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Abstract
The weighted binomial sum fp,(r) = 27737, (m) arises in coding theory and

i
information theory. We prove that, for m ¢ {0,3,6,9,12}, the maximum value of
fm(r) with 0 < r < m occurs when r = [m/3] + 1. We also show this maximum

value is asymptotic to \/% (%)m as m — 00.

Mathematics Subject Classifications: 05A10, 11B65, 94B65

1 Introduction

Let m be a non-negative integer, and let f,,(r) be the function:
1 < /m
i=0

This function arises in coding theory and information theory e.g. [2, Theorem 4.5.3]. It
is desirable for a linear code to have large rate (to communicate a lot of information) and
large minimal distance (to correct many errors). So for a linear code with parameters
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[n, k,d], one wants both k/n and d/n to be large. The case that kd/n is large is studied
in [1]. A Reed-Muller code RM(r,m) has n = 2™, k = >"7_ (") and d = 2™™" by [4,

§6.2|, and hence kd/n equals f,,(r). It is natural to ask which value of r maximizes fn (1),
and what is the size of the maximum value.

Theorem 1. Suppose that m,r are integers where 0 < r < m. The mazximum value of
Jm(r) =273 0 () occurs when v = | %] + 1 provided m & {0,3,6,9,12}.

We give an optimal asymptotic bound for the maximum value of f,(r).

Theorem 2. Suppose that m ¢ {0,1,3,6,9,12} and ro = [%| + 1. Then

1 k+2 m 1 (m
. 51 (1= 7 (n) <0 <7573

where k := 3rg —m € {1,2,3}. Furthermore,

@ hw< = (3) wd v (3) = -

We prove that f,,(r) increases strictly if 0 < r < ro := [%] +1 and m > 12 (see
Theorem 6), and it decreases strictly for ro < r < m (see Theorem 8). Elementary
arguments in Lemma 4(c) show that f,,(0) < f.(1) < --- < fi(ro —1). More work is
required to prove that f,,(ro — 1) < fiu(r0). Determining when f,,(r) decreases involves
a delicate inductive proof requiring a growing amount of precision, and inequalities with
rational functions such as X; = ;j:fi, see Lemma 5. In Section 5 we establish bounds
(and asymptotic behavior) for f,,(r¢) using standard methods.

Brendan McKay [3] showed, using approximations for sufficiently large m, that the
maximum value of f,,(r) is near m/3. His method may well extend to a proof of Theo-
rem 1. If so, it would involve very different techniques from ours.

2 Data, comparisons and strategies

The values of f,,,(0), fin(1), fn(2),. .., fin(m —2), fr.(m —1), fin(m) appear to increase to
a maximum and then decrease. For ‘large’ m we see that

1 2 2 2 2 1 1
1<m+ <m+m~|— <”'?'”>8_m—|—m~|— >4_m+ o

2 8 om—2 om—2 om—1 > 1.

Computer calculations for ‘large’ m suggest that a maximum value for f,,(r) occurs at
ro = [ %] + 1, see Table 1 which lists the integer part | f,,(r)]. Computing f,,(r) exactly
shows that for m € {0,3,6,9,12} the maximum occurs at ro — 1 and not rg, see Table 2.
The maximum happens to occur for a unique r, except for m = 1.

Determining the relative sizes of f,,(r) and f,(r + 1) is reduced in Lemma 3 to

determining the relative sizes of >°;_, () and (TT1)'
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Table 1: Maximum values of | f,,(r)] for 0 < < m and m € {6,7,...,15}.

