_i^* \in Mat_X(\mathbb{C})$ $(0 \leq i \leq d)$ denote the dual idempotents of Γ with respect to x. Let V denote the standard module of Γ and let $T = T(x)$ denote the Terwilliger algebra of Γ with respect to x. Let $T\hat{x}$ denote the unique irreducible T-module with endpoint 0. Let $L = L(x)$, $F = F(x)$ and $R = R(x)$ denote the lowering, the flat and the raising matrix of T, respectively. For $y \in X$, let the numbers $r^{i}\ell(y)$, $r^{i}f(y)$ and $r^{i}(y)$ be as defined in Definition [4.](#page-5-2)

We are now ready to state our main result.

Theorem 6. With reference to Notation [5,](#page-5-3) the following (i) – (iii) are equivalent:

- (i) $T\hat{x}$ is thin.
- (ii) Γ is pseudo-distance-regular around x.
- (iii) For every integer i $(0 \leq i \leq d)$ there exist scalars α_i, β_i , such that for every $y \in \Gamma_i(x)$ the following hold:

$$
r^{i+1}\ell(y) = \alpha_i r^i(y), \qquad r^i f(y) = \beta_i r^i(y).
$$

Recall that the equivalency of (i) and (ii) of the above theorem was already proved (see Theorem [3\)](#page-5-4). Therefore, we will focus on the equivalency of (i) and (iii) in the rest of this paper. We first evaluate several products in the Terwilliger algebra T that we will need later. The next result is straightforward to prove (using elementary matrix multiplication, comment below Definition [1,](#page-3-1) and [\(1\)](#page-2-0)) and is therefore left to the reader.

Lemma 7. With reference to Notation [5,](#page-5-3) pick $y \in X$. Then the following (i)–(iii) hold for an integer $i \geqslant 0$.

- (i) The y-entry of $R^i\hat{x}$ is equal to the number $r^i(y)$.
- (ii) The y-entry of $LR^i\hat{x}$ is equal to the number $r^i\ell(y)$.
- (iii) The y-entry of $FR^i\hat{x}$ is equal to the number $r^if(y)$.

Proposition 8. With reference to Notation [5,](#page-5-3) the vector $R^i\hat{x}$ is nonzero for $0 \leq i \leq d$.

Proof. Pick $0 \leq i \leq d$ and $y \in \Gamma_i(x)$ (note that $\Gamma_i(x)$ is nonempty). By Lemma [7\(](#page-6-1)i), the y-entry of $R^i\hat{x}$ is equal to the number $r^i(y)$. Note that by the definition of $r^i(y)$ and by the choice of y , we have that $r^i(y) > 0$. The result follows the choice of y, we have that $r^{i}(y) > 0$. The result follows. \Box

5 Proof of the main theorem

With reference to Notation [5,](#page-5-3) in this section we prove our main theorem. We also display a basis of $T\hat{x}$ and the matrix representing the action of the adjacency matrix on this basis in the case when $T\hat{x}$ is thin.

Lemma 9. With reference to Notation [5,](#page-5-3) the following (i), (ii) are equivalent:

- (i) $T\hat{x}$ is thin.
- (ii) The set $\{R^i\hat{x}: 0 \leq i \leq d\}$ is a basis of $T\hat{x}$.

In particular, if the above equivalent conditions (i), (ii) hold, then $E_i^*(T\hat{x})$ is spanned by
 $E_i^* \hat{x}$ and $\dim (F^*(T\hat{x})) = 1$ for $0 \le i \le d$ $R^i\hat{x}$ and dim $(E_i^*(T\hat{x})) = 1$ for $0 \leq i \leq d$.

