Dense Eulerian Graphs are (1, 3)-Choosable
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Abstract

A graph G is total weight (k,k’)-choosable if for any total list assignment L
which assigns to each vertex v a set L(v) of k real numbers, and each edge e a
set L(e) of k' real numbers, there is a proper total L-weighting, i.e., a mapping
f:V(G)U E(G) — R such that for each z € V(G) U E(G), f(z) € L(z), and for
each edge uv of G, 3 c g fl€) + f(u) # Xocep) f(e) + f(v). This paper proves
that if G decomposes into complete graphs of odd order, then G is total weight
(1,3)-choosable. As a consequence, every Eulerian graph G of large order and with
minimum degree at least 0.91|V(G)| is total weight (1, 3)-choosable. We also prove
that any graph G with minimum degree at least 0.999|V (G)| and sufficiently large
order is total weight (1,4)-choosable.

Mathematics Subject Classifications: 05C15, 05C72

1 Introduction

Assume G = (V, E) is a graph with vertex set V = {1,2,...,n}. Each edge e € F of G
is a 2-subset e = {7, 5} of V. For i € V| we denote by E(i) the set of edges incident to i.
A total weighting of G is a mapping ¢: VU E — R. A total weighting ¢ is proper if for
any edge {i,j} € F,

> dle)+o(i) # D dle) + o).

ecE(3) ecE(j)
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A proper total weighting ¢ with ¢(i) = 0 for all vertices 7 is also called a vertez coloring
edge weighting. A vertex coloring edge weighting of G using weights {1,2, ..., k} is called
a vertex coloring k-edge weighting. Note that if G has an isolated edge, then GG does not
admit a vertex coloring edge weighting. We say a graph is nice if it does not contain any
isolated edge.

Karorniski, Luczak and Thomason [11] conjectured that every nice graph has a vertex
coloring 3-edge weighting. This conjecture received considerable attention [1, 2, 9, 10, 14,
15, 19], and it is known as the 1-2-3 conjecture. The best result on 1-2-3 conjecture so
far was obtained by Kalkowski, Karonski and Pfender [10], who proved that every nice
graph has a vertex coloring 5-edge weighting.

The list version of edge weighting of graphs was introduced by Bartnicki, Grytczuk and
Niwezyk [5]. The list version of total weighting of graphs was introduced independently
by Przybylo and Wozniak in [12] and by Wong and Zhu in [17]. Let ¢ : VU E — Nt.
A )-list assignment of G is a mapping L which assigns to z € V U E a set L(z) of ¢(z)
real numbers. Given a total list assignment L, a proper L-total weighting is a proper total
weighting ¢ with ¢(z) € L(z) for all z € VU E. We say G is total weight 1-choosable
(1)-choosable for short) if for any 1-list assignment L, there is a proper L-total weighting
of G. We say G is total weight (k, k')-choosable ((k, k')-choosable for short) if G is 1-total
weight choosable, where (i) = k for i € V(G) and ¢(e) = k' for e € E(G).

The list version of edge weighting also received a lot of attention [5, 6, 7, 8, 13, 14,
16, 17, 18, 20]. As strengthenings of the 1-2-3 conjecture, it was conjectured in [17] that
every nice graph is (1, 3)-choosable. A weaker conjecture was also proposed in [17], which
asserts that there is a constant k& such that every nice graph is (1, k)-choosable. This
weaker conjecture was recently confirmed by Cao [6], who proved that every nice graph
is (1,17)-choosable. This result was improved in [20], where it was shown that every nice
graph is (1, 5)-choosable.

Given a graph G and a family of graphs H, we say that G has an H-decomposition,
if the edges of G can be partitioned into the edge sets of copies of graphs from H. In
particular, a triangle decomposition of G is a partition of E(G) into triangles, and for a
given graph H, an H-decomposition of G partitions E(G) into subsets, each inducing a
copy of H. The following is the main result of this paper.

Theorem 1. If E(G) can be decomposed into cliques of odd order, then G is (1,3)-
choosable.

As a consequence of Theorem 1, we prove the following result.

Theorem 2. If G is an n-vertex Eulerian graph with minimum degree at least 0.91n and
n is sufficiently large, then G is (1,3)-choosable.

In [19], Zhong confirmed the 1-2-3 conjecture for graphs that can be edge-decomposed
into cliques of order at least 3. As a consequence of this result, it was proved in [19]
that the 1-2-3 conjecture holds for every n-vertex graph with minimum degree at least
0.99985n, where n is sufficiently large.
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Our result is the list version of Zhong’s result, but with one degree restriction: E(G)
needs to be decomposed into complete graphs of odd order. Hence we can only show
that dense Eulerian graphs are (1, 3)-choosable. For general dense graphs, we prove the
following result:

Theorem 3. If G is an n-vertex graph with minimum degree at least 0.999n and n is
sufficiently large, then G is (1,4)-choosable.

