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Abstract

The quantum cohomology ring of the Grassmannian is determined by the quan-
tum Pieri rule for multiplying by Schubert classes indexed by row or column-shaped
partitions. We provide a direct equivariant generalization of Postnikov’s quantum
Pieri rule for the Grassmannian in terms of cylindric shapes, complementing re-
lated work of Gorbounov and Korff in quantum integrable systems. The equiv-
ariant terms in our Graham-positive rule simply encode the positions of all possi-
ble addable boxes within one cylindric skew diagram. As such, unlike the earlier
equivariant quantum Pieri rule of Huang and Li and known equivariant quantum
Littlewood-Richardson rules, our formula does not require any calculations in a
different Grassmannian or two-step flag variety.

Mathematics Subject Classifications: 14N35, 14N15, 14M15

1 Introduction

Equivariant cohomology is a powerful tool for studying the geometry and topology of
algebraic varieties which admit an action by a reductive algebraic group; see the sur-
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vey [And]. With key ingredients appearing in Cartan’s complex of equivariant differen-
tial forms [Car], the Borel construction for equivariant singular cohomology dates back
to the 1950’s [Bor|. The prevailing philosophy in the equivariant setting is to exploit
the symmetries arising from the group action by replacing topological questions with a
limited amount of algebraic information. For example, the theory of localization follow-
ing [GKM] permits the equivariant cohomology of nice topological spaces, such as flag
varieties and Grassmannians, to be represented using a graph determined by the fixed
points and one-dimensional orbits of the group action; see [GZ] for an overview. Kim’s
construction of the equivariant Gromov-Witten invariants [Kim] extends these principles
to the (small) equivariant quantum cohomology of flag varieties, and thus to modern
equivariant quantum Schubert calculus via various equivariant quantum-to-classical phe-
nomena [BM, BMT].

1.1 Equivariant quantum Schubert calculus

The equivariant quantum cohomology ring for the Grassmannian Gr(m,n) has a basis
of Schubert classes, indexed by partition shapes which fit inside an m x (n — m) rect-
angle. The fundamental question in equivariant quantum Schubert calculus is to find
combinatorial formulas for the expansion of the product of two Schubert classes in terms
of this Schubert basis. A Graham-positive equivariant quantum Littlewood-Richardson
rule for QH;(Gr(m,n)) is now available, by combining Buch’s generalization of Knut-
son and Tao’s equivariant puzzle rule [KT] to two-step flag varieties [Buc2|, together
with Buch and Mihalcea’s quantum-to-classical principle equating the equivariant quan-
tum Littlewood-Richardson coefficients for Gr(m,n) to their classical counterparts in a
related two-step flag variety [BM].

Other formulas for the equivariant quantum Littlewood-Richardson coefficients exist,
the first of which was Mihalcea’s equivariant quantum Pieri-Chevalley rule for multiplying
by the Schubert class corresponding to a single box [Mih2], which recursively determines
the ring structure of QH¥(Gr(m,n)). Any of the numerous equivariant Littlewood-
Richardson rules for H}(Gr(m,n)) can be combined with the equivariant rim hook rule
of the first, third, and fourth authors [BMT] to produce a signed method for computing
products in QH5(Gr(m,n)). Gorbounov and Korff take an integrable systems approach
to provide an explicit determinantal formula for the equivariant quantum Littlewood-
Richardson coefficients [GK2, GK3].

Without performing calculations in a related two-step flag variety, the most gen-
eral Graham-positive combinatorial formula for the equivariant quantum Littlewood-
Richardson coefficients is the equivariant quantum Pieri rule for multiplying by a Schu-
bert class indexed by a row or column-shaped partition. Huang and Li proved the first
equivariant quantum Pieri rule for any type A partial flag variety in Theorem 3.10 of [HL],
though in the the special case of the Grassmannian, this formula can also be recovered
from Robinson’s earlier full flag Pieri rule [Rob], for which Li, Ravikumar, Sottile, and
Yang later provided an alternate geometric proof [LRSY]. We remark that Li and Raviku-
mar have also generalized the underlying equivariant Pieri rule for the Grassmannian to
other classcial Lie types [LR|. The critical component in each of the aforementioned
Pieri rules is the interpretation of certain equivariant quantum Littlewood-Richardson
coefficients as localizations at a given T-fixed point of a Schubert variety in a smaller
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Grassmannian. Gorbounov and Korff take a different approach in [GK2, GK3], providing
an equivariant quantum Pieri rule in terms of an action by vicious and osculating walker
transfer matrices in the Yang-Baxter algebra.

. . °
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.
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Figure 1: Equivariant cylindric shapes to calculate o3 x 021y € QHT(G7(3,5)).