6 1 3 (5 3 1 1

701 4 7 6 3 1 1

8 1 4 9 0w 6 3 1 1

9 1 5 11 (16) 1 7 3 1 1

10 1 5 14 22 9 13 7 3 1 1

11 1 6 16 29 32 23 14 7 3 1 1

12 1 6 19 37 39 02 14 7 3 1 1

13 1 7 23 47 68 64 45 27 15 7 3 1 1

4 1 7 2 58 91 (108 101 77 50 29 15 7 3 1 1
15 1 8 30 72 121 154 (155 128 89 54 30 15 7 3 1 1

Lemma 3. Suppose that 0 < r < m. Then
(a) the inequality fm(r) < fm(r+1) is equivalent to Y7o () < (7)),
(0) if 31 (7) < (), then g ("77) < (7)),
(c) the inequality fin(r) > fm(r 4+ 1) is equivalent to Y ;o (7) > (7)), and
() if 3o (7) = (1), then Eise ("71) > (71)-

Proof. (a,b) Clearly fn,(r) < f(r+1) is equivalent to 2>°;_ () < S (") which is
equivalent to >_;_, () < (r+1) Ifr<mand | (") <(, +1), then

~(m+1 ~ m+1 (m m+1 < (m
;( i )_;m—i+1<i)<m—r+1;(i)
m+1< m) (m—l—l)
< = .
m—r\r+1 r+1
(c,d) Clearly f,(r) > fin(r+1) is equivalent to 237 (7 )>ZT+1(Z)Wh1Ch in turn,
is equivalent to Y7 o (7) > (r+1) >, (M) > (r+1) then as m > r > 0,

> (T en () e ()

i=0 i=0 i=0
—r—1 1
Smorm ey (™ . 0
m r+1 r+1
The following easy lemma elucidates which r € {0, ..., m} maximize f,,(r).
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Lemma 4. Let s,,(m + 1) = 2™, and for 0 < r < m define

sm(r) :i <m) P 1 Gl S A L) _m—r

— \i Sm (1) (T) r+1

(a) If 0 < r < m, then ¢, (1) < tm(r), and if 0 < r < m, then t,(r + 1) < t,(r).
(b) If m > > 2, then for some r*, f,,(0) < --- < fr,(r*) and f,(r* +1) > --- > f,.(m).
(C> maX{fm(O)a <o 7fm(m>} = maX{fm(T*)v fm(r*+1>} and fm(o) << fm(TO_l)'

Proof. (a) We show ¢,,(r) < t,(r) via induction on r. This is true when r = 0 as
c¢m(0) =m < m+1 = t,(0). Suppose that 0 < r < m and ¢,,(r) < t,,(r) holds. That
is, (,7)/ (") < Sm(r+1)/sm(r) holds. Since ¢y (r +1) = 22t < B=F — ¢, (r) we have
Cm(r+ 1) < e (r) < t,(r). Using properties of mediants, it follows that

(o) () Fsmr+1)  s,(r+1)
() S () F ) sal)

Hence ¢, (1 + 1) < tp(r + 1) < tp(r)
induction, and it also proves that t,,(

(b) Since sm(m—i- 1) = 2™, part (a) shows that 1 = t,,(m) < --- < t,(0) = m + L.
Choose an integer r* such that ¢,,(r*) < 2 < t,,(r* — 1). The following are equivalent:
2 < tm(r); 28m(r) < sm(r +1); fin(r) < fm(r +1). Thus 2 < t,(r* — 1) < -+ < t,,(0)
implies f,,(0) < -+ < fr(1%). Similarly, tm(m — 1) < <tp(rf41) <2 and t,(r) < 2
implies f,(r +1) < fi(r). Hence fo,(r* +1) > -+ > f.(m).

( ) By part (b), max{ f,(r) | 0<r<m}= max{fm( Vo fm(r+ 1D 2 < ¢p(r) =
", then 3r +2 < m and r < [75 2J Hence 2 < ¢,,(r) < t,(r) by part (a), and
22| < r* — 1 by the deﬁnltlon of r*. Thus ro — 1 = [ ] < r* and it follows from
part (b) that f,,(0) < --- < fi.(ro — 1). O

Fix m and r where 0 < r < m. We shall use the following notation:

Cm(r+1) = =t (r).

as Sm(n + 1) = (7)) + sm(n). This completes the
r+1) < tn(r), as claimed.

