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Abstract

For a given number of colors, s, the guessing number of a graph is the (base s)
logarithm of the cardinality of the largest family of colorings of the vertex set of the
graph such that the color of each vertex can be determined from the colors of the
vertices in its neighborhood. This quantity is related to problems in network coding,
circuit complexity and graph entropy. We study the guessing number of graphs as
a graph property in the context of classic extremal questions, and its relationship
to the forbidden subgraph property. We find the extremal number with respect to
the property of having guessing number 6 a, for fixed a. Furthermore, we find an
upper bound on the saturation number for this property, and a method to construct
further saturated graphs that lie between these two extremes. We show that, for a
fixed number of colors, bounding the guessing number is equivalent to forbidding a
finite set of subgraphs.

Mathematics Subject Classifications: 05C35, 60C05, 94A17

1 Introduction

The guessing number of a graph is a graph invariant introduced by Søren Riis, as a tool
to work on problems in network coding [14] and circuit complexity [16]. It is one of many
other variants of multiplayer information games, such as the hat guessing game, Ebert’s
game, and the hats-on-a-line game. For a review, see [4]. We will give a formal definition
of the guessing game in Section 2. Informally, imagine that n players are positioned on
the vertices of an undirected graph G. Two players can see each other if their vertices
share an edge in G. Each player is assigned a hat with a color chosen uniformly from
a set of s colors, independently of other players. The players guess the color of their
own hats simultaneously, where the goal is to maximize the probability that all players
guess correctly. Players cannot see their own hats. Instead, they base their guess on a
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previously agreed upon strategy and the colors of the other players’ hats that they can
see. The guessing number gn(G) reflects the quality of a best possible guessing strategy
on the graph G.

Riis proved that computing this particular guessing number of a graph is equivalent
to solving an information flow problem on an associated network [14]. In particular, this
refers to the solvability of the multiple unicast coding problem [1]. It is also related
to the problem of index coding with side information [2, 10]. Gadouleau showed that
this problem can also be recast in terms of fixed points of finite dynamical systems [9].
Christofides and Markström were the first to expand the study of guessing numbers of
undirected graphs [6]. They found the exact guessing numbers of a class of graphs that
contains the perfect graphs, namely the graphs whose independence number equals the
clique cover number of their complements. The guessing numbers of undirected triangle-
free graphs [5] and odd cycles [3] have also been studied, but very few other graphs have
known guessing number.

Extremal graph theory is a well-studied area of graph theory that concerns itself with
how large (or small) a graph can be while fulfilling certain properties. The traditional
Túran problem asks how many edges a graph on n vertices can have, while avoiding a
subgraph isomorphic to some F , or to any F in a given family F . This type of question
was introduced by Mantel [12] in 1907, for avoiding triangles, in a series of mathematical
exercises published by the Royal Dutch Mathematical Society, and solved independently
by Gouwentak, Mantel, Teixeira de Mattos, Schuh, and Wijthoff. The solution by Wijthoff
was published in [20]. It was later generalized by Túran for complete graphs [19]. This is a
fundamental question in combinatorics which has been studied extensively since then. For
a survey, see for example [18]. Similarly, the original saturation problem asks the question
of how few edges an F -free graph on n vertices can have while having the property that
the addition of any edge creates a subgraph F . The saturation number was introduced
by Erdős, Hajnal and Moon in [7]. For a survey, see for example [8].

In this paper we look at extremal and saturation questions of the guessing number. We
define, in terms that parallel prior extremal work on subgraphs, extremal and saturation
numbers for the guessing number, and then determine the extremal number as well as
a constant bound for the saturation number. These questions are of interest, especially
when we think of the guessing number as it relates to the efficiency of a network in terms
of its ability to transmit a message versus the number of links that are used. The graph
property of having guessing number at least a is equivalent to the property of avoiding a
finite family of subgraphs Fa.

