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Abstract

The queen’s graph Qm×n has the squares of the m×n chessboard as its vertices;
we identify the m× n chessboard with a rectangle of width m and height n in the
Cartesian plane, having sides parallel to the coordinate axes and placed so that
square centers have integer coordinates. Two squares are adjacent if they are in
the same row, column, or diagonal of the board. A set D of squares of Qm×n is
a dominating set for Qm×n if every square of Qm×n is either in D or adjacent to
a square in D. The minimum size of a dominating set of Qm×n is the domination
number, denoted by γ(Qm×n).

We give a new proof of the bound γ(Qm×n) > min
{
m,n,

⌈
m+n−2

4

⌉}
, with im-

plications for queen domination problems, and then consider square boards.
Let n be an even integer and assume Qn×n has a dominating set D of size

n/2 (which implies γ(Qn×n) = n/2). For p ∈ {0, 1}, let Dp = {(x, y) ∈ D : x +
y ≡ p (mod 2)}. Say that D is monochromatic if D = Dp for some p; otherwise
bichromatic. We show that if D is bichromatic then ||D0|−|D1|| 6 2 and conjecture
that if n > 4 then D is monochromatic.

Assume further that D is monochromatic. If n ≡ 0 (mod 4) then n ∈ {4, 12}. If
n ≡ 2 (mod 4) then odd integers k = n/2, e, d with 1 6 d, e 6 k satisfy the equation
d2 + (k − 1)e2 = k(k2 + 2)/3. We analyze six infinite sequences of solutions of this
equation arising from Fermat-Pell equations, give monochromatic dominating sets
of Qn×n of size n/2 for n = 2, 4, 6, 10, 12, 18, 30 (new), and 130, and show there are
no others with n < 238.

Mathematics Subject Classifications: 05C69, 11D25

1 Introduction

For positive integers m,n, let Qm×n denote the graph whose vertices are the squares of
the m × n chessboard; two squares are adjacent if a chess queen can move from one to
the other. That is, the two squares share a row, column, or diagonal of the board.
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We will identify the m×n chessboard with a rectangle of width m and height n in the
Cartesian plane, having sides parallel to the coordinate axes and placed so that square
centers have integer coordinates. (We defer the specific choice of board placement.) We
refer to board squares by the coordinates of their centers; the square (x,y) is in column x
and row y. Columns and rows will be referred to collectively as orthogonals. The difference
diagonal (respectively sum diagonal) through square (x,y) is the set of all board squares
with centers on the line of slope +1 (respectively −1) through the point (x,y). The value
of y − x is the same for each square (x,y) on a difference diagonal, and we will refer to
the diagonal by this value. Similarly, the value of y + x is the same for each square on
a sum diagonal, and we associate this value to the diagonal. Orthogonals and diagonals
are collectively referred to as lines of the board.

Let S = {(xi, yi) : 1 6 i 6 h} be a set of squares of Qm×n. For each i, let di = yi − xi
be the index of the difference diagonal and si = yi + xi the index of the sum diagonal
occupied by square (xi, yi). From the definitions of these indices, we have two constraints
relating the orthogonal and diagonal indices: a linear constraint

h∑
i=1

di =
h∑

i=1

yi −
h∑

i=1

xi and
h∑

i=1

si =
h∑

i=1

yi +
h∑

i=1

xi (1)

and a quadratic constraint

2
h∑

i=1

x2i + 2
h∑

i=1

y2i =
h∑

i=1

d2i +
h∑

i=1

s2i . (2)

The square (x,y) is even if x+ y is even, odd if x+ y is odd. We write Z2 for the set
{0, 1}, frequently used in discussing parity. The parity opposite to p ∈ Z2 is denoted p.
For any set S of squares of Qm×n and p ∈ Z2, let Sp be the set of squares of parity p in S.

A set D of squares of Qm×n is a dominating set for Qm×n if every square of Qm×n is
either in D or adjacent to a square in D. The set D is independent if no two squares of
D share a line.

Let γ(Qm×n) denote the minimum size of a dominating set for Qm×n. Let i(Qm×n)
denote the minimum size of an independent dominating set of Qm×n.

For all positive integers m,n, set G(m,n) = 4γ(Qm×n)−m− n+ 2.

Let D be a dominating set of Qm×n of size γ = γ(Qm×n).
AsD may contain more than one square in an orthogonal, we need to consider multisets

of square coordinates.
For t ∈ {row, column}, let I(t) be the multiset of t-indices of squares in D. Let

L(row) = I(row) \ {1, 2, . . . , n} and L(column) = I(column) \ {1, 2, . . . ,m}. Then for
each t the number of type t orthogonals occupied by D is γ − |L(t)|, and L(t) is the
multiset of ‘excess’ t-indices.

Given a dominating set D of Qm×n, say that a square of Qm×n is needy (meaning it
needs diagonal cover by D) if it is not in any orthogonal occupied by D.
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The following theorem appeared in [5]; a new and more insightful proof, relying on
equation (4), is given here.

Theorem 1. [5] For all positive integers m,n,

γ(Qm×n) > min

{
m,n,

⌈
m+ n− 2

4

⌉}
. (3)

Proof. Without loss of generality, we may assume m 6 n. It suffices to show that if
γ(Qm×n) 6 m− 1 then γ(Qm×n) > (m+ n− 2)/4. So we assume that γ(Qm×n) 6 m− 1.

Let D be a dominating set of Qm×n of size γ = γ(Qm×n). First, suppose γ(Qm×n) =
m − 1. There is then a column not containing a square of D; as each square of D
can cover at most three squares of that column, we have n < 3m − 2, which implies
m − 1 > (m + n − 2)/4. Thus we may take γ(Qm×n) 6 m − 2. Then D fails to occupy
at least two columns and two rows of Qm×n. Let a be the index of the leftmost empty
column, b the index of the rightmost empty column, c the index of the lowest empty row,
d the index of the highest empty row. The board has a rectangular sub-board with corner
squares (a, c), (a, d), (b, c), and (b, d). The box border is the set E of edge squares of this
sub-board.

Let R = R(D) be the number of squares of D that have at most one diagonal that
meets E. Such a square can diagonally cover at most two squares of E; other squares of
D can diagonally cover at most four squares of E. Thus D can diagonally cover at most
2R+4(γ−R) = 4γ−2R squares of E. The diagonal waste Wdiag(D) of D is the difference
between 4γ − 2R and the number of needy squares of E.

The orthogonal waste of D is Worth(D) = |L(col)| + |L(row)|, the difference between
the maximum number of orthogonals that a square set of size γ could occupy and the
number of orthogonals D occupies.

