
Extremal Graphs for a Spectral Inequality on

Edge-Disjoint Spanning Trees

Sebastian M. Cioabă
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Abstract

Liu, Hong, Gu, and Lai proved if the second largest eigenvalue of the adjacency
matrix of graph G with minimum degree δ > 2m + 2 > 4 satisfies λ2(G) < δ −
2m+1
δ+1 , then G contains at least m + 1 edge-disjoint spanning trees, which verified

a generalization of a conjecture by Cioabă and Wong. We show this bound is
essentially the best possible by constructing d-regular graphs Gm,d for all d > 2m+
2 > 4 with at most m edge-disjoint spanning trees and λ2(Gm,d) < d− 2m+1

d+3 . As a
corollary, we show that a spectral inequality on graph rigidity by Cioabă, Dewar,
and Gu is essentially tight.

Mathematics Subject Classifications: 05C50, 05C35
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the electronic journal of combinatorics 29(2) (2022), #P2.56 https://doi.org/10.37236/10350

https://doi.org/10.37236/10350


1 Introduction

Let G = (V,E) be a finite, simple graph on n vertices, and let λ1 > λ2 > · · · > λn
and µ1 6 µ2 6 · · · 6 µn be the eigenvalues of its adjacency and Laplacian matrices,
respectively. Recall µi + λi = d for d-regular graphs [3, Ch. 1]. Additionally, let σ(G)
denote the maximum number of edge-disjoint spanning trees in G, sometimes referred to
as the spanning tree packing number (see Palmer [20] for a survey of this parameter).
Motivated by Kirchhoff’s celebrated matrix tree theorem on the number of spanning trees
of a graph [14] and a question of Seymour [21], Cioabă and Wong [6] considered the
relationship between the eigenvalues of a regular graph and σ(G).

They obtained a result by combining two useful theorems. The Nash-Williams/Tutte
theorem [19, 23] (described in Section 2.2) implies that if G is a (2m+ 2)-edge-connected
graph, then σ(G) > m + 1. Additionally, Cioabă [4] showed if G is a d-regular graph
and r is an integer with 2 6 r 6 d such that λ2(G) < d − 2(r − 1)/(d + 1), then G
is r-edge-connected. These facts imply that if G is a d-regular graph with λ2(G) <
d−2(2m+ 1)/(d+ 1) for some integer m, with 2 6 m+ 1 6 bd/2c, then G contains m+ 1
edge-disjoint spanning trees. Cioabă and Wong conjectured the following factor of two
improvement, which they verified for m ∈ {1, 2}.

Conjecture 1 ([6]). Let m > 1 be an integer and G be a d-regular graph with d > 2m+2.
If λ2(G) < d− 2m+1

d+1
, then σ(G) > m+ 1.

This conjecture attracted much attention, leading to many partial results and gener-
alizations [7, 8, 10, 11, 15, 17]. The question was ultimately resolved by Liu, Hong, Gu,
and Lai.

Theorem 2 ([16]). Let m > 1 be an integer and G be a graph with minimum degree
δ > 2m+ 2. If λ2(G) < δ − 2m+1

δ+1
, then σ(G) > m+ 1.

We show this bound is essentially the best possible.

Theorem 3. For all d > 2m + 2 > 4, the d-regular graph Gm,d (defined in Section 2.1)
has at most m edge-disjoint spanning trees and satisfies

d− 2m+ 1

d+ 1
6 λ2(Gm,d) < d− 2m+ 1

d+ 3
.