The remainder of this paper is organized as follows. In section 2, we give formal
definitions related to guessing numbers, strategies, and extremal and saturation numbers,
as well as a few useful lemmas. In Section 3, we present the extremal number for graphs
of bounded guessing number. This result does not depend on the number of colors used.
In Section 4, we provide a constant upper bound on the saturation number (that only
depends on the guessing number a, not on n) for any number of colors. The saturation
number may depend on the number of colors used, unlike the extremal numbers. In
Section 5, we discuss a method of building further saturated graphs. In Section 6, we
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look further into the relationship between the bounded guessing number property and
forbidden subgraphs, and show that for a fixed number of colors, bounding the guessing
number is equivalent to forbidding a finite set of subgraphs.

2 Definitions and useful results

This section is split into three subsections, which deal with guessing numbers, saturation
and extremal numbers, and with graph entropy, respectively.

2.1 Guessing Numbers

In 2006, Søren Riis introduced a new guessing game variant played on directed graphs.
This guessing game was originally developed by Riis and Mikkel Thorup in 1997 [14].
Similarly to some of the other games, players are assigned hat colors at random, can decide
on a strategy beforehand but cannot communicate after the hats have been assigned, and
all guess simultaneously. Riis introduces a new win condition: The players are trying to
maximize the probability that every player guesses correctly.

We will consider only undirected graphs. A graph G is a pair (V,E), where V = {vi}n1
is a set of vertices, and E ⊆

(
V
2

)
a set of edges. We will use the convention that n = |V (G)|

and m = |E(G)|. Let N(v) denote the neighborhood of a vertex v, i.e. N(v) = {w ∈
V (G) : vw ∈ E(G)}. Let N [v] = N(v) ∪ {v} denote the closed neighborhood of v. We
use Kn to denote the complete graph on n vertices, and En the empty graph on n vertices.
We use the symbol ⊕ to denote the operator that forms the join of two graphs, and + to
denote the disjoint union.

In Riis’s guessing game, every vertex of G is assigned a color from a color set [s], uni-
formly at random and independently of other vertices. Each vertex guesses the color that
has been assigned to it, based on the information of the colors assigned to its neighbors.
The collection of n guessing functions, one for each vertex, is called a strategy or protocol
for the guessing game for G with s colors. The goal of the guessing game is to find a
protocol that maximises the probability that every vertex guesses its own color.

In this paper we use the following set of definitions related to guessing games and
guessing numbers of undirected graphs. These definitions have been slightly modified
from Riis’s orginal presentation.

Definition 1. A protocol or strategy for graph G with respect to a color set of size s is
a set of functions, P = {fi}n1 where each fi is a function fi : Zn

s → Zs associated with a
vertex vi ∈ V (G), where fi may only depend on the colors of the verices in N(vi). Then
we can think of the protocol itself as a function P : Zn

s → Zn
s .

We then use the following definition of the guessing number, styled after Christofides
and Markström [6]. For s ∈ N and a graph G, let the guessing number be given as
gn(G, s) = k, where k is the largest value such that there exists a protocol P where the
probability that every vertex guesses its own value correctly is sk−n. A more compact
definition in terms of the fixed points of a protocol was first introduced by Wu, Cameron,
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and Riis in 2009 [22]. A protocol defined above as a function P : Zn
s → Zn

s guesses
correctly whenever P(c) = c, or when a coloring c is a fixed point of P . Such colorings are
those for which the strategy is successful. This allows us to define the guessing number
in terms of the fixed points of a strategy.

Definition 2. The guessing number of a graph G with respect to an s-guessing game is

gn(G, s) = logs max
P
{fix(P)},

where fix(P) is the number of fixed points of a strategy P . Similarly we will use Fix(P)
to denote the set of fixed points of a strategy P .

Definition 3. The general guessing number of a graph G is

gn(G) = lim
s→∞

gn(G, s).

Much of the foundational work purely on the guessing number was done by Christofides
and Markström in 2011. In [6], these authors present general upper and lower bounds for
the guessing number using the clique cover number and independence number of graphs.
We present Lemmas 4 and 5, which together imply the lower bound in Lemma 6.

Lemma 4. [22, 6] For two disjoint subgraphs, H1, H2 ⊆ G, we have

gn(G, s) > gn(H1, s) + gn(H2, s).

