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Abstract

By a nilpotent map we mean an orientably regular map whose orientation pre-
serving automorphism group is nilpotent. The nilpotent maps are concluded to
the maps whose automorphism group is a 2-group and a complete classification of
nilpotent maps of (nilpotency) class 2 is given by Malnič et al. in [European J. Com-
bin. 33 (2012), 1974–1986]. It is proved by Conder et al. in [J. Algebraic Combin.
44 (2016), 863–874] that given the class, there are finitely many simple nilpotent
maps. However, for the nilpotent maps with multiple edges and given class, since
its automorphism group may be infinitely big, it is impossible to list it by a com-
puter. Therefore, to classify the nilpotent maps with small class c is necessary and
interesting. In this paper, the nilpotent maps of class 4 will be determined.
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1 Introduction

A (topological) map is a cellular decomposition of a closed surface. A common way to
describe maps is to consider them as cellular embeddings of graphs into closed surfaces.
By an automorphism of a map we mean an automorphism of the underlying graph which
extends to a self-homeomorphism of the surface, preserving incidence of vertices and edges
and faces (open 2-cells) of the map. These automorphisms form a subgroup Aut (M) 6

Aut (G) of the automorphism group of the underlying graph G. If Aut (M) acts regularly
on the flags (vertex-edge-face incident triples), we call the map M is regular. For an
orientable map M, if its orientation persevering automorphism group Aut +(M) acts
regularly the arcs, then we call the map as well as the corresponding embedding of the
underlying graph orientably regular.

In this paper we study the problem of the classification of regular maps with a given
automorphism group. The research results on this problem are relatively less compared
with classifying regular maps on a given surface, or with a given underlying graph. Now,
complete classification results about regular maps with given families of solvable groups
are very few, except for a folklore result classifying regular maps whose automorphism
group is abelian, most of them are related to simple groups, such as PSL(2, q) [1, 7, 10,
11, 12, 17], Hurwitz groups or non-Hurwitz groups, including symmetric and alternating
groups [4, 22], Suzuki groups [15], Ree groups [13, 20], and various sporadic simple groups,
see [5] for a survey.

Here we focus on orientably regular maps whose orientation preserving automorphism
group is nilpotent. We call these nilpotent maps. The study of such maps was initiated
in [18] by Malnič et al., where it is showed that every nilpotent map can be uniquely
decomposed into a direct product of two regular maps: the automorphism group of one
is a 2-group and the other map is a single vertex and an odd number of semiedges, see
[18, Theorem 3.2]. They also gave a complete classification of nilpotent regular maps of
nilpotency class 2. It is proved in [6] that given the class, there are finitely many simple
nilpotent maps. However, for the nilpotent maps with multiple edges and given class, since
its automorphism group may be infinitely big, it is impossible to list it by a computer.
This kind of maps are very rich, and the classification of those of higher classes seems to
be difficult, where one may feel the difficulties from the classification of nilpotent regular
embeddings of the complete bipartite graphs Kn,n and the n-dimensional hypercube Qn,
when n is a power of 2, see [8, 9, 16]. To determine the nilpotent maps, it has to be
involved in complicate and difficult computation in 2-group theory. Since it is infeasible
to classify all the nilpotent maps for any class c, it woluld be necessary and interesting
to fix the cases for small class c. The nilpotent maps of class 3 have been determined
by Ban et al. (unpublished). In the present paper, the nilpotent maps of class 4 will be
determined.

Necessarily, we are having to introduce the following concepts and notations: by |G|
and |g|, we denote the order of a group G and an element g ∈ G, respectively. Set
[x, y] = x−1y−1xy for x, y ∈ G and [H,K] = 〈[h, k]

∣∣ h ∈ H, k ∈ K〉. Moreover, we use
G′, exp(G) and Φ(G) to denote the derived subgroup of G, the exponent of G and the
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Frattini subgroup of G, respectively.
Next, for any group G, set G1 = G and then define Gn+1 = [G,Gn], for all n > 1, so

that G = G1 > G2 > G3 > · · · > Gn · · · is the lower central series of G, with each Gn

characteristic in G, where G′ = G2.
The group G is said to be nilpotent if Gc+1 is trivial for some integer c, and then the

smallest c for which this happens is called the nilpotency class of G. Note that Gc 6 Z(G).

As usual, an orientably regular map will be presented by a triple (G; a, b) for a group G
generated by an element a and an involution b. To state the main theorem, let G = 〈a, b〉
be a two-generated 2-group of nilpotency class 4 where b2 = 1. Since c(G) = 4, we have
G4 6 Z(G). Now, G is an extension of 〈G′, b〉 by a, and 〈G′, b〉 is an extension of G′ by b,
we may set

G = 〈a, b
∣∣ R, T, a2n = x〉, (1)

where

R = {b2 = 1, [a, b] = c, [c, a] = d, [c, b] = e, [d, a] = u, [d, b] = v, [e, a] = w,
[e, b] = z, {u, v, w, z} commute with both a and b}

and T is the set of defining relations of G′ = 〈c, d, e, u, v, w, z〉 and x ∈ 〈G′, b〉. Note that
G3 = 〈d, e, u, v, w, z〉 and G4 = 〈u, v, w, z〉 6 Z(G).