We will show that if |D| = γ(Qm×n) 6 min{m− 2, n− 2} then

R(D) +Worth(D) + (Wdiag(D))/2 = G(m,n). (4)

By the definition of Wdiag(D), 4γ − 2R−Wdiag(D) is the number of needy squares of
E. This number can also be counted as follows. There are m − (γ − |L(col)|) columns
not occupied by D, necessarily between columns a and b inclusive. These columns meet
the rows of E in 2(m − γ + |L(col)|) needy squares. Similarly the columns of E have
2(n− γ + |L(row)|) needy squares. As the corners of E are counted twice so far,

2(n− γ + |L(col)|) + 2(m− γ + |L(row)|)− 4 = 4γ − 2R−Wdiag(D),

which simplifies to (4). As all terms on the left side of (4) are nonnegative, (4) implies
(3).

For most minimum dominating sets D of Qm×n, the term R(D) is the least important
in (4), but in Figure 1 we show an example on Q9×9 with R(D) = 4 = G(9, 9).

From this point, we only consider square boards, and adopt the simpler notation Qn

in place of Qn×n.
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Figure 1: Up to isomorphism there are three minimum dominating sets ofQ4, shown on the
left. On the right is a minimum dominating set D of Q9 from [5] with R(D) = 4 = G(9, 9);
the box border is outlined.

The task of determining values of γ(Qn) for all positive integers n appears as Problem
C18 in the collection [14] of unsolved problems in number theory. Finding these values
has interested mathematicians for over 150 years; some of the early references are [2, 11,
19, 20, 21].

V. Raghavan and S. M. Venketesan [18] and P. H. Spencer (see [10] or [22]) indepen-
dently found very similar proofs for the bound in Theorem 2 below, which also follows
immediately from Theorem 1. The last part of Theorem 2 was proved in [23] and [12].

Theorem 2. For all positive integers n, γ(Qn) > (n − 1)/2, and equality holds only for
n = 3, 11.

(It is conjectured that for all other odd positive integers n, γ(Qn) ∈ {(n + 1)/2, (n +
3)/2}; this has been confirmed [6, 7, 8, 9, 13, 15, 17] up to n = 119. The same workers
have jointly confirmed for n ≡ 1 (mod 4) that γ(Qn) = (n+ 1)/2 for n 6 129.)

Thus the case G(n, n) = 0 is understood. As G(n, n) is even, the next smallest value
possible for G(n, n) is 2, which occurs for even n such that γ(Qn) = n/2. The rest of this
paper begins the process of finding those n for which this occurs.

Definition 3. Say that a set of squares of Qn is monochromatic if all its squares have
the same parity; otherwise the set is bichromatic.

Up to isomorphism, Q4 has three dominating sets of size 2, shown in Figure 1. The
top set is monochromatic and the other two are bichromatic. Computer search [3, 5] has
shown that for each even n, 4 < n 6 24, if γ(Qn) = n/2 then every minimum dominating
set of Qn is monochromatic. This and other indications lead to the following conjecture.

Conjecture 4. For each even integer n > 4, if γ(Qn) = n/2 then every minimum domi-
nating set of Qn is monochromatic.

If true, this would give a short proof of the main theorem of [23]: that a dominating
set of Q4k+3 with size 2k + 1 is monochromatic.

The best we can do here is to prove that a bichromatic dominating set of Qn with size
n/2 must have nearly equal numbers of squares of each color.
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Before doing this, we note it is known for each of the values n = 3, 11 (those for which
γ(Qn) = (n− 1)/2) that there is one isomorphism class of minimum dominating sets, and
the sets are monochromatic. So Conjecture 4 could be stated: if G(n, n) 6 2 then except
for n = 4, every minimum dominating set of Qn is monochromatic. However, for those n
with G(n, n) > 4 (that is, γ(Qn) > (n+ 1)/2), bichromatic dominating sets are common.
In particular, γ(Qn) = (n+ 1)/2 for n = 5, 7, 9, 13; as shown in [5], for n = 5, 7 of the 37
isomorphism classes of minimum dominating sets are monochromatic; for n = 7, it is 4 of
13 classes; for n = 9, it is 6 of 21, and for n = 13, it is 14 of 41.

2 Bichromatic dominating sets of size k for Q2k

Definition 5. Distinct orthogonals of the same type are parallel. The distance between
parallel orthogonals is the absolute value of the difference of their indices.

Our next definition requires a lemma.

Lemma 6. Let n be an even integer, n > 4, and D a bichromatic dominating set of
size n/2 for Qn. For t ∈ {row, column} there exist parallel empty t-orthogonals at odd
distance.

Proof. As D is bichromatic, for at least one t ∈ {row, column} there are occupied t-
orthogonals of opposite parity and thus empty t-orthogonals of opposite parity. Without
loss of generality we may assume this is true for columns. Place the n × n board with
lower left corner having center (1, 1). If the desired conclusion does not hold, all the
empty rows have indices of the same parity; by flipping the board across its horizontal
midline if necessary, we may assume rows 1, 3, . . . , n − 1 are occupied. Then any empty
column with index of parity p contains k = n/2 needy squares of parity p. At most two
of these squares can be covered by each square of D, so D contains at least k/2 squares
of each parity. As |D| = k, we see that k is even and D contains exactly k/2 squares of
each parity. This implies that for every square q of parity p in D and every empty column
with index of parity p, each diagonal of q covers a needy square in that column.

As k is even, n is a multiple of four. We have already seen that each dominating
set of size 2 for Q4 is either monochromatic or satisfies the conclusion of this lemma,
and γ(Q8) = 5, so we may assume that n > 12. Thus there are at least six unoccupied
columns, implying there are at least three unoccupied columns with indices c1 < c2 < c3
of the same parity. Then s = (c2, n) is the top needy square in column c2. If s is covered
by D along its difference diagonal, that diagonal passes above all needy squares of column
c3, which is not possible by the preceding paragraph. Similarly, if s is covered along its
sum diagonal, that diagonal passes above all needy squares of column c1 and this is not
possible. Thus the conclusion holds.

For the rest of this section, we assume that n is even, n > 4, and D is a bichromatic
dominating set of Qn of size k = n/2.
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Definition 7. Since n > 4 and |D| = n/2, for each t ∈ {row, column} there are at
least three empty t-orthogonals, so there are empty t-orthogonals at even distance. Thus
we can make the following definition: among all even distances between parallel empty
t-orthogonals, let m(t, 0) be the maximum.