Cioabă and Wong created special cases of this construction for the families G1,d and
(a slight variant of) G2,d in [6] to show that Theorem 2 is essentially best possible for
m ∈ {1, 2}. In his PhD thesis [24], Wong also constructed the family G3,d to show that
Theorem 2 is essentially tight for m = 3. Based on the family of graphs for the small cases
of m that appeared in [6], Gu [8] constructed a family of multigraphs by replacing every
edge with multiple edges to show that the bounds in a multigraph analog of Theorem 2
are also the best possible. Additionally, Cioabă, Dewar, and Gu [5] used the variant of
G2,d from [6] to show that a sufficient spectral condition for graph rigidity is essentially
the best possible. We generalize their result in Section 5.
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In Section 2, we will construct the family of graphs Gm,d and prove the lower bound
of Theorem 3. In Section 3, we will explicitly describe the characteristic polynomial of
Gm,d (Theorem 11), and in Section 4, we will use the characteristic polynomial to prove
the upper eigenvalue bound of Theorem 3. The proof of the second eigenvalue bound uses
a classical number theoretic technique, Graeffe’s method (see Lemma 12), which to the
best of our knowledge has not previously been used for second eigenvalue bounds. This
approach should generalize to upper bounds on the roots of interesting combinatorial
polynomials, when the largest root is well separated from the second largest root.

2 Graph Construction

2.1 Construction

We construct a family of graphs Gm,d such that λ2(Gm,d) < d− 2m−1
d+3

, but σ(Gm,d) 6 m for
all d > 2m+ 2 > 4. The graph Gm,d contains 2m+ 1 copies of Kd+1, each with a deleted
matching of size m. Then m(2m + 1) edges are added in a circulant manner to connect
the vertices among the 2m+ 1 cliques with the deleted matchings.

Let d > 2m + 2 > 4. The vertex set of G = Gm,d consists of all ordered pairs (i, j)
where 0 6 i 6 2m and 0 6 j 6 d. Let Hi = {(i, j) | 0 6 j 6 d}, and let the subgraph
induced by Hi be G[Hi] = Kd+1 \ Ei, where

Ei = {(i, 2a− 2) ∼ (i, 2a− 1) | 1 6 a 6 m}.

Now we connect edges among the Hi. Let

E ′ = {(i, 2j + 1) ∼ (i+ j + 1, 2j) | 0 6 i 6 2m, 0 6 j 6 m− 1},

where i+ j + 1 is taken modulo 2m+ 1. Then

E(Gm,d) =
2m⋃
i=0

E(G[Hi]) ∪ E ′.

This construction makes Gm,d a connected d-regular graph. See Figures 1 and 2.

2.2 Spanning Trees

Our result, like many prior results on edge-disjoint spanning trees, crucially relies on a
theorem from Nash-Williams and Tutte, which converts a condition on σ(G) to one on
vertex partitions. If the vertex set V (G) is partitioned into disjoint sets V1, . . . , Vt, then
let e(Vi, Vj) be the number of edges with endpoints in both Vi and Vj.

Theorem 4 (Nash-Williams/Tutte [19, 23]). Let G be a connected graph and k > 0 be
an integer. Then σ(G) > k if and only if

∑
16i<j6t e(Vi, Vj) > k(t − 1) for any partition

V (G) = V1 ∪ · · · ∪ Vt.
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As in the previous subsection, let H1, . . . , H2m+1 be the modified cliques Kd+1 of Gm,d.
Since e(Hi, Hj) = 1, we have∑

06i<j62m

e(Hi, Hj) =
2m(2m+ 1)

2
< (m+ 1)(2m).

By Theorem 4, Gm,d has at most m edge-disjoint spanning trees. Then Theorem 2
implies λ2(Gm,d) > d− 2m+1

d+1
, yielding the lower bound of Theorem 3. It remains to show

λ2(Gm,d) < d− 2m+1
d+3

.

(0, 0)

(0, 1)

(0, 2)

(0, 3)
(0, 4)

(1, 0)(1, 1)

(1, 2)

(1, 3) (1, 4)

(2, 0)

(2, 1)
(2, 2)

(2, 3)

(2, 4)

Figure 1: G1,4 with deleted dashed edges and labeled vertices.

Figure 2: G3,8 with deleted dashed edges.
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3 Characteristic Polynomial

The adjacency matrix of Gm,d is a block circulant matrix. Following [22], define
B(b0,b1, . . . ,bn−1) to be the block circulant matrix

b0 b1 b2
. . . bn−2 bn−1

bn−1 b0 b1
. . . bn−3 bn−2

bn−2 bn−1 b0
. . . bn−4 bn−3

. . . . . . . . . . . . . . . . . .

b2 b3 b4
. . . b0 b1

b1 b2 b3
. . . bn−1 b0


,

where each bi is a square matrix of equal dimension.