Proof. As $R^i \in T$ for $0 \leq i \leq d$, we have that $R^i \hat{x} \in T\hat{x}$ for $0 \leq i \leq d$. Furthermore, by Proposition [8](#page-6-2) and [\(1\)](#page-2-0), the vectors $R^i\hat{x}$ are nonzero, pairwise orthogonal and $R^i\hat{x} \in E_i^*(T\hat{x})$
for $0 \le i \le d$, Assume first that $T\hat{x}$ is thin. Then $F^{*}(T\hat{x})$ is spanned by $B^i\hat{x}$ for $0 \le i \le d$. for $0 \leq i \leq d$. Assume first that $T\hat{x}$ is thin. Then $E_i^*(T\hat{x})$ is spanned by $R^i\hat{x}$ for $0 \leq i \leq d$.
This proves that the set $\{R^i\hat{x} \cdot 0 \leq i \leq d\}$ is a besis of $T\hat{x}$. Conversely, assume that This proves that the set $\{R^i\hat{x} : 0 \leq i \leq d\}$ is a basis of $T\hat{x}$. Conversely, assume that ${R^i \hat{x} : 0 \leq i \leq d}$ is a basis of $T\hat{x}$. Then the subspace $E_i^*(T\hat{x})$ is spanned by $R^i \hat{x}$, and so $\dim (F^*(T\hat{x})) = 1$ for $0 \leq i \leq d$. This implies that $T\hat{x}$ is thin. The result follows $\dim(E_i^*(T\hat{x})) = 1$ for $0 \leq i \leq d$. This implies that $T\hat{x}$ is thin. The result follows.

Proof of Theorem [6.](#page-5-0) As already mentioned, the equivalency of Theorem $6(i)$ $6(i)$ and Theorem $6(ii)$ $6(ii)$ follows from Theorem [3.](#page-5-4) We proceed by showing the equivalency of Theorem $6(i)$ and Theorem [6\(](#page-5-0)iii).

(i) implies (iii)

Assume that $T\hat{x}$ is thin. Recall that by Lemma [9](#page-6-3) the set ${Rⁱ\hat{x} : 0 \leq i \leq d}$ is a basis of $T\hat{x}$, $E_i^*(T\hat{x})$ is spanned by $R^i\hat{x}$ and dim $(E_i^*(T\hat{x})) = 1$ for $0 \le i \le d$. Consequently, by [\(1\)](#page-2-0) and since $L, F \in T$, we have that

$$
LR^{i+1}\widehat{x} \in E_i^*(T\widehat{x}), \qquad FR^i\widehat{x} \in E_i^*(T\widehat{x})
$$

for every $0 \leq i \leq d$. It follows from the above comments that for every $0 \leq i \leq d$ there exist scalars α_i, β_i , such that

$$
LR^{i+1}\hat{x} = \alpha_i R^i \hat{x}, \qquad FR^i \hat{x} = \beta_i R^i \hat{x}.
$$

The result now follows from Lemma [7.](#page-6-1)

(iii) implies (i)

Let W denote the vector subspace of V spanned by the vectors $R^i\hat{x}$ ($0 \leq i \leq d$). Since $\hat{x} \in E_0^* V$, it follows from [\(1\)](#page-2-0) that $R^i \hat{x} \in E_i^* V$ for $0 \leq i \leq d$. By construction and since $R^{d+1} \hat{x} = 0$ it is clear that W is closed under the action of R. Moreover, by (ev) from $R^{d+1}\hat{x} = 0$, it is clear that W is closed under the action of R. Moreover, by (eiv) from Section [2,](#page-1-0) the subspace W is invariant under the action of the dual idempotents as well. From Definition [1](#page-3-1) and [\(1\)](#page-2-0) it is easy to see that $L\hat{x} = F\hat{x} = 0$.