The goal of this paper is to provide a closed combinatorial Graham-positive equivari-
ant quantum Pieri rule for Gr(m,n), formulated in terms of an equivariant generalization
of cylindric shapes; see Figure 1 for an illustration which is fully explained in Example 16.
Introduced by Gessel and Krattenthaler [GK1], cylindric shapes have since appeared in
many mathematical contexts. In representation theory, cylindric diagrams enter Suzuki
and Vazirani’s work on representations of the double affine Hecke algebra [SV]. In math-
ematical physics, Korff defines cylindric versions of specializations of skew Macdonald
polynomials [Kor|, which arise as partition functions of vertex models obtained by solving
the Yang-Baxter equation. Arising from conjectures of McNamara [McN] recently settled
by Lee [Lee|, the cylindric (skew) Schur functions are a family of symmetric functions
indexed by cylindric shapes, and they play an important role in algebraic combinatorics.
Central in Lee’s work is the result of Lam that all cylindric Schur functions are affine
Schur functions [Lam], which provides a connection to positroid varieties as studied by
Knutson, Lam, and Speyer [KLS]. Cylindric shapes also arise in previous works on the
quantum cohomology of the Grassmannian, implicitly in the development of quantum
Kostka numbers by Bertram, Ciocan-Fontanine, and Fulton [BCFF], as well as explicitly
in the quantum Pieri rule of Postnikov [Pos]; see Theorem 4 below. Gorbounov and
Korft’s version of the equivariant quantum Pieri rule translates the graphical calculus of
non-intersecting lattice paths into the language of toric skew shapes [GK2, GK3].

1.2 Statement of the main theorem

Postnikov’s version of the quantum Pieri rule provides an affine approach to
QH*(Gr(m,n)), and several additional quantum-to-affine connections from [Pos| are so-
lidified in Knutson, Lam, and Speyer’s related work on positroid varieties [KLS]. A key
motivation for our search for particular equivariant generalizations of these quantum-to-
affine phenomena is the parabolic Peterson isomorphism [Pet,LS1], which implies that the
equivariant homology of the affine Grassmannian surjects onto
QH5(Gr(m,n)), up to localization of the quantum parameter, in a manner which pre-
serves the relevant Schubert calculus.
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Inspired by these affine connections, we present an equivariant generalization of the
quantum Pieri rule from [Pos|, or equivalently closed combinatorial formulas for the
equivariant quantum Pieri expansions provided in [GK2, GK3|, as our main result. In
this context, the equivariant terms are generated by addable boxes on the cylindric skew
shape, which are depicted by the boxes with ® in Figure 1 and whose contributions
are denoted by o in Theorem 1 below. For the reader who is familiar with similar
combinatorial formulas, the following is our main theorem statement. All terminology is
made precise in Section 2, but here we describe the key components in the product as
they relate to Figure 1, with forward references to the relevant definitions in Section 2.

Theorem 1 (Equivariant Quantum Pieri Rule on Cylindric Shapes). For any integers
IT<p<mand 1 <k <n—m and any partition w € Py, we have

A q¢ wt” (o and
=2 2 at ]l

0<r<p A/d/pu=v" xeVP\v"
vr—vP

wrop=> Y q* J] wt"(«o

0<r<k A/d/pu=h" aEhk\h"
h'—hk

in QHY(Gr(m,n)). Since A/d/u is a vertical (resp. horizontal) strip, then d € {0, 1}.

The inner sum in Theorem 1 ranges over cylindric skew diagrams A/d/p which are
vertical (resp. horizontal) strips, as depicted by the red shaded boxes in Figure 1. These
vertical (resp. horizontal) r-strips are then extended to full p- (resp. k)-strips by adding
boxes which preserve the nature of the original vertical (resp. horizontal) strip, as do
the boxes containing ® in Figure 1; see Definition 7 for details. The weight of each
addable box is then easily calculated from several statistics which record the location of
the box ® within the portion of the skew shape contained in the ambient m x (n —m)
rectangle, outlined in black in Figure 1. We make the weight of an addable box precise
in Definition 11, and we explicitly record the weights corresponding to each of the four
cylindric shapes appearing in Figure 1 in Example 16. It is immediate from Definition
11 that both formulas in Theorem 1 are manifestly Graham-positive.

In comparison to other known equivariant quantum Pieri and/or Littlewood-
Richardson rules, Theorem 1 more directly captures the quantum-to-affine
phenomenon which governs the ring structure of QH}(Gr(m,n)) via the parabolic Pe-
terson isomorphism, as explicated in [CM] in the non-equivariant case. In addition, each
of the existing closed combinatorial formulas for these products typically requires do-
ing calculations in many different related two-step flags or smaller Grassmannians in
order to calculate a single Pieri product; compare [HL, BM, Buc2]. We emphasize, by
contrast, that Theorem 1 permits an entire equivariant quantum Pieri product to be
carried out directly on the skew shapes A/d/u as in Figure 1, which fully illustrates
the product Opey) * Opey; € QHF(GT(3,5)); see Example 16. As such, even the clas-
sical case of Theorem 1 is quite distinct from existing formulations of the equivariant
Pieri and Littlewood-Richardson rules for H}(Gr(m,n)). Moreover, as we explain in the
next subsection, Theorem 1 provides an ideal starting point for establishing equivariant
generalizations of many related phenomena in combinatorics, representation theory, and
mathematical physics, rather than serving exclusively as an illuminating and convenient
means to an equivariant quantum Schubert calculus end.
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The proof of Theorem 1 proceeds by comparing the classical terms indexed by cylindric
shapes with the equivariant Pieri rule from [HL] reviewed here as Theorem 20. More
specifically, we prove in Proposition 28 that the weight determined by a configuration
of addable boxes is the same whether calculated on the cylindric skew shape A/ or on
the partition A, defined in [HL] by a join-and-cut algorithm which passes to a smaller
Grassmannian. In Lemma 32, we then equate the equivariant Littlewood-Richardson
coefficients appearing in Theorem 1 with certain specializations of elementary factorial
Schur polynomials. These specialized factorial Schur polynomials agree with the classical
terms appearing in Huang and Li’s equivariant Pieri formula via the localization formula
due to [KT,LRS,IN] reviewed as Theorem 31. Our equivariant quantum Pieri rule on
cylindric shapes then follows by applying the equivariant rim hook rule of the first, third,
and fourth authors [BMT] reviewed as Theorem 5.