Lemma 5 ([22]). The characteristic polynomial of a real, symmetric, block circulant
matrix B(b0,b1, . . . ,bn−1) is given by

det(xI− B(b0,b1, . . . ,bn−1)) =
∏
ζn=1

det(xI−Hζ),

where
Hζ = b0 + ζb1 + · · ·+ ζn−1bn−1,

and ζ runs over the nth roots of unity (including 1).

To determine the characteristic polynomial of Gm,d, we will also need the following
lemmas from linear algebra. Let In and Jn denote the identity matrix and all ones matrix
of dimension n, respectively.

Lemma 6. Let A be an invertible matrix and u,v be column vectors. Then,

det(A + uvT ) = (1 + vTA−1u) det(A).

Lemma 7. We have

det(aIn + bJn) = an + nan−1b,

(aIn + bJn)−1 =
1

a
In −

b

a(a+ nb)
Jn.

Finally, the characteristic polynomial of Gm,d will require defining the Chebyshev poly-
nomials of the first kind Tn(z) and Chebyshev polynomials of the second kind Un(z). We
have [1, p. 775, Equations (22.3.6) and (22.3.7)]

Tn(z) =
n

2

bn/2c∑
k=0

(−1)k

n− k

(
n− k
k

)
(2z)n−2k, (1)

Un(z) =

bn/2c∑
k=0

(−1)k
(
n− k
k

)
(2z)n−2k. (2)
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They are also given by the implicit equations Tn(cos θ) = cos(nθ) and Un(cos θ) sin θ =
sin((n+1)θ). We prove a few lemmas on the Chebyshev polynomials and their connection
to roots of unity.

Lemma 8. For m > 1,

T2m+1(z)

z
= 22m

m∏
j=1

(
z2 − sin2

(
πj

2m+ 1

))
.

Proof. Abramowitz and Stegun [1, Page 787, Equation 22.16.4] provide the zeroes of Tn(z)
as cos

(
2`−1
2n
π
)
, 1 6 ` 6 n. The leading coefficient of T2m+1(z) is 22m, as can be seen from

equation (1), giving the product representation

T2m+1(z) = 22m

2m+1∏
`=1

(
z − cos

(
`− 1/2

2m+ 1
π

))
= 22mz

m∏
`=1

(
z − cos

(
`− 1/2

2m+ 1
π

))(
z + cos

(
`− 1/2

2m+ 1
π

))
= 22mz

m∏
`=1

(
z2 − sin2

(
`−m− 1

2m+ 1
π

))
= 22mz

m∏
`=1

(
z2 − sin2

(
`

2m+ 1
π

))
.

Lemma 9. For m > 1 and any (2m+ 1)-th primitive root of unity ζ,

m∏
j=1

(x2 + 2x− 1 + ζj + ζj) =
T2m+1(z)

z
,

m∑
j=1

2x+ ζj + ζj

x2 + 2x− 1 + ζj + ζj
= − 1

2z
+

2m+ 1

2T2m+1(z)
(T2m+1(z)− (z − 1)U2m(z)),

with the change of variables z = x+1
2

.

Proof. Applying Lemma 8,

m∏
j=1

(x2 + 2x− 1 + ζj + ζj) = 22m

m∏
j=1

(x+ 1

2

)2

−

(
ζj/2 − ζj/2

2ı

)2


= 22m

m∏
j=1

((
x+ 1

2

)2

− sin2

(
πj

2m+ 1

))

=
T2m+1

(
x+1
2

)
(x+ 1)/2

.
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Also, we have

m∑
j=1

2x+ ζj + ζj

x2 + 2x− 1 + ζj + ζj
=

m∑
j=1

x+1
2
−
(
ζj/2−ζj/2

2ı

)2
(
x+1
2

)2 − ( ζj/2−ζj/2
2ı

)2
=

m∑
j=1

x+1
2
− sin2

(
πj

2m+1

)(
x+1
2

)2 − sin2
(

πj
2m+1

) . (3)