Lemma 5. [6] For the complete graph Kn, we have

gn(Kn, s) = n− 1.

Let α(G) be the independence number of G, which is the cardinality of a largest
independent set in G. Let cp(G) be the clique decomposition number of G, defined as
the fewest number of classes in a partition of the vertexes of G such that each class is a
clique. This is equal to the chromatic number of the complement of the graph G.

Lemma 6. [6] For every graph G on n vertices,

n− cp(G) 6 gn(G, s) 6 n− α(G).

2.2 Extremal and saturation numbers

We first define the extremal and saturation number in their traditional forms, in terms of
forbidden subgraphs. Let F be a family of graphs. We say that a graph G is F -saturated
if G does not contain any graph F ∈ F as a subgraph, but for any e ∈ E(G) we have
that G + e does contain a subgraph F ∈ F . If G is F -saturated with F = {F}, we say
that G is F -saturated.

the electronic journal of combinatorics 29(2) (2022), #P2.58 4



Definition 7. The extremal number ex(n,F) (respectively, ex(n, F )) is the maximum
number of edges over all graphs on n vertices that are F -free (respectively, F -free). The
family of such graphs on n vertices and the extremal number of edges is denoted by
Ex(n,F) (respectively, Ex(n, F )).

Note that all graphs in Ex(n,F) (respectively, Ex(n, F )) must be F -saturated (re-
spectively, F -saturated).

Definition 8. The saturation number sat(n,F) (respectively, sat(n, F )) is the minimum
number of edges over all graphs on n vertices that are F -saturated (respectively, F -
saturated). The family of graphs on n vertices and the saturation number of edges is
denoted by Sat(n,F) (respectively, Sat(n, F )).

Similarly, we say that a graph G is (gns > a)-saturated if gns(G) < a and for any
e ∈ E(G) we have that gns(G+e) > a. The graph properties of attaining a given guessing
number and containing a subgraph from a given family of graphs are strongly related. In
Theorem 33, we will show that for every s ∈ N, a ∈ R, there exists a unique finite family
of minimal forbidden subgraphs Fs,a such that, for any graph G,

gns(G) < a ⇔ G is Fs,a-free.

This allows us to use the same notation for extremal and saturation values of guessing
numbers.

Definition 9. The extremal number ex(n,Fs,a) is the maximum number of edges over
all graphs on n vertices that have guessing number < a. The family of such graphs on n
vertices and the extremal number of edges is denoted by Ex(n,Fs,a).

Note that all graphs in the family Ex(n,Fs,a) are Fs,a-saturated.

Definition 10. The saturation number sat(n,Fs,a) is the minimum number of edges over
all graphs on n vertices that are (gns > a)-saturated. The family of such graphs on n
vertices and the saturation number of edges is denoted by Sat(n,Fs,a).

Note that, although we know that a graph family Fs,a exists, in most cases we do not
know what this family is. Also, these families are not necessarily monotone with respect
to s or a. For example, when a 6 b, we need not have Fs,b ⊆ Fs,a, or that every graph in
Fs,a is contained in some graph in Fs,b.

Lemma 11. If a 6 b, then for every graph Fb ∈ Fs,b there exists an Fa ∈ Fs,a such that
Fa ⊆ Fb.

Proof. For the sake of contradiction, suppose that a 6 b, and that there exists an Fb ∈ Fs,b

such that no graph in Fs,a is a subgraph of Fb. This implies that gns(Fb) > b, by the
definition of Fs,b, but also that gns(Fb) < a, since it is Fs,a-free. This is a contradiction.
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We will discuss a few aspects of the behavior of the extremal and saturation functions
which are also seen in the well-studied setting of forbidden subgraphs. The following
monotonic properties of the extremal number with respect to forbidden subgraphs are
well known:

Lemma 12. For every F ′ ⊆ F and every F ′ ⊆ F ,

(i) ex(n, F ′) 6 ex(n, F ),

(ii) ex(n,F) 6 ex(n,F ′),

(iii) ex(n,F) 6 ex(n+ 1,F).