Recall that by the assumption, for every integer $0 \leq i \leq d$ there exist scalars α_i, β_i , such that for every $y \in \Gamma_i(x)$ we have

$$
r^{i+1}\ell(y) = \alpha_i r^i(y), \qquad r^i f(y) = \beta_i r^i(y).
$$

It follows from Lemma [7](#page-6-1) that $LR^{i+1}\hat{x} = \alpha_iR^i\hat{x}$ and $FR^i\hat{x} = \beta_iR^i\hat{x}$, and so W is invariant under the action of L and F. Since $A = L + F + R$, it follows that W is A-invariant as well. Recall that algebra T is generated by A and the dual idempotents, and so W is a T-module. Note that $R\hat{x} \in T\hat{x}$ for $0 \leq i \leq d$, and so $W \subseteq T\hat{x}$. As W is nonzero and $T\hat{x}$ is irreducible, we thus have $W = T\hat{x}$. It is clear that W is thin, since by construction and (1), the subspace E^*W is spanned by $R^i\hat{x}$. This finishes the proof. [\(1\)](#page-2-0), the subspace E_i^*W is spanned by $R^i\hat{x}$. This finishes the proof.

Theorem 10. With reference to Notation [5,](#page-5-3) assume that Γ satisfies the equivalent conditions of Theorem [6.](#page-5-0) Then the set

$$
\mathcal{B} = \left\{ R^i \widehat{x} \mid 0 \leqslant i \leqslant d \right\}
$$

is a basis of $T\hat{x}$. Moreover, the matrix representing the action of A on $T\hat{x}$ with respect to the (ordered) basis \mathcal{B} is given by

$$
\begin{pmatrix}\n0 & \alpha_0 & & & & \\
1 & \beta_1 & \alpha_1 & & & \\
 & & \ddots & \ddots & & \\
 & & & \ddots & \alpha_{d-2} & \\
 & & & 1 & \beta_{d-1} & \alpha_{d-1} \\
 & & & & 1 & \beta_d\n\end{pmatrix}
$$

Proof. By Theorem [6\(](#page-5-0)iii), for every integer $0 \leq i \leq d$ there exist scalars α_i, β_i , such that for every $y \in \Gamma_i(x)$ we have

$$
r^{i+1}\ell(y) = \alpha_i r^i(y), \qquad r^i f(y) = \beta_i r^i(y).
$$

It follows from Lemma [7](#page-6-1) that $LR^{i\hat{x}} = \alpha_{i-1}R^{i-1}\hat{x}$ and $FR^{i\hat{x}} = \beta_iR^{i\hat{x}}$. Recall that $A = L + F + R$, and so the result follows (note also that $\beta_0 = 0$). $L + F + R$, and so the result follows (note also that $\beta_0 = 0$).

6 Examples

With reference to Notation [5,](#page-5-3) in this section we present some examples. We first consider graphs which are distance-regular around x .

6.1 Distance-regularized vertices

With reference to Notation [5,](#page-5-3) assume that Γ is distance-regular around x, with the corresponding intersection numbers $a_i(x)$, $b_i(x)$, $c_i(x)$ ($0 \leq i \leq d$). Then it is easy to see that for every $y \in \Gamma_i(x)$ $(0 \leq i \leq d)$ we have

$$
r^{i}(y) = \prod_{j=1}^{i} c_{j}(x), \qquad r^{i+1}\ell(y) = b_{i}(x) \prod_{j=1}^{i+1} c_{j}(x), \qquad r^{i} f(y) = a_{i}(x) \prod_{j=1}^{i} c_{j}(x).
$$

Therefore, for every $y \in \Gamma_i(x)$ we have that $r^{i+1}\ell(y) = \alpha_i r^i(y)$ and $r^i f(y) = \beta_i r^i(y)$ with $\alpha_i = b_i(x)c_{i+1}(x)$ and $\beta_i = a_i(x)$. By Theorem [6,](#page-5-0) the trivial T-module $T\hat{x}$ is thin.

6.2 Bipartite graphs

With reference to Notation [5,](#page-5-3) assume that Γ is bipartite. Observe that in this case $r^{i} f(y) = 0$ for every $0 \leq i \leq d$ and for every $y \in \Gamma_{i}(x)$. Therefore, we have the following result.

