The Number of k-Dimensional Corner-Free Subsets of Grids

Younjin Kim*
Department of Mathematics
POSTECH
Pohang, South Korea.
mathyounjinkim@gmail.com

Submitted: Mar 10, 2020; Accepted: May 25, 2022; Published: Jun 17, 2022
(C) The author. Released under the CC BY-ND license (International 4.0).

Abstract

A subset A of the k-dimensional grid $\{1,2, \ldots, N\}^{k}$ is said to be k-dimensional corner-free if it does not contain a set of points of the form $\{\mathbf{a}\} \cup\left\{\mathbf{a}+d e_{i}: 1 \leqslant\right.$ $i \leqslant k\}$ for some $\mathbf{a} \in\{1,2, \ldots, N\}^{k}$ and $d>0$, where $e_{1}, e_{2}, \ldots, e_{k}$ is the standard basis of \mathbb{R}^{k}. We define the maximum size of a k-dimensional corner-free subset of $\{1,2, \ldots, N\}^{k}$ as $c_{k}(N)$. In this paper, we show that the number of k-dimensional corner-free subsets of the k-dimensional grid $\{1,2, \ldots, N\}^{k}$ is at most $2^{O\left(c_{k}(N)\right)}$ for infinitely many values of N. Our main tools for proof are the hypergraph container method and the supersaturation result for k-dimensional corners in sets of size $\Theta\left(c_{k}(N)\right)$.

Mathematics Subject Classifications: 05D05

1 Introduction

In 1975, Szemerédi [25] proved that for every real number $\delta>0$ and every positive integer k, there exists a positive integer N such that every subset A of the set $\{1,2, \ldots, N\}$ with $|A| \geqslant \delta N$ contains an arithmetic progression of length k. There has been a plethora of research related to Szemerédi's theorem mixing methods in many areas of mathematics. Szemerédi's original proof is a tour de force of involved combinatorial arguments. There have been now alternative proofs of Szemerédi's theorem by Furstenberg [9] using methods from ergodic theory, and by Gowers [12] using high order Fourier analysis. The case $k=3$ was proven earlier by Roth [20].

[^0]A subset A of the set $\{1,2, \ldots, N\}$ is said to be k - $A P$-free if it does not contain an arithmetic progression of length k. We define the maximum size of a k-AP-free subset of $\{1,2, \ldots, N\}$ as $r_{k}(N)$. In 1990, Cameron and Erdős [6] were interested in counting the number of subsets of the set $\{1,2, \ldots, N\}$ which do not contain an arithmetic progression of length k and asked the following question.

Question 1 (Cameron and Erdős [6]). For every positive integer k and N, is it true that the number of k-AP free subsets of $\{1,2, \ldots, N\}$ is $2^{(1+o(1)) r_{k}(N)}$?

Until recently, research on how to improve the bounds $r_{k}(N)$ has been studied by many authors $[4,5,8,18,11,12]$. Despite much effort, the difference between the currently known lower and upper bounds of $r_{3}(N)$ is still quite large. The upper bound has improved gradually over the years, and the current best upper bound is due to Bloom and Sisask [5]:

$$
r_{3}(N) \leqslant \frac{N}{(\log N)^{1+c}}
$$

where $c>0$ is an absolute constant.
For a lower bound of $r_{3}(N)$, the configuration of Behrend [4] shows:

$$
r_{3}(N)=\Omega\left(\frac{N}{2^{2 \sqrt{2} \sqrt{\log _{2} N}} \cdot \log ^{\frac{1}{4}} N}\right)
$$

This has been improved by Elkin's modification [8] by a factor of $\sqrt{\log n}$.
The currently known lower and upper bounds for $r_{k}(N)$ are as follows:
Let $m=\left\lceil\log _{2} k\right\rceil$. For $k \geqslant 4$, there exist $c_{k}, c_{k}^{\prime}>0$ such that
where the lower bound is due to O'Bryant [18] and the upper bound is due to Gowers [11, 12].

In 2017, Balogh, Liu, and Sharifzadeh [2] provided a weaker version of Cameron and Erdős's conjecture [6] that the number of subsets of the set $\{1,2, \ldots, N\}$ without an arithmetic progression of length k is at most $2^{O\left(r_{k}(N)\right)}$ for infinitely many values of N, which is optimal up to a constant factor in the exponent.

A triple of points in the 2 -dimensional grid $\{1,2, \ldots, N\}^{2}$ is called a corner if it is of the form $\left(a_{1}, a_{2}\right),\left(a_{1}+d, a_{2}\right),\left(a_{1}, a_{2}+d\right)$ for some $a_{1}, a_{2} \in\{1,2, \ldots, N\}$ and $d>0$. In 1974, Ajtai and Szemerédi [1] discovered that for every number $\delta>0$, there exists a positive integer N such that every subset A of the 2 -dimensional grid $\{1,2, \ldots, N\}^{2}$ with $|A| \geqslant \delta N^{2}$ contains a corner. In 1991, Fürstenberg and Katznelson [10] found that their more general theorem implied the result of Ajtai and Szemerédi [1], but did not specify an explicit bound for N as it uses ergodic theory. An easy consequence of their result is the case $k=3$ of Szemerédi's theorem, which was first proved by Roth [20] using Fourier analysis. Afterward, in 2003, Solymosi [24] provided a simple proof for Ajtai and Szemerédi [1] theorem using the Triangle Removal Lemma.

A subset A of the 2 -dimensional grid $\{1,2, \ldots, N\}^{2}$ is called corner-free if it does not contain a corner. We define the maximum size of corner-free sets in $\{1,2, \ldots, N\}^{2}$ as $c_{2}(N)$. The problem of improving the bounds for $c_{2}(N)$ has been studied by many authors [14, 16, 22, 23]. The current best lower bound of $c_{2}(N)$ is due to Green [14], based on Linial and Shraibman's construction [16]:

$$
\frac{N^{2}}{2^{\left(l_{1}+o(1)\right) \sqrt{\log _{2} N}}} \leqslant c_{2}(N),
$$

where $l_{1} \approx 1.822$.
The current best upper bound of $c_{2}(N)$ is due to Shkredov [22]:

$$
c_{2}(N) \leqslant \frac{N^{2}}{(\log \log N)^{l_{2}}},
$$

where $l_{2} \approx 0.0137$.
The higher dimensional analog of a corner in the 2-dimensional grid $\{1,2, \ldots, N\}^{2}$ is the following. A subset A of the k-dimensional grid $\{1,2, \ldots, N\}^{k}$ is called k-dimensional corner if it is a set of points of the form $\{\mathbf{a}\} \cup\left\{\mathbf{a}+d e_{i}: 1 \leqslant i \leqslant k\right\}$ for some $\mathbf{a} \in$ $\{1,2, \ldots, N\}^{k}$ and $d>0$, where $e_{1}, e_{2}, \ldots, e_{k}$ is the standard basis of \mathbb{R}^{k}. The following multidimensional version of Ajtai and Szemerédi theorem [1] was proved by Fürstenberg, Katznelson [10], and Gowers [13].

Theorem 2 ($[10,13])$. For every number $\delta>0$ and every positive integer k, there exists a positive integer N such that every subset A of the k-dimensional grid $\{1,2, \ldots, N\}^{k}$ with $|A| \geqslant \delta N^{k}$ contains a k-dimensional corner.

In 1991, Fürstenberg and Katznelson [10] showed that their more general theorem implied Theorem 2, but did not specify an explicit bound as it uses ergodic theory. Later, in 2007, Gowers [13] provided the first proof with explicit bounds and the first proof of Theorem 2 not based on Fürstenberg's ergodic-theoretic approach. They also proved that Theorem 2 implied the multidimensional Szemerédi theorem.