As D is bichromatic and n > 4, there exist parallel empty orthogonals at odd distance.
By Lemma 6, for each t ∈ {row, column} we can define m(t, 1) to be the maximum such
odd distance. As m(t, 0) and m(t, 1) have different parity they are not equal; given D, we
choose vt = vt(D) ∈ Z2 such that m(t, vt) > m(t, vt).

For t ∈ {row, column}, I(t) \ L(t) is the set of indices of occupied t-orthogonals. Let
E(t) denote the set {1, . . . , n} \ (I(t) \ L(t)) of indices of unoccupied t-orthogonals.

For t ∈ {row, column} and any positive integer d, let P(t, d) be the partition of E(t)
into arithmetic progressions with step d and maximal length. Let o(t, d) be the number
of progressions in P(t, d) having odd length. Let f(t, d) be the number of pairs of empty
t-orthogonals at distance d.

Theorem 8. Let n be an even integer, n > 4, and let D be a bichromatic dominating set
of size n/2 for Qn. For t ∈ {row, column}, let d be a positive integer such that f(t, d) > 0.
Then any two empty t-orthogonals at distance d contain a set S(t, d) of |E(t)| + o(t, d)
needy squares, with no three of these squares covered by any one square of D.

Proof. Let h, h+ d be the indices of two empty t-orthogonals. Let S ′ be the set of 2|E(t)|
squares at which empty t-orthogonals meet t-orthogonals h, h + d. All squares of S ′ are
needy; we wish to reduce S ′ to a subset S(t, d) no three of whose squares are covered
by any one square of D. It suffices to arrange that no diagonal contains two squares of
S(t, d). To do this, for any square of side length d whose corner squares are in t-orthogonals
h, h+ d and also in empty t-orthogonals, we remove two corner squares adjacent along a
t-orthogonal, as follows.

For each arithmetic progression A = {i, i+d, . . . , i+(l−1)d} of length l in P(t, d), we
remove the squares in t-orthogonals h, h+d that are in t-orthogonals i+jd for odd j. Thus
we remove l−1 squares from progressions of odd length l and l squares from progressions of
even length l. Write P(t, d) = {A1, . . . , Am} with the length li of Ai odd for 1 6 i 6 o(t, d).

Then we are removing
∑o(t,d)

i=1 (li− 1) +
∑m

i=o(t,d)+1 li = [
∑m

i=1 li]− o(t, d) = |E(t)| − o(t, d)

squares from S ′. Since |S ′| = 2|E(t)|, this leaves a set S(t, d) of the desired size.

Corollary 9. Let D be a bichromatic dominating set of size n/2 for Qn. Let t ∈
{row, column} and let d be an odd integer such that f(t, d) > 0. Then for each q ∈ Z2,

|Dq| >
⌈
|E(t)|+ o(t, d)

4

⌉
. (5)

Proof. Since d is odd, each empty type t orthogonal that meets the set S(t, d) of Theorem
8 does so at one even and one odd square. Thus S(t, d) contains equal numbers of squares
of each parity. As a square of parity q in D covers at most two squares in S(t, d), each
of parity q, 2|Dq| > |S(t, d)|/2. By Theorem 8, |S(t, d)| = |E(t)|+ o(t, d); the conclusion
then follows.
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Lemma 10. Let n be an even integer, n > 4, and let D be a bichromatic dominating set
of size n/2 for Qn. Then |E(t)| = (n/2) + |L(t)|.

For each t ∈ {row, column}, f(t,m(t, vt)) = 1 and o(t,m(t, vt)) = |E(t)| − 2, and
f(t,m(t, vt)) ∈ {1, 2} and o(t,m(t, vt)) ∈ {|E(t)| − 2, |E(t)| − 4}.

Proof. From the definition E(t) = {1, . . . , n} \ (I(t) \ L(t)) we have |E(t)| = n− |I(t)|+
|L(t)| = (n/2) + |L(t)|.

By the definition of m(t, vt) there is at least one pair of indices of empty t-orthogonals
at distance m(t, vt). If there were two such pairs, the lowest and highest of the indices
involved would come from a pair of empty t-orthogonals at distance greater than m(t, vt),
a contradiction.

Thus there is exactly one such pair, implying that the maximal arithmetic progressions
of step m(t, vt) in E(t) are |E(t)| − 2 singletons and one of length two, so o(t,m(t, vt)) =
|E(t)| − 2.

If there were three pairs of indices of empty t-orthogonals at distance m(t, vt), two pairs
would have lower index of the same parity, and the lowest and highest indices involved in
these pairs would come from a pair of empty t-orthogonals at distance of parity vt and
greater than m(t, vt), a contradiction.

If either there is one such pair, or there are two coming from a progression of length
three, then o(t,m(t, vt)) = |E(t)| − 2. Otherwise there are two pairs coming from two
(maximal length) progressions of length two, so o(t,m(t, vt)) = |E(t)| − 4.

Proposition 11. Let k > 2 be an integer and let D be a bichromatic dominating set of
size k for Q2k. One of the following two conditions holds:

(A) {|D0|, |D1|} = {bk
2
c, dk

2
e};

(B) k is even and {|D0|, |D1|} = {k
2
− 1, k

2
+ 1}. Then m(t, 0) > m(t, 1) for each t ∈

{row, column} and Worth(D) = 0.

Thus ||D0| − |D1|| 6 2, with strict inequality if m(col, 1) > m(col, 0) or m(row, 1) >
m(row, 0).

Proof. Let t ∈ {row, column}. From Lemma 10 there is h ∈ {1, 2} with o(t,m(t, 1)) =
|E(t)| − 2h. Using this in Corollary 9 with d = m(t, 1), for q ∈ Z2 we have

|Dq| >
⌈
|E(t)|+ o(t,m(t, 1))

4

⌉
=

⌈
|E(t)| − h

2

⌉
.

From Lemma 10, |E(t)| = k + |L(t)| so for q ∈ Z2,

|Dq| >
⌈
k + |L(t)| − h

2

⌉
. (6)

Let H(t) = |L(t)| − h. As |L(t)| > 0 and h 6 2, H(t) > −2.
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If H(t) > 1, or H(t) = 0 and k is odd, summing (6) for q = 0, 1 gives |D| =
|D0|+ |D1| > k, a contradiction.

If H(t) ∈ {−1, 0} and k is even, (6) implies {|D0|, |D1|} = {k
2
}.

If H(t) ∈ {−2,−1} and k is odd, (6) implies {|D0|, |D1|} = {k−1
2
, k+1

2
}.