Corollary 11. With reference to Notation [5,](#page-5-3) assume that Γ is bipartite. Then $T\hat{x}$ is thin if and only if for $0 \leq i \leq d$ there exist scalars α_i , such that for every $y \in \Gamma_i(x)$ we have $r^{i+1}\ell(y) = \alpha_i r^i(y).$

Proof. Immediately from Theorem [6](#page-5-0) and the above observation.

Consider graph Γ from Example [2](#page-4-0) (see also Figure [1\)](#page-9-0), and observe that Γ is bipartite. Fix vertex $1 \in X$ and note that $d = 2$. It is easy to see that for every $y \in \Gamma_i(1)$ $(0 \le i \le 2)$ we have $r^{i+1}\ell(y) = \alpha_i r^i(y)$, where $\alpha_0 = 2, \alpha_1 = 3$ and $\alpha_2 = 0$. As Γ is bipartite, it follows from Corollary [11](#page-8-1) that $T1$ is thin.

 \Box

Figure 1: Graph Γ from Example [2.](#page-4-0)

6.3 Trees

With reference to Notation [5,](#page-5-3) assume that Γ is a tree. Observe that in this case (as Γ is also bipartite) we have $r^{i}(y) = 1$ and $r^{i}(y) = 0$ for every $0 \leq i \leq d$ and for every $y \in \Gamma_i(x)$. Therefore, by Theorem [6,](#page-5-0) $T\hat{x}$ is thin if and only if for $0 \leq i \leq d$ there exist scalars α_i , such that for every $y \in \Gamma_i(x)$ we have $r^{i+1}\ell(y) = \alpha_i$. Note however that $r^{i+1}\ell(y) = |\Gamma(y) \cap \Gamma_{i+1}(x)| = b_i(x, y)$. It follows that the trivial module $T\hat{x}$ is thin if and only if the intersection numbers $b_i(x, y)$ do not depend on the choice of $y \in \Gamma_i(x)$. As $a_i(x, y) = 0$ and $c_i(x, y) = 1$ for every $y \in \Gamma_i(x)$, we have the following corollary of Theorem [6.](#page-5-0)

Corollary 12. With reference to Notation [5,](#page-5-3) assume that Γ is a tree. Then $T\hat{x}$ is thin if and only if Γ is distance-regular around x.

6.4 Cartesian product $P_3 \Box \cdots \Box P_3$

Let us first recall the definition of cartesian product of graphs. Let Γ_1 and Γ_2 be finite simple graphs with vertex set X_1 and X_2 , respectively. Then the cartesian product of Γ_1 and Γ_2 , denoted by $\Gamma_1 \square \Gamma_2$, has vertex set $X_1 \times X_2$. Vertices (x_1, x_2) and (y_1, y_2) are adjacent in $\Gamma_1 \square \Gamma_2$ if and only if either $x_1 = y_1$ and x_2, y_2 are adjacent in Γ_2 , or $x_2 = y_2$ and x_1, y_1 are adjacent in Γ_1 .

With reference to Notation [5,](#page-5-3) in this subsection we consider graph $\Gamma = P_3 \Box \cdots \Box P_3$, the C artesian product of n copies of the path P_3 on 3 vertices (cf. [\[6,](#page-12-14) p. 188]). Assume that the vertex set and the edge set of P_3 are $\{0, 1, 2\}$ and $\{\{0, 1\}, \{1, 2\}\}\$, respectively. Then the vertex set of Γ is

$$
X = \{(y_1, y_2, \dots, y_n) \mid y_i \in \{0, 1, 2\} \text{ for each } 1 \leq i \leq n\}.
$$