Another fundamental result in additive combinatorics is the multidimensional Szemerédi theorem, which was demonstrated for the first time by Fürstenberg and Katznelson [9] using the ergodic method, but provided no explicit bounds. In 2007, Gowers [13] yielded a combinatorial proof of the multidimensional Szemerédi theorem by establishing the Regularity and Counting Lemmas for the r-uniform hypergraph. This is the first proof to provide an explicit bound. Similar results were obtained independently by Nagle, Rödl, and Schacht [17].

Theorem 3 (Multidimensional Szemerédi theorem [9, 13, 17]). For every real number $\delta>0$, every positive integer k, and every finite set $X \subset \mathbb{Z}^{k}$, there exists a positive integer N such that every subset A of the k-dimensional grid $\{1,2, \ldots, N\}^{k}$ with $|A| \geqslant \delta N^{k}$ contains a subset of the form $\mathbf{a}+d X$ for some $\mathbf{a} \in\{1,2, \ldots, N\}^{k}$ and $d>0$.

A subset A of the k-dimensional grid $\{1,2, \ldots, N\}^{k}$ is called k-dimensional cornerfree if it does not contain a k-dimensional corner. We define the maximum size of a
k-dimensional corner-free subset of $\{1,2, \ldots, N\}^{k}$ as $c_{k}(N)$. In this paper, we study a natural higher dimensional version of the question of Cameron and Erdős, i.e. counting k-dimensional corner-free sets in $\{1,2, \ldots, N\}^{k}$ as follows.

Question 4. For every positive integer k and N, is it true that the number of k dimensional corner-free subsets of the k-dimensional grid $\{1,2, \ldots, N\}^{k}$ is $2^{(1+o(1)) c_{k}(N)}$?

In addressing this question, we show the following theorem. Similar to the results of Balogh, Liu, and Sharifzadeh [2], despite not knowing the value of the extremal function $c_{k}(N)$, we can derive a counting result that is optimal up to a constant factor in the exponent.

Theorem 5. The number of k-dimensional corner-free subsets of the k-dimensional grid $\{1,2, \ldots, N\}^{k}$ is $2^{O\left(c_{k}(N)\right)}$ for infinitely many values of N.

Our paper is organized as follows. In Section 2, we provide the two main tools for proof: the hypergraph container theorem and supersaturation results for k-dimensional corners. In Section 3, we provide proof of the saturation result for k-dimensional corners in sets of size $\Theta\left(c_{k}(N)\right)$, which is specified in Section 2. In Section 4, we provide proof of our main result, Theorem 5 .

2 Preliminaries

2.1 Hypergraph Container Method

The hypergraph container method [3,21] is a very powerful technique for bounding the number of discrete objects avoiding certain forbidden structures. A graph is H-free if it does not have subgraphs that are isomorphic to H. For example, we use the container method when we count the family of H-free graphs or the family of sets without k term arithmetic progression. The r-uniform hypergraph \mathcal{H} is defined as the pair $(V(\mathcal{H}), E(\mathcal{H}))$ where $V(\mathcal{H})$ is the set of vertices and $E(\mathcal{H})$ is the set of hyperedges that are the r-subset of the vertices of $V(\mathcal{H})$. Let $\Gamma(\mathcal{H})$ be a collection of independent sets of hypergraph \mathcal{H}, where the independent set of hypergraph \mathcal{H} is the set of vertices inducing no hyperedge in $E(\mathcal{H})$. For a given hypergraph \mathcal{H}, we define the maximum degree of a set of l vertices of \mathcal{H} as

$$
\Delta_{l}(\mathcal{H})=\max \left\{d_{\mathcal{H}}(A): A \subset V(\mathcal{H}),|A|=l\right\}
$$

where $d_{\mathcal{H}}(A)$ is the number of hyperedges in $E(\mathcal{H})$ containing the set A.
Let \mathcal{H} be an r-uniform hypergraph of order n and average degree d. For any $0<\tau<1$, the co-degree $\Delta(\mathcal{H}, \tau)$ is defined as

$$
\Delta(\mathcal{H}, \tau)=2^{\binom{r}{2}-1} \sum_{j=2}^{r} 2^{\left(-\frac{-j-1}{2}\right)} \frac{\Delta_{j}(\mathcal{H})}{\tau^{j-1} d}
$$

In this paper, we use the following hypergraph container lemma, which contains accurate estimates for the r-uniform hypergraph in Corollary 3.6 in [21].

Theorem 6 (Hypergraph Container Lemma [21]). For every positive integer $r \in \mathbb{N}$, let $\mathcal{H} \subseteq\binom{V}{r}$ be an r-uniform hypergraph. Suppose that there exist $0<\epsilon, \tau<1 / 2$ such that

- $\tau<1 /\left(200 \cdot r \cdot r!^{2}\right)$
- $\Delta(\mathcal{H}, \tau) \leqslant \frac{\epsilon}{12 r!}$.

Then there exist $c=c(r) \leqslant 1000 \cdot r \cdot r!^{3}$ and a collection \mathcal{C} of subsets of $V(\mathcal{H})$ such that the following holds:

- for every independent set $I \in \Gamma(\mathcal{H})$, there exists $S \in \mathcal{C}$ such that $I \subset S$,
- $\log |\mathcal{C}| \leqslant c \cdot|V| \cdot \tau \cdot \log (1 / \epsilon) \cdot \log (1 / \tau)$,
- for every $S \in \mathcal{C}, e(\mathcal{H}[S]) \leqslant \epsilon \cdot e(\mathcal{H})$,
where $\mathcal{H}[S]$ is a subhypergraph of \mathcal{H} induced by S.
Let us consider a $(k+1)$-uniform hypergraph \mathcal{G} encoding the set of all k-dimensional corners in the k-dimensional grid $[n]^{k}$. It means that $V(\mathcal{G})=[n]^{k}$ and the edge set of \mathcal{G} consists of all $(k+1)$-tuples forming k-dimensional corners. Note that the independent set in \mathcal{G} is the k-dimensional corner-free set in $[n]^{k}$. Applying the Hypergraph Container Lemma to the hypergraph \mathcal{G} gives the following theorem, which is an important result to prove our main result, Theorem 5.

Theorem 7. For every positive integer $k \in \mathbb{N}$, let \mathcal{G} be a $(k+1)$-uniform hypergraph encoding the set of all k-dimensional corners in $[n]^{k}$. Suppose that there exists $0<\epsilon, \tau<$ $1 / 2$ satisfying that

- $\tau<1 /\left(200 \cdot(k+1) \cdot(k+1)!^{2}\right)$
- $\Delta(\mathcal{G}, \tau) \leqslant \frac{\epsilon}{12(k+1)!}$.

Then there exist $c=c(k+1) \leqslant 1000 \cdot(k+1) \cdot(k+1)!^{3}$ and a collection \mathcal{C} of subsets of $V(\mathcal{G})$ such that the following holds.
(i) every k-dimensional corner-free subset of $[n]^{k}$ is contained in some $S \in \mathcal{C}$,
(ii) $\log |\mathcal{C}| \leqslant c \cdot|V(\mathcal{G})| \cdot \tau \cdot \log (1 / \epsilon) \cdot \log (1 / \tau)$,
(iii) for every $S \in \mathcal{C}$, the number of k-dimensional corners in S is at most $\epsilon \cdot e(\mathcal{G})$.