Otherwise H(t) = −2 and k is even. Here (6) implies {|D0|, |D1|} is either {k
2
} or

{k
2
− 1, k

2
+ 1}. The first possibility and the preceding ones are included in (A), so assume

the second occurs. By the definition of H, |L(t)| = 0 and h = 2. The latter implies by
Lemma 10 that m(t, 1) = m(t, vt). That is, vt = 0, which means m(t, 0) > m(t, 1).

We may then reverse the roles of t and t to conclude that |L(t)| = 0, so Worth(D) = 0,
and m(t, 0) > m(t, 1).

3 Monochromatic dominating sets of size k for Q2k

Definition 12. For each positive integer n, let γm(Qn) be the minimum size of a
monochromatic dominating set of Qn. For n 6∈ {4, 5, 6}, let im(Qn) be the minimum
size of an independent monochromatic dominating set of Qn (such sets do not exist for
n ∈ {4, 5, 6}).

Proposition 13. Let n be a positive integer and D a dominating set of Qn of size bn/2c.
Then D is monochromatic if and only if it is possible to place the board so that the squares
of D include exactly one from every even-indexed orthogonal.

Proof. The converse direction is clear, so assume that D is a monochromatic dominating
set of Qn of size bn/2c. Choose a square in D and place the board so the center of that
square is the origin. Then every square of D is even, so no odd square of the board is
diagonally covered. If there is an empty orthogonal with even index, we may assume
without loss of generality that it is a column. Then every odd square of that column is
covered along its row, which has odd index. So each of the bn/2c or more odd-indexed
rows is occupied, as well as row 0, but this cannot be done by bn/2c squares. Thus each of
the even-indexed rows and columns is occupied by D, and since |D| = bn/2c there must
be bn/2c of each, each occupied once.

Definition 14. Let n be an even positive integer such that Qn has a monochromatic
dominating set D of size k = n/2. By Proposition 13, we may place the board in the
Cartesian plane with upper right corner square (k, k) and with the orthogonals occupied
by D exactly those with the same parity as k. We assume this standard placement of
board and dominating set in what follows.

Each odd square lies in exactly one orthogonal whose index has the same parity p as
n/2, thus is covered exactly once by D. Each square (x, y) with x ≡ y ≡ p (mod 2) is
covered twice orthogonally by D. It remains to see how D covers those squares (x, y) with
x ≡ y ≡ p (mod 2). The set of these squares induces a copy U of Qn/2 that is symmetric
across row 0 and across column 0; this symmetry is useful later.
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Proposition 15. Let n be an even positive integer with γm(Qn) = n/2. Then γ(Qn) =
n/2. If n 6∈ {4, 12} then γ(Qn−1) = n/2. If n 6∈ {2, 10} then γ(Qn+1) = (n/2) + 1.

Proof. Suppose that γm(Qn) = n/2. The first assertion is clear. If n 6∈ {4, 12} then
Theorem 2 implies γ(Qn−1) > n/2. By Proposition 13 there exist an edge row and an
edge column of Qn that do not contain any squares of D. Thus D dominates a copy of
Qn−1, so γ(Qn−1) = n/2. If n 6∈ {2, 10} then γ(Qn+1) > (n/2) + 1 by Theorem 2. Adding
an edge row and edge column to Qn and adding the new corner square to D then shows
γ(Qn+1) = (n/2) + 1.

Definitions. Let n be an even positive integer and let D be a monochromatic dominating
set of Qn with size n/2 with standard orientation.

Among the integers congruent to 0 modulo 4, let d0 be the least that is the absolute
value of the index of an unoccupied difference diagonal and let s0 be the least that is the
absolute value of the index of an unoccupied sum diagonal.

Among the integers congruent to 2 modulo 4, let d2 be the least that is the absolute
value of the index of an unoccupied difference diagonal and let s2 be the least that is the
absolute value of the index of an unoccupied sum diagonal.

By the definitions of d0 and d2, D occupies at least the difference diagonals with indices
4−d0, 8−d0, . . . , d0−4, and at least those with indices 4−d2, 8−d2, . . . , d2−4. Say that
the indices just listed are the required difference diagonal indices. Any further indices
of difference diagonals occupied by D are excess difference diagonal indices; these may
include repetitions of required difference diagonal indices. We similarly define required
and excess indices of sum diagonals. Let ed (respectively es) denote the number, with
multiplicity, of indices of excess difference diagonals (respectively excess sum diagonals).

Lemma 16.

(A) For all even n > 2, any minimum dominating set of Qn with size n/2 that is
monochromatic and has standard orientation occupies difference diagonal 0 and sum
diagonal 0. Thus d0 > 4 and s0 > 4.

(B) For h ∈ {0, 2}, the number of required difference diagonal indices congruent to h
modulo 4 is dh

2
− 1, and the number of required sum diagonal indices congruent to h

modulo 4 is sh
2
− 1.

(C) We have ed = n
2
− (d0

2
− 1)− (d2

2
− 1) and es = n

2
− ( s0

2
− 1)− ( s2

2
− 1).

Proof. (A) Let n > 2 be an even integer and let D be a monochromatic dominating set
of Qn with size k = n/2 that has standard orientation.

As row 1− k and column 1− k are not occupied by D, the square (1− k, 1− k) can
only be covered by a square in difference diagonal 0, which thus contains a square of D.

Assume for purposes of contradiction that sum diagonal 0 does not contain a square of
D. For j = 1, . . . , b(k+1)/2c, we examine how D covers the squares ±(2j−1−k, k+1−2j)
of sum diagonal 0. These squares are in empty orthogonals, so must be covered along
their difference diagonals.
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With j = 1 we get the squares ±(1 − k, k − 1) which are in difference diagonals
±(2k − 2). Each of these diagonals has only one square in orthogonals with the parity of
k, so those squares, which are (k, 2− k) and (2− k, k), are in D. If k > 2 we go to j = 2,
and see that D must occupy difference diagonals ±(2k − 6). However, the only squares
of those diagonals in orthogonals of the parity of k and not already occupied by D are
(k − 2, 4− k) and (4− k, k − 2), which thus are in D.

Continuing, we find that for successive values of j, the difference diagonals ±(2k+2−
4j) that must be occupied each have only one square that lies in orthogonals of the parity
of k that are not already occupied by D, namely (2j−k, k+2−2j) and (k+2−2j, 2j−k).
So these squares are in D.

This finally implies that the members of D are exactly the squares in sum diagonal
2 whose orthogonals have the parity of k. Then if k is even, all difference diagonals
of squares of D have indices congruent to 2 modulo 4, so D does not contain a square
of difference diagonal 0, contradicting a previous conclusion. If k is odd, all difference
diagonals of squares of D have indices congruent to 0 modulo 4. The needy square (−2, 0)
(on the board since k > 3) is thus not covered by D, a contradiction. Therefore D contains
a square of sum diagonal 0.