1.3 Discussion of related work

We now highlight some applications of Theorem 1 suggested by related literature in the
non-equivariant setting. Although the appropriate equivariant analog is often a direct
consequence of the combinatorics developed here, an in-depth pursuit of any of the gen-
eralizations discussed in this subsection is beyond the scope of the present paper.

Both [Pos] and [BCFF] define quantum Kostka numbers by iterating the quantum
Pieri rule. These quantum Kostka numbers are the coefficients in the monomial expansion
of the cylindric Schur functions, a specialization of which give the toric Schur polynomials
whose Schur expansions encode all quantum Littlewood-Richardson coefficients; see [Pos,
Theorem 5.3|. Iterating the equivariant quantum Pieri rule in Theorem 1 thus yields an
immediate equivariant generalization for each of these phenomena, which all carry impor-
tant representation-theoretic meaning in the non-equivariant setting. For example, quan-
tum Kostka numbers coincide with Wess-Zumino-Novikov-Witten (WZNW) fusion coef-
ficients; compare the generalization [Kor, Conjecture 1.1] concerning cylindric skew Mac-
donald functions, special cases of which connect to Kostka-Foulkes polynomials, graded
characters of Demazure modules of the current algebra, and Feigin-Loktev fusion products
of Kirillov-
Reshetikhin modules. To date, the only explicit reference to equivariant quantum Kostka
numbers in the literature is the unpublished work of Gorbounov and Korff [GK2, Corol-
lary 6.27], in which they are defined by iterating an equivariant quantum Pieri rule
phrased in terms of vicious and osculating walkers. As such, Theorem 1 also provides
a simple combinatorial model for performing such calculations in quantum integrable
systems.

The cylindric Schur functions of [Pos] are examples of affine Schur functions [Lam],
also known as the dual k-Schur functions which represent Schubert classes in the co-
homology of the affine Grassmannian, as one might expect by applying the parabolic
Peterson isomorphism [Pet, LS1]. Analogously, the equivariant version of the cylindric
Schur functions obtained by iterating Theorem 1 should give rise to a family of affine
double Schur functions. By [LS3, Theorem 27], specializing one set of variables in an
affine double Schur function recovers the localizations of the corresponding affine Schu-
bert class at a T-fixed point, deepening the geometric meaning of this family of symmetric
functions, and simultaneously illuminating the critical role of localization in the proof of
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Theorem 1. The equivariant k-Kostka numbers are defined in [LS3] by expanding the
affine double Schur functions in terms of the double monomial symmetric functions, or
equivalently by iterating the affine equivariant Pieri rule of [LS2], which offers an affine
approach to studying equivariant quantum Kostka numbers. The authors also expect the
cyclic factorial Schur functions defined in [BMT] to configure into this same framework
of affine symmetric functions.

Many additional applications of Theorem 1 are implicit in Postnikov’s wide-
ranging work [Pos]. There are natural interpretations of the correspondence between
cylindric shapes and non-vanishing monomials in the affine nil-Temperley-Lieb algebra,
which would give rise to an equivariant generalization of [Pos, Proposition 8.5], as well
as its physical interpretation in [KS, Theorem 10.11]. This perspective also yields equiv-
ariant analogs of the pairwise commuting Dunkl elements in the quadratic algebra which
Fomin and Kirillov use to describe the quantum cohomology of the complete flag vari-
ety [FK]. Postnikov defines a representation of the symmetric group by its action on the
toric Specht module, and Yoo develops a cylindric version of jeu de taquin to study certain
families of these toric Specht modules [Yoo]. Since the quantum Littlewood-Richardson
coefficients conjecturally determine the decomposition of toric Specht modules into irre-
ducible components, an algebraic explanation of the Graham-positivity of the equivariant
Littlewood-Richardson coefficients results from this representation-theoretic approach.
See [Pos, Section 9| for further discussion of open problems, each of which now has a
natural equivariant analogue.

1.4 Organization of the paper

We begin with some background on the equivariant quantum Schubert calculus of the
Grassmannian in Section 2. In particular, we formally review Postnikov’s quantum Pieri
rule on cylindric shapes from [Pos| as Theorem 4, and we make all additional terminology
appearing in Theorem 1, our equivariant generalization of Postnikov’s quantum Pieri rule,
precise in Section 2.4. The localizations occurring in the equivariant Pieri rule of [HL)]
are developed in Section 3, which permits a comparison to the equivariant Littlewood-
Richardson coefficients from Theorem 1 by recognizing both as certain specializations of
factorial Schur polynomials in Section 4. The proof of Theorem 1 then follows in Section
4.3 by applying the equivariant rim hook rule of [BMT].