2.2 Supersaturation Results

In this section, we present the supersaturation result for k-dimensional corners, which is the second main ingredient for proof of our main result. A supersaturation result says that sufficiently dense subsets of a given set contain many copies of certain structures. For the arithmetic progression, the supersaturation result concerned only sets of size linear in n was first demonstrated by Varnavides [26] by showing that any subset of $[n]$ of size $\Omega(n)$ has $\Omega\left(n^{2}\right) k$-APs. In 2008, Green and Tao [15] obtained the supersaturation result by proving that any subset of $\mathbf{P}_{\leqslant n}$ of size $\Omega\left(\left|\mathbf{P}_{\leqslant n}\right|\right)$ has $\Theta\left(n^{2} / \log ^{k} n\right) k$-APs, where $\mathbf{P}_{\leqslant n}$ is the set of prime numbers up to n. Later, Croot and Sisask [7] provided a quantitative version of Varnavides [26] by proving that for every $1 \leqslant M \leqslant n$, the number of 3 -AP in A is at least

$$
\left(\frac{|A|}{n}-\frac{r_{3}(M)+1}{M}\right) \cdot \frac{n^{2}}{M^{4}} .
$$

To prove Theorem 5, we need the supersaturation result of the minimum value of the number of k-dimensional corners for any set A in the k-dimensional grid $[n]^{k}$ of size $\Theta\left(c_{k}(N)\right)$. To explain the supersaturation results, we introduce the following definitions. Recall that we define the maximum size of a k-dimensional corner-free subset of the k dimensional grid $[n]^{k}$ as $c_{k}(n)$. Let $\Gamma_{k}(A)$ denote the number of k-dimensional corners in the set $A \subseteq[n]^{k}$. The following theorem shows that the number of k-dimensional corners in any set $A \subseteq[n]^{k}$ of size constant factor times larger than $c_{k}(n)$ is superlinear in n. In Section 3, we provide proof of Theorem 8.

Theorem 8. For the given $k \geqslant 3$, there exist $C^{\prime}:=C^{\prime}(k)$ and an infinite sequence $\left\{n_{i}\right\}_{i=1}^{\infty}$ such that the following holds. For all $n \in\left\{n_{i}\right\}_{i=1}^{\infty}$ and any set A in the k-dimensional grid $[n]^{k}$ of size $C^{\prime} \cdot c_{k}(n)$, we have

$$
\Gamma_{k}(A) \geqslant \log ^{(3 k+1)} n \cdot\left(\frac{n^{k}}{c_{k}(n)}\right)^{k} \cdot n^{k-1}=\Upsilon(n) \cdot n^{k}
$$

where $\Upsilon(n)=\frac{\log ^{3 k+1} n}{n} \cdot\left(\frac{n^{k}}{c_{k}(n)}\right)^{k}$.

2.2.1 Supersaturation Lemmas

In this section, we present more supersaturation results for the minimum value of the number of k-dimensional corners to obtain a superlinear bound in Theorem 8. First, we provide the following simple supersaturation result using the greedy algorithm.

Lemma 9. For the positive integer $k \geqslant 2$, let A be any set in the k-dimensional grid $[n]^{k}$ of size $K \cdot c_{k}(n)$, where $K \geqslant 2$ is a constant. Then we get

$$
\Gamma_{k}(A) \geqslant(K-1) \cdot c_{k}(n)
$$

Proof. We use the greedy algorithm to determine the minimum value of the number of k-dimensional corners in a set A of size $K \cdot c_{k}(n)$, where $K \geqslant 2$. We consider the following
process iteratively. As $|A|>c_{k}(n)$, there exists a k-dimensional corner C in the set A. It then updates the set A by removing an arbitrary element from C. By repeating this process $(K-1) \cdot c_{k}(n)$ times, we have

$$
\Gamma_{k}(A) \geqslant(K-1) \cdot c_{k}(n) .
$$

Next, we use Lemma 9 to give the following improved supersaturation result.
Lemma 10. For the positive integer $k \geqslant 2$, let A be any set in the k-dimensional grid $[n]^{k}$ of size at least $K \cdot c_{k}(n)$, where $K \geqslant 2$ is a constant. Then we obtain

$$
\Gamma_{k}(A) \geqslant\left(\frac{K}{2}\right)^{k+1} \cdot c_{k}(n)
$$

Proof. Let A be any set of $[n]^{k}$ and have a size greater than equal to $K \cdot c_{k}(n)$. We consider the set S, which is one of all subsets of A of size $2 \cdot c_{k}(n)$. With Lemma 9, we have $\Gamma_{k}(S) \geqslant c_{k}(n)$ for every S. Therefore we get

$$
\binom{|A|}{2 \cdot c_{k}(n)} \cdot c_{k}(n) \leqslant \sum_{S \subseteq A,|S|=2 \cdot c_{k}(n)} \Gamma_{k}(S) \leqslant \Gamma_{k}(A) \cdot\binom{|A|-k-1}{2 \cdot c_{k}(n)-k-1} .
$$

Then we conclude that

$$
\begin{aligned}
\Gamma_{k}(A) & \geqslant \frac{\binom{|A|}{2 \cdot c_{k}(n)}}{\binom{|A|-k-1}{2 \cdot c_{k}(n)-k-1}} \cdot c_{k}(n) \\
& \geqslant\left(\frac{|A|}{2 \cdot c_{k}(n)}\right)^{k+1} \cdot c_{k}(n) \\
& \geqslant\left(\frac{K}{2}\right)^{k+1} \cdot c_{k}(n) .
\end{aligned}
$$

Note that the bounds of Lemma 9 and Lemma 10 are linear in the set A of $[n]^{k}$. In the following lemma, we provide a superlinear bound for the minimum value of the number of k-dimensional corners by applying Lemma 10 to the set of carefully chosen k-dimensional corners with prime common differences. The following lemma is an important result for proving the supersaturation result for k-dimensional corners in sets of size $\Theta\left(c_{k}(N)\right)$ with superlinear bounds, which is specified in Theorem 8.

Lemma 11. For the positive integer $k \geqslant 2$, let A be any set in the k-dimensional grid $[n]^{k}$ such that there exists a positive constant M satisfying $\frac{|A|}{2^{k+1} M n^{k-1}}$ is sufficiently large and $\frac{|A|}{n^{k}} \geqslant \frac{8 K \cdot c_{k}(M)}{M^{k}}$, where $K \geqslant 2$ is a constant. Then we obtain

$$
\Gamma_{k}(A) \geqslant \frac{|A|^{2}}{2^{2 k+4}} \cdot \frac{(K)^{k+1} \cdot c_{k}(M)}{M^{k+1} n^{k-1} \log ^{2} n}
$$

Proof. Given the set A of $[n]^{k}$, we let $x=\frac{|A|}{2^{k+1} M n^{k-1}}$ which is sufficiently large. Let \mathcal{G}_{d} be the set of $M \times \cdots \times M$ grids in $[n]^{k}$, whose consecutive layers are of distance d apart, for a prime $d \leqslant x$. Let us consider $\mathcal{G}=\bigcup_{d \leqslant x} \mathcal{G}_{d}$. For any k-dimensional corner $C=\{\mathbf{a}\} \cup\left\{\mathbf{a}+d^{\prime} e_{i}: 1 \leqslant i \leqslant k\right\}$ for some $\mathbf{a} \in[n]^{k}$ and $d^{\prime}>0$, where $e_{1}, e_{2}, \ldots, e_{k}$ are the standard bases of \mathbb{R}^{k}, we consider a grid $G \in \mathcal{G}_{d}$ containing C. This means that d must be a prime divisor of d^{\prime}. The number of prime divisors of d^{\prime} is at most $\log d^{\prime} \leqslant \log n$, so the number of these choices is at most $\log n$. Since every corner can occur in at most $(M-1)^{k}$ grids from each fixed \mathcal{G}_{d} and the length of the corner has at most $\log n$ distinct prime factors, we get

$$
\begin{equation*}
\Gamma_{k}(A) \geqslant \frac{1}{M^{k} \cdot \log n} \sum_{G \in \mathcal{G}} \Gamma_{k}(A \cap G) . \tag{1}
\end{equation*}
$$