2 Some preliminaries

The proofs of Theorems 1, 2 and 3 use tools that were introduced in [6] and were further
developed in [20]. In this section, we introduce some definitions and present a result from
[6] that will be used in this paper.

Given a graph G = (V, E), let

Po({z,:2€ VUE}) = H erjtxl - Zwe—irx]

{i,j}€E,i<j ecE(i) e€E(j)

Assign a real number ¢(z) to each variable z,, and view ¢(z) as the weight of z. Let Pg(¢)
be the evaluation of the polynomial at z, = ¢(z), z € V U E. Then ¢ is a proper total
weighting of G if and only if Pg(¢) # 0. Thus the problem of finding a proper L-total
weighting of G (for a given total list assignment L) is equivalent to finding a non-zero
point of the polynomial Pg({z, : z € V U E}) in the grid [Levor L(2).

Combinatorial Nullstellensatz [3] gives a sufficient condition for the polynomial
Po({z. : = € V UE}) has a non-zero point in the grid [[. . L(z): If some non-
vanishing (i.e., with non-zero coeflicient) highest degree monomial [, g 25 i the
expansion of Pg({z, : z € V U E}) satisifes K(z) < |L(z)| — 1 for = € V U E, then
Pg({z, : z € V UE}) has a non-zero point in the grid [Levor L(2).

We denote by N the set of non-negative integers. To prove a graph G = (V, E) is
(1, k)-choosable, it suffices to show that for some K : VUE — N such that K(v) = 0 and
K(e) <k —1, and the monomial [, p 25X has non-zero coefficient in the expansion
of Po({z.: 2z € VUEDY).

As K(v) = 0 for all v € V, the monomials in concern are of the form [] . 25 Such
monomials have the same coefficient in the expansions of Pg({z, : z € V U F}) and

Po({ze:e€ E}) = H er— Z Te
{i,j}Y€Ei<j \e€E(i) e€E(j)
We denote by N¥ the set of mappings K : E — N. Let

NP ={K eN”:) K(e) =m}, N, ={K eN”: K(e) <b,Ve € E}.

ecE
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For K € NE| let

o =T a8©, K1 =T] K(e).

eckE eeE

Denote the coefficient of the monomial % in the expansion of Pg by coe(z’, Pg).
For a positive integer b, to prove that G = (V, E) is (1,b + 1)-choosable, it suffices to
show that coe(z%, Pg) # 0 for some K € N(E;_). For this purpose, we use a formula given

in [6] for the calculation of coe(x®, Pg).

For m,n € N, let Clxy, s, ..., z,]n be the vector space of homogeneous polynomials
of degree m in variables x1, ..., z, over the field C of complex numbers.

Assume |E| = m. Consider the vector space of homogeneous polynomials of degree m
in Clz. : e € E]. For f,g € Clz, : e € E], we define the inner product of f and g as

(f,g9) = Z Klcoe(x™ | f)coe(zK, g).

KeNg,
The following lemma was proved in [6].

Lemma 4. Assume G = (V,E), |E| =m and K € NE. Let

Qp = H (z; —x;), Hy = H (2 + 2;) 5.

{i,J}EE,i<j {i,J}YEE,i<j
Then 1
coe(z’, Pg) = E<QE,H§).
Definition 5. For K € N¥| let Wé(m be the complex linear space spanned by
{HEY . K' < K,K' e NEY.

It is obvious that there exists K’ € N such that K’ < K and (Qg, HE') # 0 if
and only if there exists F' € W such that (Qg, F) # 0. Thus we have the following
corollary.

Corollary 6. If K € Ng,) and there exists F € WE, . such that (Qg, F) # 0, then G is
(1,b4 1)-choosable.

3 Proofs of Theorems 1, 2, 3

The following lemma is an easy observation, but it is the key tool for proving the main
results of this paper.

Lemma 7. If Qg € ng for some K € Nf‘z,), then G is (1,b+ 1)-choosable.

Proof. Assume Qp € ng. As Qp # 0, we have (Qg,Qg) > 0. By Corollary 6, G is
(1,b + 1)-choosable. O
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As an example, consider a triangle T' with vertex set {i,j, k}. By definition, Qg =
(z; — xj)(x; — xp)(z; — x). To prove that Qp € Wi, it suffices to express each of
the three factors of Qg, (v; — z;), (z; — zx) and (z; — %), as a linear combination of
(i + ), (x; + ), (x; + x1), and for each edge e, say for e = {7, j}, the term (z; + ;)
occurs in at most K (e) of such linear combinations. We can write Qg as

Qe = (v + ax) — (zj + 2)) (i + 25) — (2 + 21)) (25 + 25) — (25 + 28)).

It is easy to check that for each edge, say for e = {1, j}, the term (z; + ;) occurs in two
of the linear combinations. Thus Qg € W§3, where K (e) = 2 for each edge e of T'.

A path of length £ in G connecting ¢ and j is a sequence of distinct vertices
P = (ip,11,...,1i) such that ig = ¢, i, = j and {4,941} € Efor l =0,1,...,k— 1.