(3) X":r Z+- for 0 <7<,
m—r-4+1

(4) Si=1+Xm+ XX+ + X0 X0 X, for0<j<r,

(5) 7—3:1+X1+X1X2++X1X2X] for0<]<7"

Our convention in (5) is that Ty = 1 as Tj = >.7_([T}._, X&) equals 1 when j = 0.
Lemma 5. Fiz m,r,j where 0 < j <r < m. Using the above definitions,

(a) the inequality S°)_ o (1) > ( \) is equivalent to T; > X',

(b) the inequality > _;_, () < (TTI) is equivalent to Sy < X,
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Proof. For 0 < i < r, we have (™) = X;(_ ™ )so (") = (IT.— L Xk) (") holds. There-

r—1 r— z—l—l
fore ZLO (") = ("X, (Hk L ) "™T;. Since (") = X (r—i—l)’ the inequality
7y (") > (TTI) is equivalent to ()7} > X0 (™) which is equivalent to T; > X .

This proves part (a).
Note that Y7 (7) = Y0 (™) = (ML = (7)S since Sy = T,. Since (7)) =

r—+1
Xt (T), the inequality Y ;_, (T) < (TTI) is equivalent to (T)S{) < X;! (T) which is
equivalent to Sy < X, '. This proves part (b). O

3 Proof that f,,(r) is increasing for 0 < r < r

Recall that m > 0 and ro := %] + 1. We now strengthen Lemma 4(c).
Theorem 6. If m ¢ {0,1,3,6,9,12}, then f,,(0) < fin(1) < -+ < fin(ro).

Proof. The statement is easy to check for m € {2,4,5}. The statement follows from
Tables 1 and 2 for m € {7,8,10,11,13,14}. Suppose now that m > 15.

Table 2: O = max{ f,,(ro — 1), fm(ro)} for 0 <m < 12, 7o = |m/3] + 1.

6 8 9 10 11 12

—_
—

m 0 1 2 3 4
Jm(ro —1) 1 2 3|18 22 29 |3

)
3 T
fatro) 3 [ 3] 3[4 [ HEREE

Recall that 7o = [%] + 1 and m € {3r¢ — 3,3r¢ — 2,319 — 1}. By Lemma 4(c) it
suffices to show that f,,(ro —1) < fi(r0). If we prove this for m = 3ry — 3, Lemma 3(b,a)
gives it for m = 3rg — 2 and m = 3rqg — 1 as well, so for ry > 6 we want to show
faro—3(r0 — 1) < f3r,—3(70). This is true for ry = 6 by Table 1. We set t :=1rq— 1, m := 3t
and we prove, using induction on t, that f3;(t) < fs:(t + 1) holds for all ¢ > 6.

Note that fs;(t) < fa:(t + 1) is equivalent by Lemma 3(a) to >¢_, (% < (ti)? and
this is equivalent to Sy < X; ' by Lemma 5(b). Putting m = 3t and r = t in (3), gives
Xi: t;ti_:ril and SOZ 1+X1+X1X2+"'+X1X2" Xt by (4)

It follows from 0 < X; < -+ < X5 < X, and X, = T+4 < 1 that

o]

|

N
o] -1 =

[y
—_

53:1+X4+X4X5—|—"'+X4X5"'Xt<1—|——+——|—

1 1
2 4 ) 2t 3 Z
The recurrence relation S; = 14 X;11S;41 for 0 < j < ¢ implies that
So=14+X1(14+Xo(14+X35)) <1+X;(1+Xe(1+2X3))

t t—1 2(t — 2)
14— (1+——(1+2—2)).
+2zf+1< +215+2< M T ))

*Observe that fo(1) =271 ((8)—&—(?)) =271140) = 1

ot
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We aim to show that Sy < X_l. It suffices to prove 1 + X (1 + X5 (1 +2X3)) < XO_1
where X = t+1. This amounts to proving that

LY PO ey U (Cal)h R
2t + 1 2t + 2 2t +3 St41

Rearranging, and using the denominator (2t + 1)(2t + 2)(2t + 3), gives

< 3t — 17t — 6 B (3t +1)(t —6)
T2t 4+1)(2t+2)(2t+3) (2t +1)(2t +2)(2t + 3)