Let us consider $\mathcal{R} \subseteq \mathcal{G}$ consisting of all $G \in \mathcal{G}$ such that $|A \cap G| \geqslant K \cdot c_{k}(M)$, where $K \geqslant 2$ is a constant. Applying Lemma 10 to $A \cap G$ gives:

$$
\begin{equation*}
\Gamma_{k}(A \cap G) \geqslant\left(\frac{K}{2}\right)^{k+1} \cdot c_{k}(M) \tag{2}
\end{equation*}
$$

for all $G \in \mathcal{R}$. Combining the inequalities (1) and (2), we obtain

$$
\begin{align*}
\Gamma_{k}(A) & \geqslant \frac{1}{M^{k} \cdot \log n} \sum_{G \in \mathcal{G}} \Gamma_{k}(A \cap G) \\
& =\frac{1}{M^{k} \cdot \log n}\left(\sum_{G \in \mathcal{R}} \Gamma_{k}(A \cap G)+\sum_{G \in \mathcal{G} / \mathcal{R}} \Gamma_{k}(A \cap G)\right) \\
& \geqslant|\mathcal{R}| \cdot\left(\frac{K}{2}\right)^{k+1} \cdot \frac{c_{k}(M)}{M^{k} \cdot \log n} . \tag{3}
\end{align*}
$$

Next, let us prove the lower bound for $|\mathcal{R}|$. For a prime number $d \leqslant x=\frac{|A|}{2^{k+1} M n^{k-1}}$, we define $\zeta_{d}:=[(M-1) d+1, n-(M-1) d]^{k}$. Then we get the following inequality:

$$
\begin{aligned}
\left|A \cap \zeta_{d}\right| & \geqslant|A|-2^{k} M d n^{k-1} \\
& \geqslant|A|-2^{k} M n^{k-1} \frac{|A|}{2^{k+1} M n^{k-1}}=\frac{|A|}{2} .
\end{aligned}
$$

Note that the number of primes less than or equal to x is at least $\frac{x}{\log x}$ and at most $\frac{2 x}{\log x}$ by the Prime Number Theorem. Since every $z \in \zeta_{d}$ appears exactly in the M^{k} members of \mathcal{G}_{d}, we derive that

$$
\begin{align*}
\sum_{G \in \mathcal{G}}|A \cap G| & =\sum_{d \leqslant x} \sum_{G \in \mathcal{G}_{d}}|A \cap G| \\
& \geqslant M^{k} \sum_{d \leqslant x}\left|A \cap \zeta_{d}\right| \geqslant M^{k} \cdot \frac{x}{\log x} \cdot \frac{|A|}{2} . \tag{4}
\end{align*}
$$

Obviously the inequality $\left|\mathcal{G}_{d}\right| \leqslant n^{k}$ is held for each prime number $d \leqslant x$. Then we get the following equation:

$$
\begin{equation*}
|\mathcal{G}|=\left|\bigcup_{d \leqslant x} \mathcal{G}_{d}\right| \leqslant \frac{2 x}{\log x} \cdot n^{k} . \tag{5}
\end{equation*}
$$

Since $\mathcal{R} \subseteq \mathcal{G}$ consists of all $G \in \mathcal{G}$ such that $|A \cap G| \geqslant K \cdot c_{k}(M)$, using the equation (5) we get

$$
\begin{align*}
\sum_{G \in \mathcal{G}}|A \cap G| & =\sum_{G \in \mathcal{R}}|A \cap G|+\sum_{G \in \mathcal{G} \backslash \mathcal{R}}|A \cap G| \\
& \leqslant M^{k}|\mathcal{R}|+K \cdot c_{k}(M) \cdot|\mathcal{G} \backslash \mathcal{R}| \\
& \leqslant M^{k}|\mathcal{R}|+K \cdot c_{k}(M) \cdot|\mathcal{G}| \\
& \stackrel{(5)}{\leqslant} M^{k}|\mathcal{R}|+K \cdot c_{k}(M) \cdot \frac{2 x}{\log x} \cdot n^{k} . \tag{6}
\end{align*}
$$

Using the equations (4) and (6), we obtain

$$
\begin{aligned}
|\mathcal{R}| & \geqslant \frac{(6)}{M^{k}} \cdot\left(\sum_{G \in \mathcal{G}}|A \cap G|-K \cdot c_{k}(M) \cdot \frac{2 x}{\log x} \cdot n^{k}\right) \\
& \stackrel{(4)}{\geqslant} \frac{1}{M^{k}} \cdot\left(M^{k} \cdot \frac{x}{\log x} \cdot \frac{|A|}{2}-K \cdot c_{k}(M) \cdot \frac{2 x}{\log x} \cdot n^{k}\right) \\
& =\frac{x}{\log x} \cdot \frac{|A|}{2}-\frac{K \cdot c_{k}(M)}{M^{k}} \cdot \frac{2 x}{\log x} \cdot n^{k} \\
& =\frac{x}{\log x} \cdot\left(\frac{|A|}{2}-\frac{2 K \cdot c_{k}(M)}{M^{k}} \cdot n^{k}\right) .
\end{aligned}
$$

From the condition $\frac{|A|}{n^{k}} \geqslant \frac{8 K \cdot c_{k}(M)}{M^{k}}$, we have

$$
\begin{align*}
|\mathcal{R}| & \geqslant \frac{x}{\log x} \cdot\left(\frac{|A|}{2}-\frac{2 K \cdot c_{k}(M)}{M^{k}} \cdot n^{k}\right) \\
& \geqslant \frac{x}{\log x} \cdot\left(\frac{|A|}{2}-\frac{1}{4} \frac{|A|}{n^{k}} \cdot n^{k}\right) \\
& \geqslant \frac{x}{\log x} \cdot \frac{|A|}{4} \geqslant \frac{|A|}{4} \cdot \frac{|A|}{2^{k+1} M n^{k-1}} \cdot \frac{1}{\log n} . \tag{7}
\end{align*}
$$

Using the equations (3) and (7), we conclude that

$$
\begin{aligned}
\Gamma_{k}(A) & \stackrel{(3)}{\geqslant}|\mathcal{R}| \cdot\left(\frac{K}{2}\right)^{k+1} \cdot \frac{c_{k}(M)}{M^{k} \log n} \\
& \stackrel{(7)}{\geqslant} \frac{|A|^{2}}{4} \cdot \frac{1}{2^{k+1} M n^{k-1}} \cdot \frac{1}{\log n} \cdot\left(\frac{K}{2}\right)^{k+1} \cdot \frac{c_{k}(M)}{M^{k} \log n} \\
& =\frac{|A|^{2}}{2^{2 k+4}} \cdot \frac{(K)^{k+1} \cdot c_{k}(M)}{M^{k+1} n^{k-1} \log ^{2} n} .
\end{aligned}
$$

3 Proof of Theorem 8

The supersaturation result of k-dimensional corners in sets of size $\Theta\left(c_{k}(N)\right)$, which is specified in Theorem 8, is the main tool for proof of Theorem 5. In this section, we prove Theorem 8 using Lemma 11 and the following relationship between $f\left(n_{i}\right)$ and $f\left(\Lambda\left(n_{i}\right)\right)$ for some infinite sequence $\left\{n_{i}\right\}_{i=1}^{\infty}$.
For every $n \in\left\{n_{i}\right\}_{i=1}^{\infty}$, we define the following functions:

$$
\Lambda(n)=\frac{n}{\log ^{3 k+3} n} \cdot\left(\frac{c_{k}(n)}{n^{k}}\right)^{k+3}, \quad f(n)=\frac{c_{k}(n)}{n^{k}}
$$

where $c_{k}(n)$ is the maximum size of a k-dimensional corner-free subset of $[n]^{k}$.
Lemma 12. For the given $k \geqslant 3$, there exist $b:=b(k)>2^{2 k}$ and an infinite sequence $\left\{n_{i}\right\}_{i=1}^{\infty}$ such that

$$
b f\left(n_{i}\right) \geqslant f\left(\Lambda\left(n_{i}\right)\right)
$$

for all $i \geqslant 1$.
First, we give the following relationship between $f(n)$ and $f(m)$ for any $m<n$, which is what we need to get Lemma 12.