2 Quantum Pieri rules on cylindric shapes

The purpose of this section is to briefly develop the Schubert calculus required to formally
state our main theorem. We review the combinatorics of the quantum cohomology of
the Grassmannian in Section 2.1, and we formulate Postnikov’s quantum Pieri rule on
cylindric shapes in Section 2.2. We pass to the equivariant setting in Section 2.3, and we
present our equivariant quantum Pieri rule on cylindric shapes as Theorem 1 in Section
2.4. Throughout the paper, we fix a pair of integers m,n € N.

2.1 Quantum cohomology of the Grassmannian

Let G = SL,, fix a Borel subgroup B and a split maximal torus T, and denote the
associated Weyl group by W = S,,. Fix a Cartan subalgebra h of g = Lie(G). The choice
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of B determines a set of positive roots R*, in the sense that b = Lie(B) = h® (@“ew g“).
Denote by A = {oq}’f:_ﬂ a basis of simple roots, satisfying that any root in € Zsoo is
positive with respect to B. In this paper, we choose B to be the subgroup of lower-
triangular matrices and T the diagonal matrices, in which case «; = e;.1 — e; where e;
denotes the standard coordinate vector for the lattice Z™. There is a bijection between
the simple roots o € A and the generators s; € S for the Coxeter group (W,S). The
standard parabolic subgroups P 2 B are in bijection with subsets Ap C A, and the
associated Weyl group W5p is generated by those simple reflections corresponding to the
elements of Ap. The set of minimal length coset representatives in the quotient W/W5p is
denoted by WP, using the standard length function on (W, S).

The homogeneous variety G/P admits a Bruhat decomposition into opposite Schubert
cells, given by G/P = | ],,cw» B”WP/P. Here, B~ denotes the opposite Borel subgroup,
defined by BN B~ = T. Following the conventions in this paper, B~ is the subgroup of
upper-triangular matrices. For any w € WP, we denote the corresponding Schubert
variety by X,, := B wP/P. The cohomology of G/P admits an additive Z-basis of
Schubert classes o, indexed by w € WP, where o,, denotes the Poincaré dual of the
fundamental class [X,,]. Throughout this paper, we focus exclusively on the mazimal
parabolic subgroups P, equivalently Ap = A\{x,,} for a fixed m € [n —1].

When P is maximal, the complex algebraic variety G/P is the Grassmannian Gr(m,n),
whose points consist of all m-dimensional subspaces of C". The cohomology of Gr(m,n)
in this case is determined by a Schubert basis which is indexed by the set P, of parti-
tions A = (A1,...,An) € ZT; such that n —m > Ay > --- > A,. Equivalently, A € Prp
determines a Young diagram in English notation by drawing A; left-justified boxes in row
i, placing row 1 at the top. Thus, A € P, if and only if its Young diagram fits inside an
m X (n —m) rectangle. The number of boxes in A € Py, is denoted by [A| :== > A;.

When the homogeneous space G/P is identified with the Grassmannian Gr(m,n),
the Schubert variety X, associated to the partition A € Py, is determined by the rank
conditions

Xy ={V e Gr(myn) | dim (VNF,) =1 forie [ml},

where 1; := Ay_i11 +1 and F,, := Span(ey, ..., e, ) denotes the subspace spanned by the
first r; column vectors of the standard basis for C*. The Schubert class o, is Poincaré dual
to the fundamental class [X)]. These Schubert classes form an additive Z-basis for the
ring H*(Gr(m,n)), and the product of two Schubert classes o) - 0, = }_ ¢ ,0y expands
non-negatively in this basis. The Littlewood-Richardson coefficients ¢y, € Zzo are well
understood, with many available combinatorial interpretations; see [Ful] for an overview.

If we introduce a parameter q of degree n, the quantum cohomology of the Grassman-
nian is defined as QH*(Gr(m,n)) := Z[q]l ® H*(Gr(m,n)), and thus admits a Z[q]-basis
of Schubert classes indexed by A € Py, which we again denote by o). The quantum
Littlewood-Richardson coefficients are determined by the product of two quantum Schu-
bert classes

o k0= cyiqioy,
v,d
where the sum now additionally ranges over d € Z~o. The quantum Littlewood-Richardson

coefficients are also non-negative integers, and may be computed by various rules, in-
cluding several variations on the quantum-to-classical principle; see [BCFF,BKT]. The

THE ELECTRONIC JOURNAL OF COMBINATORICS 29(2) (2022), #P2.8 7



classical Littlewood-Richardson coefficients are recorded as the degree d = 0 terms in the
associated quantum product.

2.2 A quantum Pieri rule on cylindric shapes

The product in QH*(Gr(m,n)) is completely determined by the quantum Pieri rule, a
closed combinatorial formula for multiplying by the quantum Schubert classes 01y« or o);
that is, classes indexed by column or row-shaped partitions. The first quantum Pieri rule
for the Grassmannian was obtained by Bertram using Grothendieck’s quot scheme [Ber],
and Buch then gave a linear-algebraic proof [Bucl]. The quantum Pieri rule can also be
easily recovered from its classical counterpart using the rim hook algorithm of Bertram,
Ciocan-Fontanine, and Fulton [BCFF].