Taking a logarithm in Lemma 8 and then differentiating gives

log T2m+1(z)− log z = log 22m +
m∑
j=1

log

(
z2 − sin2

(
πj

2m+ 1

))
,

(2m+ 1)U2m(z)

T2m+1(z)
− 1

z
= 2z

m∑
j=1

1

z2 − sin2
(

πj
2m+1

) , (4)

where we used T ′n(z) = nUn−1(z) for n > 1. This can be verified from the series expansions
of both sides. Substituting (4) into (3) with z = (x+ 1)/2 gives

m∑
j=1

z − sin2
(

πj
2m+1

)
z2 − sin2

(
πj

2m+1

) =
m∑
j=1

z2 − sin2
(

πj
2m+1

)
z2 − sin2

(
πj

2m+1

) +
m∑
j=1

z − z2

z2 − sin2
(

πj
2m+1

)
= m+ (z − z2)

m∑
j=1

1

z2 − sin2
(

πj
2m+1

)
= m+

(1− z)(2m+ 1)

2

U2m(z)

T2m+1(z)
− 1− z

2z

= − 1

2z
+

2m+ 1

2T2m+1(z)
(T2m+1(z)− (z − 1)U2m(z)).

We generalize Lemma 9 for all roots of unity ζ.

Lemma 10. For m > 1 and 2m+ 1 > t > 1, let ζ = e2πıt/(2m+1) be a (2m+ 1)-th root of
unity, where ı =

√
−1. Define g = gcd(2m+ 1, t) and n = 2m+1

g
. Then

m∏
j=1

(x2 + 2x− 1 + ζj + ζj) =
(2Tn(z))g

2z
,

m∑
j=1

2x+ ζj + ζj

x2 + 2x− 1 + ζj + ζj
= − 1

2z
+

2m+ 1

2Tn(z)
(Tn(z)− (z − 1)Un−1(z)),

with the change of variables z = x+1
2

.
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Proof. Note that ζ is a primitive nth root of unity. By Lemma 9,

n−1
2∏
j=1

(x2 + 2x− 1 + ζj + ζj) =
Tn(z)

z
,

n−1
2∑
j=1

2x+ ζj + ζj

x2 + 2x− 1 + ζj + ζj
= − 1

2z
+

2m+ 1

2Tn(z)
(Tn(z)− (z − 1)Un−1(z)).

Notice m = g−1
2
n+ n−1

2
. Using the periodicity of roots of unity several times,

m∏
j=1

(x2 + 2x− 1 + ζj + ζj) =

(
n∏
j=1

(x2 + 2x− 1 + ζj + ζj)

) g−1
2

×

n−1
2∏
j=1

(x2 + 2x− 1 + ζj + ζj)


=

n−1
2∏
j=1

(x2 + 2x− 1 + ζj + ζj)

g

(x2 + 2x+ 1)
g−1
2

=

(
Tn(z)

z

)g
(x+ 1)g−1

=
(2Tn(z))g

2z
.

Similarly,

m∑
j=1

2x+ ζj + ζj

x2 + 2x− 1 + ζj + ζj
= g

n−1
2∑
j=1

2x+ ζj + ζj

x2 + 2x− 1 + ζj + ζj
+
g − 1

2

2x+ 2

x2 + 2x+ 1

= g

(
− 1

2z
+

n

2Tn(z)
(Tn(z)− (z − 1)Un−1(z))

)
+
g − 1

x+ 1

= − 1

2z
+

2m+ 1

2Tn(z)
(Tn(z)− (z − 1)Un−1(z)).

Finally, we compute the characteristic polynomial of Gm,d. Denote Ja,b to be the a× b
all ones matrix.