Lemma 13. For every $m<n$, we obtain $f(n)<2^{k} \cdot f(m)$.
Proof. For every $m<n$, we divide the k-dimensional grid $[n]^{k}$ into consecutive grids of size m^{k} because the corner-free property is invariant under translation. Since any given k-dimensional corner free subset of $[n]^{k}$ contains at most $c_{k}(m)$ elements in each grid of size m^{k}, for any $m<n$ we have

$$
c_{k}(n) \leqslant\left\lceil\frac{n}{m}\right\rceil^{k} \cdot c_{k}(m) .
$$

Since $\frac{1}{n^{k}} \cdot\left\lceil\frac{n}{m}\right\rceil^{k}<\frac{2^{k}}{m^{k}}$ for every $m<n$, we conclude that

$$
f(n)=\frac{c_{k}(n)}{n^{k}} \leqslant\left\lceil\frac{n}{m}\right\rceil^{k} \cdot \frac{c_{k}(m)}{n^{k}}<\frac{2^{k}}{m^{k}} \cdot c_{k}(m)=2^{k} \cdot f(m)
$$

This completes the proof of Lemma 13.
To get Lemma 12, we also need a lower bound on $c_{k}(n)$, which follows from Rankin [19]'s result that is a generalization of Behrend [4]'s construction of dense 3-AP-free subset of integers to the case of arbitrary $k \geqslant 3$.

Lemma 14. For the given $k \geqslant 2$, there exists α_{k} such that

$$
\frac{c_{k}(n)}{n^{k}}>2^{-\alpha_{k}(\log n)^{\beta_{k}}}
$$

for all sufficiently large n, where α_{k} is a positive absolute constant that depends only on k and $\beta_{k}=\frac{1}{\lceil\log k\rceil}$.

Proof. Let us first consider the case when $k=2$. Let A be the 3-AP-free subset of $[n]$ with size $n \cdot 2^{-\alpha \sqrt{\log n}}$ from Behrend [4]'s construction. We construct a dense 2-dimensional corner-free subset B of $[n]^{2}$ of size $\Omega(|A| n)$ as follows: Let L be the collection of all lines of the form $y=x+a$ for every $a \in A$, and B be the intersection of L and $[n]^{2}$. It is easy to see that $|B|=\Omega(|A| n)$. It remains to prove that B is 2 -dimensional cornerfree. Let us assume otherwise, i.e. there exists a 2 -dimensional corner in the set B, say $(x, y),(x+d, y),(x, y+d)$. Then, depending on the configuration, the three elements $y-x=a_{1}, y-(x+d)=a_{2}$, and $(y+d)-x=a_{3}$ are all in the set A forming 3-AP with $a_{2}+a_{3}=2 a_{1}$. This is a contradiction. Since the case of $k \geqslant 3$ is similar, the result of Rankin [19] is used instead, so details are omitted.

Now we use Lemma 13 and Lemma 14 to prove Lemma 12.
Proof of Lemma 12. Fix $b:=b(k)>2^{2 k}$ a large enough constant. Let us assume otherwise, i.e. there exists n_{0} for all $n \geqslant n_{0}$ satisfying

$$
\begin{equation*}
f(n)<b^{-1} f(\Lambda(n)) \tag{8}
\end{equation*}
$$

Using Lemma 14, there exists α_{k} such that $f(n)>2^{-\alpha_{k}(\log n)^{\beta_{k}}}$ for every sufficiently large n, where $\beta_{k}=\frac{1}{\lceil\log k\rceil}$ and α_{k} is a positive absolute constant depending only on k. Using these α_{k} and β_{k}, for all $x \geqslant 1$, we define the decreasing function $g(x)$ as

$$
g(x)=2^{-\left(k \alpha_{k}+3 \alpha_{k}+1\right)(\log x)^{\beta_{k}}}
$$

Then we get the following inequality for every $n \geqslant n_{0}$:

$$
\begin{align*}
\Lambda(n) & =\frac{n}{\log ^{3 k+3} n} \cdot\left(\frac{c_{k}(n)}{n^{k}}\right)^{k+3} \\
& =\frac{n}{\log ^{3 k+3} n} \cdot(f(n))^{k+3} \\
& \stackrel{\text { Lemma } 14}{>} \frac{n}{\log ^{3 k+3} n} \cdot\left(2^{-\alpha_{k}(\log n)^{\beta_{k}}}\right)^{k+3} \\
& >n \cdot 2^{-\left(k \alpha_{k}+3 \alpha_{k}+1\right)(\log n)^{\beta_{k}}}=n \cdot g(n) . \tag{9}
\end{align*}
$$

From the equation (9), if we apply Lemma 13 to $\Lambda(n)$ and $n \cdot g(n)$ then we derive

$$
\begin{equation*}
f(n) \stackrel{(8)}{<} b^{-1} f(\Lambda(n)) \stackrel{\text { Lemma } 13}{<} b^{-1} 2^{k} \cdot f(n \cdot g(n))=\left(\frac{b}{2^{k}}\right)^{-1} \cdot f(n \cdot g(n)) \tag{10}
\end{equation*}
$$

for all $n \geqslant n_{0}$.
To prove Lemma 12, we need the following claim.
Claim 15. Let us write $t=\left\lfloor\frac{1}{2} \frac{(\log n)^{\beta_{k}}}{k \alpha_{k}+3 \alpha_{k}+1}\right\rfloor$ with α_{k} satisfying $f(n)>2^{-\alpha_{k}(\log n)^{\beta_{k}}}$. Then for all $n>n_{0}^{1 /\left(1-\beta_{k}\right)}$ we obtain that

$$
f(n)<\left(\frac{b}{2^{2 k}}\right)^{-j} f\left(n \cdot(g(n))^{j}\right)
$$

for all $1 \leqslant j \leqslant t$.
Proof of Claim 15. We proceed by induction on j. The base case $j=1$ is done by the equation (10). Assume that the statement of Claim 15 holds for every $1 \leqslant j<t$. Now we consider $n^{\prime}=n \cdot(g(n))^{j}$ for all $1 \leqslant j<t$. Since $g(n)$ is a decreasing function, for each $j<t$ we have

$$
\begin{align*}
n^{\prime}=n \cdot(g(n))^{j}>n \cdot(g(n))^{t} & =n \cdot 2^{-\left(k \alpha_{k}+3 \alpha_{k}+1\right)(\log n)^{\beta_{k}} \cdot\left\lfloor\frac{1}{2} \frac{(\log n)^{\beta_{k}}}{\alpha_{k}+3 \alpha_{k}+1}\right\rfloor} \\
& =n \cdot\left(\frac{1}{2}\right)^{\left(k \alpha_{k}+3 \alpha_{k}+1\right)(\log n)^{\beta_{k}} \cdot\left\lfloor\frac{1}{2} \frac{(\log n)^{\beta_{k}}}{k \alpha_{k}+3 \alpha_{k}+1}\right\rfloor} \\
& \left.\geqslant n \cdot\left(\frac{1}{2}\right)^{\left(k \alpha_{k}+3 \alpha_{k}+1\right)(\log n)^{\beta_{k}} \cdot\left(\frac{1}{2} \frac{(\log n)^{\beta_{k}}}{k \alpha_{k}+3 \alpha_{k}+1}\right.}\right) \\
& \geqslant n \cdot\left(\frac{1}{2}\right)^{\frac{1}{2}(\log n)^{2 \beta_{k}}}=n \cdot 2^{-\frac{1}{2}(\log n)^{2 \beta_{k}}}=n^{1-\beta_{k}}>n_{0}, \tag{11}
\end{align*}
$$

for all $n>n_{0}^{1 /\left(1-\beta_{k}\right)} \geqslant n_{0}$.
Note that $n^{\prime}>n_{0}$ in the equation (11). Then we use the equation (10) to get

$$
\begin{equation*}
f\left(n^{\prime}\right) \stackrel{(10)}{<}\left(\frac{b}{2^{k}}\right)^{-1} \cdot f\left(n^{\prime} \cdot g\left(n^{\prime}\right)\right) \tag{12}
\end{equation*}
$$