In the case of saturation, none of the above monotonic behaviors hold necessarily.
See [11] or [8], for a survey. For guessing numbers, we will discuss analogous types of
monotonicity in Sections 3 and 4.

2.3 Graph Entropy

In [15], Riis develops the concept of graph entropy and connects it to the guessing number.
This result allows us to use entropy inequalities to calculate the guessing number of graphs.

Definition 13. Let {Xi}n1 be a collection of random variables each taking values from the
same finite set A. Then for some appropriately chosen base, b, the information entropy
(or Shannon’s entropy) of the collection {Xi}n1 is defined as

H({Xi}n1 ) = −
∑

(x1,...,xn)∈An

P(X1 = x1, . . . , Xn = xn) logb P(X1 = x1, . . . , Xn = xn)

The following lemma summarizes some basic properties of entropy.

Lemma 14. [17] For X, Y, Z random variables, we have

(i) 0 6 H(X) 6 H(X, Y ),

(ii) H(X, Y, Z) +H(X) 6 H(X, Y ) +H(X,Z).

Definition 15. For a graph G and positive integer s, let P be a nontrivial strategy. Let
XP = (X1, X2, . . . , Xn) be a random variable representing picking a coloring uniformly at
random from the fixed points of P where Xi is the color of vertex i.

Lemma 16. [15] For a graph G positive integer s, and strategy P, consider XP and an
arbitrary subset S = {v1, . . . , vt} ⊆ V (G), without loss of generality. If N(v1) ⊆ S, then

H({Xi}t1) = H({Xi}t2).

We can link the special case when this random variable is picking from an optimal
strategy to the guessing number.
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Lemma 17. [15] Let P be an optimal strategy on a graph G. Then

H(XP) = gn(G).

Let P be an (optimal) strategy on a graph G for a given s. From the basic properties
of entropy [15], we obtain the following lemma.

Lemma 18. For any Xi ∈ XF , we have

H(Xi) 6 1.

3 Extremal Numbers

In this section, we present a construction of the extremal graph with guessing number
strictly less than a, and we prove that this construction is unique up to isomorphism, as is
common with extremal graphs. Our extremal construction has integer guessing number.
Any graph with more edges than the extremal construction has guessing number at least
1 more than the extremal construction. Therefore, we will see that

ex(n,Fs,a) = ex(n,Fs,dae)

as well as
Ex(n,Fs,a) = Ex(n,Fs,dae).

Proposition 19. For any graph G, if χ(G) > k, then |E(G)| >
(
k
2

)
edges. If χ(G) = k

and |E(G)| =
(
k
2

)
, then G ∼ Kk + En−k.

Proof. This follows from basic properties of the chromatic number. For example, see
Theorem 5.2.1 and Lemma 5.2.3 in [13].

Note that χ(G) = cp(G). For later convenience, we substitute n− k for k, and obtain
the following corollary of Proposition 19.

Corollary 20. For any graph G, if cp(G) > n − k, then |E(G)| 6
(
n
2

)
−
(
n−k
2

)
. If

cp(G) = n− k and |E(G)| =
(
n
2

)
−
(
k
2

)
, then G ∼ Kk ⊕ En−k.

Theorem 21 gives a complete characterization of the extremal graphs and numbers for
any guessing number. Note that if a > n− 1, then the extremal graphs and numbers are
undefined, as it is not possible for a simple grpah G to have a guessing number greater
than n− 1.

Theorem 21. For n > dae, let k = dae − 1. Then, we have

Ex(n,Fs,a) = {Kk ⊕ En−k},

and

ex(n,Fs,a) =

(
n

2

)
−
(
n− k

2

)
.
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Proof. It is easy to see that α(Kk ⊕En−k) = n− k. Furthermore, we can find a partition
of the vertices into n−k cliques by placing each vertex of the independent set of size n−k
into one of the classes, and distributing the remaining vertices arbitrarily over the n− k
classes. We show an example of a graph Kk ⊕ En−k and a clique partition in Figure 1.
Now, by Lemma 6, we see that

gn(Kk ⊕ En−k) = k.