Theorem 1. Let M be an orientably regular map whose automorphism group G is of
nilpotency class 4. Then G is defined by Eq(1). Moreover, we have

(1) G′ = 〈c, d, e, u, v, w, z
∣∣ T 〉 = 〈c, d, u〉 is an abelian group, where 8 6 |G′| 6 64 and

T contains a subset of relations

T1 := {[c, d] = [c, u] = [d, u] = 1, c8 = d4 = u2 = 1, e = c−2, w = v = d2, z = c4}

so that T = T1 ∪ T2 for a subset T2 of relations. Moreover, x ∈ G′.

(2) For the above R and T1, the group G is uniquely determined by T2 and x ∈ G′,
which will be listed as follows: For every such group G, there exist at most two
nonisomorphic maps M(G; abi, b), where either i = 0 or i ∈ {0, 1}, see below.
Moreover, these maps are uniquely determined by given parameters.

(I) G′ ∼= Z8 × Z4 × Z2 :

G1(n, `, s, t) : T2 = ∅; x = c4`d2sut, where (`, s, t) = Z3
2 \ {(1, 0, 0), (1, 1, 1)} for

n = 3, and (`, s, t) = Z3
2\{(1, 1, 0), (1, 0, 1)} for n > 4; i = 0, 1 for G1(3, 0, 0, 0),

G1(3, 0, 1, 1), G1(n, 0, 1, 0) (n > 4), G1(n, 0, 0, 1) (n > 4), and i = 0 for other-
wise.

(II) G′ ∼= Z8 × Z4 :

(1) G21(n, `, s) : T2 = {u = 1}; x = c4`d2s, where n > 3, `, s ∈ {0, 1}; i = 0, 1.
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(2) G22(n, `, s) : T2 = {u = d2}; x = c−2`ds, where (`, s) = (−1, 1), (−1,−1),
(1,−1) for n = 2, (2, 0), (2, 2), (0, 2) for n = 3, and (0, 0), (2, 0), (0, 2) for
n > 4; i = 0, 1 for G22

∼= G22(2,−1, 1), G22(3, 2, 0), G22(n, 0, 2)(n > 4),
and i = 0 for otherwise.

(3) G23(n, `, s) : T2 = {u = d2c4}; x = u`d2s, where (`, s) = (0, 0),(0, 1),
(1, 0) for n = 3, and (0, 0), (0, 1), (1, 1) for n > 4; i = 0, 1 for G23(3, 0, 0),
G23(n, 0, 1)(n > 4), and i = 0 for otherwise.

(III) G′ ∼= Z8 × Z2 × Z2 :

G3(n, s, t) : T2 = {d2c4 = 1}; x = d2sut, where n > 2 and s, t ∈ {0, 1}; i = 0, 1.

(IV) G′ ∼= Z4 × Z4 × Z2 :

G4(n, s, t) : T2 = {c4 = 1}; x = d2sut, where n > 3 and s, t ∈ {0, 1}; i = 0.

(V) G′ ∼= Z8 × Z2 :

(1) G51(n, `, t) : T2 = {uc4 = d2 = 1}; x = c−2`ut, where (`, t) = (−1, 0), (1, 0)
for n = 2, and (0, 0), (0, 1) for n > 3; i = 0, 1.

(2) G52(n, `, s) : T2 = {u = d2 = 1}; x = c−2`ds, where (`, s) = (−1, 0), (−1, 1),
(1, 0), (1, 1) for n = 2, and (0, 0), (0, 1), (2, 0), (2, 1) for n > 3; i = 0, 1.

(VI) G′ ∼= Z4 × Z4 :

(1) G61
∼= G61(n, s) : T2 = {u = c4 = 1}; x = ds, where s = 1 for n = 2, and

s = 0, 2 for n > 3; i = 0, 1 for G61(2, 1), and i = 0 for otherwise,

(2) G62
∼= G62(n, `, s) : T2 = {ud2 = c4 = 1}; x = c−2`ds, where (`, s) =

(−1, 1), (−1,−1) for n = 2, and (`, s) = (0, 0), (0, 2) for n > 3; i = 0.

(VII) G′ ∼= Z4 × Z2 × Z2 :

G7(n, `, t) : T2 = {d2 = c4 = 1}; x = c−2`ut, where (`, t) = (0, 0), (0, 1)
for n = 2, and (`, t) = (0, 0), (0, 1), (−1, 0), (−1, 1) for n > 3; i = 0, 1 for
G7(2, 0, 0), G7(2, 0, 1), and i = 0 for otherwise.

(VIII) G′ ∼= Z8 :

(1) G81(n, `) : T2 = {u = d = 1};x = c`, where ` = −1, 3 for n = 1, and
` = 2,−2 for n = 2, and ` = 0, 4, for n > 3; i = 0, 1.

(2) G82(n, `) : T2 = {u = 1, c4 = d}; x = c−2`, where ` = 1,−1 for n = 2, and
` = 0, 2 for n > 3; i = 0, 1.

(IX) G′ ∼= Z4 × Z2 :

G9(n, t) : T2 = {d2 = c4 = 1, u = c2}; x = ut, where n > 2 and t = 0, 1; i = 0.