Since $n^{\prime}<n$ and $g(n)$ is a decreasing function, we have $n^{\prime} \cdot g\left(n^{\prime}\right)>n^{\prime} \cdot g(n)$. Applying Lemma 13 to $n^{\prime} \cdot g\left(n^{\prime}\right)$ and $n^{\prime} \cdot g(n)$ gives:

$$
\begin{equation*}
f\left(n^{\prime} \cdot g\left(n^{\prime}\right)\right)<2^{k} f\left(n^{\prime} \cdot g(n)\right) \tag{13}
\end{equation*}
$$

Using the equations (12) and (13), we obtain that

$$
\begin{equation*}
f\left(n^{\prime}\right) \stackrel{(12)}{<}\left(\frac{b}{2^{k}}\right)^{-1} \cdot f\left(n^{\prime} \cdot g\left(n^{\prime}\right)\right) \stackrel{(13)}{<}\left(\frac{b}{2^{k}}\right)^{-1} \cdot 2^{k} f\left(n^{\prime} \cdot g(n)\right)=\left(\frac{b}{2^{2 k}}\right)^{-1} f\left(n^{\prime} \cdot g(n)\right), \tag{14}
\end{equation*}
$$

for all $n>n_{0}^{1 /\left(1-\beta_{k}\right)}$. According to the inductive hypothesis, for every $1 \leqslant j<t$, we get

$$
\begin{equation*}
f(n)<\left(\frac{b}{2^{2 k}}\right)^{-j} \cdot f\left(n \cdot(g(n))^{j}\right) \tag{15}
\end{equation*}
$$

From the equations (14) and (15), for every $1 \leqslant j<t$, we observe that

$$
\begin{align*}
f(n) & \stackrel{(15)}{<}\left(\frac{b}{2^{2 k}}\right)^{-j} \cdot f\left(n \cdot(g(n))^{j}\right) \\
& =\left(\frac{b}{2^{2 k}}\right)^{-j} \cdot f\left(n^{\prime}\right) \\
& \stackrel{(14)}{<}\left(\frac{b}{2^{2 k}}\right)^{-j} \cdot\left(\frac{b}{2^{2 k}}\right)^{-1} f\left(n^{\prime} \cdot g(n)\right) \\
& =\left(\frac{b}{2^{2 k}}\right)^{-j-1} \cdot f\left(n \cdot(g(n))^{j+1}\right), \tag{16}
\end{align*}
$$

when $n>n_{0}^{1 /\left(1-\beta_{k}\right)}$.
From the equation (16), we see that the statement of Claim 15 also holds for $j+1$. By the Induction axiom, the statement of Claim 15 holds for every $1 \leqslant j \leqslant t$. This completes the proof of Claim 15.

Let $t=\left\lfloor\frac{1}{2} \frac{(\log n)^{\beta_{k}}}{k \alpha_{k}+3 \alpha_{k}+1}\right\rfloor$ be an integer when α_{k} satisfies the inequality $f(n)>2^{-\alpha_{k}(\log n)^{\beta_{k}}}$. Assume that $n>n_{0}^{1 /\left(1-\beta_{k}\right)} \geqslant n_{0}$. Applying Claim 15, we get

$$
\begin{equation*}
f(n)<\left(\frac{b}{2^{2 k}}\right)^{-t} f\left(n \cdot(g(n))^{t}\right) . \tag{17}
\end{equation*}
$$

Note that $n \cdot(g(n))^{t} \geqslant n^{1-\beta_{k}}$ from the equation (11). Applying Lemma 13 to $n \cdot(g(n))^{t}$ and $n^{1-\beta_{k}}$ gives:

$$
\begin{equation*}
f\left(n \cdot(g(n))^{t}\right)<2^{k} \cdot f\left(n^{1-\beta_{k}}\right) . \tag{18}
\end{equation*}
$$

Using the equations (17) and (18), we draw the following conclusion.

$$
\begin{align*}
f(n) & \stackrel{(17)}{<}\left(\frac{b}{2^{2 k}}\right)^{-t} \cdot f\left(n \cdot(g(n))^{t}\right) \\
& \stackrel{(18)}{<}\left(\frac{b}{2^{2 k}}\right)^{-t} \cdot 2^{k} \cdot f\left(n^{1-\beta_{k}}\right) \\
& \leqslant\left(\frac{b}{2^{2 k}}\right)^{-t} \cdot 2^{k} \\
& =2^{k} \cdot\left(\frac{b}{2^{2 k}}\right)^{-\left\lfloor\frac{1}{2} \frac{(\log n)^{\beta_{k}}}{k \alpha_{k}+3 \alpha_{k}+1}\right\rfloor}<2^{-\alpha_{k}(\log n)^{\beta_{k}}}, \tag{19}
\end{align*}
$$

where $b:=b(k)>2^{2 k}$ is a sufficiently large constant. The equation (19) contradicts the definition of α_{k}. This completes the proof of Lemma 12 .

Now we use Lemma 11 and Lemma 13 to provide a proof of Theorem 8.

Proof of Theorem 8. Let $b(k)$ and an infinite sequence $\left\{n_{i}\right\}_{i=1}^{\infty}$ obtained from Lemma 12. For all $n \in\left\{n_{i}\right\}_{i=1}^{\infty}$, we let A be any set in the k-dimensional grid $[n]^{k}$ of size $8 K \cdot b(k) \cdot c_{k}(n)$. Using Lemma 12, we get

$$
\begin{equation*}
\frac{|A|}{n^{k}}=\frac{8 K \cdot b(k) \cdot c_{k}(n)}{n^{k}} \geqslant \frac{8 K \cdot c_{k}(\Lambda(n))}{(\Lambda(n))^{k}} \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{|A|}{2^{k+1} \cdot \Lambda(n) \cdot n^{k-1}}=\frac{8 K \cdot b(k) \cdot c_{k}(n)}{2^{k+1} \cdot \Lambda(n) \cdot n^{k-1}} \geqslant 8 K \cdot b(k) \cdot\left(\frac{\log ^{3} n}{2}\right)^{k+1}, \tag{21}
\end{equation*}
$$

where $\Lambda(n)=\frac{n}{\log ^{3 k+3} n} \cdot\left(\frac{c_{k}(n)}{n^{k}}\right)^{k+3}$. Applying Lemma 13 to the the inequality $\Lambda(n) \leqslant n$ gives:

$$
\begin{equation*}
\frac{c_{k}(n)}{n^{k}}<2^{k} \cdot \frac{c_{k}(\Lambda(n))}{(\Lambda(n))^{k}} \tag{22}
\end{equation*}
$$

From the inequality $\sqrt{n} \leqslant \Lambda(n)$, we get

$$
\begin{equation*}
\frac{n}{\Lambda(n)^{2}} \leqslant 1 \tag{23}
\end{equation*}
$$

