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Abstract

A classical result of Erdős and Gallai determines the maximum size m(n, ν) of a
graph G of order n and matching number νn. We show that G has factorially many
maximum matchings provided that its size is sufficiently close to m(n, ν).

Mathematics Subject Classifications: 05C70, 05C30

1 Introduction

We consider finite, simple, and undirected graphs. A matching in a graph G is a set
of pairwise disjoint edges, and the matching number ν(G) of G is the largest size of a
matching in G. For a matching M in G, let V (M) be the set of vertices of G that are
incident with an edge in M ; the set V (M) contains the vertices of G that are saturated
by M .

A classical result of Erdős and Gallai, Theorem 4.1 in [3], states that a graph G of
order n, size m, and matching number ν(G) such that ν(G) = νn for some ν ∈

[
0, 1

2

]
satisfies

m 6 m(n, ν) :=

νn(n− νn) +
(
νn
2

)
, if ν 6 2

5
− 3

5n
, and(

2νn+1
2

)
, if 2

5
− 3

5n
6 ν 6 1

2
.

(1)
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Furthermore, they showed that equality holds in (1) if and only if

(i) the complement G of G is Kn−νn ∪Kνn for ν 6 2
5
− 3

5n
, and

(ii) G is K2νn+1 ∪Kn−2νn−1 for 2
5
− 3

5n
6 ν 6 1

2
.

Recall that, for positive integers n and k with k 6 n, the falling factorial nk is n(n −
1) · · · (n− k + 1).

The starting point here was the observation that the two extremal graphs in (i) and
(ii) have

(n− νn)νn and
(2νn+ 1)!

(νn)!2νn

maximum matchings, respectively. Estimating quite roughly, it follows that, for positive
ν, the extremal graphs for (1) have between d0.4ned0.5νne and nνn maximum matchings.
We show that G still has factorially many maximum matchings provided that m(n, ν)−m
is sufficiently small. Since m(n, ν) = Θ(νn2), it is natural to bound m(n, ν)−m in terms
of ν and n2.

The following is our first main result; all proofs are given in the next section.

Theorem 1. For every real ν with ν ∈
(
0, 1

2

]
, the following holds: If G is a graph of order

n, size m, and matching number νn such that n >
(
50
ν

)2
and m > m(n, ν) −

(
ν
50

)2
n2,

then G has at least d0.1ned0.1νne maximum matchings.

For the sake of simplicity, we did not try to optimize the constants that appear in
this statement, which works over the full range

(
0, 1

2

]
of ν. Our purpose here is rather to

illustrate the effect and present arguments and tools that allow to capture it. In particular,
the exact dependence of the minimum number of maximum matchings on the difference
m(n, ν)−m remains a natural yet challenging open problem.

Our second main result gives a better bound provided that ν is sufficiently small.

Theorem 2. There are two functions hν : (0, 1)→
(
0, 1

2

]
and hδ : (0, 1)×

(
0, 1

2

]
→ (0, 1)

with the following property: If ε ∈ (0, 1), ν ∈ (0, hν(ε)), and G is a graph of order n, size
m, and matching number νn such that n > 1/hδ(ε, ν) and m > m(n, ν)− hδ(ε, ν)n2, then

G has at least d(1− ε)ned(1−ε)νne maximum matchings.

Matchings in graphs are among the most well studied topics in graph theory [7], and
we would like to mention only few related results. Computing the permanent of a matrix,
and, hence, counting the perfect matchings of a given bipartite graph, is a well known
#P-complete problem [9]. Van der Waerden’s proved conjecture on the permanent of a
doubly stochastic matrix [2, 5, 6, 8] allows to show that d-regular bipartite graphs have
exponentially many perfect matchings for d > 3, and Brègman’s [1] upper bound on the
permanent allows to derive an exponential upper bound. Another famous related result,
establishing a conjecture of Lovász and Plummer, is due to Esperet, Kardoš, King, Král,
and Norine [4] who showed that cubic bridgeless graphs have exponentially many perfect
matchings.
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2 Auxiliary results and proofs

Throughout this section, let G be a graph of order n, size m, and matching number νn.
A key tool for our approach is the Gallai-Edmonds decomposition D∪A∪C of a graph