Vertices $y = (y_1, y_2, \ldots, y_n)$ and $z = (z_1, z_2, \ldots, z_n)$ are adjacent in Γ if and only if y and z differ in exactly one coordinate (say coordinate i), and $|y_i - z_i| = 1$. Note that Γ is bipartite. We assume that vertex x from Notation [5](#page-5-3) is vertex $x = (0, 0, \ldots, 0)$. Observe that $d = 2n$ and that for $0 \leq i \leq 2n$ we have

$$
\Gamma_i(x) = \{ (y_1, y_2, \dots, y_n) \in X \mid y_1 + y_2 + \dots + y_n = i \}.
$$

For $1 \leq i \leq n$ let us denote by e_i the vertex of Γ , which has i-th coordinate equal to 1, and all other coordinates equal to 0. For vertices $y = (y_1, y_2, \ldots, y_n), z = (z_1, z_2, \ldots, z_n) \in X$ let $y+z$ denote the *n*-tuple $(y_1+z_1, y_2+z_2, \ldots, y_n+z_n)$. Note that $y+z$ is not necessarily contained in X. Furthermore, let us define $A(y) = \{j \mid 1 \leq j \leq n, y_j = 0\}, B(y) = \{j \mid 1 \leq j \leq n\}$ $1 \leq j \leq n, y_j = 1$ } and $C(y) = \{j \mid 1 \leq j \leq n, y_j = 2\}$. Note that

$$
|A(y)| + |B(y)| + |C(y)| = n, \qquad |B(y)| + 2|C(y)| = \partial(x, y). \tag{2}
$$

Assume now that $y = (y_1, y_2, \dots, y_n) \in \Gamma_i(x)$. Then $r^i(y)$ equals to the number of walks between x and y in the n-dimensional integer lattice, where for each step of the walk the only possible directions are along one of the "vectors" e_i ($0 \leq j \leq n$). This shows that

$$
r^{i}(y) = {i \choose y_{1}} {i - y_{1}} \choose y_{2}} {i - y_{1} - y_{2}} \cdots {i - y_{n-1}} \choose y_{n}} = {i!(i - y_{1})!(i - y_{1} - y_{2})! \cdots (i - y_{1} - y_{2} - \cdots - y_{n-1})! \over y_{1}!(i - y_{1})!y_{2}!(i - y_{1} - y_{2})! \cdots y_{n-1}!(i - y_{1} - y_{2} - \cdots - y_{n-1})!y_{n}! = {i! \over y_{1}!y_{2}! \cdots y_{n-1}!y_{n}!} = {i! \over 2^{|C(y)|}}.
$$

Observe also that

$$
\Gamma(y) \cap \Gamma_{i+1}(x) = \{ y + e_j \mid j \in A(y) \} \cup \{ y + e_j \mid j \in B(y) \}.
$$

Moreover, for $j \in A(y)$ we have $|C(y+e_j)| = |C(y)|$, and for $j \in B(y)$ we have $|C(y+e_j)| =$ $|C(y)| + 1$. It follows that

$$
r^{i+1}\ell(y) = \sum_{j \in A(y)} r^{i+1}(y + e_j) + \sum_{j \in B(y)} r^{i+1}(y + e_j)
$$

=
$$
\frac{|A(y)|(i+1)!}{2^{|C(y)|}} + \frac{|B(y)|(i+1)!}{2^{|C(y)|+1}} = \frac{(i+1)!}{2^{|C(y)|}} (|A(y)| + \frac{|B(y)|}{2}).
$$

Finally, it follows from [\(2\)](#page-10-0) that $|A(y)| + |B(y)|/2 = (2n - i)/2$, and so

$$
r^{i+1}\ell(y) = \frac{(i+1)!(2n-i)}{2^{|C(y)|+1}}.
$$

This shows that for every $y \in \Gamma_i(x)$ $(0 \leq i \leq 2n)$ we have $r^{i+1}\ell(y) = \alpha_i r^i(y)$, where $\alpha_i = (i+1)(2n-i)/2$ is independent on the choice of $y \in \Gamma_i(x)$. As Γ is bipartite, it follows from Corollary [11](#page-8-1) that $T\hat{x}$ is thin.