An alternative quantum Pieri rule was formulated by Postnikov in terms of cylindric
shapes [Pos|. Postnikov’s rule more directly captures the quantum-to-affine phenomenon
which governs the ring structure of QH*(Gr(m,n)) via the parabolic Peterson isomor-
phism, as explicated by the third author in joint work with Cookmeyer [CM]. The purpose
of this subsection is to review the version of the quantum Pieri rule from [Pos|, which we
record as Theorem 4 below.

1)

(1,
N 4"\/1

AlO N
\
wl‘I\L\// N
A[T]

Figure 2: The cylindric loop u[0] for u = (2,1) on the cylinder C35 in blue. A cylindric
diagram A/d/p in red, with A = (2,1,1) and d = 0 on the left, and A = (1) and d =1
on the right. The skew shape on the left is both a vertical and horizontal strip, whereas
the skew shape on the right is only a vertical strip.

Postnikov associates each partition in P, to a loop on the cylinder
Con == Zz/(_ma n-— TI’L)Z,

where the coordinates (i,j) € Z? follow the conventions for indexing matrix entries,
meaning that the i'" coordinate increases going down, and the j*® coordinate increases
going right; see Figure 2 for an illustration of the cylinder €35. When referring to a box
of Cn, we use the cylinder coordinate (i,j) € Cnn to refer to the box to its northwest,
located between coordinates (i,j) and (i—1,j—1) in Z2. Row k of the cylinder consists
of the boxes indexed by (k,j) € Cny,, and column k of the cylinder consists of the boxes
indexed by (i,k) € Cpn; note that G, has exactly m rows and n — m columns.
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Given a partition A = (A1,...,An) € Py, define a doubly infinite integer sequence
AO] := (..., 04,40, ¢,...) by setting & := A for k € [m], and extending to Z by defin-
ing {1 := &—(n—m) for all i € Z. The sequence A[0] determines a closed loop on G, by
plotting (k,&) € Z* for all k € Z, and then following the path
(k, &) — (k—T1,4) — (k—1,8_1). The constructed path traces out the boundary
of A in the m x (n — m) rectangle whose northwest corner is the origin. The closed
loop A[0] outlines the boundary of the Young diagram for A periodically in Z?, in a man-
ner which is invariant under translation by the vector (—m,n — m); see the left-hand
illustration in Figure 2 for two examples of closed loops. Given any integer d € Z-o,
the cylindric loop Ald] is obtained by shifting the image of A[0] in Z? by d steps in the
southeast direction, equivalently by adding the vector (d, d) to every point (i,&) € Z2.
For any j € Z, the j*" entry of the integer sequence corresponding to the cylindric loop
Ald] is denoted by Ald]; = €j_4 + d. The right-hand illustration in Figure 2 depicts A[0]
in green and its shifted image A[1] in red.

Definition 2. Given any A, € Py, and any d € Z-, such that Ald]; > w; for all
i € [m], the eylindric diagram A/d/u is represented by those boxes of C,,, which are
located between the two cylindric loops Ald] and p[0].

In Figure 2, the red shaded boxes depict two different cylindric diagrams on Css.

A (weak) composition = (N1,...,NMm) € ZZ, satisfiesn—m > > 0 for all k € [m],
and has an associated diagram given by drawing 1, boxes in row k of the m x (n — m)
rectangle. Given a partition A € P, the composition 1 C A if and only if me < Ag
for all k € [m]. If n C A, the skew diagram A/n is the set-theoretic difference of the
diagrams for A and n. As such, all skew Young diagrams also correspond to cylindric
diagrams of the form A/0/n. We thus typically write A/n rather than A/0/n, and use
the term skew shape to simultaneously represent the two equivalent perspectives. The
left-hand diagram in Figure 2 illustrates this equivalence of skew shapes in both P35 and
G35, though for convenience we frequently illustrate only the portion of the skew shape
contained in the m x (n —m) rectangle.

A skew shape is connected if for each pair of consecutive rows in the shape, there is
also at least one pair of boxes in each row sharing a common edge; neither skew shape
depicted in Figure 2 is connected. A rim hook is a connected skew shape which does not
contain any 2 x 2 squares, and a k-rim hook for any k € N is a rim hook which contains
k distinct boxes on Cn,,. Importantly, note that the cylindric loop A[1] is equivalently
constructed from the Young diagram obtained by adjoining an n-rim hook along the
boundary of A € Py, such that the lower leftmost box is located in position (m + 1,1);
compare the cylindric loops A[0] in green and A[1] in red in the right-hand diagram of
Figure 2. Removing all possible n-rim hooks from a Young diagram of any size, in any
order, results in the n-core partition.

Definition 3. Let A € P, and let n be a composition such that n € A. The
skew shape A/n is a wertical r-strip (resp. horizontal r-strip), denoted A/nm = V" (resp.
A/n = h"), if its diagram contains exactly r distinct boxes on C,n, no two in the same
row (resp. column) of the cylinder Cpy,.

In Figure 2, the left-hand diagram is both a vertical and horizontal 1-strip, and the right-
hand diagram is a vertical 3-strip. However, the right-hand diagram contains two boxes
in the first column of the cylinder €35, and is thus not a horizontal 3-strip.
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We are now able to formally state the quantum Pieri rule from [Pos, Prop. 4.1], for
which we provide an equivariant generalization in Theorem 1 as our main result.