Theorem 11. For d > 2m+ 2 > 4, the characteristic polynomial p(x) of Gm,d is

(x+ 1)(d−2m)(2m+1)

2m+1∏
j=1

(2Tn(z))g−1[(
−2m+ 1 +

2m− d
z

)
Tn(z) + (2m+ 1)(z − 1)Un−1(z)

]
,

with the change of variables g = gcd(2m+ 1, j), n = 2m+1
g

, and z = x+1
2

.
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Proof. By the symmetric construction of Gm,d, its adjacency matrix is a block circulant
matrix B(b0, . . . ,b2m). For any i 6= j, there is only one edge between Hi and Hj. Then
for 1 6 i 6 m, bi is a matrix with a single entry of 1 in position (2i, 2i − 1). Moreover,
bi = bT2m+1−i for m+ 1 6 i 6 2m. Finally, b0 is the adjacency matrix of any Hi. That is,

b0 = Jd+1 − Id+1 −
2m∑
i=1

bi.

By Lemma 5, the eigenvalues of the adjacency matrix are the union of the eigenvalues of
each

Hζ = b0 + ζb1 + · · ·+ ζ2mb2m

=

[
A J2m,d−2m+1

Jd−2m+1,2m Jd−2m+1 − Id−2m+1

]
,

where ζ is a (2m+ 1)-th root of unity and

A = J2m +



−1 ζ − 1
ζ − 1 −1

−1 ζ2 − 1
ζ2 − 1 −1

. . .

−1 ζm − 1
ζm − 1 −1


.

The characteristic polynomial p(x) is

p(x) =
∏

ζ2m+1=1

det(xI−Hζ).

We need the block determinant

det(xI−Hζ) =

∣∣∣∣ xI2m −A −J2m,d−2m+1

−Jd−2m+1,2m (x+ 1)Id−2m+1 − Jd−2m+1

∣∣∣∣ .
Label the blocks A′,B,C,D. Passing to the Schur complement,

det(xI−Hζ) = det(D) det(A′ −BD−1C). (5)

By Lemma 7,

detD = (x+ 1)d−2m(x− d+ 2m), (6)

D−1 =
1

x+ 1
I +

1

(x+ 1)(x− d+ 2m)
J.
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Note Jn,mJm,l = mJn,l. Then,

BD−1C =
d− 2m+ 1

x+ 1
J +

(d− 2m+ 1)2

(x+ 1)(x− d+ 2m)
J =

d− 2m+ 1

x− d+ 2m
J,

A′ −BD−1C = − x+ 1

x− d+ 2m
J +



x+ 1 1− ζ
1− ζ x+ 1

x+ 1 1− ζ2
1− ζ2 x+ 1

. . .

x+ 1 1− ζm
1− ζm x+ 1


Let Mζ be the block matrix summand of A′ − BD−1C and u be the all ones vector of
dimension 2m. Notice that uuT = J2m, so that we can apply Lemma 6 to give

det(A′ −BD−1C) =

(
1− x+ 1

x− d+ 2m
uTM−1

ζ u

)
detMζ . (7)

Here, uTM−1
ζ u gives the sum of the entries of M−1

ζ . The inverse of a block diagonal
matrix is the block diagonal matrix of the inverses of the blocks. Then the jth block of
M−1

ζ is

1

x2 + 2x− 1 + ζj + ζj

[
x+ 1 ζj − 1
ζj − 1 x+ 1

]
,

and

uTM−1
ζ u =

m∑
j=1

2x+ ζj + ζj

x2 + 2x− 1 + ζj + ζj
.

The determinant of a block diagonal matrix is the product of the blocks’ determinants,
so

detMζ =
m∏
j=1

(x2 + 2x− 1 + ζj + ζj).

By Lemma 10,

uTM−1
ζ u = − 1

2z
+

2m+ 1

2Tn(z)
(Tn(z)− (z − 1)Un−1(z)),

detMζ =
(2Tn(z))g

2z
.

Substituting into (7), we obtain

det(A′ −BD−1C) =

(2Tn(z))g−1

x− d+ 2m

[(
−2m+ 1 +

2m− d
z

)
Tn(z) + (2m+ 1)(z − 1)Un−1(z)

]
.
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With (6), we simplify (5) to

det(xI−Hζ) =

(x+ 1)d−2m(2Tn(z))g−1
[(
−2m+ 1 +

2m− d
z

)
Tn(z) + (2m+ 1)(z − 1)Un−1(z)

]
.