From the equations (20) and (21), we can apply Lemma 11 with $M=\Lambda(n)$ and derive that

$$
\begin{align*}
\Gamma_{k}(A) & \geqslant \frac{|A|^{2}}{2^{2 k+4}} \cdot \frac{(K)^{k+1} \cdot c_{k}(\Lambda(n))}{(\Lambda(n))^{k+1} \cdot n^{k-1} \cdot \log ^{2} n} \\
& =\frac{8^{2} \cdot K^{2} \cdot(b(k))^{2} \cdot\left(c_{k}(n)\right)^{2}}{(\Lambda(n)) \cdot \log ^{2} n} \cdot \frac{c_{k}(\Lambda(n))}{(\Lambda(n))^{k}} \cdot \frac{(K)^{k+1}}{n^{k-1} \cdot 2^{2 k+4}}, \tag{24}
\end{align*}
$$

where $|A|=8 K \cdot b(k) \cdot c_{k}(n)$. The following conclusion is drawn using the equations (21), (22), (23), and (24):

$$
\begin{aligned}
\Gamma_{k}(A) & \stackrel{(24)}{\geqslant} \frac{8^{2} \cdot K^{2} \cdot(c(k))^{2} \cdot\left(c_{k}(n)\right)^{2}}{(\Lambda(n)) \cdot \log ^{2} n} \cdot \frac{c_{k}(\Lambda(n))}{(\Lambda(n))^{k}} \cdot \frac{(K)^{k+1}}{n^{k-1} \cdot 2^{2 k+4}} \\
& \stackrel{(22)}{\geqslant} \frac{8^{2} \cdot K^{2} \cdot(b(k))^{2} \cdot\left(c_{k}(n)\right)^{2}}{(\Lambda(n)) \cdot \log ^{2} n} \cdot \frac{c_{k}(n)}{2^{k} \cdot n^{k}} \cdot \frac{(K)^{k+1}}{n^{k-1} \cdot 2^{2 k+4}} \\
& \stackrel{(23)}{\geqslant} \frac{\log ^{3 k+1} n \cdot\left(n^{k}\right)^{k+3} \cdot n \cdot 8^{2} \cdot K^{2} \cdot(b(k))^{2} \cdot\left(c_{k}(n)\right)^{2}}{n^{2} \cdot\left(c_{k}(n)\right)^{k+3} \cdot(\Lambda(n))^{2} \cdot 2^{2 k+2} \cdot n^{2 k-2}} \cdot \frac{(K)^{k+1} \cdot c_{k}(n)}{2^{k+2}} \\
& \stackrel{(21)}{\geqslant} \log ^{3 k+1} n \cdot\left(\frac{n^{k}}{c_{k}(n)}\right)^{k+2} \cdot n^{k-1} \cdot 8^{2} \cdot K^{2} \cdot(b(k))^{2} \cdot\left(\frac{\log ^{3} n}{2}\right)^{2 k+2} \cdot \frac{(K)^{k+1}}{2^{k+2}} \\
& \geqslant \log ^{3 k+1} n \cdot\left(\frac{n^{k}}{c_{k}(n)}\right)^{k} \cdot n^{k-1}=\Upsilon(n) \cdot n^{k} .
\end{aligned}
$$

This completes the proof of Theorem 8.

4 Proof of Theorem 5

In this section, we prove the main result Theorem 5 using the hypergraph container method(Theorem 7) and supersaturation result for k-dimensional corners in sets of size $\Theta\left(c_{k}(N)\right)($ Theorem 8).

Proof of Theorem 5. Let $b(k)$ and the infinite sequence $\left\{n_{i}\right\}_{i=1}^{\infty}$ obtained from Lemma 12. For every $n \in\left\{n_{i}\right\}_{i=1}^{\infty}$, we define the following functions:

$$
\begin{aligned}
& \Upsilon(n)=\frac{\log ^{3 k+1} n}{n} \cdot\left(\frac{n^{k}}{c_{k}(n)}\right)^{k}, \\
& \Psi(n)=\frac{c_{k}(n)}{n^{k}} \cdot \frac{1}{\log ^{3} n}
\end{aligned}
$$

where $c_{k}(n)$ is the maximum size of a k-dimensional corner-free subset of $[n]^{k}$. For sufficiently large n, we have

$$
\begin{equation*}
\Psi(n)<\frac{1}{200 \cdot(k+1)^{2(k+1)}}<\frac{1}{200 \cdot((k+1)!)^{2} \cdot(k+1)} \tag{25}
\end{equation*}
$$

and

$$
\begin{align*}
\Upsilon(n) \cdot n \cdot \Psi(n)^{k} & =\frac{\log ^{3 k+1} n}{n} \cdot\left(\frac{n^{k}}{c_{k}(n)}\right)^{k} \cdot n \cdot\left(\frac{c_{k}(n)}{n^{k}} \cdot \frac{1}{\log ^{3} n}\right)^{k} \\
& =\log n \\
& >(k+1)^{3(k+1)} \tag{26}
\end{align*}
$$

Let us consider ($k+1$)-uniform hypergraph \mathcal{G} encoding the set of all k-dimensional corners in $[n]^{k}$. For a given hypergraph \mathcal{G}, the maximum degree of a set of j vertices of \mathcal{G} is $\Delta_{j}(\mathcal{G})=\max \left\{d_{\mathcal{G}}(A): A \subset V(\mathcal{G}),|A|=j\right\}$, where $d_{\mathcal{G}}(A)$ is the number of hyperedges in $E(\mathcal{G})$ containing the set A. Then the co-degree of a $(k+1)$-uniform hypergraph \mathcal{G} of order n and average degree d is written as

$$
\begin{align*}
\Delta(\mathcal{G}, \Psi) & =2^{\binom{k+1}{2}-1} \sum_{j=2}^{k+1} 2^{-\binom{j-1}{2}} \Psi(n)^{-(j-1)} \cdot \frac{\Delta_{j}(\mathcal{G})}{d} \\
& =2^{\binom{k+1}{2}-1} \sum_{j=2}^{k+1} \beta_{j} \cdot \frac{\Delta_{j}(\mathcal{G})}{d} \tag{27}
\end{align*}
$$

where $\beta_{j}=2^{-\left({ }_{2}^{j-1}\right)} \Psi(n)^{-(j-1)}$ for all $2 \leqslant j \leqslant k+1$. Since $\Psi(n)<\frac{1}{200 \cdot(k+1)^{2(k+1)}}<2^{-3(k+1)}$, we have

$$
\begin{equation*}
\frac{\beta_{j}}{\beta_{j+1}}=\frac{2^{\left(\frac{j}{2}\right)} \Psi(n)^{j}}{2^{\left(j_{2}^{-1}\right)} \Psi(n)^{j-1}}=2^{j-1} \Psi(n)<2^{(k+1)} \cdot \Psi(n)<1, \tag{28}
\end{equation*}
$$

for all $2 \leqslant j \leqslant k-1$. For the case $j=k$, we obtain the following inequality:

$$
\begin{equation*}
(k-1)(k+1)^{2} \cdot \frac{\beta_{k}}{\beta_{k+1}}=(k-1)(k+1)^{2} \cdot 2^{k-1} \Psi(n)<1 \tag{29}
\end{equation*}
$$

Using the equations (26), (28) and (29), we derive that

$$
\begin{align*}
\Delta(\mathcal{G}, \Psi) & =2^{\binom{k+1}{2}-1} \sum_{j=2}^{k+1} \beta_{j} \frac{\Delta_{j}(\mathcal{G})}{d} \\
& \leqslant 2^{\binom{k+1}{2}-1}\left(\sum_{j=2}^{k} \beta_{j} \frac{(k+1)^{2}}{d}+\frac{\beta_{k+1}}{d}\right) \\
& \stackrel{(28)}{\leqslant} 2^{\binom{k+1}{2}-1}\left((k-1) \cdot \beta_{k} \cdot \frac{(k+1)^{2}}{d}+\frac{\beta_{k+1}}{d}\right) \\
& \stackrel{(29)}{\leqslant} 2^{\binom{k+1}{2}-1}\left(\frac{2 \beta_{k+1}}{d}\right)=\frac{2^{k}}{d \cdot(\Psi(n))^{k}} \\
& \leqslant \frac{(k+1)^{k+1}}{n \cdot(\Psi(n))^{k}} \stackrel{(26)}{<} \frac{\Upsilon(n)}{12 \cdot(k+1)!} . \tag{30}
\end{align*}
$$

From the equations (25) and (30), we can apply the Hypergraph Container Lemma (Theorem 7) on the hypergraph \mathcal{G} with $\epsilon=\Upsilon(n), \tau=\Psi(n)$ as a function of n to get the collection \mathcal{C} of containers such that all k-dimensional corner-free subsets of the k dimensional grid $[n]^{k}$ are contained in some container in \mathcal{C}. Using Theorem 7, there exist $c=c(k+1) \leqslant 1000 \cdot(k+1) \cdot((k+1)!)^{3}$ and a collection \mathcal{C} of containers such that the followings hold:

- for every k-dimensional corner free subset of the k-dimensional grid $[n]^{k}$ is contained in some container in \mathcal{C},
- $\log |\mathcal{C}| \leqslant c \cdot n \cdot \Psi(n) \cdot \log \frac{1}{\Upsilon(n)} \cdot \log \frac{1}{\Psi(n)}$,
- for every container $A \in \mathcal{C}$ the number of k-dimensional corners in A is at most $\Upsilon(n) \cdot n^{k}$.

