Dense Eulerian Graphs are (1,3)-Choosable

Huajing Lu

Department of Mathematics Zhejiang Normal University Jinhua, China Xuding Zhu*

Department of Mathematics Zhejiang Normal University Jinhua, China

College of Basic Science Ningbo University of Finance and Economics Ningbo, China

huajinglu@zjnu.edu.cn

xdzhu@zjnu.edu.cn

Submitted: Jul 11, 2021; Accepted: May 25, 2022; Published: Jun 17, 2022 © The authors. Released under the CC BY-ND license (International 4.0).

Abstract

A graph G is total weight (k, k')-choosable if for any total list assignment L which assigns to each vertex v a set L(v) of k real numbers, and each edge e a set L(e) of k' real numbers, there is a proper total L-weighting, i.e., a mapping $f: V(G) \cup E(G) \to \mathbb{R}$ such that for each $z \in V(G) \cup E(G)$, $f(z) \in L(z)$, and for each edge uv of G, $\sum_{e \in E(u)} f(e) + f(u) \neq \sum_{e \in E(v)} f(e) + f(v)$. This paper proves that if G decomposes into complete graphs of odd order, then G is total weight (1,3)-choosable. As a consequence, every Eulerian graph G of large order and with minimum degree at least 0.91|V(G)| is total weight (1,3)-choosable. We also prove that any graph G with minimum degree at least 0.999|V(G)| and sufficiently large order is total weight (1,4)-choosable.

Mathematics Subject Classifications: 05C15, 05C72

1 Introduction

Assume G = (V, E) is a graph with vertex set $V = \{1, 2, ..., n\}$. Each edge $e \in E$ of G is a 2-subset $e = \{i, j\}$ of V. For $i \in V$, we denote by E(i) the set of edges incident to i. A *total weighting* of G is a mapping $\phi: V \cup E \to \mathbb{R}$. A total weighting ϕ is *proper* if for any edge $\{i, j\} \in E$,

$$\sum_{e \in E(i)} \phi(e) + \phi(i) \neq \sum_{e \in E(j)} \phi(e) + \phi(j).$$

*Supported by NSFC grand 11971438,12026248, U20A2068.

The electronic journal of combinatorics $\mathbf{29(2)}$ (2022), #P2.54

https://doi.org/10.37236/10563

A proper total weighting ϕ with $\phi(i) = 0$ for all vertices *i* is also called a *vertex coloring* edge weighting. A vertex coloring edge weighting of *G* using weights $\{1, 2, \ldots, k\}$ is called a *vertex coloring k-edge weighting*. Note that if *G* has an isolated edge, then *G* does not admit a vertex coloring edge weighting. We say a graph is *nice* if it does not contain any isolated edge.

Karoński, Łuczak and Thomason [11] conjectured that every nice graph has a vertex coloring 3-edge weighting. This conjecture received considerable attention [1, 2, 9, 10, 14, 15, 19], and it is known as the 1-2-3 conjecture. The best result on 1-2-3 conjecture so far was obtained by Kalkowski, Karoński and Pfender [10], who proved that every nice graph has a vertex coloring 5-edge weighting.

The list version of edge weighting of graphs was introduced by Bartnicki, Grytczuk and Niwczyk [5]. The list version of total weighting of graphs was introduced independently by Przybyło and Woźniak in [12] and by Wong and Zhu in [17]. Let $\psi : V \cup E \to \mathbb{N}^+$. A ψ -list assignment of G is a mapping L which assigns to $z \in V \cup E$ a set L(z) of $\psi(z)$ real numbers. Given a total list assignment L, a proper L-total weighting is a proper total weighting ϕ with $\phi(z) \in L(z)$ for all $z \in V \cup E$. We say G is total weight ψ -choosable (ψ -choosable for short) if for any ψ -list assignment L, there is a proper L-total weighting of G. We say G is total weight (k, k')-choosable ((k, k')-choosable for short) if G is ψ -total weight choosable, where $\psi(i) = k$ for $i \in V(G)$ and $\psi(e) = k'$ for $e \in E(G)$.