Taking the product of det(xI−Hζ) over all 2m+1 roots of unity ζ yields the characteristic
polynomial.

4 Bounding the second eigenvalue

Let [zn]f(z) denote the coefficient of zn in f(z), and let z0 > z1 > · · · > zn−1 be the roots
of f(z). Given any monic polynomial f(z), we can rewrite f(z) as

f(z) =
n∑
j=0

ajz
j =

n−1∏
j=0

(z − zj) = zn − zn−1
n−1∑
j=0

zj +O(zn−2).

Lemma 12 (Graeffe’s Method [13]). The largest root of a monic polynomial f(z) =∑n
j=0 ajz

j can be bounded by

z0 6
(
−4an−4 + 4an−3an−1 + 2a2n−2 − 4an−2a

2
n−1 + a4n−1

)1/4
. (8)

Proof. We compute

f(z)f(−z) =
n−1∏
j=0

(z − zj)(z + zj) =
n−1∏
j=0

(z2 − z2j ) = z2n − z2n−2
n−1∑
j=0

z2j +O(z2n−4).

We know that this is an even function, so a2n−1 = 0. Similarly, we can then compute

f(z)f(−z)f(ız)f(−ız) =
n−1∏
j=0

(z − zj)(z + zj)(z − ızj)(z + ızj) =
n−1∏
j=0

(z4 − z4j )

= z4n − z4n−4
n−1∑
j=0

z4j +O(z4n−8).

We conclude that

z0 6

(
n−1∑
j=0

z4j

)1/4

=
(
−[z4n−4]f(z)f(−z)f(ız)f(−ız)

)1/4
.

Moreover, only the powers of z with degree at least n− 4 multiply to produce a term of
degree 4n− 4. By explicitly multiplying these polynomials out, we then have
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f(z)f(−z)f(ız)f(−ız)

=
4∏

k=1

(
(ıkz)n + an−1(ı

kz)n−1 + an−2(ı
kz)n−2 + an−3(ı

kz)n−3 + an−4(ı
kz)n−4 +O(zn−5)

)
= z4n − z4n−4

(
−4an−4 + 4an−3an−1 + 2a2n−2 − 4an−2a

2
n−1 + a4n−1

)
+O(z4n−8).

Comparing coefficients of z4n−4 completes the proof.

The intuition behind why Graeffe’s method suffices here is that if the polynomial’s
roots are well separated, then Graeffe’s method provides extremely precise approxima-
tions. Here, numerically we observed d− 1 6 λ2 6 d while the other roots were contained
in [−3, 1]. Then, passing to fourth powers using Graeffe’s method, the sum of fourth
powers of all the roots is dominated by λ42, so that taking a fourth root then provides a
tight upper bound on the largest eigenvalue. We can use the same technique to derive
a series of increasingly strong bounds on the largest root, as we incorporate more of the
leading coefficients. For an introduction to the general method, see [13]. For historical
discussion of the origin of the name and method, see [12].

We require the following technical inequality.

Lemma 13. For d > 2m+ 2 > 6, we have(
d4 + 4d3 − (8m− 2)d2 + 4d+ 8m2 + 4m+ 1

)1/4
< d− 2m+ 1

d+ 3
+ 1.

Proof. Let n = 2m+ 1 and ` = d+ 1, so this statement reduces to showing

`4 − 4`2n+ 2n2 − 6n+ 8`n <

(
`− n

`+ 2

)4

for ` > n+ 2 > 7. By clearing denominators, expanding, and dividing through by n, this
is equivalent to showing

2`4(2n− 5) + 8`3(n− 6)− 4`2(n2 + 6n+ 12)− 8`(n2 + 8n− 8) + n3 − 32n+ 96 > 0.

Note that n3− 32n+ 96 > 0 for n > 5, so we drop this term completely and divide by 2`.
It is left to show that

`3(2n− 5) + 4`2(n− 6) + 2`(−n2 − 6n− 12) + 4(−n2 − 8n+ 8) > 0.