In Theorem 21, we see an example of a graph on n vertices,
(
n
2

)
−
(
n−k
2

)
edges, and

guessing number k. It follows from Corollary 20 and Lemma 6, that any graph G on n
vertices and at least

(
n
2

)
−
(
n−k
2

)
+1 edges must have gn(G) > k+1. Also, by Corollary 20

and Lemma 6, it follows that the graph Kk ⊕ En−k is the unique graph on n vertices,(
n
2

)
−
(
n−k
2

)
edges, and guessing number k.

Intuitively, adding edges to a graph (weakly) increases its guessing number. More
information is never bad. However, this result is in a sense extremal for the number of
“useless” edges that the graph has in terms of an optimal strategy. If we look at Figure 1,
we see that a strategy that forms guesses independently in each of the classes of the clique
partition only uses

(
k+1
2

)
edges, and ignores the remaining k(n−k−1) edges. If k is treated

as a constant, this implies that only a constant number of edges out of a number that
grows linearly with n is “useful”. The number of edges in our graph is therefore quite
uninformative if we do not know the structure.

Figure 1: Example of a graph K6 ⊕ E7, partitioned into 7 cliques (indicated by shaded
areas).

Lemma 12 shows the monotonic behavior of the extremal function in the case of for-
bidden subgraphs. Given the relationship between guessing numbers and forbidden sub-
graphs, only the analogue of Lemma 12(iii) follows directly from the definitions. Together
with Theorem 21, we obtain the following corollary.
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Corollary 22. When a 6 b, we have

(i) ex(n,Fs,a) 6 ex(n,Fs,b),

(ii) ex(n,Fs,a) 6 ex(n+ 1,Fs,a).

4 Saturation Numbers

We now move to the saturation number, which is the smallest number of edges a saturated
graph can have. We begin with the saturation numbers for the properties of having
guessing number at least 2 and at least n− 1. For these cases, can find exact numbers.

Lemma 23. For all n, sat(n,Fs,2) = n− 1 and Sat(n,Fs,2) = {K1,n−1}.

Proof. Suppose there is a graph G on n vertices with fewer than n−1 edges and gn(G) < 2.
As a consequence of Lemmas 4 and 5, it cannot have a triangle or a matching of size 2.
This implies that G ∼ K1,t + (n− t− 1)K1, for 0 6 t 6 n− 1.

Suppose, for the sake of contradiction, that G has an isolated vertex. Then, we can
add an edge from an isolated vertex to the vertex at the center of the star K1,t. Adding
such an edge keeps the guessing number strictly below 2, since there is still an independent
set of size n− 1. Therefore, G is not saturated with respect to gn(G) > 2. We conclude
that G ∼ K1,n−1.

Note that, by Theorem 21, ex(n,Fs,2) = n− 1. Therefore, we have

sat(n,Fs,2) = ex(n,Fs,2) = n− 1,

and we have
Sat(n,Fs,2) = Ex(n,Fs,2) = {K1,n}.

We find a similar complete picture for the extremal and saturation numbers (as well
as the respective graphs) of gn > n− 1.

Lemma 24. For all n, sat(n,Fs,n−1) =
(
n
2

)
− 1.

Proof. The only graph with guessing number n − 1 is the complete graph on n vertices.
Therefore, the only graph saturated with respect to gn(G(n)) > n − 1 has one less edge
than the complete graph, or

(
n
2

)
− 1 edges.

We have

sat(n,Fs,n−1) = ex(n,Fs,n−1) =

(
n

2

)
− 1

and we have
Sat(n,Fs,n−1) = Ex(n,Fs,n−1) = {Kn−2 ⊕ E2}.

These two results give us that for guessing numbers 2 and n−1, the saturation number
is the same as the extremal number. However, for other guessing numbers there is a gap
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between the extremal number and the saturation number. Particularly, we show that
for any constant integer guessing number a > 2, the saturation number is bounded by a
constant as n grows.