Definition 8. Assume G = (V| F) is a graph. A path covering family of G is a family of
paths
P={P.:e€ E},

where for each edge e = {i,j} € E, P, is an even length path connecting ¢ and j.

For a subgraph H of G, Ky € N is the characteristic function of E(H), i.e., Ky(e) =
life € E(H) and Ky(e) = 0 otherwise. For a family F of subgraphs of G,

Kr=) Kup.

HeF

Observe that if F; € Wé{;% fori=1,2,...,t then [[_, F; € Wg:%} K;n
Lemma 9. If G has a path covering family P with Kp(e) < b for each edge e, then G is
(1,b+ 1)-choosable.

Proof. Assume P is a path covering family with Kp(e) < b for each edge e. For each edge
e={i,5} of G, let P, = (ig,i1,...,i9%,) be the even length path in P connecting i and j,
i.e., igp =t and 49, = 7. Then

2ke—1

K
mi—xy= Y (=1 (@ +3ay,) € Wi

=0

Hence

{i,j}eE
Since Kp(e) < b for each edge e, we have Qp € ng for some K € Ng,). By Lemma 7,
G is (1,b+ 1)-choosable. O

The following lemma follows easily from the definitions and its proof is omitted.
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Lemma 10. If G decomposes into graphs Hy, Ho, ..., H,, and each H; has a path covering
famaly P; with Fp, € W]?(H)m and K; € Ni(f?), then P = UL, P; is a path covering family
of G and Kp € WE for K =% 1 K, € Ngf). N

Proof of Theorem 1. By Lemmas 9 and 10, it suffices to show that each complete graph
K, of odd order has a path covering family P with Kp € Ng,). Assume K, has vertex
set {1,2,...,n}.

Put the n vertices {1,2,...,n} of K, equally spaced along the perimeter of a circle
C'. For an edge e = {i,j} of K,, denote by [i, j] the interval of C from ¢ to j along the
clockwise direction (containing both ¢ and j). Since n is odd, exactly one of [z, j] and [j, 7]
contains an odd number of vertices of K,. Let ¢; ; be the vertex that is in the center of
the interval [i, j] or [j,] that contains an odd number of vertices, and let P, = (4,1, ;, 7).
Then P = {P, : e € E(K,)} is a path covering family of K,. For each edge e = {i,j}
of Kp, let a, = {i,25 — i} and b, = {j,2i — j} (where calculations are modulo n). It is
easy to verify that e is contained in P, if and only if ¢’ € {a.,b.}. So each edge of K, is
contained in two paths in P, i.e., Kp(e) = 2 for each edge e of K,. This completes the
proof of Theorem 1. O

For a graph G, let gcd(G) be the largest integer dividing the degree of every vertex of
G. We say that G is F-divisible if |E(G)| is divisible by |E(F)| and ged(G) is divisible
by ged(F).

The following result was proved in [4]:

Theorem 11. For every € > 0, there is an integer ng such that if G is a triangle-divisible
graph of order n = ny and minimum degree at least (0.9 + €)n, then G has a triangle
decomposition.

Proof of Theorem 2. Assume G is an n-vertex Eulerian graph of minimum degree 6(G) >
(0.9 + €)n with large enough n. By Theorem 1, it suffices to show that G decomposes into
complete graphs of odd order.

Assume |E(G)| = i (mod 3), where i € {0,1,2}. Let Hy,..., H; be vertex disjoint
5-cliques in G. Then G' = G — Ui_, E(H;) is triangle divisible and §(G") > 0(G) — 4 >
(0.9 4+ €)n. By Theorem 11, G’ is triangle decomposible. Hence G decomposes into
complete graphs of odd order. This completes the proof of Theorem 2. O

Lemma 12. Let H = (V, E) be the graph shown in Figure 1. Then H has a path covering
famaly P with Kp € Ng,).
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Proof. We denote by T} = (1,2,4), To = (2,3,5) the two edge disjoint triangles in H.
For each triangle T, let P; be the path covering family with Kp, € Ng(,T)i). For the edge
e = {1, 3} which is not contained in the two triangles, let P, = (1,2,3). Then

is a path covering family of H with Kp € Ng,). This completes the proof of Lemma
12. O

Figure 1: The graph H.

The following theorem was proved in [4]:

Theorem 13. For every e > 0, there is an integer ng such that if G is an H-divisible graph
of order n > ng and minimum degree at least (1 — 1/t + €)n, where
t = max{16x(H)*(x(H) — 1) |E(H)|}, then G has an H-decomposition.

Proof of Theorem 3. Assume G is a graph of sufficiently large order and with minimum
degree 6(G) > 0.999|V (G)|. If |E(H)| divides |E(G)|, then G decomposes into copies of
H and Theorem 3 follows from Lemma 9. Otherwise, the same argument as in the proof
of Theorem 2 shows that G can be decomposed into at most 12 copies of triangles and
copies of H, and hence again Theorem 3 follows from Lemma 9. O
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