(X) G′ ∼= Z2 × Z2 × Z2 :

G10(n, t) : T2 = {d2 = c2 = 1}; x = ut, where t = 1 for n = 2, and t = 0, 1 for
n > 3; i = 0, 1 for G10(2, 1), and i = 0 for otherwise.

Remark 2. Remind that all the maps in here are quotients of that in Case (I). Moreover,
we may pick up all simple maps (with no multiple edges) of class 4 from Theorem 1, which
coincide with that in [6]:
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(1) |G| = 32 :M(G81(1,−1); ab, b));

(2) |G| = 64 :M(G82(2, 1); ab, b),M(G9(2, 0); a, b),M(G10(2, 1); ab, b);

(3) |G| = 128 :M(G51(2,−1, 0); ab, b),M(G52(2, 1, 0); ab, b),M(G7(2, 0, 0); a, b),

M(G81(3, 0); a, b), M(G82(3, 0); a, b);

(4) |G| = 256 :M(G3(2, 0, 0); a, b),M(G51(3, 0, 0); a, b),M(G52(3, 0, 0); a, b),

M(G61(3, 0); a, b),M(G62(3, 0, 0); a, b);

(5) |G| = 512 :M(G21(3, 0, 0); a, b),M(G21(3, 1, 0); ab, b),M(G22(3, 2, 0); ab, b),

M(G23(3, 0, 0); a, b),M(G3(3, 1, 0); ab, b),M(G4(3, 0, 0); a, b);

(6) |G| = 1024 :M(G1(3, 0, 0, 0); a, b).

2 Algebraic maps

An orientable map is a tripleM = (D;R,L) where D is a finite nonempty set of darts, R
and L are permutations of D such that L2 = id, and the permutation group 〈R,L〉 acts
transitively onD. The permutationsR and L are called the rotation and the dart-reversing
involution of M, respectively, and the group 〈R,L〉 = Mon(M) is the monodromy group
ofM. Each mapM has its underlying graph KM whose vertices are the orbits of R and
whose edges are the orbits of L, with incidence between vertices and edges defined by
nonempty intersection. Since Mon(M) is transitive on D, the graph KM is connected.

Given two maps M = (D;R,L) and M′ = (D′;R′, L′). An orientation preserving
homomorphism φ : M → M′ is a mapping φ : D → D′ such that φR = R′φ and
φL = L′φ. Since the monodromy groups of both maps are transitive on darts, it follows
that every map homomorphism is surjective. As usual, an isomorphism between two maps
is a bijective homomorphism, and an automorphism is a self-isomorphism of a map. All
automorphisms of a map form the automorphism group Aut +(M). By definition, it is
easy to see that Aut +(M) 6 CSD

(Mon(M)). As Mon(M) acts transitively D, we get
Aut +(M) acts semi-regularly on D. If the action is regular, then the map M is called
orientably regular. As a consequence of some well-known results in a permutation group
theory (see [3]), we infer that for an orientably regular map M, Mon(M) ∼= Aut +(M)
although their action on dart-set are different.

Given a group G = 〈r, `〉, where `2 = 1, from the above arguments, we may deduce
an algebraic mapM(G; r, `) as follows: Set D = G and consider the left multiplication
action L(G) of G on D. The vertices, edges and faces are just cosets of 〈r〉, 〈`〉 and
〈r`〉, respectively, with the natural intersection relation. Moreover, Mon(M) = L(G) and
Aut +(M) = R(G).

It is a matter of routine to check that every regular embedding of a graph can be
described by an algebraic map (see [14, 19]), and that two such algebraic mapsM(G; r1, `1)
andM′(G; r2, `2) are isomorphic if and only if there exists an automorphism σ ∈ Aut (G)
such that rσ1 = r2 and `σ1 = `2.
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The following proposition gives some formulas about meta-abelian groups
(G′ is abelian) (see [23]).

Proposition 3. Let G be a meta-abelian group. For any a, b, c ∈ G, the following facts
hold:

(1) [a, b−1, c]b = [b, a, c];

(2) [a, b, c][b, c, a][c, a, b] = 1;

(3) if b ∈ G′, then [ab, c] = [a, c][b, c] and [c, ab] = [c, a][c, b];

(4) if c ∈ G′ and n ∈ Z, then [cn, a] = [c, a]n and [c, a, b] = [c, b, a];

3 Properties of the group G

In this section, we derive some properties and commutator formulas for G, and in partic-
ular, we prove Theorem 1(1).

Lemma 4 (Theorem 1(1)). For the group G of Eq(1), we have

G′ = 〈c, d, e, u, v, w, z
∣∣ T 〉 = 〈c, d, u〉,

which is an abelian group such that 8 6 |G′| 6 64 and T contains a subset

T1 := {[c, d] = [c, u] = [d, u] = 1, c8 = d4 = u2 = 1, e = c−2, w = v = d2, z = c4}.

Moreover, x ∈ G′.
Proof. Recall that G = 〈a, b

∣∣ R, T, a2n = x〉, as shown in Eq(1), where

[a, b] = c, [c, a] = d, [c, b] = e, [d, a] = u, [d, b] = v, [e, a] = w, [e, b] = z

and G′ = 〈c, d, e, u, v, w, z〉. Since G′ = 〈c,G3〉 and [G2, G3] 6 G5 = 1, it follows that G′

is abelian, that is, G is meta-abelian. Then by Proposition 3 we have

[a, b, c][b, c, a][c, a, b] = 1.