G, cf. [7], where

D = {u ∈ V (G) : ν(G− u) = ν(G)}, A =
⋃
u∈D

NG(u) \D, and C = V (G) \ (D ∪ A),

that is, the set D contains the vertices that are not saturated by some maximum matching
in G, the set A is the set of neighbors of the vertices in D outside of D, and C contains the
remaining vertices. Let the components of G[D] be G1, . . . , Gk. Each Gi is factor-critical,
that is, for every vertex u of Gi, the graph Gi − u has a perfect matching. Let Gi have
order ni for i ∈ [k], d = |D|, a = |A|, and c = |C|.

Every maximum matching of G consists of, cf. [7],

• a matching of size (ni − 1)/2 in Gi for every i ∈ [k],

• a matching of size a in the bipartite subgraph of G with the partite sets A and D
formed by the edges between these two sets, and

• a perfect matching in G[C].

In particular, such matchings are guaranteed to exist. Note that

n− 2νn = k − a (2)

is the number of vertices that are not saturated by maximum matchings in G.
If G∗ arises from G by adding all missing edges

• within V (Gi) for each i ∈ [k],

• between D and A, and

• within A ∪ C,

then G∗ has the same Gallai-Edmonds decomposition, and, hence, also the same matching
number as G, and

m(G∗) =
k∑
i=1

(
ni
2

)
+ da+

(
n− d

2

)
. (3)

Using d = n1 + . . .+ nk, n1, . . . , nk > 1, and the convexity of x 7→ x2, we obtain

m(G∗) 6 m∗ :=

(
d− k + 1

2

)
+ da+

(
n− d

2

)
. (4)
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Since (4) holds with equality if each but at most one component of G∗ is an isolated
vertex, the integer m∗ is the size of a graph of order n and matching number νn, and (1)
implies m(n, ν) > m∗.

We introduce the useful variables x and y:

x = ν − a

n
and y =

d− k
n

. (5)

Since 0 6 a 6 νn, we have x ∈ [0, ν].
Note that

k
(2)
= n− 2νn+ a = n− 2νn+ νn− xn = (1− ν − x)n, (6)

and, hence,

y =
d− k
n

6
n− a− k

n
= 1− ν + x− 1 + ν + x = 2x,

that is, y ∈ [0, 2x].
We provide some intuition for x and y. The variable x measures which proportion

of every maximum matching consists of edges between A and D. If x = 0, then a =
νn, which means that every maximum matching lies completely between A and D. If
x = ν, then a = 0, which means that every maximum matching lies completely within
D ∪ C. The variable y relates to the orders of the components of G[D]. Each of these k
components contains at least one vertex, that is, d−k is the number of additional vertices
of G distributed among the components of G[D] on top of this one vertex. Therefore, y
measures the proportion of the vertices of G that fill up the k components of G[D]. If
y = 0, then all components of G[D] have just one vertex. If y = 2x, then n = a+d, which
means that C is empty.

Our first lemma expresses the quadratic part of m(n, ν)−m∗ in terms of x and y.

Lemma 3. m(n, ν)−m∗ > g(x, y)n2 − n for

g(x, y) :=

{
x
(
1− ν − 3

2
x
)

+ y(2x− y) , if ν 6 2
5
− 3

5n
and

(ν − x)
(
5
2
ν + 3

2
x− 1

)
+ y(2x− y) , if 2

5
− 3

5n
< ν 6 1

2
.

Proof. If ν 6 2
5
− 3

5n
, then

m(n, ν)−m∗

(1),(4)
=

(
νn(n− νn) +

(
νn

2

))
−
((

d− k + 1

2

)
+ da+

(
n− d

2

))
=

(
νn(n− νn) +

(νn)2

2

)
−
(

(d− k)2

2
+ da+

(n− d)2

2

)
−
(
νn

2
+
d− k

2
− n− d

2

)
︸ ︷︷ ︸

6n
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>

(
νn(n− νn) +

(νn)2

2

)
−
(

(d− k)2

2
+ da+

(n− d)2

2

)
− n

(5)
=

(
x

(
1− ν − 3

2
x

)
+ y(2x− y)