(B) This is easily verified.
(C) As there are n/2 squares in D, this follows from (B).

By Lemma 16 (C), n
2
−(d0

2
−1)−(d2

2
−1) > 0, and similarly for sum diagonals; clearing

denominators, we have

d0 + d2 6 n+ 4 and s0 + s2 6 n+ 4. (7)

For any even n, the definitions of d0 and d2 imply that the left sides of the inequalities (7)
are congruent to 2 modulo 4. But for n ≡ 0 (mod 4), the right sides of those inequalities
are congruent to 0 modulo 4. Thus we have

d0 + d2 6 n+ 2 and s0 + s2 6 n+ 2 if n ≡ 0 (mod 4). (8)

We first consider the case n ≡ 0 (mod 4). Then k = n
2
≡ 0 (mod 2), so we need

to see how the odd-odd squares are covered. By the definitions of d0 and s2, at least
one of the difference diagonals with indices ±d0 and at least one of the sum diagonals
with indices ±s2 are unoccupied by D. If difference diagonal d0 and sum diagonal s2 are
unoccupied, then the odd-odd square ( s2−d0

2
, s2+d0

2
) at which these diagonals meet must be

off the board, implying s2+d0
2

> k. However the two sides of this inequality have different

parity, implying that s2+d0
2

> k + 1, so d0 + s2 > n+ 2. By the symmetry of U , the other
possibilities of unoccupied diagonals imply the same result. An argument with d2 and s0
works similarly, so we have

d0 + s2 > n+ 2 and d2 + s0 > n+ 2 for n ≡ 0 (mod 4). (9)

Theorem 17. Among the positive integers n, n ≡ 0 (mod 4), only for n = 4, 12 does Qn

have a monochromatic dominating set of size n/2.
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Proof. From the first inequalities in (8), (9) we have d2 6 s2. The other pairs of inequali-
ties from (8), (9) then imply d0 = s0 and d2 = s2, and d0 +d2 = n+ 2 and s0 + s2 = n+ 2.
From Lemma 16(C), ed = n

2
− (d0

2
− 1)− (d2

2
− 1), which here reduces to 1. Similarly, this

is the value of es.
By the linear constraint (1), the sum over D of all difference diagonal indices is zero.

Also the sum of the required difference diagonal indices is zero, so the single excess
difference diagonal index is zero, repeating a required difference diagonal index. The sum
of all sum diagonal indices is 2k and the sum of the required sum diagonal indices is zero,
so the single excess sum diagonal index is 2k. The only board square on sum diagonal 2k
is (k, k), so this square is in D. It also is in difference diagonal 0.

However, as D also contains another square in difference diagonal 0, the set D′ =
D \{(k, k)} dominates the copy of Q2k−1 obtained by removing the rightmost column and
top row of Q2k. By Theorem 2, this implies that 2k − 1 is either 3 or 11, so n = 2k is
either 4 or 12.

Conversely, D1 = {(0, 0)(2, 2)} is a monochromatic dominating set of size 2 for Q4,
and D2 = {(−4, 2), (−2,−4), (0, 0), (2, 4), (4,−2), (6, 6)} is a monochromatic dominating
set of size 6 for Q12.

From this point we will assume n ≡ 2 (mod 4), with k = n
2
≡ 1 (mod 2). We ask

how even-even squares are covered here. By the definitions of d0 and s0, at least one
of the difference diagonals with indices ±d0 and at least one of the sum diagonals with
indices ±s0 are unoccupied by D. If difference diagonal d0 and sum diagonal s0 are
unoccupied, then the even-even square ( s0−d0

2
, d0+s0

2
) at which these diagonals meet must

be off the board, implying d0+s0
2

> k. The two sides of this inequality have different

parity, so d0+s0
2

> k+ 1, implying d0 + s0 > n+ 2. By symmetry, the other possibilities of
unoccupied diagonals imply the same result. An argument with d2 and s2 works similarly,
so we have

d0 + s0 > n+ 2 and d2 + s2 > n+ 2 for n ≡ 2 (mod 4). (10)

Theorem 18. Let n > 2 be an integer, n ≡ 2 (mod 4), and let D be a monochro-
matic dominating set of Qn of size n/2 with standard orientation. Then D has no ex-
cess difference diagonals; D has two excess sum diagonals, say with indices a0 and a2,
where ai ≡ i (mod 4) and a0 + a2 = n. Here d0, d2, s0, s2 are related by the equations
s0 + s2 = n, d0 = s2 + 2, d2 = s0 + 2. Let k = n/2, d = |a0 − a2|/2, and e = |s0 − s2|/2.
Then

d2 + (k − 1)e2 =
k(k2 + 2)

3
. (11)

Proof. Since n ≡ 2 (mod 4), Lemma 16(C) implies ed and es are even. Using (10) with
Lemma 16(C), we see that ed + es = n+4−d0−d2

2
+ n+4−s0−s2

2
= n + 4 − d0+s0+d2+s2

2
6 2.

As the sum of the required sum diagonal indices is zero, and the sum of all sum diagonal
indices equals n by (1), there exist excess sum diagonal indices and their sum is n. So
we have two nonnegative even integers ed and es whose sum does not exceed 2, and es
is not zero: we may conclude that ed = 0 and es = 2, and the two excess sum diagonal
indices a0, a2 have sum n. As all indices of occupied orthogonals are odd, all indices of
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occupied diagonals are even, so the indices a0, a2 of the excess sum diagonals are even.
From a0 + a2 = n ≡ 2 (mod 4), we see that just one of them is congruent to 0 modulo 4.
We will assume henceforth that a0 ≡ 0 (mod 4) and then a2 ≡ 2 (mod 4). As n is the
greatest possible index for a sum diagonal, necessarily a0, a2 6 n, which implies a0, a2 > 0.

Then (10) and Lemma 16(C) imply the equations claimed involving d0, d2, s0, s2.
The sum of the squares of the indices of the occupied orthogonals is n(n2 + 8)/12.

Using the identity 8
(
m/2
3

)
= (4−m)2 + (8−m)2 + · · ·+ (m− 4)2, (2) becomes

n(n2 + 8)

6
= 8

[(
s2/2

3

)
+

(
s0/2

3

)
+

(
d2/2

3

)
+

(
d0/2

3

)]
+ a20 + a22.

Then using the facts {a0, a2} = {k ± d} and {s0, s2} = {k ± e} leads to (11).