Noting [a, b, c] = 1, we get [b, c, a][c, a, b] = 1, that is v = w, as desired. From

1 = [a, b2] = [a, b][a, b]b = ccb = c2[c, b] = c2e,

we get c2 = e−1. Similarly, from [c, b2] = [d, b2] = [e, b2] = 1, one may deduce e2 = z−1

and v2 = z2 = 1. Again, by [G2, G3] 6 G5 = 1, we have

w = [e, a] = [c−2, a] = [c−1, a]c
−1

[c−1, a] = [c−1, a]2 = d−2.

Thus, d2 = w−1 = w = v, which in further concludes 1 = [w, a] = [d2, a] = [d, a]2 = u2.
Finally, c8 = e−4 = z2 = 1 and d4 = w2 = 1. Therefore, T contains T1. Clearly,
G′ = 〈c, d, u〉, whose order is at most 64.

Note that G = 〈b,G′〉〈a〉. Now, suppose that a2
n

= bx, for some integer n and x ∈ G′.
Then bG′ ∈ 〈aG′〉 and so G/G′ = 〈aG′, bG′〉 = 〈aG′〉, a contradiction, as G (and so
G/Φ(G)) is a 2-generated group. Hence, a2

n
= x ∈ G′.
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By computation, one may get the following two lemmas:

Lemma 5. Let G be the group defined in Eq(1). For any integers h and `, we have

[gh1 , g2] = [g1, g2]
h, ∀g1 ∈ G′, g2 ∈ G,

[c`, ah] = dh`u
h`(h−1)

2 , [ah, b] = chd
h(h−1)

2 u
h(h−1)(h−2)

6 ,
[d, ah] = uh, [e, ah] = vh.

Lemma 6. Let G be the group defined in Eq(1). For any integers h, `, m and j, we have

(1) (ahc`dmuj)2 = a2hc2`dh`+2mu
`h(h−1)

2
+hm,

(2) (ahbc`dmuj)2 = a2hchd3h`+
h(h−1)

2 umh+
`h(h−1)

2
+

h(h−1)(h−2)
6 ,

(3) (ahc`dmuj)4 = a4hc4`d2h`,

(4) (ahbc`dmuj)4 = a4hc2huh
2
d3h

2−h+2h`,

(5) (ahc`dmuj)8 = a8h,

(6) (ahbc`dmuj)8 = a8hc4hd2h(h−1),

(7) (ahbic`dmuj)16 = a16h for i = 0 or 1.

The following lemma determines the derived group G′.

Lemma 7. Let G = 〈a, b〉 be a two-generated 2-group of nilpotency class 4 where b2 = 1,
as defined in Eq(1). Then G′ is one of the following ten groups:

(I) G′ = 〈c〉 × 〈d〉 × 〈u〉 ∼= Z8 × Z4 × Z2 with 〈u, v, z〉 ∼= Z3
2;

(II) G′ = 〈c〉 × 〈d〉 ∼= Z8 × Z4 with 〈u, v, z〉 ∼= Z2
2, where u = 1; u = v; u = z; or uvz = 1;

(III) G′ = 〈c, d〉 × 〈u〉 ∼= Z8 × Z2 × Z2 with 〈u, v, z〉 ∼= Z2
2, either v = 1 or v = z;

(IV) G′ = 〈c〉 × 〈d〉 × 〈u〉 ∼= Z4 × Z4 × Z2 with 〈u, v, z〉 ∼= Z2
2, where z = 1;

(V) G′ = 〈c, d〉 ∼= Z8 × Z2 with 〈u, v, z〉 ∼= Z2, where uz = v = 1; vz = u = 1; u = v = 1;
or u = v = z;

(VI) G′ = 〈c〉 × 〈d〉 ∼= Z4 × Z4 with 〈u, v, z〉 ∼= Z2, either u = z = 1 or uv = z = 1;

(VII) G′ = 〈c〉 × 〈d〉 × 〈u〉 ∼= Z4 × Z2 × Z2 with 〈u, v, z〉 ∼= Z2, where v = z = 1;

(VIII) G′ = 〈c〉 ∼= Z8 with 〈u, v, z〉 ∼= Z2, where u = v = d = 1; u = v = 1, d = z;
u = v = z, d = e−1; or u = v = z, d = e;

(IX) G′ = 〈c〉 × 〈d〉 ∼= Z4 × Z2 with 〈u, v, z〉 ∼= Z2, where v = z = eu = 1;

(X) G′ = 〈c〉 × 〈d〉 × 〈u〉 ∼= Z2 × Z2 × Z2 with 〈u, v, z〉 ∼= Z2, where v = z = e = 1.
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Proof. By Lemma 4, we know that G′ = 〈c, d, u〉 is an abelian group and w = v so that
G4 = 〈u, v, z〉 ∼= Z3

2, Z2
2 or Z2. In what follows, we deal with them, separately.

Case 1: 〈u, v, z〉 ∼= Z3
2. In this case, G′ = 〈c〉 × 〈d〉 × 〈u〉 ∼= Z8 × Z4 × Z2, that is the

case (I) in the lemma.