We begin by looking at saturation for guessing number 3. We will generalize the
construction later on, but this example will serve as a warm-up. Consider the graph
C5. Christofides and Markström bound the guessing number for all s with the following
theorem.

Theorem 25. [6] For positive integers s and k, gns(C2k+1) 6 2k+1
2

.

Lemma 26. For n > 5 and all s, sat(n,Fs,3) 6 5.

Proof. For n > 5, let G ∼ C5 +En−5. As shown in Figure 2, the addition of any edge e to
this graph results in G+ e having a clique cover of size n− 3. Note that in the figure, the
three cases are shown without any additional isolated vertices drawn. The second and
third case only apply when n > 6 and n > 7, respectively.

Figure 2: Illustration of the three ways in which an edge can be added (dashed line) to
a graph G ∼ C5 + En−5, up to isomorphism, given large enough n. The blue shading
indicates a vertex clique cover of cardinality n− 3 in each case.

We now present a general graph that preserves the “nice” properties of the 5-cycle in
the form of a slight modification of the complete bipartite graph.

For any integer a > 2 let K∗a,a be the complete bipartite graph Ka,a with one subdivided
edge. We shall label the vertices x1, . . . , xa and y1, . . . , ya where all vertices xi are in one
class of the partition and all vertices yi are in the other. We subdivide the edge x1y1,
that is, we replace it with edges x1v0 and y1v0 where v0 is an additional vertex of degree
2. Note that K∗2,2 ∼ C5.

Lemma 27. For a > 3 and s positive integers, we have gns(K
∗
a,a) 6 a+ 2

3
.

Proof. Let P be an optimal guessing protocol for the guessing game on G with s colors.
Let Z be a random variable that picks uniformly from all fixed points of P . For brevity, we
will use the notation X[k:l] = Xk, . . . , Xl. Then, the random variable Z = (V0, X[1:a], Y[1:a])
where V0, Xi and Yi refer to the colors assigned to vertices v0, xi and yi, respectively.

Since x[1:a] and y[1:a] are both independent sets, by Lemma 16 and 17, we have

gn(K∗a,a) = H(Z) = H(V0, X1, Y[1:a]) = H(V0, X[1:a], Y1) = H(V0, X[1:a]).
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Therefore,

3·gn(K∗a,a) = 3 ·H(Z)

= H(V0, X[1:a], Y1) +H(V0, X1, Y[1:a]) +H(V0, X[1:a])

6 H(V0, X[1:a], Y1) +H(V0, X1, Y[1:a]) +H(V0) +H(X[1:a]) (1)

6 H(V0, X[1:a], Y1) +H(V0, X1, Y[2:a]) +H(V0, Y1) +H(X[1:a]) (2)

= H(V0, X[1:a], Y1) +H(V0, Y1) +H(V0, X1, Y[2:a]) +H(X[1:a])

6 H(V0, X[2:a], Y1) +H(V0, Y1, X1) +H(V0, X1, Y[2:a]) +H(X[1:a]) (3)

= H(V0, X[2:a]) +H(Y1, X1) +H(V0, Y[2:a]) +H(X[1:a]) (4)

6 a+ 2 + a+ a (5)

= 3a+ 2.

Inequalities (1),(2) and (3) rely on Lemma 14(ii); inequality (4) relies on Lemma 16, and
inequality (5) relies on Lemma 18.

Lemma 28. Let G ∼ K∗a,a + En−2a−1 be a graph on n > 2a − 1 vertices. Then for any

e ∈ E(G), we have gn(G+ e) = a+ 1.

Proof. It is not difficult to verify that, up to isomorphism, there are at most eight ways
to add an edge to G. In each of these cases, G + e has a clique cover of cardinality
n− a− 1. We provide proof by illustration in Figure 3. It is also not difficult to see that
α(G+ e) = n− a− 1 in each of these cases, giving us the equality.

Theorem 29. Let a 6 2 and s be positive integers. For n > 2a+1, we have sat(n,Fs,a+1) 6
a2 + 1.