Proposition 19. The only positive even integers n for which im(Qn) = n/2 are n = 2, 10.

Proof. For n ≡ 0 (mod 4), Theorem 17 says that only for n = 4, 12 does Qn have a
monochromatic dominating set of size n/2, and the proof of Theorem 17 shows that each
such set has two squares on difference diagonal 0, so is dependent.

Suppose then that n ≡ 2 (mod 4) and D is a monochromatic independent dominating
set of Qn with standard orientation. If n = 2 then D = {(1, 1)}, so we will assume n > 6.
By independence the excess sum diagonal indices a0, a2 are distinct from the required sum
diagonal indices, which implies a0 > s0 and a2 > s2. Since a0 + a2 = n = s0 + s2, we have
a0 = s0 and a2 = s2.

Let l = (n/2)+1. Make a copy of Qn+1 by adjoining a row and a column, each indexed
l, to Qn. We show that D dominates this Qn+1.

Change the coordinates by subtracting one from each row and column index, thus
moving the origin of the coordinate system to the square formerly labeled (1, 1). It is
then not difficult to verify that for each of the four types of lines, the sets of indices
of occupied lines are symmetric across zero. This implies that the set of undominated
squares is symmetric under rotation by a half-turn about the origin. But we know that
the left and bottom edges are covered, so also the top and right-hand edges are.

Thus D is a dominating set of Qn+1 of size (n+1)−1
2

, which by Theorem 2 implies n+1 ∈
{3, 11}, so n ∈ {2, 10}. As {(−3,−1), (−1, 5) (1, 1), (3,−3), (5, 3)} is an independent
monochromatic dominating set of Q10, we are done.

Since a0, a2 are even and not congruent modulo 4, d = |a0 − a2|/2 is odd. Similarly,
e = |s0− s2|/2 is odd. We may regard each triple (k, e, d) satisfying (11), with k, e, d each
an odd integer and 1 6 d, e 6 k, as a candidate for solutions of γm(Q2k) = k. From (11)
and 1 6 d 6 k it follows that(

k − 1√
3

)2

− 1

3
6 e2 6

(
k + (1/2)√

3

)2

+
11

12
.

This implies that for any odd integer k > 3 there is at most one value of e giving a
candidate (k, e, d), and if there is one, it is d

√
(k2 − 2k)/3 e.
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k 1 3 5 9 15 19 27 65 71 117 119 215 363 435 469
e 1 1 3 5 9 11 15 37 41 67 69 153 209 251 271
d 1 3 3 7 1 11 27 63 41 115 1 153 363 309 131

Table 1: This shows the 15 candidates with least values of k; the first 13 come from
Fermat-Pell equations.

The argument leading to (11) is not valid for k = 1, but we can take the solution
(k, e, d) = (1, 1, 1) of (11) as corresponding to the dominating set {(1, 1)} of Q2.

The fifteen candidates with least values of k are shown in Table 1.
Below we identify six infinite sequences of candidates. Each sequence is derived from

solutions of an equation of Fermat-Pell type. The following lemma collects the facts we
need about such equations; proofs may be found in [1].

Lemma 20. Let C be a fixed integer and consider the Fermat-Pell equation

X2 − 3Y 2 = C. (12)

(A) Pair (x, y) is a solution of (12) if and only if H(x, y) = (2x+ 3y, x+ 2y) is;

(B) There are only finitely many positive integral solutions of (12) (the minimal solu-
tions) that cannot be obtained by (A) from smaller positive integral solutions.

Thus the positive integral solutions of (12) are the members of a finite number of infinite
sequences derived from the minimal solutions by (A).

We will only need to examine C ∈ {1,−2,−11}.

Case d = e. Putting d = e in (11) gives k2 − 3e2 = −2. The unique minimal
solution of X2 − 3Y 2 = −2 is (x, y) = (1, 1). Then the desired candidates are those
obtained from (1, 1) by iterating H from Lemma 20(A). This gives a sequence (k, e, d) =
(1, 1, 1), (5, 3, 3), (19, 11, 11), (71, 41, 41), . . .. As d = e implies the excess sum diagonals are
distinct from the required sum diagonals, any dominating set of this kind is independent.
Thus Proposition 19 implies that in this sequence only the first two terms give dominating
sets.

For the next two cases, we need another version of (11). Since k and d are odd and
1 6 d 6 k, there is an integer j, 0 6 j 6 (k − 1)/2, such that d = k − 2j. Replacing d
with k − 2j in (11) leads to the equation

(k − 1)2 − 3e2 = 1− 12j + 12j(j − 1)/(k − 1). (13)

Case d = k. Putting j = 0 in (13) yields (k − 1)2 − 3e2 = 1. The unique minimal
solution of X2 − 3Y 2 = 1 is (2, 1). The positive integral solutions (x, y) of this equation
can be obtained as in the case d = e. However, the values of x alternate in parity, and we
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are interested in odd k, so we only want every other solution: those with even x. Thus we
obtain the desired solutions from (2, 1) by doubling the iteration of Lemma 20(A). That
is, we begin with (x, y) = (2, 1) and iterate H2(x, y) = (7x + 12y, 4x + 7y). This gives a
sequence (k, e, d) = (3, 1, 3), (27, 15, 27), (363, 209, 363), . . .

Case d = k − 2. Putting j = 1 in (13) yields (k − 1)2 − 3e2 = −11. The equation
X2 − 3Y 2 = −11 has two minimal positive solutions (x, y) = (1, 2) and (4, 3), and again
iteration with H gives solutions whose x-values alternate in parity, so we obtain the
desired solutions with even x by applying the iteration of the case d = k. Here we want
H2i+1(1, 2) and H2i(4, 3) for i > 0.

The first gives a sequence (k, e, d) = (9, 5, 7), (117, 67, 115), (1617, 933, 1615), . . .
The second gives a sequence (k, e, d) = (5, 3, 3), (65, 37, 63), (893, 515, 891), . . .

Case d = 1. Putting d = 1 in (11) and multiplying by 12 gives (2k + 1)2 − 3(2e)2 =
−11. The equation X2 − 3Y 2 = −11 was just considered; here we need solutions (x, y)
with x = 2k + 1 ≡ 3 (mod 4) and y = 2e ≡ 2 (mod 4). These are given by H4i+2(1, 2)
and H4i+3(4, 3) for i > 0.

The first gives a sequence (k, e, d) = (15, 9, 1), (3015, 1741, 1), . . . of candidates, and
the second gives a sequence (k, e, d) = (119, 69, 1), (23183, 13385, 1), . . .