The list version of edge weighting also received a lot of attention [5, 6, 7, 8, 13, 14, 16, 17, 18, 20]. As strengthenings of the 1-2-3 conjecture, it was conjectured in [17] that every nice graph is (1, 3)-choosable. A weaker conjecture was also proposed in [17], which asserts that there is a constant k such that every nice graph is (1, k)-choosable. This weaker conjecture was recently confirmed by Cao [6], who proved that every nice graph is (1, 17)-choosable. This result was improved in [20], where it was shown that every nice graph is (1, 5)-choosable.

Given a graph G and a family of graphs \mathcal{H} , we say that G has an \mathcal{H} -decomposition, if the edges of G can be partitioned into the edge sets of copies of graphs from \mathcal{H} . In particular, a triangle decomposition of G is a partition of E(G) into triangles, and for a given graph H, an H-decomposition of G partitions E(G) into subsets, each inducing a copy of H. The following is the main result of this paper.

Theorem 1. If E(G) can be decomposed into cliques of odd order, then G is (1,3)-choosable.

As a consequence of Theorem 1, we prove the following result.

Theorem 2. If G is an n-vertex Eulerian graph with minimum degree at least 0.91n and n is sufficiently large, then G is (1,3)-choosable.

In [19], Zhong confirmed the 1-2-3 conjecture for graphs that can be edge-decomposed into cliques of order at least 3. As a consequence of this result, it was proved in [19] that the 1-2-3 conjecture holds for every *n*-vertex graph with minimum degree at least 0.99985n, where *n* is sufficiently large.

The electronic journal of combinatorics $\mathbf{29(2)}$ (2022), #P2.54

Our result is the list version of Zhong's result, but with one degree restriction: E(G) needs to be decomposed into complete graphs of odd order. Hence we can only show that dense Eulerian graphs are (1,3)-choosable. For general dense graphs, we prove the following result:

Theorem 3. If G is an n-vertex graph with minimum degree at least 0.999n and n is sufficiently large, then G is (1, 4)-choosable.

2 Some preliminaries

The proofs of Theorems 1, 2 and 3 use tools that were introduced in [6] and were further developed in [20]. In this section, we introduce some definitions and present a result from [6] that will be used in this paper.

Given a graph G = (V, E), let

$$\tilde{P}_G(\{x_z : z \in V \cup E\}) = \prod_{\{i,j\} \in E, i < j} \left(\left(\sum_{e \in E(i)} x_e + x_i \right) - \left(\sum_{e \in E(j)} x_e + x_j \right) \right).$$

Assign a real number $\phi(z)$ to each variable x_z , and view $\phi(z)$ as the weight of z. Let $\tilde{P}_G(\phi)$ be the evaluation of the polynomial at $x_z = \phi(z), z \in V \cup E$. Then ϕ is a proper total weighting of G if and only if $\tilde{P}_G(\phi) \neq 0$. Thus the problem of finding a proper L-total weighting of G (for a given total list assignment L) is equivalent to finding a non-zero point of the polynomial $\tilde{P}_G(\{x_z : z \in V \cup E\})$ in the grid $\prod_{z \in V \cup E} L(z)$.

Combinatorial Nullstellensatz [3] gives a sufficient condition for the polynomial $\tilde{P}_G(\{x_z : z \in V \cup E\})$ has a non-zero point in the grid $\prod_{z \in V \cup E} L(z)$: If some non-vanishing (i.e., with non-zero coefficient) highest degree monomial $\prod_{z \in V \cup E} x_z^{K(z)}$ in the expansion of $\tilde{P}_G(\{x_z : z \in V \cup E\})$ satisifies $K(z) \leq |L(z)| - 1$ for $z \in V \cup E$, then $\tilde{P}_G(\{x_z : z \in V \cup E\})$ has a non-zero point in the grid $\prod_{z \in V \cup E} L(z)$.