Theorem 4 (Quantum Pieri Rule on Cylindric Shapes [Pos]). For any integers 1 < p <
m and 1 < k <n—m and any partition i € Py, we have

(1)p * Oy = Z qcrA and k) * Oy = Z qcr)\

A/d/u=vP A/d/u=hk

in QH*(Gr(m,n)). Since A/d/u is a vertical (resp. horizontal) strip, then d € {0, 1}.

2.3 Equivariant quantum cohomology of the Grassmannian

There is always a natural left action of the torus T on the homogenous space G/P. In
the case of maximal P, the Schubert varieties X, are T-invariant with codimension |A|,
and thus also determine a basis of Schubert classes oy in the T-equivariant cohomology
of the Grassmannian Hy(Gr(m,n)). In fact, these Schubert classes also form a basis for
Hi(Gr(m,n)) as a module over Hy(pt). Furthermore, since G = SL,,, then the equiv-

ariant cohomology of a point is isomorphic to a polynomial ring Hj(pt) = Z[ts, ..., t.].
As such, H¥(Gr(m,n)) admits a Z[ty,...,t,]-basis of Schubert classes o) indexed by
A € Prn.

The equivariant Littlewood-Richardson coefficients are defined by the product of two

equivariant Schubert classes
O)0 0y = Z c}\’)uov

in H3(Gr(m,n)), where here ¢y | € Z[ts,. .., ty]. The equivariant Littlewood-Richardson
coefficients satisfy the Graham-positivity property [Gra], which means that ¢}, €
Zzoloay ...y o 1], Having chosen B to be lower-triangular in Section 2.1, then ¢y , €
Zsolty —t1,...,tn — ty1]. In this context, Zso-linear combinations of the (ti;; —t;) are
referred to as (torus) weights. Several different combinatorial formulas for the equivariant
Littlewood-Richardson coefficients exist, such as the puzzle rule of Knutson and Tao [KT],
reinterpreted by Zinn-Justin through quantum integrability of tilings [ZJ], a barred skew
tableaux formula obtained independently by Molev [Mol] and Kreiman [Kre|, or Thomas
and Yong’s equivariant adaptation of jeu de taquin [TY]. Since we shall work in the
equivariant setting for the remainder of the paper, there should be no confusion from
adopting the same notation here as in our brief review of the non-equivariant context.

Using the same quantum parameter ¢ as in the non-equivariant setting, the equivariant
quantum cohomology of the Grassmannian is defined as

QH7(Gr(m,n)) := Z[q] ® H}(Gr(m,n)),

and is simultaneously a deformation of both H}(Gr(m,n)) and QH*(Gr(m,n)). The
ring QH3(Gr(m,n)) has an additive Z[ty, ..., t,][q)-basis of Schubert classes o) for A €
Pmn. The equivariant quantum Littlewood-Richardson coefficients are determined by the
product of two Schubert classes

v,d d
OAx Oy = E C)\uq Oy
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in QH3(Gr(m,n)). The equivariant Littlewood-Richardson coefficients are encoded as
the degree d = 0 terms in the same product, and the corresponding quantum Littlewood-
Richardson coefficients can be obtained by setting all t; = 0. The equivariant quantum
Littlewood-Richardson coefficients also display Graham-positivity, as proved by Mihal-
cea [Mihl1], in the sense that C}\/:S € Zsolta—t1, ..., th —tn_1] using the conventions of this
paper. A positive combinatorial formula for the equivariant Littlewood-Richardson coef-
ficients is obtained by combining Buch and Mihalcea’s equivariant quantum-to-classical
principle [BM] with Buch’s equivariant puzzle rule for two-step flag varieties [Buc2].

A simple, signed formula for the equivariant quantum Littlewood-Richardson coeffi-
cients is given by combining the equivariant rim hook rule of the first, third, and fourth
authors with any available equivariant Littlewood-Richardson rule. We now briefly re-
view [BMT, Theorem 2.6|, in order to apply it in the proof of our main theorem in Section
4.

Theorem 5 (Equivariant Rim Hook Rule [BMT]). Let A\ € Pun, and consider the
product of the corresponding classes o) 0 0y = )_ c}\”u(fy € Hi(Gr(m,2n —1)). Then in
QH;(Gr(mym)), we have

ti = ti(mod n)

ONKO, = Z ¢ (cx,) @ (o)), where @: - 1, (—=N=™q) oy if v E Py
K 0 if v & P

Here, v denotes the n-core of vy, the integer d is the number of n-rim hooks removed from
v to obtain v, and &; is the height of the i™ rim hook removed.

Our conventions on Graham-positivity in this paper differ by a sign from those in much of
the literature, in order to remain consistent with the torus weight conventions of [BMT].

The structure of the Grassmannian lends itself to many symmetries, which we exploit
to relate the Pieri rule on row and column-shaped partitions in the proof of our main
theorem. Given A € Py, denote by A’ € P,,_y,, , the transpose partition which exchanges
the rows and columns. The isomorphism which identifies an m-dimensional subspace of
V = C"™ with an (n — m)-dimensional subspace of the dual space V* exchanges the Schu-
bert class oy for the Schubert class o), indexed by the transposed partition. The induced
isomorphism on equivariant quantum cohomology QH;(Gr(m,n)) = QH;(Gr(n—m,n))
also involves an involution on the torus weights. Below we review this level-rank duality
on equivariant quantum Littlewood-Richardson coefficients, as stated by Gorbounov and
Korff in [GK3, Corollary 4.14]; see also [GK2, Corollary 6.8].