The definitions of $\Upsilon(n)$ and $\Psi(n)$ give the following inequality:

$$
\begin{align*}
\log \frac{1}{\Upsilon(n)} \cdot \log \frac{1}{\Psi(n)} & =\log \left(\frac{n}{\log ^{3 k+1} n} \cdot\left(\frac{c_{k}(n)}{n^{k}}\right)^{k}\right) \cdot \log \left(\frac{n^{k}}{c_{k}(n)} \cdot \log ^{3} n\right) \\
& \leqslant \log n \cdot((k+3) \log n)=(k+3)(\log n)^{2} \tag{31}
\end{align*}
$$

Using the equation (31) for the collection \mathcal{C} of containers gives:

$$
\begin{align*}
\log |\mathcal{C}| & \leqslant c \cdot n \cdot \Psi(n) \cdot \log \frac{1}{\Upsilon(n)} \cdot \log \frac{1}{\Psi(n)} \\
& \leqslant 1000 \cdot(k+1) \cdot((k+1)!)^{3} \cdot n \cdot \Psi(n) \cdot \log \frac{1}{\Upsilon(n)} \cdot \log \frac{1}{\Psi(n)} \\
& \stackrel{(31)}{\leqslant} 1000 \cdot(k+1) \cdot((k+1)!)^{3} \cdot n \cdot \frac{c_{k}(n)}{n^{k}} \cdot \frac{1}{\log ^{3} n} \cdot(k+3)(\log n)^{2}=o\left(c_{k}(n)\right) . \tag{32}
\end{align*}
$$

Note that for every container $A \in \mathcal{C}$, the number of k-dimensional corners in A is at most $\Upsilon(n) \cdot n^{k}$. Now applying Theorem 8 gives:

$$
\begin{equation*}
|A|<C^{\prime} \cdot c_{k}(n) \tag{33}
\end{equation*}
$$

for every container $A \in \mathcal{C}$. Since every k-dimensional corner free subset of the k dimensional grid $[n]^{k}$ is contained in some container in \mathcal{C}, we conclude that the number of k-dimensional corner free subsets of $[n]^{k}$ is at most

$$
\begin{aligned}
\sum_{A \in \mathcal{C}} 2^{|A|} & \leqslant|\mathcal{C}| \cdot \max _{A \in \mathcal{C}} 2^{|A|} \\
& \stackrel{(32) \&(33)}{<} 2^{o\left(c_{k}(n)\right)} \cdot 2^{C^{\prime} \cdot c_{k}(n)}=2^{O\left(c_{k}(n)\right)},
\end{aligned}
$$

using the equations (32) and (33). This completes the proof of Theorem 5.

Acknowledgements

I would like to thank Dong Yeap Kang and Hong Liu for their helpful discussions. I would particularly like to thank Hong Liu for providing many helpful comments.

References

[1] M. Ajtai and E. Szemerédi. Sets of lattice points that form no squares. Studia Scientiarum Mathematicarum Hungarica, 9:9-11, 1974.
[2] J. Balogh, H. Liu, and M. Sharifzadeh. The number of subsets of integers with no k-term arithmetic progression. International Mathematics Research Notices, 20:61686186, 2017.
[3] J. Balogh, R. Morris, and W. Samotij. Independent sets in hypergraphs. Journal of the American Mathematical Society, 28:669-709, 2015.
[4] F.A. Behrend. On sets of integers which contain no three terms in arithmetical progression. Proceedings of the National Academy of Sciences of the United States of America, 2:331-332, 1946.
[5] T.F. Bloom and O. Sisask. Breaking the logarithmic barrier in Roth's theorem on arithmetic progressions. arXiv:2007.03528.
[6] P. Cameron and P. Erdős. On the number of sets of integers with various properties. in Number Theory (R.A. Mollin, ed.), Walter de Grnyter, Berlin, 61-79, 1990.
[7] E. Croot and O. Sisask. A new proof of Roth's theorem on arithmetic progressions. Proceedings of the American Mathematical Society, 137:805-809, 2009.
[8] M. Elkin. An improved construction of progression-free sets. Israel Journal of Mathematics, 184:93-128, 2011.
[9] H. Fürstenberg and Y. Katznelson. An ergodic Szemerédi theorem for commuting transformations. Journal d'Analyse Mathematique, 34:275-291, 1978.
[10] H. Fürstenberg and Y. Katznelson. A density version of the Hales-Jewett theorem. Journal d'Analyse Mathematique, 57:64-119, 1991.
[11] W.T. Gowers. A new proof of Szemerédi's theorem for progressions of length four. Geometric and Functional Analysis, 8:529-551, 1998.
[12] W.T. Gowers. A new proof of Szemerédi's theorem. Geometric and Functional Analysis, 11:465-588, 2001.
[13] W.T. Gowers. Hypergraph regularity and the multidimensional Szemerédi theorem. Annals of Mathematics, 166:897-946, 2007.
[14] B. Green. Lower bounds for corner-free sets. New Zealand Journal of Mathematics, 51:1-2, 2021.
[15] B. Green and T. Tao. The primes contain arbitrarily long arithmetic progressions. Annals of Mathematics, 167:481-547, 2008.
[16] N. Linial and A. Shraibman. Larger corner-free sets from better NOF exactly-N protocols. Discrete Analysis, Paper No.19: 9 pp, 2021.
[17] B. Nagle, V. Rödl, and M. Schacht. The counting lemma for regular k-uniform hypergraphs. Random Structures and Algorithms, 28:113-179, 2006.
[18] K. O'Bryant. Sets of integers that do not contain long arithmetic progressions. The Electronic Journal of Combinatorics, 18(1):\#P59, 2011.
[19] R.A. Rankin. Sets of integers containing not more than a given number of terms in arithmetical progression. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 65: 332-344, 1960/1961.
[20] K. Roth. On certain sets of integers. Journal of the London Mathematical Society, 28:245-252, 1953.
[21] D. Saxton and A. Thomason. Hypergraph containers. Inventiones mathematicae, 201: 925-992, 2015.
[22] I.D. Shkredov. On a generalization of Szemerédi's theorem. Proceedings of the London Mathematical Society, 93(3):723-760, 2006.
[23] I.D. Shkredov. On a problem of Gowers. Izv. Ross. Akad. Nauk Ser. Mat., 70(2):179221, 2006.
[24] J. Solymosi. Note on a generalization of Roth's theorem. Discrete and Computational Geometry, 25:825-827, 2003.
[25] E. Szemerédi. On the sets of integers containing no k elements in arithmetic progression. Acta Arithmetica, 27:199-245, 1975.
[26] P. Varnavides. On certain sets of positive density. Journal of the London Mathematical Society, 34:358-360, 1959.

[^0]: *Supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (2017R1A6A3A04005963).