Case 2: 〈u, v, z〉 ∼= Z2
2. In this case, there exists only one triple (i, j, k) 6= (0, 0, 0) such

that uivjzk = 1. So we have totally the following seven possibilities:

u = 1;u = v;u = z;uvz = 1; v = 1; v = z; z = 1.

Take into account,
e = c−2, w = v = d2, z = c−4.

Suppose that u = 1; u = v; u = z or uvz = 1. Then u ∈ 〈v, z〉 and so Z2
2
∼= G4 =

〈v, z〉 6 〈c, d〉. Thus |c| = 8, |d| = 4 and 〈c〉 ∩ 〈d〉 = 1, otherwise, z = c−4 = d2 = v.
Therefore, G′ = 〈c〉 × 〈d〉 ∼= Z8 × Z4, that is Case (II) in the lemma.

Suppose that v = 1 or v = z. Then v ∈ 〈u, z〉 and so Z2
2
∼= G4 = 〈u, z〉. Now

|c| = 8, |u| = 2, d 6= 1 (as u = [d, a]) and 〈c〉 ∩ 〈u〉 = 1. Suppose that v = 1. Then
|d| = 2. It is obvious that d ∈ G3 \ G4. Since Ω1(〈c〉 × 〈u〉) = 〈z, u〉 = G4, we get
d 6∈ 〈c〉 × 〈u〉, and so G′ = 〈c〉 × 〈d〉 × 〈u〉 ∼= Z8 × Z2 × Z2, that is Case (III) in the
lemma. Suppose that v = z. Then |d| = 4, (dc2)2 = vz = 1 and dc2 6∈ 〈c〉 × 〈u〉,
which implies G′ = 〈c〉× 〈dc2〉× 〈u〉. In both cases, G′ ∼= Z8×Z2×Z2, that is Case
(III) in the lemma.

Suppose that z = 1. Then G4 = 〈u, v〉 and so |c| = |d| = 4, |u| = 2 and 〈u〉∩〈d〉 = 1.
Clearly c ∈ G2 \G3. Therefore, G′ = 〈c〉 × 〈d〉 × 〈u〉 ∼= Z4 × Z4 × Z2, which is Case
(IV) in the lemma.

Case 3: 〈u, v, z〉 ∼= Z2. In this case, there exists only one subgroup of order 4 in Z3
2,

each of whose nontrivial element (i, j, k) satisfies uivjzk = 1. So we have the following
seven possibilities:

uz = v = 1; vz = u = 1;u = v = 1;uv = vz = 1;u = z = 1;uv = z = 1; v = z = 1.

Suppose uz = v = 1. Then u = z = c4 6= 1, d2 = 1 (d 6= 1, as u = [d, a])). Clearly,
c ∈ G2 \ G3, which implies d 6∈ 〈c〉. Therefore, G′ = 〈c〉 × 〈d〉 ∼= Z8 × Z2, that is
Case (V) in the lemma.

Suppose vz = u = 1. Then d2 = v = z = c−4 6= 1, which implies |d| = 4, |dc2| = 2,
|c| = 8, d 6∈ 〈c〉. Therefore, G′ = 〈c〉 × 〈c2d〉 ∼= Z8 × Z2, that is Case (V) in the
lemma.

Suppose u = v = 1. Then c−4 = z 6= 1, which implies |c| = 8; d2 = v = 1;
and G′ = 〈c, d〉. Now we have two cases: (i) If d ∈ 〈c〉, that is d ∈ {1, z}, then

the electronic journal of combinatorics 29(2) (2022), #P2.55 8



G′ = 〈c〉 ∼= Z8, that is the case (VIII) in the lemma; and (ii) if d 6∈ 〈c〉, then
G′ = 〈c〉 × 〈d〉 ∼= Z8 × Z2, that is the Case (V) in the lemma.

Suppose uv = vz = 1. Then u = d2 = e2 = c4 andG′ = 〈c, d〉, where |c| = 8, d2 ∈ 〈c〉
and |d| = 4. Moreover, if d 6∈ 〈c〉 (that is d 6= e±1), then G′ = 〈c〉× 〈c2d〉 ∼= Z8×Z2,
that is the Case (V) of the lemma; and if d = e±1 then G′ = 〈c〉 ∼= Z8, that is the
Case (VIII) in the lemma.

Suppose u = z = 1 or uv = z = 1. Then |d| = 4 (as v 6= 1), c4 = z = 1 and
G′ = 〈c, d〉. Moreover, we have c2 6= 1. Otherwise, 1 = [c2, a] = [c, a]2 = d2. Hence,
|c| = 4. Furthermore, since [d2, a] = [d, a]2 = u2 = 1 and [c2, a] = [e, a] = w = v 6= 1,
it follow that d2 6= c2 and so 〈c〉 ∩ 〈d〉 = 1. Therefore, G′ = 〈c〉 × 〈d〉 ∼= Z4 × Z4,
that is case (VI) in the lemma.