Proof. Consider the graph G ∼ K∗a,a +En−2a−1. The edges of this graph are all contained
in the K∗a,a component and so G has a2 + 1 edges. By Lemma 27, we have that gns(G) 6

gn(G) 6 a+ 2
3
< a+1. By Lemma 28, we see that for any e ∈ E(G), we have gns(G+e) =

a+ 1.

Unlike the construction for the extremal number in Theorem 21, this construction
does not necessarily work for all guessing numbers. For a guessing number that is more
than 1

3
below an integer, we have not proven that this construction works.

As we did in Corollary 22, we can consider the monotonicity of the saturation function.
In the case of forbidden subgraphs, the saturation function does not have any of the mono-
tonicity properties listed in Lemma 12. For the case of guessing numbers, saturation fails
to have any of the monotonicity properties listed in Corollary 22. As a counterexample to
sat(n,Fs,a) 6 sat(n,Fs,b) (the analogue of Corollary 22(i)), we have seen that, when n > 7,
we have that sat(n,F2) > sat(n,F3). As a counterexample to sat(n,Fs,a) 6 sat(n+1,Fs,a)
(the analogue of Corollary 22(ii)), we have that sat(6,Fs,4) = 10 and sat(7,Fs,4) = 9 (ver-
ified by computer).
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Figure 3: Illustration of the eight ways in which an edge can be added (dashed line) to
a graph G ∼ K∗4,4 + En−9, up to isomorphism, given large enough n. The blue shading
indicates a vertex clique cover of cardinality n− 5 in each case.

5 Iterative Construction of Saturated Graphs

In 1986, Kászonyi and Tuza provided a general saturated graph construction which proves
that sat(n,F) = O(n) for every family of graphs F [11]. Their construction is based on
the following observation. For F a family of graphs, let

F ′ = {F − v | F ∈ F , v ∈ V (F )}.

Lemma 30. For any graph G and vertex v ∈ G, and for any number of colors s, we have

gn(G− v, s) 6 gn(G, s) 6 gn(G− v, s) + 1.

Furthermore, if N [w] ⊆ N(v) for any w ∈ V (g) \ {v}, then

gn(G, s) = gn(G− v, s) + 1.

Proof. The lower bound follows from Lemma 4. Suppose, for the sake of contradiction,
that we have a graph G and vertex v ∈ V (G) such that gn(G, s) > gn(G− v, s) + 1. Then
there exists a strategy P such that

fix(P) > sgn(G−v,s)+1.
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Since there are only s colors, this suggests that there is a color j such that vertex v has
color j in more than sgn(G−v,s) fixed points of P . However, if we take the set of colorings
given by these fixed points and restrict them to the set V (G)\{v}, we obtain a strategy for
G−v with more than sgn(G−v,s) fixed points. This contradicts the definition of gn(G−v, s).

Now suppose that there exists a w ∈ V (g) \ {v} such that N [w] ⊆ N(v). We will
prove that gn(G, s) > gn(G − v, s) + 1 by extending an optimal strategy on G − v to a
strategy on v. Intuitively, one can think of the new strategy as following the old strategy,
except that we pretend that v and w are a single vertex with color c(v) + c(w) (mod s).
Formally, label the vertices of G as

V (G) = {v1, v2, . . . , vn−2, vn−1 = w, vn = v}.

Let P ′ = {f ′i}n−11 be an optimal strategy on G − v. We construct P = {fi}n1 , a strategy
on G, as follows. For a given coloring c of V (G), let c′(vi) = c(vi) for 1 6 i 6 n− 2, and
let c′(w) = c(w) + c(v) (mod s). Then, let fi(c) = f ′i(c

′) for 1 6 i 6 n− 2. Furthermore,
let fn−1(c) = f ′i(c

′)− c(v) and fn(c) = f ′i(c
′)− c(w). This strategy gives

fix(P) = s · fix(P ′),

because for every c′ ∈ Fix(P ′) (the set of points fixed by a protocol P ′ as distinct to
the number of fixed points) in which c′(w) = j, there are exactly s colorings in Fix(P ′).
We find these colorings by letting c(vi) = c′(vi) for 1 6 i 6 n − 2 and letting c(w) ∈
{0, . . . , s− 1} with c(v) = j − c(w) (mod s).