Since we have `− 2 > n > 5, we can lower bound the left-hand side as

> `3(10− 5) + 4`2(5− 6) + 2`
(
−(`− 2)2 − 6(`− 2)− 12

)
+ 4

(
−(`− 2)2 − 8(`− 2) + 8

)
= 3`3 − 12`2 − 24`+ 80.

However, for ` > n+ 2 > 7, this polynomial is strictly positive.
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The main idea of our proof is to explicitly write down the first five coefficients of the
characteristic polynomial, apply Graeffe’s method, and finally show that Graeffe’s method
gives a slightly stronger bound than desired. We can now prove the following.

Theorem 14. For d > 2m+ 2 > 4,

d− 2m+ 1

d+ 1
6 λ2(Gm,d) < d− 2m+ 1

d+ 3
.

Proof. See Section 2.1 for a discussion of the lower bound. Since Gm,d is a connected
d-regular graph, it follows that λ2 < λ1 = d [3, Ch. 1]. In the characteristic polynomial
from Theorem 11, consider when j = 2m + 1 in the product. The expression in the
product simplifies to

(x+ 1)2m(x− d),

from which the eigenvalue of d arises. Also observe that the factors (x + 1)(d−2m)(2m+1)

and (2Tn(x+1
2

))g−1 have roots in [−3, 1]. It is enough to check that the factor

fn(z) =

(
−2m+ 1 +

2m− d
z

)
Tn(z) + (2m+ 1)(z − 1)Un−1(z)

has roots less than 1
2
(d− 2m+1

d+3
+ 1) for 1 6 j < 2m+ 1.

First, let us note some restrictions on the values of n,m, d for which we need to prove
this. The case m = 1 was proven in [24]. Note that n = (2m + 1)/ gcd(2m + 1, j) 6= 1.
As a divisor of 2m+ 1, n must then be odd, which eliminates n = 2. We are left to check
2m+ 1 > n > 3 and d > 2m+ 2 for m > 2.

By (1) and (2), for n > 4

Tn(z) = 2n−1zn − 2n−3nzn−2 + 2n−6n(n− 3)zn−4 +O(zn−6),

Un(z) = 2nzn − 2n−2(n− 1)zn−2 + 2n−5(n− 2)(n− 3)zn−4 +O(zn−6).

Then for n > 4,

fn(z) =

(
−2m+ 1 +

2m− d
z

)
Tn(z) + (2m+ 1)(z − 1)Un−1(z)

=

(
−2m+ 1 +

2m− d
z

)
(2n−1zn − 2n−3nzn−2 + 2n−6n(n− 3)zn−4 +O(zn−6))

+ (2m+ 1)(z − 1)(2n−1zn−1 − 2n−3(n− 2)zn−3

+ 2n−6(n− 3)(n− 4)zn−5 +O(zn−6)),

so that the first five coefficients of the characteristic polynomial are explicitly

fn(z)

2n
= zn − d+ 1

2
zn−1 +

2m+ 1− n
4

zn−2 +
dn+ n− 4m− 2

8
zn−3 (9)

+
(n− 4m− 2)(n− 3)

32
zn−4 +O(zn−5).
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We examine the behavior at n = 3, where (9) is technically undefined. Setting n = 3
there, the zn−4 factor vanishes due to the (n − 3) term, and we recover the correct
polynomial. Therefore, we can extend the validity of this statement to n > 3.

By applying Graeffe’s method (Lemma 12) with

an−1 = −d+ 1

2
,

an−2 =
2m+ 1− n

4
,

an−3 =
dn+ n− 4m− 2

8
,

an−4 =
(n− 4m− 2)(n− 3)

32
,

the largest root z0 of fn(z) satisfies

z0 6
1

2

(
d4 + 4d3 − (8m− 2)d2 + 4d+ 8m2 − 8m+ 6n− 5

)1/4
. (10)

Note that for fixed m and d, this function is increasing in n due to the 6n term, so it
suffices to take n = 2m+ 1 (the maximum possible value of n) in (10). Then (10) reduces
to

z0 6
1

2

(
d4 + 4d3 − (8m− 2)d2 + 4d+ 8m2 + 4m+ 1

)1/4
. (11)

Lemma 13 shows that this is less than 1
2
(d− 2m+1

d+3
+ 1) for d > 2m+ 2 > 6.