Theorem 6 (Level-Rank Duality [GK2,GK3]). Given A\, i, v € P and any d € Z,,
then
cxu(t) = el (—wat),

where the involution on torus weights is given by the substitution —wy : t; — —taq 4.

2.4 An equivariant quantum Pieri rule on cylindric shapes

In the equivariant setting, Mihalcea showed in [Mih2] that the product in
QH7(Gr(m,n)) is completely determined by the equivariant quantum Pieri-Chevalley
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rule, a closed combinatorial formula for multiplying by the equivariant quantum Schu-
bert class o) corresponding to a single box. The method for determining the algebra
structure from this Pieri-Chevalley rule is both recursive and signed, and so more gen-
eral Graham-positive product formulas have since emerged, including the full equivariant
quantum Littlewood-Richardson rule given by combining [BM] and [Buc2].

Without appealing to some variation on the quantum-to-classical principle as in [BM]
or [BMT], the most general combinatorial formula for products in QH}(Gr(m,n)) is
the equivariant quantum Pieri rule for multiplying by the equivariant quantum Schubert
classes o)« or o). Huang and Li proved the first equivariant quantum Pieri rule for any
type A partial flag variety in Theorem 3.10 of [HL]; see Theorem 20 below, which reviews
a special case. Also compare the approach of Gorbounov and Korff using the six-vertex
model from statistical mechanics [GK2, GK3]. As in the non-equivariant context, the
equivariant quantum Pieri rule can also be easily recovered from its classical counterpart
using the equivariant rim hook rule of [BMT].

The goal of this paper is to present a closed combinatorial Graham-positive equivariant
quantum Pieri rule in terms of cylindric shapes. In addition to more directly capturing
the quantum-to-affine phenomenon which governs the ring structure of QH3(Gr(m,n))
via the parabolic Peterson isomorphism of [Pet, LS1], our rule does not require doing
calculations in any related two-step flags or smaller/larger Grassmannians. Theorem 1
below is a direct equivariant generalization of Theorem 4, in which the equivariant terms
enter by recording statistics on boxes which may be “added back” to the skew shape, in
a manner which we now formalize.

Definition 7. Let A, € Py, be such that uw C A, and let d € Z-o. Suppose that
the cylindric shape A/d/u is a vertical r-strip v" (resp. horizontal r-strip h") for some
0 < r < m. Fix another integer r <p < m.

1. V" (resp. h") is extendable to a vertical (resp. horizontal) p-strip if by adding p —r
boxes from p to A/d/u, each of which shares a vertical (resp. horizontal) edge with
the boundary of A/d/p, we can form a vertical p-strip VP (resp. horizontal p-strip
hP). Note that the complement A\VP (resp. A\hP) may no longer be a partition
shape, but rather a composition.

2. The p—r boxes from p which are added to A/d/p in the process of extending v" to VP
(resp. h" to hP) are called addable boxes. We typically denote an individual addable
box by o« € VP\V" (resp. o« € hP\h"), where the original vertical (resp. horizontal)
r-strip is always assumed to be of the form A/d/p.

3. We write vi' — VP (resp. h" — hP) to denote that the vertical r-strip v" (resp. hori-
zontal T-strip h") is being extended to a vertical p-strip VP (resp. horizontal p-strip
hP) via addable boxes, without specific reference to which boxes are being added.
Equivalently, we say that v’ (resp. hP) is an extension of V' (resp. h'").

We illustrate the concept of extending vertical and horizontal strips via addable boxes
in the following example, which we shall then continue to utilize throughout the paper.

Example 8. Consider p = (6,6,6,3,2,0,0) CA=(7,6,6,4,2,1,0) € P715. As Figure 3
illustrates in the 7 x 8 rectangle, the skew shape A/ consists of the three boxes containing
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Figure 3: Extending a vertical 3-strip to a vertical 5-strip via addable boxes.

red stars. Since no two of the boxes containing a x are in the same row or column, this
skew shape is both a vertical 3-strip and a horizontal 3-strip on the cylinder C;;5.

If we now fix p = 5, then there are 3 different ways to extend v* to a vertical 5-strip,
shown in Figure 3. In each diagram, the 5 — 3 = 2 boxes of u containing green dots are
addable, since each box with a @ shares a vertical edge with the boundary of the original
skew shape A/u, and the union of the boxes with % and @ forms a vertical 5-strip. For
the 5-strip v° depicted in the middle diagram, note that the complement A\V’ is not a
partition shape, whereas the other two are. Each of the three configurations in Figure 3
would contribute to a sum indexed by the extension v — v°.

As noted above, the cylindric shape A/ is also a horizontal 3-strip h®. However, only
the right-hand arrangement of addable boxes in Figure 3 represents a valid extension of
h3 to a horizontal 5-strip, since each addable box @ is required to share a horizontal edge
with the boundary of A/u. The other 5 configurations which would contribute to a sum
indexed by h®> — h> are not pictured.

We now define several natural statistics on an addable box, determined by its location
within the extension. We first enumerate the edges of the partition pu € Py, equivalently
the closed loop w[0] on Cn.