6.5 A construction

In this subsection we show how to construct new graphs, that satisfy the equivalent conditions of Theorem [6](#page-5-0) for a certain vertex. To do this, let Γ and Σ denote finite, simple graphs with vertex set X and Y, respectively. Assume that Γ is connected. Fix a vertex

Figure 2: Graph H obtained from the cartesian product $\Gamma \Box P_2$ where Γ is the graph from Example [2](#page-4-0) and P_2 denotes the path on 2 vertices.

 $x \in X$ and consider the Cartesian product Γ $\square \Sigma$. Let H denote a graph obtained by adding a new vertex w to the graph $\Gamma \square \Sigma$, and connecting this new vertex w with all vertices (x, y) , where y is an arbitrary vertex of Σ . See for example Figure [2.](#page-11-0)

Note that for an arbitrary vertex (x', y') of H different from w, the distance between w and (x', y') in H is equal to the distance between x and x' in Γ plus one:

$$
\partial_H(w, (x', y')) = \partial_\Gamma(x, x') + 1.
$$

It follows that $d_H = d+1$, where d_H is the eccentricity of w in H and d is the eccentricity of x in Γ. Moreover, for $1 \leq i \leq d_H$ we have

$$
H_i(w) = \Gamma_{i-1}(x) \times Y = \{(u, y) \mid u \in \Gamma_{i-1}(x), y \in Y\}.
$$

In what follows, we use subscripts to distinguish the number of walks of a particular shape in H and in Γ . For example, for $x' \in \Gamma_i(x)$, we denote the number of walks from x to x' of shape $r^i\ell$ with respect to x by $r^i\ell_{\Gamma}(x')$. For $(x', y') \in H_i(w)$, we denote the number of walks from w to (x', y') of shape $r^i \ell$ with respect to w by $r^i \ell_H((x', y'))$. It is easy to see that for $(x', y') \in H_i(w)$ $(1 \leq i \leq d_H)$ we have

$$
r_H^i((x', y')) = r_\Gamma^{i-1}(x'), \qquad r^{i+1}\ell_H((x', y')) = r^i\ell_\Gamma(x'),r^i f_H((x', y')) = r^{i-1} f_\Gamma(x') + |\Sigma(y')| r_\Gamma^{i-1}(x'),
$$
\n(3)

where $\Sigma(y')$ is the set of neighbours of y' in Σ . Assume now that for vertex x of Γ the equivalent conditions of Theorem [6](#page-5-0) are satisfied, and that Σ is regular with valency k. It follows from [\(3\)](#page-10-1) that for $1 \leq i \leq d_H$ and for every $(x', y') \in H_i(w)$ we have

$$
r^{i+1}\ell_H((x',y')) = r^i\ell_{\Gamma}(x') = \alpha_{i-1}r_{\Gamma}^{i-1}(x') = \alpha_{i-1}r_H^i((x',y'))
$$

and

$$
r^{i} f_{H}((x', y')) = r^{i-1} f_{\Gamma}(x') + |\Sigma(y')| r_{\Gamma}^{i-1}(x') = (\beta_{i-1} + k) r_{\Gamma}^{i-1}(x').
$$

As we also have $r\ell_H(w) = |Y| = |Y| r_H^0(w)$ and $f_H(w) = 0$, we see that vertex w of H satisfies the condition of Theorem [6\(](#page-5-0)iii). Therefore, by Theorem [6,](#page-5-0) the trivial $T(w)$ module is thin.

Acknowledgements

This work is supported in part by the Slovenian Research Agency (research program P1- 0285, research projects N1-0062, J1-9110, J1-1695, N1-0140, N1-0159, J1-2451, N1-0208, J3-3001, J3-3003, and Young Researchers Grant).