This inequality is valid for all £ > 6. This completes the proof. O

How might one prove a nice formula such as lim, o > 5, (31.8) / (335) =27
Remark 7. For s > 4 set m = 3s and 7o = s + 1. Then f,,(ro — 1) < fi(ro) by
Theorem 6. Hence S5 (¥) < (%) = 2% (33) and so lim, 00 >0, (%) /(%) < 2. We

s+1 s+1
show f,(10) > fim(ro+ 1) in Section 4, and therefore limy oo > ( )/(35) > 2.

S

4 Proof that f,,(r) is decreasing for ro < r < m

Showing that f,,(r ) decreases strictly for 7o < r < m is much harder. Recall that () =0
if i <0, and (}) =4 HJ o(r —j) if i > 0. In this section we prove:

Theorem 8. If m > 2, then f,,(|m/3|+1) > f.(|m/3]+2) > - > f(m)=1.

Our proof of Theorem 8 depends on two technical lemmas, the first of which proves
that the non-leading coefficients of a certain polynomial A(r) are all negatlve

First define B;(r) = [[,_,(r—F). Now [[i_,(r—£) = r*4+-> 4 bixr* and the coefficients
b, alternate in sign: for 0 < k <4, we have b;;, > 0 if i — k is even and b;;, < 0if 7 — k is
odd. Next define polynomials A;(r) via:

(6)  Aa(r)=r*—15r—10 and A;(r) = (2r +i)A;_1(r) — Bi(r) fori > 3.

Clearly deg(A;(r)) =i and we may write A;(r) = ' + 3 1_ aipr®. We use a;; = 1.
Comparing coefficients in this recurrence and B;(r) = (r — i) B;_1(r), shows that

(Ra) Q20 = —10, Q21 = —15, Qi = 7;(11'_17]@ + 2@1'_17]4,_1 — b@k for 4

= 3,
(Rb)  boo =2, bo1=—3, b= —ibi_1+bi_11 fori>3
Lemma 9. Let Qi ks bi,ka Ai(?"), Bz<7') be as above.
(a’) ‘[fZ 2 2; then bi,i—l fnd —(l+1) and a’i,i—l — _(i+4> )

2 2

(b) Ifi>2and0< k<i—1, then a;p < —2b;x <0 ifi—k is even, and a; < by, <0
if i — k is odd.
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(c) Ifi > 2, then the coefficients a; ) are negative for 0 < k < i.

Proof. (a) Clearly b;;—1 = — Z;le = —(igl). The formula for a;;—; holds for ¢ = 2 and
by induction using the recurrence (Ra).

(b) We use induction on i. For the base case i = 2, either i — k is even and agy =
—10 < —2byp = —4, or i — k is odd and az; = —15 < by; = —3. Thus the claims are true
for 7+ = 2. Suppose now that ¢ > 3, and the claims are valid for ¢ — 1.

By part (a), a;—1; = —(i;4) < —(i;Q) = b;;—1 < 0 as claimed. It remains to consider

k in the range 0 < k < ¢ — 1. It is useful to set a; _; = b; -1 = 0. Suppose first that i — k
is even. Using the recurrences (Ra), (Rb) and induction gives

aip =1(ai—1 6+ bicig) + (2ai-1 -1 — bic16-1)
< i(bi—i g +bimik) + (—4bim1 k-1 — bic1k-1)
< 2ibi—yp — 2bi1 -1 = =20 < 0.

If + — k is odd, then a similar argument gives

i = 1(@i—1p +bi1k) + (2ai-1 k-1 — bic1p-1)
< i(=2bi—1 + bic1 k) + (20i—1 k-1 — bic1 k—1)
< —ibi—1 gk +bic1 -1 = by <O0.