We denote by \mathbb{N} the set of non-negative integers. To prove a graph G = (V, E) is (1, k)-choosable, it suffices to show that for some $K : V \cup E \to \mathbb{N}$ such that K(v) = 0 and $K(e) \leq k - 1$, and the monomial $\prod_{z \in V \cup E} x_z^{K(z)}$ has non-zero coefficient in the expansion of $\tilde{P}_G(\{x_z : z \in V \cup E\})$.

As K(v) = 0 for all $v \in V$, the monomials in concern are of the form $\prod_{e \in E} x_e^{K(e)}$. Such monomials have the same coefficient in the expansions of $\tilde{P}_G(\{x_z : z \in V \cup E\})$ and

$$P_G(\{x_e : e \in E\}) = \prod_{\{i,j\} \in E, i < j} \left(\sum_{e \in E(i)} x_e - \sum_{e \in E(j)} x_e \right).$$

We denote by \mathbb{N}^E the set of mappings $K: E \to \mathbb{N}$. Let

$$\mathbb{N}_m^E = \{ K \in \mathbb{N}^E : \sum_{e \in E} K(e) = m \}, \ \mathbb{N}_{(b^-)}^E = \{ K \in \mathbb{N}^E : K(e) \leqslant b, \forall e \in E \}.$$

THE ELECTRONIC JOURNAL OF COMBINATORICS 29(2) (2022), #P2.54

For $K \in \mathbb{N}^E$, let

$$x^{K} = \prod_{e \in E} x_{e}^{K(e)}, \ K! = \prod_{e \in E} K(e)!$$

Denote the coefficient of the monomial x^{K} in the expansion of P_{G} by $coe(x^{K}, P_{G})$.

For a positive integer b, to prove that G = (V, E) is (1, b + 1)-choosable, it suffices to show that $\operatorname{coe}(x^K, P_G) \neq 0$ for some $K \in \mathbb{N}^E_{(b^-)}$. For this purpose, we use a formula given in [6] for the calculation of $\operatorname{coe}(x^K, P_G)$.

For $m, n \in \mathbb{N}$, let $\mathbb{C}[x_1, x_2, \dots, x_n]_m$ be the vector space of homogeneous polynomials of degree m in variables x_1, \dots, x_n over the field \mathbb{C} of complex numbers.

Assume |E| = m. Consider the vector space of homogeneous polynomials of degree m in $\mathbb{C}[x_e : e \in E]$. For $f, g \in \mathbb{C}[x_e : e \in E]$, we define the *inner product* of f and g as

$$\langle f,g \rangle = \sum_{K \in \mathbb{N}_m^n} K! \operatorname{coe}(x^K, f) \overline{\operatorname{coe}(x^K, g)}.$$

The following lemma was proved in [6].

Lemma 4. Assume G = (V, E), |E| = m and $K \in \mathbb{N}_m^E$. Let

$$Q_E = \prod_{\{i,j\}\in E, i$$

Then

$$\operatorname{coe}(x^K, P_G) = \frac{1}{K!} \langle Q_E, H_E^K \rangle.$$

Definition 5. For $K \in \mathbb{N}^{E}$, let $W_{E,m}^{K}$ be the complex linear space spanned by

$$\{H_E^{K'}: K' \leqslant K, K' \in \mathbb{N}_m^E\}.$$

It is obvious that there exists $K' \in \mathbb{N}_m^E$ such that $K' \leq K$ and $\langle Q_E, H_E^{K'} \rangle \neq 0$ if and only if there exists $F \in W_{E,m}^K$ such that $\langle Q_E, F \rangle \neq 0$. Thus we have the following corollary.

Corollary 6. If $K \in \mathbb{N}_{(b^-)}^E$ and there exists $F \in W_{E,m}^K$ such that $\langle Q_E, F \rangle \neq 0$, then G is (1, b + 1)-choosable.

3 Proofs of Theorems 1, 2, 3

The following lemma is an easy observation, but it is the key tool for proving the main results of this paper.

Lemma 7. If $Q_E \in W_{E,m}^K$ for some $K \in \mathbb{N}_{(b^-)}^E$, then G is (1, b+1)-choosable.