References

- [1] B. Fernández, Certain graphs with exactly one irreducible T -module with endpoint 1, which is thin, submitted.
- [2] B. Fernández and Š. Miklavič, On the Terwilliger algebra of distance-biregular graphs, *Linear Algebra Appl.* **597** (2020), 18–32.
- [3] B. Fernández and Š. Miklavič, On bipartite graphs with exactly one irreducible T module with endpoint 1, which is thin, *European J. Combin.* **97** (2021), 103387.
- [4] M. A. Fiol, On pseudo-distance-regularity, Linear Algebra Appl. 323 (2001), 145–165.
- [5] M. A. Fiol and E. Garriga, On the algebraic theory of pseudo-distance-regularity around a set, *Linear Algebra Appl.* 298 (1999), 115–141.
- [6] M. A. Fiol, E. Garriga and J. L. A. Yebra, Locally pseudo-distance-regular graphs, J. Combin. Theory Ser. B 68(2) (1996), 79–205.
- [7] N. Hamid and M. Oura, Terwilliger algebras of some group association schemes, Math. J. Okayama Univ. 61 (2019), 199–204.
- [8] A. Hanaki, Modular Terwilliger algebras of association schemes, Graphs Combin. 37.5 (2021), 1521–1529.
- [9] S. D. Li, Y. Z. Fan, T. Ito, M. Karimi, and J. Xu, The isomorphism problem of trees from the viewpoint of Terwilliger algebras, J. Combin. Theory Ser. A 177 (2021).
- [10] X. Liang, T. Ito and Y. Watanabe, The Terwilliger algebra of the Grassmann scheme $J_q(N, D)$ revisited from the viewpoint of the quantum affine algebra $U_q(\hat{\mathfrak{sl}}_2)$, Linear Algebra Appl., 596 (2020), 117-144.
- [11] M. S. MacLean and Š. Miklavič, On a certain class of 1-thin distance-regular graphs, Ars Math. Contemp. **18.2** (2020), 187-210.
- [12] M. S. MacLean and S. Penjić, A combinatorial basis for Terwilliger algebra modules of a bipartite distance-regular graph, Discrete Math. 344.7 (2021), 112393.
- [13] J. V. S. Morales, On Lee association schemes over \mathbb{Z}_4 and their Terwilliger algebra, Linear Algebra Appl. 510 (2016), 311–328.
- [14] M. Muzychuk and B. Xu, Terwilliger algebras of wreath products of association schemes, *Linear Algebra Appl.* **493** (2016), 146–163.
- [15] S. Penjić, On the Terwilliger algebra of bipartite distance-regular graphs with $\Delta_2 = 0$ and $c_2 = 2$, *Discrete Math.* **340** (2017), 452-466.
- [16] Y. Y. Tan, Y. -Z. Fan, T. Ito and X. Liang, The Terwilliger algebra of the Johnson scheme $J(N, D)$ revisited from the viewpoint of group representations, European J. Combin. 80 (2019), 157–171.
- [17] H. Tanaka and T. Wang, The Terwilliger algebra of the twisted Grassmann graph: the thin case, *Electron. J. Comb.* **27** (4) (2020), $\#P4.15$.
- [18] P. Terwilliger, Algebraic Graph Theory. Available at <https://icu-hsuzuki.github.io/lecturenote/>
- [19] P. Terwilliger, The subconstituent algebra of an association scheme, (part I), J. Algebraic Combin. 1 (1992), 363–388.
- [20] P. Terwilliger and A. \check{Z} itnik, The quantum adjacency algebra and subconstituent algebra of a graph, J. Combin. Theory Ser. A 166 (2019), 297–314.
- [21] M. Tomiyama, The Terwilliger algebra of the incidence graph of the Hamming graph, J. Algebraic Combin. 48 (2018), 77–118.
- [22] J. Xu, T. Ito, and S. Li, Irreducible Representations of the Terwilliger Algebra of a Tree, Graphs Combin. 37.5 (2021), 1749–1773.