Following the approach of [12], we can use the identity

|x|+ |y| = max{|y − x|, |y + x|} (14)

to restrict the search for those n ≡ 2 (mod 4) for which γm(Qn) = n/2. Let D be a
monochromatic dominating set of size n/2 for Qn and let S be the sum of |x| + |y| over
(x, y) in D. By our assumption of standard orientation,∑

(x,y)∈D

(|x|+ |y|) = 2 (|2− k|+ |4− k|+ · · ·+ |k − 2|+ |k|) = k2 + 1. (15)

By (14) and (15), [ ∑
(x,y)∈D

max{|y − x|, |y + x|}

]
− (k2 + 1) = 0. (16)

For each candidate (k, e, d) with k > 3, we will construct an upper bound F (k) for the
left side of (16). For some k we get F (k) < 0, implying γm(Q2k) > k.

We begin by constructing a sum F1(k) involving the absolute values of the indices
of the required diagonals. Note that since all occupied orthogonals have odd indices, for
each occupied square one of its diagonals has index congruent to 0 modulo 4 and the other
has index congruent to 2 modulo 4. So in what follows we seek to pair off absolute sum
diagonal indices congruent to 0 mod 4 (respectively 2 mod 4) with absolute difference
diagonal indices congruent to 2 mod 4 (respectively 0 mod 4) to achieve an upper bound
for
∑

(x,y)∈D max{|y − x|, |y + x|}.
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We examine four cases. As they are similar, we only describe the first in detail.

Case s2 ≡ −2 (mod 8). Then there is a positive integer h with s2 = 8h − 2 and
d0 = 8h. The number of indices of occupied difference diagonals that are congruent to
0 modulo 4 is 4h − 1, and necessarily this is also the number of indices of occupied sum
diagonals that are congruent to 2 modulo 4; this includes the extra sum diagonal index
a2. In this and the next case, we treat a2 as the least absolute sum diagonal index for the
moment.

The absolute values of the difference diagonal indices in descending order are: 2 ×
(8h− 4), 2× (8h− 8), . . . , 2× 4, 0.

The absolute values of the sum diagonal indices in descending order are: 2 × (8h −
6), 2× (8h− 10), . . . , 4h− 2, 4h− 2, 2× (4h− 6), . . . , 2× 2, and a2.

To maximize the terms contributed to the bound Smax here, we pair off the top 2h
absolute difference diagonal indices with the bottom 2h absolute sum diagonal indices
(including a2), and the top 2h− 1 absolute sum diagonal indices with the bottom 2h− 1
absolute difference diagonal indices. This gives

2
h∑

i=1

(8h− 4i) +
h∑

i=1

(8h− 2− 4i) +
h−1∑
i=1

(8h− 2− 4i) =
(s2 − 2)(3s2 + 2)

8
.

The least value used comes from a sum diagonal with absolute index (s2/2)− 1.

Case s2 ≡ 2 (mod 8). There is a nonnegative integer h with s2 = 8h+2 and d0 = 8h+4.
To maximize the terms contributed to the bound Smax here, we pair off the top 2h + 1
absolute difference diagonal indices with the bottom 2h+ 1 absolute sum diagonal indices
(including a2), and the top 2h absolute sum diagonal indices with the bottom 2h absolute
difference diagonal indices. This gives the sum (s2−2)(3s2 + 2)/8 as in the previous case.
The least value used comes from a difference diagonal with absolute index (s2/2)− 1.

Case s0 ≡ 0 (mod 8). There is a positive integer h with s0 = 8h and d2 = 8h + 2. In
this and the next case, we treat a0 as the least absolute sum diagonal index temporarily.
To maximize the terms contributed to the bound Smax here, we pair off the top 2h absolute
difference diagonal indices with the bottom 2h absolute sum diagonal indices (including
a0), and the top 2h absolute sum diagonal indices with the bottom 2h absolute difference
diagonal indices. This gives

2
h+1∑
i=1

(8h+ 2− 4i) + 2
h∑

i=1

(8h− 4i) =
s0(3s0 − 4)

8
.

The least value used comes from a sum diagonal with absolute index s0/2.

Case s0 ≡ 4 (mod 8). There is a nonnegative integer h with s0 = 8h+4 and d2 = 8h+6.
To maximize the terms contributed to the bound Smax here, we pair off the top 2h + 2
absolute difference diagonal indices with the bottom 2h+ 2 absolute sum diagonal indices
(including a0), and the top 2h absolute sum diagonal indices with the bottom 2h absolute
difference diagonal indices. This gives the sum s0(3s0− 4)/8 as in the previous case. The
least value used comes from a difference diagonal with absolute index s0/2.
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As the final values in the first two cases above are equal, as are those in the latter
two, addition gives F1(k) = (12k2 − 8k − 4 − 6s0s2)/8 = (6k2 − 8k − 4 + 6e2)/8. Define
F2(k) = F1(k)− (k2 + 1). Then using (13),

F2(k) =
−(k2 − 3e2 + 2)

4
− (k + 1) =

−3(k + 1)

2
+ 3

[
j − j(j − 1)

k − 1

]
. (17)

Then with d = k (so j = 0) and d = 1 (so j = (k − 1)/2), (17) gives
−3(k + 1)/2 6 F2(k) 6 −3(k + 1)/4 for all k. Thus F2(k) < 0 always.

In our construction of the sum F1(k) we ignored the extra sum diagonal indices a0, a2
by assuming they had smaller absolute values than all those used in the sum. Now we
consider a0, a2.

If a0 > (s2/2) − 1 then we need to replace the lowest index used in the sum in the
appropriate one of the first two cases above, which is (s2/2)−1, with a0. (In the first case,
we just replace the absolute sum diagonal index (s2/2) − 1 with absolute sum diagonal
index a0. In the second case, we can replace the absolute sum diagonal index which was
paired with, and less than, the absolute difference diagonal index (s2/2)−1, with absolute
sum diagonal index a0.) And if a2 > s0/2 then we need to replace the lowest index used
in the sum in the appropriate one of the latter two cases above, which is s0/2, with a2. At
least one of these changes is necessary, as the inequalities a0 6 (s2/2)− 1 and a2 6 s0/2
would imply n = a0 + a2 6 ((s2/2)− 1) + (s0/2) = (n/2)− 1, which is not possible.

With the changes described, we can find the desired function F and know that those
candidates (k, e, d) with F (k) < 0 have γm(Q2k) > k.