)
n2 − n,

where the last equality requires a tedious yet straightforward calculation.
Similarly, if 2

5
− 3

5n
< ν 6 1

2
, then

m(n, ν)−m∗

(1),(4)
=

(
2νn+ 1

2

)
−
((

d− k + 1

2

)
+ da+

(
n− d

2

))
= 2(νn)2 −

(
(d− k)2

2
+ da+

(n− d)2

2

)
−
(
−νn+

d− k
2
− n− d

2

)
︸ ︷︷ ︸

6n

> 2(νn)2 −
(

(d− k)2

2
+ da+

(n− d)2

2

)
− n

(5)
=

(
(ν − x)

(
5

2
ν +

3

2
x− 1

)
+ y(2x− y)

)
n2 − n,

where the last equality again requires a tedious yet straightforward calculation.

The next lemma allows to identify the values of x and y for which m(n, ν) − m∗ is
small. Before we formulate it, we motivate its statement using plots of g(x, y) for different
values of ν, cf. Figure 1.

For ν = 0.4, the function g(x, y) is small in three cases:

(1) Either x, and, hence, also y are small,

(2) or x is close to ν, and y is small,

(3) or x is close to ν, and y is close to 2ν.

00.2
0

0.20.40.6

0

0.1

xy

00.20.4

0
0.5

0

0.1

xy

00.20.4
0

0.5
1

0

0.1

0.2

xy

Figure 1: The function g(x, y) for ν = 0.3 (left), ν = 0.4 (middle), and ν = 0.5 (right),
assuming that n is large enough.
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For smaller values of ν, for instance, ν = 0.3, only Case (1) leads to small values of
g(x, y), and for larger values of ν, for instance, ν = 0.5, only Cases (2) and (3) lead to
small values of g(x, y). From the intuition provided for x and y before Lemma 3, one
can derive the structural implications of each case on the Gallai-Edmonds decomposition:
In Case (1), the Gallai-Edmonds decomposition degenerates towards the bipartite graph
between A and D, which is complete bipartite in G∗. In Case (2), most of G is in C,
which is complete in G∗. Finally, in Case (3), most of G is in D, which is the union of k
complete graphs in G∗. Within the proof of Theorem 1, we consider exactly these three
cases.

Lemma 4. Let δ be such that δ > 3
n
.

If ((
x > δ

)
∨
(
ν >

2

5
+

2

5
δ

))
∧
((

x 6 ν − δ
)
∨
(
ν 6

2

5
− 2

5
δ

)
∨
(
δ 6 y 6 2ν − 3δ

))
, (7)

then g(x, y) > δ2.

Proof. First, we assume that ν 6 2
5
− 3

5n
, which implies x > δ.

If x 6 ν − δ, then

g(x, y) = x

(
1− ν − 3

2
x

)
+ y(2x− y)︸ ︷︷ ︸

>0

> x︸︷︷︸
>δ

(
1− ν − 3

2
x

)
︸ ︷︷ ︸

> 3
2
δ

> δ2,

if x > ν − δ and ν 6 2
5
− 2

5
δ, then

g(x, y) = x

(
1− ν − 3

2
x

)
+ y(2x− y)︸ ︷︷ ︸

>0

> x︸︷︷︸
>δ

(
1− ν − 3

2
x

)
︸ ︷︷ ︸

>δ

> δ2,

and, if x > ν − δ and ν > 2
5
− 2

5
δ, then

g(x, y) = x

(
1− ν − 3

2
x

)
︸ ︷︷ ︸

>0

+y(2x− y) > y︸︷︷︸
>δ

(2x− y)︸ ︷︷ ︸
>δ

> δ2.

Next, we assume that 2
5
− 3

5n
< ν 6 1

2
, which implies ν > 2

5
− 2

5
δ.