Proof. Assume $Q_E \in W_{E,m}^K$. As $Q_E \neq 0$, we have $\langle Q_E, Q_E \rangle > 0$. By Corollary 6, G is (1, b+1)-choosable.

The electronic journal of combinatorics $\mathbf{29(2)}$ (2022), #P2.54

As an example, consider a triangle T with vertex set $\{i, j, k\}$. By definition, $Q_E = (x_i - x_j)(x_j - x_k)(x_i - x_k)$. To prove that $Q_E \in W_{E,3}^K$, it suffices to express each of the three factors of Q_E , $(x_i - x_j)$, $(x_j - x_k)$ and $(x_i - x_k)$, as a linear combination of $(x_i + x_j), (x_j + x_k), (x_i + x_k)$, and for each edge e, say for $e = \{i, j\}$, the term $(x_i + x_j)$ occurs in at most K(e) of such linear combinations. We can write Q_E as

$$Q_E = ((x_i + x_k) - (x_j + x_k))((x_i + x_j) - (x_i + x_k))((x_i + x_j) - (x_j + x_k)).$$

It is easy to check that for each edge, say for $e = \{i, j\}$, the term $(x_i + x_j)$ occurs in two of the linear combinations. Thus $Q_E \in W_{E,3}^K$, where K(e) = 2 for each edge e of T.

A path of length k in G connecting i and j is a sequence of distinct vertices $P = (i_0, i_1, \ldots, i_k)$ such that $i_0 = i$, $i_k = j$ and $\{i_l, i_{l+1}\} \in E$ for $l = 0, 1, \ldots, k-1$.

Definition 8. Assume G = (V, E) is a graph. A *path covering family* of G is a family of paths

$$\mathcal{P} = \{ P_e : e \in E \},\$$

where for each edge $e = \{i, j\} \in E$, P_e is an even length path connecting i and j.

For a subgraph H of G, $K_H \in \mathbb{N}^E$ is the characteristic function of E(H), i.e., $K_H(e) = 1$ if $e \in E(H)$ and $K_H(e) = 0$ otherwise. For a family \mathcal{F} of subgraphs of G,

$$K_{\mathcal{F}} = \sum_{H \in \mathcal{F}} K_H.$$

Observe that if $F_i \in W_{E,m_i}^{K_i}$ for $i = 1, 2, \ldots, t$, then $\prod_{i=1}^t F_i \in W_{E,\sum_{i=1}^t m_i}^{\sum_{i=1}^t K_i}$.

Lemma 9. If G has a path covering family \mathcal{P} with $K_{\mathcal{P}}(e) \leq b$ for each edge e, then G is (1, b+1)-choosable.

Proof. Assume \mathcal{P} is a path covering family with $K_{\mathcal{P}}(e) \leq b$ for each edge e. For each edge $e = \{i, j\}$ of G, let $P_e = (i_0, i_1, \ldots, i_{2k_e})$ be the even length path in \mathcal{P} connecting i and j, i.e., $i_0 = i$ and $i_{2k_e} = j$. Then

$$x_i - x_j = \sum_{l=0}^{2k_e - 1} (-1)^l (x_{i_l} + x_{i_{l+1}}) \in W_{E,1}^{K_{P_e}}.$$

Hence

$$Q_E = \prod_{\{i,j\}\in E} (x_i - x_j) \in W_{E,m}^{K_{\mathcal{P}}}.$$

Since $K_{\mathcal{P}}(e) \leq b$ for each edge e, we have $Q_E \in W_{E,m}^K$ for some $K \in \mathbb{N}_{(b^-)}^E$. By Lemma 7, G is (1, b + 1)-choosable.

The following lemma follows easily from the definitions and its proof is omitted.

The electronic journal of combinatorics $\mathbf{29(2)}$ (2022), #P2.54

Lemma 10. If G decomposes into graphs H_1, H_2, \ldots, H_q , and each H_i has a path covering family \mathcal{P}_i with $F_{\mathcal{P}_i} \in W_{E(H_i),m_i}^{K_i}$ and $K_i \in \mathbb{N}_{(b^-)}^{E(H_i)}$, then $\mathcal{P} = \bigcup_{i=1}^q \mathcal{P}_i$ is a path covering family of G and $K_{\mathcal{P}} \in W_E^K$ for $K = \sum_{i=1}^q K_i \in \mathbb{N}_{(b^-)}^E$.