Corollary 31. Let G be a graph with a dominating vertex v. Then

G− v ∈ Sat(n,Fs,a) ⇔ G ∈ Sat(n,Fs,a+1).

Proof. Suppose that G−v ∈ Sat(n,Fs,a). Then gns(G−v) < a and for any e ∈ E(G− v)

we have gns(G− v + e) > a. Since v is a dominating vertex, we have E(G− v) = E(G).
Therefore, by Lemma 30, the graph G has the property that gns(G) < a+ 1 and for any
e ∈ E(G) we have gns(G+ e) > a+ 1. Therefore, G ∈ Sat(n,Fs,a+1). The other direction
of the biconditional statement follows in a very similar manner.

Corollary 32. When a is a positive integer and n > 2a + 1, there exist graphs on n
vertices that are Fa+1-saturated on any number of edges in the set{(

b

2

)
+ b · (n− b) + (a− b)2 + 1

∣∣∣∣ b ∈ {0, . . . , a}
}
.

Proof. By Theorem 29 there exists a graph on n− b vertices and (a− b)2 + 1 edges that is
Fs,a−b+1-saturated. Then, by repeated use of Corollary 31, we add b dominating vertices
to this graph to obtain a graph on n vertices and

(
b
2

)
+ b · (n− b) + (a− b)2 + 1 edges that

is Fs,a+1-saturated.

We note that the construction described in Corollary 32 encompasses both the con-
struction used to find the exact extremal number in Theorem 21 (by setting b = a) as well
as the construction used to find an upper bound on the saturation number in Theorem 29
(by setting b = 0).
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6 Guessing Number and Forbidden Subgraphs

We conclude with a result that shows some of the relationship between the bounded
guessing number property and forbidden subgraphs. Theorem 33 and its proof below are
due to Maximilien Gadouleau, and presented here with permission.

Theorem 33 (Gadouleau). For all a and any F ∈ Fa, |F | < 4a+ 4.

Proof. Let F be a graph in F1. By [9], the values of the asymptotic guessing number
of graphs can be enumerated as (ai : i ∈ N) where ai < ai+1 for all i ∈ N. We have
a0 = 0, a1 = 1, a2 = 2, a3 = 2.5, . . . The result holds vacuously for a0, since Fa = ∅.
Suppose the result holds for all ai, i 6 k − 1. Let a = ak, F ∈ Fa and |F | = t. Let
α = α(F ) be the independence number of F , and ν = ν(F ) the matching number. We
have ν 6 gn(F ) < a+ 1 and, by [21], we have t 6 2ν +α. Suppose that α < t−α. Then,

t 6 2ν + α < 2a+ 2 +
t

2
,

which implies that t < 4a + 4. Now, suppose that α > t − α. Let A be a maximum
independent set in F and B = V (F ) \ A. By Lemma 3.2 of [9], there exists a nonempty
A′ ⊆ A such that F [A′, N(A′)] has a matching M of size m = |N(A′)|. Note that N(A′)
is nonempty, since graphs in Fa do not have isolated vertices. Let V (M) be the set of
vertices of F matched by M , such that |V (M)| = 2m. By the proof of Lemma 3.3 of [9],

gn(F ) = gn(F − V (M)) +m.

Let H = F − V (M). Since gn(H) > a−m, H has a subgraph H ′ that belongs to Fa−m.
If H ′ 6= H, then replacing H with H ′ in F yields a subgraph F ′ of F in Fa, which is a
contradiction. Therefore H ∈ Fa−m and, by the induction hypothesis, |H| < 4a− 4. This
gives

t = |H|+ 2m 6 4a+ 4− 2m < 4a+ 4.

Corollary 34. For any a > 0 there exists a unique finite family of minimal forbidden
subgraphs Fa such that, for any graph G,

gn(G) < a ⇔ G is Fa-free.

This also holds for gns(G) < a and Fs,a to which Theorem 33 and its proof are easily
adapted.
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