Note that

5

2
ν +

3

2
x− 1 > min

{
5

2

(
2

5
− 3

5n

)
+

3

2
δ − 1,

5

2

(
2

5
+

2

5
δ

)
− 1

}
> δ.
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If x 6 ν − δ, then

g(x, y) = (ν − x)

(
5

2
ν +

3

2
x− 1

)
+ y(2x− y)︸ ︷︷ ︸

>0

> (ν − x)︸ ︷︷ ︸
>δ

(
5

2
ν +

3

2
x− 1

)
︸ ︷︷ ︸

>δ

> δ2,

and, if x > ν − δ, then

g(x, y) = (ν − x)

(
5

2
ν +

3

2
x− 1

)
︸ ︷︷ ︸

>0

+y(2x− y) > y︸︷︷︸
>δ

(2x− y)︸ ︷︷ ︸
>δ

> δ2.

The next two lemmas establish the existence of many maximum matchings in graphs
that are close to complete bipartite graphs or complete graphs, respectively.

Lemma 5. For positive integers k and a with k > 1.1a, let the bipartite graph H arise
from Ka,k with partite sets A and K of orders a and k, respectively, by removing up to
0.08a2 edges in such a way that H has a matching saturating all vertices in A.

The graph H has at least dk − 1.1aemin{d0.2ae,dk−1.1ae} matchings saturating all vertices
in A.

Proof. Let M be a matching in H saturating all vertices in A. If A contains a subset
A′ of at least 0.2a vertices u with |NH(u) \ V (M)| > k − 1.1a, then there are at least

dk − 1.1aemin{d0.2ae,dk−1.1ae} matchings that connect the vertices in A′ to vertices in K \
V (M). Since each of these matchings can be extended to a matching saturating all vertices
in A by using edges from M , the desired statement follows. Hence, for a contradiction,
we suppose that a set A′ as above does not exist. Since H has at most a2 edges within
V (M), this implies that

m(H) < a2 + 0.2a(k − a) + 0.8a(k − a− 0.1a) = ak − 0.08a2,

which is a contradiction.

Lemma 6. For a positive integer p with p > 103, let the graph K arise from K2p by
removing up to 0.01

(
p
2

)
many edges in such a way that K has a perfect matching.

The graph K has at least d0.447pe! perfect matchings.

Proof. Let M = {x1y1, . . . , xpyp} be a perfect matching in K. Let the graph H with
vertex set {z1, . . . , zp} be such that, for distinct indices i and j from [p], the two vertices
zi and zj are adjacent in H if and only if the two edges xiyj and xjyi belong to K. Since
every non-edge in K leads to at most one non-edge in H, we have

m(H) >

(
p

2

)
− 0.01

(
p

2

)
> 0.99

(
p

2

)
p>103

> 0.989
p2

2
,

which implies that H has average degree at least 0.989p. This implies that H contains at
least 0.895p vertices of degree at least 0.895p. Hence, the graph H contains a set X of at
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least 0.447p vertices such that each vertex in X has at least 0.447p neighbors outside of
X. This immediately implies that H contains at least d0.447pe! distinct matchings.

For a matchingN inH, letM(N) arise from the perfect matchingM inK by replacing,
for every edge zizj in N , the two edges xiyi and xjyj in M with the two edges xiyj and xjyi.
Clearly, the set M(N) is a perfect matching in K, and M(N) is distinct from M(N ′) for
distinct matchings N and N ′ in H. Therefore, the graph K has at least d0.447pe! perfect
matchings.

Proof of Theorem 1. Let ν ∈
(
0, 1

2

]
.

Let

ε =
( ν

50

)2
6 10−4. (8)

Let G be a graph of order n, size m, and matching number νn such that εn > 1 and
m > m(n, ν)− εn2. We have

εn2 > m(n, ν)−m = (m(n, ν)−m∗)︸ ︷︷ ︸
>0

+ (m∗ −m(G∗))︸ ︷︷ ︸
>0

+ (m(G∗)−m)︸ ︷︷ ︸
>0

, (9)

where we use the notation introduced earlier in this section.
Let δ = 2

√
ε.

Using (8), ν 6 1
2
, and n > 1

ε
, we obtain

0 < δ 6
ν

25
, and n > max

{
3

δ
, 104

}
. (10)

If (7) holds, then Lemma 3 and Lemma 4 imply

εn2
(9)

> m(n, ν)−m∗ > g(x, y)n2 − n > δ2n2︸︷︷︸
>4εn2

− n︸︷︷︸
6εn2

> 3εn2,

which is a contradiction. Hence (7) fails, which leads to the following three cases:

• x < δ and ν < 2
5

+ 2
5
δ.