Proof of Theorem 1. By Lemmas 9 and 10, it suffices to show that each complete graph K_n of odd order has a path covering family \mathcal{P} with $K_{\mathcal{P}} \in \mathbb{N}^{E}_{(2^{-})}$. Assume K_n has vertex set $\{1, 2, \ldots, n\}$.

Put the *n* vertices $\{1, 2, ..., n\}$ of K_n equally spaced along the perimeter of a circle C. For an edge $e = \{i, j\}$ of K_n , denote by [i, j] the interval of C from *i* to *j* along the clockwise direction (containing both *i* and *j*). Since *n* is odd, exactly one of [i, j] and [j, i] contains an odd number of vertices of K_n . Let $t_{i,j}$ be the vertex that is in the center of the interval [i, j] or [j, i] that contains an odd number of vertices, and let $P_e = (i, t_{i,j}, j)$. Then $\mathcal{P} = \{P_e : e \in E(K_n)\}$ is a path covering family of K_n . For each edge $e = \{i, j\}$ of K_n , let $a_e = \{i, 2j - i\}$ and $b_e = \{j, 2i - j\}$ (where calculations are modulo *n*). It is easy to verify that *e* is contained in $P_{e'}$ if and only if $e' \in \{a_e, b_e\}$. So each edge of K_n is contained in two paths in \mathcal{P} , i.e., $K_{\mathcal{P}}(e) = 2$ for each edge *e* of K_n . This completes the proof of Theorem 1.

For a graph G, let gcd(G) be the largest integer dividing the degree of every vertex of G. We say that G is F-divisible if |E(G)| is divisible by |E(F)| and gcd(G) is divisible by gcd(F).

The following result was proved in [4]:

Theorem 11. For every $\epsilon > 0$, there is an integer n_0 such that if G is a triangle-divisible graph of order $n \ge n_0$ and minimum degree at least $(0.9 + \epsilon)n$, then G has a triangle decomposition.

Proof of Theorem 2. Assume G is an n-vertex Eulerian graph of minimum degree $\delta(G) > (0.9 + \epsilon)n$ with large enough n. By Theorem 1, it suffices to show that G decomposes into complete graphs of odd order.

Assume $|E(G)| \equiv i \pmod{3}$, where $i \in \{0, 1, 2\}$. Let H_1, \ldots, H_i be vertex disjoint 5-cliques in G. Then $G' = G - \bigcup_{j=1}^{i} E(H_j)$ is triangle divisible and $\delta(G') \ge \delta(G) - 4 \ge (0.9 + \epsilon')n$. By Theorem 11, G' is triangle decomposible. Hence G decomposes into complete graphs of odd order. This completes the proof of Theorem 2.

Lemma 12. Let H = (V, E) be the graph shown in Figure 1. Then H has a path covering family \mathcal{P} with $K_{\mathcal{P}} \in \mathbb{N}_{(3^{-})}^{E}$.

Proof. We denote by $T_1 = (1, 2, 4)$, $T_2 = (2, 3, 5)$ the two edge disjoint triangles in H. For each triangle T_i , let \mathcal{P}_i be the path covering family with $K_{\mathcal{P}_i} \in \mathbb{N}_{(2^-)}^{E(T_i)}$. For the edge $e = \{1, 3\}$ which is not contained in the two triangles, let $P_e = (1, 2, 3)$. Then

$$\mathcal{P} = \bigcup_{i=1}^{2} \mathcal{P}_i \cup \{P_e\}$$

is a path covering family of H with $K_{\mathcal{P}} \in \mathbb{N}^{E}_{(3^{-})}$. This completes the proof of Lemma 12.

Figure 1: The graph H.