Finally, suppose v = z = 1. Then u = [d, a] 6= 1, which implied |d| = 2 and d 6= u;
c4 = 1 and G′ = 〈c, 〈d〉 × 〈u〉〉. Since c 6∈ G3, we have c 6∈ 〈d〉 × 〈u〉 and so we have
three possibilities: G′ = 〈c〉 × 〈d〉 × 〈u〉 ∼= Z4 × Z2 × Z2 or Z3

2, that is Cases (VII)
and (X) in the lemma, respectively; and c2 = diuj for some i, j ∈ Z2. For the third
case, since [d, a] = u 6= 1, [c2, a] = [e, a] = w = v = 1 but [dui, a] = u 6= 1, we get
c2 6= d, du and so c2 = u, which implies G′ = 〈c〉 × 〈d〉 ∼= Z4 × Z2, that is Case (IX)
in the lemma. The case v = z = 1 is also considered by Miss Liu (unpublished).

The following lemma gives the sufficient and necessary condition of the existence of
the group G.

Lemma 8. The group G of Eq(1) exists if and only if

d`us = 1, d2
n

u2
n−1(2n−1) = 1, c2

n

d2
n−1

u
2n−1(2n−1)(2n−2)

3 = vse`. (2)

Proof. By the group extension theory (see [21, pp. 245-268]), the cyclic extension G of
〈b,G′〉 = 〈b, c, d, u〉 by the element a can be determined by

a2
n

= c`dsut, (c`dsut)a = c`dsut, ba
2n

= bc
`dsut , ca

2n

= c, da
2n

= d. (3)

Since
(c`dsut)a = (cd)`(du)sut = c`d`+sus+t,

the second relation of Eq(3) gives d`us = 1. Using the formulas in Lemma 5, we get

ba
2n

= b[b, a2
n

] = bc−2
n

d−2
n−1(2n−1)u

2n−1(2n−1)(2n−2)
3 ,

bc
`dsut = (b[b, c`])d

s

= (be−`)d
s

= b[b, ds]e−` = bvse−`.

The the third relation of Eq(3) implies c2
n
d2

n−1
u

2n−1(2n−1)(2n−2)
3 = vse`. Moreover, from the

forth relation, we have 1 = [c, a2
n
] = d2

n
u2

n−1(2n−1). The last relation of Eq(3) is obvious
true. Hence, Eq(3) is equivalent to Eq(2).

With a routine checking one may get the following result.
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Lemma 9. Let G1 = 〈a1, b1〉 and G2 = 〈a2, b2〉 are groups as Eq(1). Suppose that
G1
∼= G2, and let

α : a1 −→ ah2b
i
2c
`
2d
m
2 u

j
2, b1 −→ ah

′

2 b2c
`′

2 d
m′

2 uj
′

2

be an isomorphism from G1 to G2, where h is odd, i = 0 or 1, and h′,`, `′,m,m′, j, j′ are
all integers. Then, we have

(1) i = 0.

cα1 = [aα1 , bα1 ] = ch−2`2 d
h(h−1)

2
−h`′+h′`

2 u
`h′(h′−1)

2
+mh′+m′h+ `′h(h−1)

2
+

h(h−1)(h−2)
6

2 vm+h′`
2 ,

dα1 = [cα1 , a
α
1 ] = dh

2

2 uh
′`+`′

2 v`2,

eα1 = [cα1 , b
α
1 ] = c−2h2 dhh

′
2 uh

′2`+h′`′

2 v
h′+`′+h(h−1)

2
2 z`2,

uα1 = [dα1 , a
α
1 ] = u2,

wα1 = [eα1 , a
α
1 ] = uh

′
2 v2,

zα1 = [eα1 , b
α
1 ] = uh

′2
2 z2.

(2) i = 1.

cα1 = [aα1 , bα1 ] = c
h′−h+2(`′−`)
2 d

h(h−1)
2 −h′(h′−1)

2 −h`′+h′`
2

u
hm′+h′m+

h`′(h−1)
2 +

h′`(h′−1)
2 +

h(h−1)(h−2)
6 +

h′(h′−1)(h′−2)
6

2 v
m′−h`′+h′`+m+

h(h−1)
2 +

(h′−1)h′
2

2 ,

dα1 = [cα1 , a
α
1 ] = c

2(h′−h)
2 d

h(h−h′)
2 u

`′+h′`+
hh′(h′−1)

2 +
h′h(h−1)

2
2 v

h′`+`+
h(h−1)

2 +
h′(h′−1)

2
2 z`−`

′+h−h′
2 ,

eα1 = [cα1 , b
α
1 ] = c

2(h′−h)
2 d

h′(h−h′)
2 u

hh′(h′−1)
2 +

h′h(h−1)
2 +h′`′+h′2`

2 v
h(h−1)

2 +
h′(h′−1)

2 +h′`′+`′

2 z`−`
′+h−h′

2 ,

uα1 = [dα1 , a
α
1 ] = uh−h

′

2 zh−h
′

2 ,

wα1 = [eα1 , a
α
1 ] = u

h′(h−h′)
2 vh

2−h′2
2 zh−h

′

2 ,

zα1 = [eα1 , b
α
1 ] = u

h′2(h−h′)
2 zh−h

′

2 .

4 Proof of Theorem 1

The first part of Theorem 1 has been proved in Lemma 4. To prove the second part, we
need to discuss ten classes in Lemma 7. Clearly, any two groups in distinct classes are not
mutually isomorphic, as they have nonisomorphic derived group. For every such class,
some groups having different subset T2 of relations and the element x ∈ G′ might be mu-
tually isomorphic and so we need to determine isomorphism class of these groups. Finally,
for every given group G, we shall show that there are at most two maps M(G; abi, b),
where i = 0 or i ∈ {0.1}.