• x > ν − δ, ν > 2
5
− 2

5
δ, and y < δ.

• x > ν − δ, ν > 2
5
− 2

5
δ, and y > 2ν − 3δ.

Each of these three cases corresponds to a different degeneration of the Gallai-Edmonds
decomposition of G. We now consider these cases separately.

Case 1 x < δ and ν < 2
5

+ 2
5
δ.

Note that ν < 2
5

+ 2
5
δ

(10)

6 2
5

+ 2
125
ν, which implies

ν < 0.407. (11)

the electronic journal of combinatorics 29(2) (2022), #P2.52 8



By (5) and (6), we have

νn > a = (ν − x)n > (ν − δ)n
(10)

> 0.96νn, and

(1− ν)n > k
(6)
= (1− ν − x)n > (1− ν − δ)n

(10),(11)
> 0.576n. (12)

Let H0 be the bipartite subgraph of G with the partite sets A and D formed by the edges
between these two sets. Let M be a matching of size a in H0 that is a subset of some
maximum matching in G. In particular, for every i ∈ [k], there is at most one edge in
M between A and V (Gi). Let H arise from H0 by removing, for every component Gi of
G[D], all but exactly one vertex in such a way that V (M) ⊆ V (H). The properties of the
Gallai-Edmonds decomposition imply that every matching in H that saturates all vertices
in A can be extended to a maximum matching in G. By (9), we have m(G∗)−m 6 εn2,
and, hence, the graph H arises from Ka,k with partite sets A and K of orders a and k,
respectively, by removing up to εn2 edges in such a way that ν(G) = a. Since

k
(11),(12)
> 1.1a

and

0.08a2
(12)

> 0.08 · 0.962ν2n2
(8)

> εn2,

Lemma 5 implies that H has at least dk − 1.1aemin{d0.2ae,dk−1.1ae} matchings saturating all
vertices in A. Since

k − 1.1a
(11),(12)
> 0.1n > 0.1νn

and

0.2a
(12)
> 0.1νn,

the desired statement follows in this case.

Case 2 x > ν − δ, ν > 2
5
− 2

5
δ, and y < δ.

We have ν > 2
5
− 2

5
δ

(10)

> 2
5
− 2

125
ν, which implies

ν > 0.393. (13)

Furthermore,

|C| = n− d− a = n− (d− k)− k + (νn− a)− νn
(5),(6)

= (1− y − 1 + ν + x+ x− ν)n

= (2x− y)n > (2ν − 3δ)n
(10)

>

(
2− 3

25

)
νn

(13)

> 0.738n.
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With |C| = 2p, then p > 0.369n
(10)

> 103, and, hence, p − 1 > 0.368n. Note that G[C]
arises from K2p by removing at most

m(G∗)−m
(9)

6 εn2

many edges. Since 0.01
(
p
2

)
> 0.01·0.3682

2
n2

(8)

> εn2, and every perfect matching in G[C]
can be extended to a maximum matching in G, Lemma 6 implies that G has at least
d0.447pe! > d0.1ne! maximum matchings, and the desired statement follows in this case.

Case 3 x > ν − δ, ν > 2
5
− 2

5
δ, and y > 2ν − 3δ.

Exactly as in Case 2, we obtain (13). Furthermore,

|D| > |D| − k = d− k (5)
= yn > (2ν − 3δ)n

(10)

>

(
2− 3

25

)
νn

(13)

> 0.738n.

Suppose, for a contradiction, that max{n1, . . . , nk} 6 0.54n. Using the convexity of
x 7→ x2, we obtain

εn2
(9)

> m∗ −m(G∗)
(3),(4)

=

(
d− k + 1

2

)
−

k∑
i=1

(
ni
2

)
>

(d− k)2

2
− 1

2

k∑
i=1

n2
i

>
1

2
(0.738n)2 − 1

2

( n

0.54n

)
(0.54n)2 > 0.002n2,

contradicting (8). Hence, we may assume that n1 > 0.54n
(10)

> 103. For p = n1−1
2

, we
obtain

p > 0.269n
(10)

> 103

and

p− 1
(10)

> 0.268n.