We examine the candidates with extreme values of d: d ∈ {1, k − 2, k}.
Let d = k; the excess sum diagonals have indices 2k and 0. This implies that

F (k) = F2(k) + 2k − ((s2/2) − 1) here. Set (k0, e0) = (3, 1). Using H2, define a re-
cursion by

(ki+1, ei+1) = (7ki + 12ei − 6, 4ki + 7ei − 4) for k > 0. (18)

This gives all candidates with d = k, and implies that modulo 4, each of the infinite
sequences (ki + ei) and (ki− ei) satisfies the recursion zi+1 = −zi− 2. Then starting with
(k0, e0) = (3, 1), we see (s2)i = ki + (−1)i+1ei for all i. Using (17) with j = 0, we have
F (ki) = −3(ki +1)/2+2ki− ((ki +(−1)i+1ei)/2+1 = [(−1)iei−1]/2. Thus γm(Q2ki) > ki
for odd i here, in particular for k1 = 27.

Let d = k−2. We will need to consider two possibilities for the initial pair (k0, e0); from
each, the recursion (18) allows us to find an infinite sequence of candidates, and together
these include all candidates with d = k− 2. With j = 1 in (17), F2(k) = −3(k− 1)/2. As
d+ k = 2k− 2 ≡ 0 (mod 4), we have a0 = 2k− 2. Then F2(k) = −3(k− 1)/2 + 2k− 2−
(s0/2) = (k − 1− s0)/2.

Starting with (k0, e0) = (9, 5), we may use (18) to obtain (s0)i = ki + (−1)i+1ei, and
then F (ki) = [(−1)iei − 1]/2 for i > 0. So here γm(Q2ki) > ki for odd i.

Starting with (k0, e0) = (5, 3), we similarly obtain F (ki) = [(−1)i+1ei − 1]/2, but for
i > 1. So here γm(Q2ki) > ki for even i > 2.
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m 1 2 3 4 5 6 7 8 9
Candidates with k < 10m 4 9 21 32 47 72 97 133 195

F (k) < 0, or d = e but k > 5 0 3 8 11 15 24 29 39 53
Fermat-Pell candidates 3 8 14 18 24 30 35 39 46

Table 2: For each m, 1 6 m 6 9, the number of candidates (k, e, d) with k < 10m is
shown; next, the number of candidates already known to give γ(Q2k) > k; finally, the
number of candidates with d ∈ {1, e, k − 2, k}.

Let d = 1. Again there are two possibilities for the initial pair (k0, e0); from each,
the recursion (ki+1, ei+1) = (97ki + 168ei + 48, 56ki + 97ei + 28), derived from H4, allows
us to find an infinite sequence of candidates, and together these include all candidates
with d = 1. Here putting j = (ki − 1)/2 in (17) gives F2(ki) = −3(ki + 1)/4. As
{a0, a2} = {ki ± 1} and max{s0/2, (s2/2) − 1} ≈ (3 +

√
3)k/6 > k, both of the changes

we consider to obtain F from F2 need to be made. Thus F (ki) = −3(ki + 1)/4 + a0 +
a2− [(s0/2) + (s2/2)− 1] = −3(ki + 1)/4 + (ki + 1) = (ki + 1)/4 > 0, so this test gives no
information here.

In Table 2 we show the number of candidates in certain ranges, along with the number
for which we can already conclude γm(Q2k) = k is not possible (because either F (k) < 0,
or d = e but k > 5), and the number coming from Fermat-Pell equations.

4 Domination numbers and sets

For each of the sets mentioned below to show that a parameter of Qn has value (n/2) + 1
or is in the set {n/2, (n/2) + 1}, there is p ∈ Z2 such that n/2 of the squares (x, y) in the
set have x ≡ y ≡ p (mod 2) and jointly occupy all orthogonals with indices of parity p,
and one square has x ≡ y ≡ p (mod 2).

Proposition 21. For n = 2, 10, im(Qn) = n/2. For even n, n 6 120, except n =
2, 4, 6, 10, im(Qn) = (n/2) + 1. (As mentioned previously, im(Qn) is not defined for
n = 4, 5, 6.)

For n = 4, 6, 8, 12, 14, 16, 18, 20, 22, 24, i(Qn) = (n/2) + 1. For even n, 26 6 n 6 120,
i(Qn) ∈ {n/2, (n/2) + 1}.

For n = 2, 4, 6, 10, 12, 18, 30, 130, γ(Qn) = γm(Qn) = n/2.
For n = 8, 14, 16, 20, 22, 24, γ(Qn) = γm(Qn) = (n/2) + 1.
For even n, 26 6 n 6 122 and n = 126, 132, γ(Qn), γm(Qn) ∈ {n/2, (n/2) + 1}.

Proof. About im(Qn): For n = 2, 10, independent monochromatic dominating sets of size
n/2 are given in the proof of Proposition 19. By Theorem 2 these are minimum.

For n = 8, 12, 14, 16, 18, 20, 24, 32, independent monochromatic dominating sets of
size n

2
+ 1 are given in [22]. For n = 26, 28, 30 and even n from 34 to 120, independent

monochromatic dominating sets of size (n/2) + 1 are in [17]. These sets are minimum by
Proposition 19.
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About i(Qn): For n = 4, 6, independent dominating sets of size (n/2) + 1 are easily
found by trial. For n = 8, 12, 14, 16, 18, 20, 24, see above.

For n = 22: for odd x from −9 to 11, y-values are 9, 1,−5, 11,−3, 3, 7,−7,−1, 5,
−9, with additional square (6, 12). Due to W. Bird [4]. Exhaustive search (early work for
n = 8, 12; [15] for n = 14, 16, 18; [3] for n = 20, 22, 24) has shown these sets are minimum.
For n from 26 to 120 see above.

About γm(Qn) and γ(Qn): For n = 2, 4, 6, 10, 12 see above.
For γ(Q18): for odd x from −7 to 9, y-values are 1, 7,−7, 3,−1,−5, 5, 9,−3. Found

by A. McRae [16].
For γ(Q30): for odd x from −13 to 15, y-values are 1,−9, 9, 15,−11,−5, 3,

− 3, 13, 11, 7,−13,−7,−1, 5.
For γ(Q130): for odd x from −63 to 65, y-values are 29, 23,−15, 15,−23,−1,−11,

− 21, 1, 55, 25, 47,−55, 59,−63,−57, 33, 27,−59,−33, 37,−61, 57, 63,−51,−7, 11, 5,
19, 13,−9,−49,−25,−19,−13, 17,−5, 9, 3, 39,−47,−41,−31, 43, 61,−53,−43,−37,
49, 35, 41, 51, 21, 31, 53,−45, 45, 7,−3,−29,−39,−17,−27, 65,−35. This was given in a
different form in [17, page 17].

The final claim is established by dominating sets in [17].
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