The discussion for all the cases are similar, for the sake of the length of the paper,
we just give a proof in details for one subcase of Case (VI), where G′ ∼= Z4 × Z4 and
u = c4 = 1.

Suppose u = c4 = z = 1. By Lemma 4, we have

G = 〈a, b
∣∣ R, T1, u = c4 = 1, a2

n

= c`ds〉, (4)
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where R and T1 are simplified as

R = {b2 = 1, [a, b] = c, [c, a] = d, [c, b] = e, [d, a] = 1, [d, b] = [e, a] = v,
[e, b] = 1, [v, a] = [v, b] = 1},

T1 := {[c, d] = 1, c4 = d4 = 1, e = c2, v = d2}.

Therefore, G′ = 〈c〉 × 〈d〉 ∼= Z4 × Z4 and n, `, s are some integers; and G4 = 〈v〉.

To determine the group G in Eq(4), we need to know the values s and l, depending
on a given n. To do that, we need to employ the group extension theory, that is Eq(2).

Lemma 10. With the above notations, we have that l = 0 and either n = 2 and s = 1;
or n > 3 and s ∈ {0, 2}. Moreover, G is uniquely determined by given parameters (n, s).

Proof. By Lemma 8, we know that G exists if and only if Eq(2) holds.
Noting that u = 1, the first relation of Eq(2) means d` = 1, namely ` ≡ 0(mod 4).

The second relation of Eq(2) implies d2
n

= 1. Since |d| = 4, we get n > 2. Combining
` ≡ 0(mod 4) with the third relation of Eq(2), we get c2

n
d2

n−1
= vs. So,

d2 = vs for n = 2; and vs = 1 for n > 3,

which is equivalent to

s ≡ ±1(mod 4) if n = 2; and s ≡ 0, 2(mod 4) if n > 3.

Now our group G may be denoted by G(n, s).
Since |G/G′| = 2n+1, it follows G(n1, s1) 6∼= G(n2, s2) for any two distinct n1 and n2.
Checking by Magma System [2], we get G(2, 1) ∼= G(2,−1).
Finally, we show G(n, 0) 6∼= G(n, 2) for n > 3. Note that each element of G(n, 0) is

of the form ahbic`dm, where i = 0 or 1, and h, `, m are some integers. As n > 3, if
s ≡ 0(mod 4), that is a2

n
= 1, then we get from Lemma 6 that

(ahc`dm)2
n

= ((ahc`dm)8)2
n−3

= (a8h)2
n−3

= a2
nh = 1,

(ahbc`dm)2
n

= ((ahbc`dm)8)2
n−3

= (a8hd2h(h−1))2
n−3

= a2
nhwh(h−1)2

n−3

= 1.

Therefore, exp(G(n, 0)) = 2n. With the similar arguments, one may get exp(G(n, 2)) =
2n+1. Hence, G(n, 0) 6∼= G(n, 2) for n > 3.

For a later use, we are determining the automorphism group of G(n, s).

Lemma 11. For the group G(n, s), we have α ∈ Aut (G(n, s)) if and only if it can be
expressed as follows:

α : a 7→ ahbic`dm, b 7→ ah
′
bi
′
c`
′
dm
′
,

where h is odd, i′ = 1, `, `′,m,m′ ∈ Z4, and moreover,

(1) G(2, 1): h ≡ 1,−1(mod 4), if i = 0 and i = 1, respectively, and 4|h′;
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(2) G(n, 0), n > 3: 8|h′ if n = 3; and 2n−1|h′ if n > 4;

(3) G(n, 2), n > 3: 4|h′ if n = 3; and 2n|h′ if n > 4.

Proof. Set G = G(n, s). A direct checking shows that the mapping α given in the lemma
can be extended to an automorphism of G.

Conversely, assume that α ∈ Aut (G). From

G/G′ = Gα/G′ = 〈aαG′〉 × 〈bαG′〉 = 〈ahbiG′〉 × 〈ah′bi′G′〉 ∼= Z2n × Z2,

one may see that h is odd, as n > 2. From 1 = (ah
′
bi
′
G′)2 = a2h

′
G′, we have 2n−1|h′. Now,

suppose the contrary that i′ = 0. Since 2n−1|h′, it should be ah
′
bi
′
G′ = a2

n−1
G′. However,

recalling that h is odd and n > 2, it means that a2
n−1
G′ ∈ 〈ahbiG′〉, a contradiction. Thus,

i′ = 1. In what follows, we continue our proof according to the three cases of G.

Case 1: (n, s) = (2, 1). Since b2 = 1 and a4 = d, it follows that (bα)2 = 1 and (aα)4 =
dα. By Lemma 6, we have

1 = (bα)2 = (ah
′
bc`
′
dm
′
)2 = a2h

′
ch
′
d3h

′`′+h′(h′−1)
2 . (5)

Since 2|h′ and a4 = d, we have a2h
′ ∈ 〈d〉. Thus, Eq(5) is equivalent to

ch
′
= 1 and a2h

′
d3h

′`′+h′(h′−1)
2 = 1. (6)

The first equation of Eq(6) means that 4|h′. Moreover, from the second equation of

Eq(6), combining 4|h′, we have 1 = a2h
′
d3h

′`′+h′(h′−1)
2 = d

h′2
2 , which is obvious true

as 4|h′.