Note that removing any one vertex from G1, we obtain a graph K that arises from K2p

by removing at most

m(G∗)−m
(9)

6 εn2

many edges. Furthermore, by the properties of the Gallai-Edmonds decomposition, the
graph K has a perfect matching, and every perfect matching in K can be extended to a
maximum matching in G. Since

0.01

(
p

2

)
>

0.01 · 0.2682

2
n2

(8)

> εn2,

Lemma 6 implies that G has at least d0.447pe! > d0.1ne! maximum matchings, and the
desired statement follows in this case. This completes the proof.
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For the proof of Theorem 2, we need the following variant of Lemma 5.

Lemma 7. Let ε, γ ∈ (0, 1). For positive integers k and a with εk
2
> a, let the bipartite

graph H arise from Ka,k with partite sets A and K of orders a and k, respectively, by
removing up to γak edges in such a way that H has a matching saturating all vertices in
A. The graph H has at least ⌈(

1−√γ − ε

2

)
k
⌉d(1−√γ− ε

2)ae

matchings saturating all vertices in A.

Proof. Let M be a matching in H saturating all vertices in A. If A contains a subset
A′ of at least

(
1−√γ

)
a vertices of degree at least

(
1−√γ

)
k, then each vertex u in

A′ satisfies |NH(u) \ V (M)| >
(
1−√γ

)
k − a >

(
1−√γ − ε

2

)
k, and there are at least⌈(

1−√γ − ε
2

)
k
⌉d(1−√γ− ε

2)ae
matchings that connect the vertices in A′ to vertices in

K \ V (M). Since each of these matchings can be extended to a matching saturating
all vertices in A by using edges from M , the desired statement follows. Hence, for a
contradiction, we suppose that a set A′ as above does not exist. This implies that m(H) <(
1−√γ

)
ak +

√
γa
(
1−√γ

)
k = ak − γak, which is a contradiction.

Proof of Theorem 2. Let ε ∈ (0, 1). Let ν ∈
(
0, 1

2

]
and δ ∈ (0, 1) be such that

ν 6 min

{
1

5
,

ε

2
(
1 + ε

2

(
1 + ε

2

))} , and δ 6
εν

8
. (14)

Further restricting ν (in terms of ε) and δ (in terms of ε and ν), we assume that

1−
(

1 +
ε

2

)
ν > 1− ε

2
and(

1−
√

δ(
1− ε

2

)
ν
(
1−

(
1 + ε

2

)
ν
) − ε

2

)(
1− ε

2

)
> 1− ε. (15)

Let G be a graph of order n, size m, and matching number νn such that δn > 1 and
m > m(n, ν)−δn2. Using the notation introduced before in this section, Lemma 3 implies

2δ >
1

n2
(m(n, ν)−m∗ + n) > g(x, y) > x

(
1− ν − 3

2
x

)
> x

(
1− 5

2
ν

)
>
x

2
.

Hence, x 6 4δ, and

νn > a = (ν − x)n > (ν − 4δ)n
(14)

>
(

1− ε

2

)
νn, and

k
(6)
= (1− ν − x)n > (1− ν − 4δ)n

(14)

>
(

1−
(

1 +
ε

2

)
ν
)
n. (16)
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Using the second upper bound on ν in (14), this implies ε
2
k > a. Let the graph H be

defined as in Case 1 of the proof of Theorem 1. For γ = δ

(1− ε
2)ν(1−(1+ ε

2)ν)
, we obtain

γak
(16)

> δn2,

and Lemma 7 implies that H, and, hence, also G, has at least⌈(
1−√γ − ε

2

)
k
⌉d(1−√γ− ε

2)ae

maximum matchings. Now,(
1−√γ − ε

2

)
k

(16)

>
(

1−√γ − ε

2

)(
1−

(
1 +

ε

2

)
ν
)
n

(15)

>
(

1−√γ − ε

2

)(
1− ε

2

)
n

(15)

> (1− ε)n, and(
1−√γ − ε

2

)
a

(16)

>
(

1−√γ − ε

2

)(
1− ε

2

)
νn

(15)

> (1− ε)νn,

which completes the proof.
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