5 Application to Rigidity

One interesting application of this graph family pertains to graph rigidity. Rigidity is a
well-studied notion of resistance to bending. A k-dimensional framework is a pair (G, p),
where G is a graph and p is a map from V (G) to Rk. Let || · || denote the Euclidean norm
in Rk. Two frameworks (G, p) and (G, q) are equivalent if ||p(u)− p(v)|| = ||q(u)− q(v)||
for every edge uv ∈ E(G), and congruent if ||p(u) − p(v)|| = ||q(u) − q(v)|| for every
u, v ∈ V (G). Further, a framework (G, p) is generic if the coordinates of its points are
algebraically independent over the rationals. Finally, a framework (G, p) is rigid if there
exists an ε > 0 such that if (G, p) is equivalent to (G, q) and ||p(u)− q(u)|| < ε for every
u ∈ V (G), then (G, p) is congruent to (G, q). Note that we can consider rigidity as a
property of the underlying graph, as a generic realization of G is rigid in Rk if and only if
every generic realization of G is rigid in Rk [2]. Thus, we call a graph rigid in Rk if every
generic realization of G is rigid in Rk. For the remainder of the section, we only consider
rigid graphs in R2.

Cioabă, Dewar, and Gu investigated the connection between a graph’s Laplacian eigen-
values and rigidity, ultimately arriving at the following sufficient spectral condition.

Theorem 15 ([5]). Let G be a graph with minimum degree δ(G) > 6r. If
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1. µ2(G) > 6r−1
δ(G)+1

,

2. µ2(G− u) > 4r−1
δ(G−u)+1

for every u ∈ V (G), and

3. µ2(G− v − w) > 2r−1
δ(G−v−w)+1

for every v, w ∈ V (G),

then G contains at least r edge-disjoint spanning rigid subgraphs.

Moreover, they used a variant of G2,d and a result by Lovász and Yemini [18] to show
that the first condition of the above theorem essentially cannot be improved for r = 1.
However, this categorization does not extend beyond r = 1; we must turn to a more recent
result by Gu [9] to verify tightness for larger values.

Suppose π is a partition of V (G). We call a part of π trivial if it consists of a single
vertex. Additionally, let eG(π) denote the number of edges of G whose endpoints lie in
two different parts of π.

Theorem 16 ([9]). Let r, ` > 0 be integers. If a graph G contains r spanning rigid
subgraphs and ` spanning trees, all of which are mutually edge-disjoint, then for any
partition π of V (G) with t trivial parts,

eG(π) > (3r + `)(|π| − 1)− rt.

Using this result, we are able to prove the first condition of Theorem 15 is essentially
tight for all r > 1.

Theorem 17. Let r > 0 be an integer. Then G3r−1,d has fewer than r edge-disjoint
spanning rigid subgraphs and satisfies

6r − 1

d+ 3
< µ2(G3r−1,d) 6

6r − 1

d+ 1
.

Proof. Let π be a partition of V (G3r−1,d), where the vertices of each modified Kd+1 form
a part. Then |π| = 2(3r − 1) + 1 = 6r − 1 and eG3r−1,d

(π) = (3r − 1)(2(3r − 1) + 1) =
(3r − 1)(6r − 1). Thus,

eG3r−1,d
(π) = (3r − 1)(6r − 1) < 3r(6r − 2) 6 (3r + `)((6r − 1)− 1)

for ` > 0, so G3r−1,d cannot contain r edge-disjoint spanning rigid subgraphs by Theorem
16.

The spectral inequality is an immediate consequence of Theorem 3 by recognizing that
µ2 = d− λ2, since the graph is d-regular.

6 Open Problem

Numerically, λ2(Gm,d) converges to the upper bound d − 2m+1
d+3

from Theorem 3. It is
natural to ask the following: what is the optimal function g(m, d) so that if a d-regular
graph G has λ2(G) 6 g(m, d), then G contains at least m+ 1 edge-disjoint spanning trees,
and what are the extremal graphs?
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