(c) This follows immediately from part (b). O

Lemma 10. Suppose that j > 4. Then > (ST._I) > (3T_1) holds for all r in the range

) i=r—j i r+1
j<r<(y)

Proof. We apply' Lemma 5(a) with m = 3r — 1. Hence X; = %;r_ll by (3). Since

S (M) =221 () it suffices by Lemma 5(a) to prove that
er:1+X1+X1X2+"‘+X1X2"'Xj >X0_1.

We prove that this inequality holds for all 7 in the range 7 < r < (“;2). This inequality

is equivalent to

(7) X > X0 (G TG =) =) = 1)) - L

The right-side of (7) is a rational function in r, which when j = 4, equals

Pyr) 2r+2 (2r+1 (2r (2r—1
= = —1)-1)—1) -1
Qs(r) r—=2\r—1\r \\r+1
where the denominator is Q4(r) = (r + 1)r(r — 1)(r — 2), and the numerator is Py(r) =
(r + 1)r(r* — 15r — 10). Since ged(Py(r), Q4(r)) = (r + 1)r, the polynomials Ay(r) :=

r? —15r — 10 and By (r) := (r — 1)(r — 2) are coprime. The putative inequality (7) when
j =4 is therefore

r—3 _ Pyr)  As(r) r?*—15r—10

% +3° Qu(r)  Balr) (r=1)r—2)
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Observe that As(r) < 72 —15r < 0 for 4 < r < 15 = (S) Thus for r in the range
4 <r< (g), the left side of (7) is positive, and the right side is at most 0. Thus the
inequality is valid for 4 < r < (g) and the claim is true for j = 4.

Assume now that 7 > 4, and that the claim is true for j—1. Therefore the inequality (7)
can be written

r—j+1 _ B Pi(r) 1 Bia(r)
;= , > where X; = —1.
To2r+i—17 Q4(r) Q;(r) = (X5-0)” Qj-1(r)
Since (X;_1)7 ' = 2:;;:227 this gives rise to the recurrences:
Py(r) = (2r +j = 2)Pja(r) = (r =+ 2)Q;1(r) for j > 4,
Qj(r)=(r—7+2)Qj-1(r) for j > 4.

It is clear that Q;(r) = (r+1)r(r—1)---(r—j7+42) = (r+1)rB;j_»(r) holds and B;_»(r)
has degree j — 2. Furthermore, (r + 1)r divides ged(P;(r),Q;(r)), so the polynomials
A, _5(r), which are defined by the similar recurrence (6), satisfy P;(r) = (r + 1)rA;_o(r)
and also have degree j — 2.

By Lemma 9, A;(r) —r has negative coefﬁcients and leading coefficient — (i+4) So for

i >2andr < (1Y), we have 4;(r) < ri— ("1*)r"=? < 0. Further, B; ( ) =IT._y(r—0) >0

for r > i+ 1. Hence A;(r)/B;(r) < 0 for r sat1sfy1ng i+2 <7 < (5. Suppose that
Jj =1+2, then P;(r)/Q;(r) <0 for r in the interval j < r < (jf). Using the definitions

of Pj(r),Q;(r), the inequality (7) is the same as

_r—g+l B Aia()
I 27"—’—]— 1 Qj(T’) n Bj_g(’l")‘

Thus for r satisfying j < r < (”2) the left side of (7) is positive, and the right side is
negative. Thus the claim is valid for j < r < (J +2) O

Proof of Theorem 8. It follows from Y7 () = 2™ that f,,(m) = 1. Since ro := [m/3]+
1, we have m € {3rq — 3,319 — 2,31y — 1} If we can prove that f,,(ro) > fu(ro+ 1)
for m = 3rg — 1, then fm(rg) > fm(ro + 1) holds for m = 3ry — 2 and 3ry — 3 by
Lemma 3(d). With the notation in Lemma 4, we have 2 > t,,(r¢) and hence r* < ry.
Therefore f,(ro+1) > -+ > f,,(m) holds by Lemma 4(b).