The following theorem was proved in [4]:

Theorem 13. For every $\epsilon > 0$, there is an integer n_0 such that if G is an H-divisible graph of order $n \ge n_0$ and minimum degree at least $(1 - 1/t + \epsilon)n$, where $t = \max\{16\chi(H)^2(\chi(H) - 1)^2, |E(H)|\}$, then G has an H-decomposition.

Proof of Theorem 3. Assume G is a graph of sufficiently large order and with minimum degree $\delta(G) \ge 0.999|V(G)|$. If |E(H)| divides |E(G)|, then G decomposes into copies of H and Theorem 3 follows from Lemma 9. Otherwise, the same argument as in the proof of Theorem 2 shows that G can be decomposed into at most 12 copies of triangles and copies of H, and hence again Theorem 3 follows from Lemma 9.

References

- L. Addario-Berry, R. E. L. Aldred, K. Dalal and B. A. Reed, Vertex colouring edge partitions, J. Combin. Theory Ser. B 94 (2005), 237-244.
- [2] L. Addario-Berry, K. Dalal, C. McDiarmid, B. A. Reed and A. Thomason, Vertexcolouring edge-weightings, Combinatorica 27 (2007), 1-12.
- [3] N. Alon and M. Tarsi, A nowhere zero point in linear mappings, Combinatorica 9 (1989), 393-395.
- [4] B. Barber, D. Kühn, A. Lo and D. Osthus, Edge-decompositions of graphs with high minimum degree, Adv. Math. 288 (2016), 337-385.
- [5] T. Bartnicki, J. Grytczuk and S. Niwczyk, Weight choosability of graphs, J. Graph Theory 60 (2009), 242-256.

- [6] L. Cao, Total weight choosability of graphs: Towards the 1-2-3 conjecture, J. Combin. Theory Ser. B 149 (2021), 109-146.
- G. Chang, G. Duh, T. Wong and X. Zhu, Total weight choosability of trees, SIAM J. Discrete Math. 31 (2017), no. 2, 669-686.
- [8] L. Ding, G. Duh, G. Wang, T. Wong, J. Wu, X. Yu and X. Zhu, Graphs are $(1, \Delta + 1)$ -choosable, Discrete Math. 342 (2019), no. 1, 279-284.
- [9] J. Grytczuk, From the 1-2-3 conjecture to the Riemann hypothesis, European J. Combin. 91 (2021), 103213.
- [10] M. Kalkowski, M. Karoński and F. Pfender, Vertex-coloring edge-weightings: towards the 1-2-3- Conjecture, J. Combin. Theory Ser. B 100 (2010), 347-349.
- [11] M. Karoński, T. Łuczak and A. Thomason, *Edge weights and vertex colours*, J. Combin. Theory Ser. B 91 (2004), 151-157.
- [12] J. Przybyło and M. Woźniak, On a 1-2 conjecture, Discrete Math. Theor. Comput. Sci. 12 (2010), 101-108.
- [13] J. Przybyło and M. Woźniak, Total weight choosability of graphs, Electronic J. Combinatorics 18 (2011), no. 1, #P112.
- [14] Y. Tang, T. Wong and X. Zhu, Total weight choosability of cone graphs, Graphs Combin. 32 (2016), no. 3, 1203-1216.
- [15] T. Wang and Q. L. Yu, A note on vertex-coloring 13-edge-weighting, Frontier Math. in China, 3 (2008), 581-587.
- [16] T. Wong, 2-connected chordal graphs and line graphs are (1,5)-choosable, European J. Combin. 91 (2021), 103227, 8 pp.
- [17] T. Wong and X. Zhu, Total weight choosability of graphs, J. Graph Theory 66 (2011), 198-212.
- [18] T. Wong and X. Zhu, Every graph is (2,3)-choosable, Combinatorica 36 (2016), no. 1, 121–127.
- [19] L. Zhong, The 1-2-3-conjecture holds for dense graphs, J. Graph Theory 90 (2019), 561-564.
- [20] X. Zhu, Every nice graph is (1,5)-choosable, arXiv:2104.05410.