For aα = ahbic`dm, we discuss the cases i = 0 and 1, separately.

First suppose i = 0. In view of Lemmas 6 and 9, combining h is odd, we have

(a4)α = (ahc`dm)4 = a4hc4`d2h` = dh+2h` = dh+2` and dα = dh
2

v` = d1+2`.

Thus, (aα)4 = dα is equivalent to dh−1 = 1, that is h ≡ 1(mod 4).

Now suppose i = 1. By Lemma 6 and 9, combining 4|h′, we have

(a4)α = (ahbc`dm)4 = a4hc2hd3h
2−h+2h` = c2hd3h

2+2h` and dα = c−2hdh
2

v
h(h−1)

2
+`.

Thus, (aα)4 = dα is equivalent to v
h(h+1)

2 = 1, and so 4|h(h + 1) which forces that
h ≡ −1(mod 4).

Case 2: n > 3 and s = 0. In this case, we have a2
n

= 1. As 2n−1|h′, by Lemma 6, it
follows that

1 = (bα)2 = a2h
′
ch
′
d3h

′`′+h′(h′−1)
2 = d

h′(h′−1)
2 ,
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which is equivalent to 8|h′. Hence, we have 8|h′ while n = 3, and 2n−1|h′ while
n > 4.

Since n > 3 and a2
n

= 1, by Lemma 6, we have

1 = (a2
n

)α = (ahbic`dm)2
n

= (a8hc4hid2h(h−1)i)2
n−3

,

where i = 0, 1, which is obvious true.

Case 3: n > 3 and s = 2. In this case, we have a2
n

= d2. As 2n−1|h′, by Lemma 6, it
follows that

1 = (bα)2 = a2h
′
ch
′
d3h

′`′+h′(h′−1)
2 = a2h

′
(d2)

h′(h′−1)
4 = a2h

′+2n−2h′(h′−1),

which is equivalent to 2n|h′(1 + 2n−3(h′− 1)). Hence, we have 4|h′ while n = 3, and
2n|h′ while n > 4.

Since a2
n

= d2 = v, n > 3 and h is odd, by Lemma 6 and 9, we have

(a2
n

)α = (ahbic`dm)2
n

= (a8hd2h(h−1)i)2
n−3

= a2
nh = vh = v = vα,

where i = 0, 1.

Finally, we determine all the maps with the automorphism group G ∼= G(n, s). Equiv-
alently, we need to determine the representatives of the generating pairs (r, `) of G under
the action of Aut (G), where |`| = 2.

Lemma 12. Let M be an orientably-regular map with the automorphism group G ∼=
G(n, s). Then, M is isomorphic to M(G; abi, b), where

(i) If G ∼= G(2, 1), then i = 0 and 1;

(ii) If G ∼= G(n, s) where n > 3, then i = 0.

Proof. From the proof of Lemma 11, Aut (G) acts transitively on involutions in G \Φ(G)
and so we set ` = b. In what follows, we need to consider two cases, separately.

Case 1: G ∼= G(2, 1). Let G = G(2, 1). Now our r ∈ G \ 〈Φ(G), b〉 and this set can be
divided into the following four subsets which are mutually disjoint:

Ω1 := 〈ahbc`dm | h ≡ −1(mod 4), `,m ∈ Z4〉, Ω2 := 〈ahc`dm | h ≡ 1(mod 4), `,m ∈ Z4〉,

Ω3 := 〈ahbc`dm | h ≡ 1(mod 4), `,m ∈ Z4〉, Ω4 := 〈ahc`dm | h ≡ −1(mod 4), `,m ∈ Z4〉.

By Lemma 11, we know that for each r ∈ Ω1 ∪ Ω2, there exists α ∈ Aut (G) such
that (a, b)α = (r, b).
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Take an arbitrary r = ahbc`dm ∈ Ω3, where h ≡ 1(mod 4). By Lemma 11, we know
that there exists α ∈ Aut (G) such that

aα = ahc−`d−m, bα = b,

which follows that (ab, b)α = (r, b). Similarly, for each r ∈ Ω4, there exists α ∈
Aut (G) such that (ab, b)α = (r, b). Hence, for each r ∈ Ω3 ∪ Ω4, there exists α ∈
Aut (G) such that (ab, b)α = (r, b).

By observing the automorphisms of G from Lemma 11, one may conclude that
(a, b) cannot be mapping to (ab, b) by any element of Aut (G). Consequently, up to
isomorphism, there exist two maps M(G; a, b) and M(G; ab, b).

Case 2: G ∼= G(n, s) where n > 3. For the generating pairs (r, b) with r = ahbic`dm,
where h is odd, i = 0 or 1, and `, m are some integers. By Lemma 11, we note
that there exists α ∈ Aut (G) such that (a, b)α = (r, b). Consequently, we get, up to
isomorphism, a unique regular map M(G; a, b).
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where n is a power of 2. II: non-metacyclic case, European J. Combin. 31 (2010),
1946–1956.

the electronic journal of combinatorics 29(2) (2022), #P2.55 14
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