In summary, it remains to prove > .°, (3’"0;1) > (3:0;11) for ro > 1. This is true for
ro = 1,2,3 since % >1,4> 14—3 and 98—3 163 . For each rqg > 4 set j = rg. Then j > 4 and
> (TZ”) > (Toﬁl) follows by Lemma 10. ThlS completes the proof. O

Proof of Theorem 1. The result follows from Theorems 6 and 8. There are two equal sized
maxima if m = 1, otherwise the maximum is unique. O
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5 Estimating f,,(70)

This section is devoted to proving asymptotically optimal bounds for f,, (7).

Proof of Theorem 2. We first prove the upper bound in (1). Thisis trueif m = 1. Form ¢
{0,1,3,6,9,12} and ro = |m/3] + 1 it follows from Theorem 6 that
fm(ro — 1) < fn(ro) and by Lemma 3(a) that Z:igl (M < (;’;) Therefore

S, (7)< 2(:;) and the upper bound follows. For the lower bound, f,,(r9) > fmn(ro+1)

7

holds by Theorem 8, and so » %, (T) > (Toﬁl) by Lemma 3(c). Hence

2770 (™) < fm(ro), and the lower bound of (1) follows from

ro+1
m _2ro—k(m _(2_k~|—2) m
ro+1)  ro+1 \ro) ro+1"\rg/)
To prove (2), we use binomial approximations.

Suppose that 0 < p < 1 and q := 1 — p. If pn is an integer, then gn = n — pn is an
integer, and Stirling’s approximation n! = v/2mn(2)"(1 + O(=)) gives

n c" 1 1
— 1 - h =,
®) (pn> V2mpgn < o (n>) where e pPqa

Paraphrasing [2, Lemma 4.7.1] gives the following upper and lower bounds:

" o <n> o cn here 1
< < where ¢c = ——.
V8pgn pn V2mpgn pPqe

-1 — 2 - 3 3 _ 27
Henceforth set p = 3, so ¢ = 5 and ¢ = 375. Therefore ¢ = 5 and

Ao 1 [27T\™ 27\ " 3\ 4 1 3
=—|— = | = == an —_— =
2ro 2r0 \ 4 8 2 V2pq 2

We write m = 3ry — k where k € {1, 2, 3}.
We now prove the upper bound for f,,,(rg) in (2). It follows from

m\  (3ro—k\ 2ro—k+1[(3ro—k+1 <g 3ro —k+1
To N To _37“0—k+1 To \3 To

that (™) < (2)¥(*). Setting n = 3rg and p = 1 in (9) and using m < n shows

0 3 0

2 (30 _2(n\_2 & 2 337"°<3 3\
20\ g ) 20 \pn/) T 200\ 2xpen  2mpqn \ 2 vTm \ 2 '

Using (:’;) < (3)7F(*°) and m = 3ry — k gives

To

_ 2 (m\ _ 2 3\ 7 /3r, 3 /3\"
<o) <3 () (W) <7 (8)
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We now consider approximate lower bounds for f,,(rg). Our argument involves con-
stants depending on k£ but not ry whose values are not relevant here. We have

1 1
(i) =2 (0 () () =50 () ()
ro+ 1 To To 70 ro — 1
Further, if £ = 1,2 and rq > 1 it follows that
m _(3ro—Fk\  3ro—k 3ro—k—1
7’0—1 o To—l _2T0—k+1 To—l
3 k—3 37“0—]{?—]_ 3 37”0—]{3—1
=2+ > — .
2 2(2T0—]{7+1) 7’0—]_ 2 7"0—1
Hence (,",) > (5)** (3;;)0__13) holds for k € {1,2,3} and ry > 1
Settingn:3ro—3andp:%in (8) yields

L (3ro—3\ 1 (n\) 1 c3ro—3 140 1
20\ rg—1)  20\pn)  2r0\pgmn n))’

c3’l‘ s -3 673
However, 5 = (2)%° and T = ;’\/ﬁ = 9\/2% 9ﬁ(1 + 0 (%)). Therefore

L) o () (0(2)
The above bounds give
s )0 () () ()
) ) ) (o)

Finally, since 1 + O (

L) — 1 as m — oo, the limit in (2) follows. O
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