Definition 9. Given p € P, starting in the lower left-hand corner of the m x (n—m)
rectangle, number all the edges of the path that traces out the boundary of .

1. The up-steps of w, denoted by U(u), are the numbers indexing the vertical edges
of .

2. The side-steps of u, denoted by S(u), are the numbers indexing the horizontal edges
of w.

Note that U(u) U S(u) = [n].

The required statistics depend on whether an addable box is viewed as part of a ver-
tical or horizontal strip, and so the following definition is presented as two corresponding
sets of statistics.

Definition 10. Given a vertical strip A/d/u = V", an extension v' — VP, and an addable
box o € VP\V', define:

(1v) The up-step of «, denoted u(a), is the index of the vertical edge of the box « from
U(w).
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(2v) The row number of «, denoted r(«), enumerates the row containing &, where we
count rows from the bottom of the m x (n — m) rectangle, equivalently from row
m of Crn.

(3v) The number of bozxes below «, denoted b(«), is defined to be the total number of
boxes in the extension VP lying in rows strictly below o« in the m x (n—m) rectangle,
equivalently boxes in VP with row index in Gy, strictly greater than r(«).

Given a horiztonal strip A/d/u = h', an extension h" — hP, and an addable box « €
hP\h", define:

(1h) The side-step of «, denoted s(«), is the index of the horizontal edge of the box «
from S(u).

(2h) The column number of &, denoted c( ), enumerates the column containing «, where
we count columns from the right of the m x (n — m) rectangle, equivalently from
column n — m of Cyn.

(3h) The number of boxes to the right of «, denoted rt(«), is defined to be the total
number of boxes in the extension hP lying in columns strictly to the right of « in
the m x (n — m) rectangle, equivalently boxes in h? with column index in G,
strictly greater than c(o).

We can now formally define the weight of an addable box.
Definition 11. Let A, pu € P,y be such that p C A, and let d € Z,.

1. If the cylindric shape A/d/u is a vertical r-strip V', we define the weight of an
addable box o € VP\V" to be

wt” (o) = tu(a) — tria)—b(w)-

2. If the cylindric shape A/d/u is a horizontal r-strip h', we define the weight of an
addable box o« € hP\h' to be

Wt (00) i = tni1(e(a)rt(a)) — ts(a)-

When the original skew shape A/d/p = V" (resp. A/d/p = h") is not clear from context,
we write wt}; (&) (resp. WtH(OC)) to indicate that the box is being added from p.

Remark 12. Since addable boxes belong to the interior diagram of the skew shape A/d/u,
each of the statistics in Definition 10 is equivalent whether we consider the partition
i € Py in the rectangle or the closed loop w[0] C € on the cylinder. The weight of
an addable box is thus independent of whether we consider the cylindric shape A/d/u or
the equivalent skew diagram which fits inside the m x (n — m) rectangle. We thus refer
to the weight of an addable box in a skew shape to simultaneously invoke both meanings.

To illustrate this definition, we calculate the weight of several addable boxes from
Figure 3.
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Example 13. Recall from Figure 3 that A = (7,6,6,4,2,1,0) € P;;5. Tracing the
boundary of p in the 7 x 8 rectangle, we obtain

U(w) ={1,2,5,7,11,12,13} and S(w) ={3,4,6,8,9,10,14,15}.

1. We first focus on the vertical strip depicted in the left-hand diagram, for which we
calculate the weight of each addable box containing a @®. Denote by oy the top
addable box, and by o the bottom addable box. Compute using Definition 10 that

Using Definition 11, we then compute the weight of each of the two addable boxes
occurring in the left-hand diagram from Figure 3 to be

wt'(or) =t —tes =t —t3 and wt'(ap) =ty —tso =t —ts.

2. For the purpose of illustrating these calculations in the case of a horizontal strip, we
now choose to view the right-hand diagram in Figure 3 as a horizontal strip. Denote
by ag the right addable box, and by & the left addable box. Using Definition 10,

t(OCR) =1

s(ar) =10 clog) =3 1
7 rt(og) = 3.

s(la) = 4 cloyg) =

By Definition 11, we then compute the weight of each of the two addable boxes
occurring in the right-hand diagram from Figure 3 to be

wt"(oR) = tis_3-1) —tio =t —tio and  wt"(o) = tie_(7-3) — ta = ti2 — ta.

We are now able to formally state the main theorem in this paper, which provides
an equivariant generalization of the quantum Pieri rule on cylindric shapes from [Pos],
as well as closed combinatorial formulas for the equivariant quantum Pieri expansions
provided in [GK2,GK3]. For ease of reference, we repeat the theorem statement from the
introduction here.

Theorem 1 (Equivariant Quantum Pieri Rule on Cylindric Shapes). For any integers
IT<p<mand 1 <k <<n—m and any partition n € Py, we have

(1)p * Oy = Z Z q¢ H wt” (o and

0<r<p A/d/p=v" xEVP\V"
v —vP

wxop=> > q* J[ wt"(«)ox

og<r<k A/d/p=h" achk\h"
h'—hk

in QHF(Gr(m,n)). Since A/d/w is a vertical (resp. horizontal) strip, then d € {0, 1}.
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Given an addable box « in a vertical strip, since u(o) > r(a) > r() —b(), then clearly
wt¥ (&) € Zsolt —ty,...,tn —ty_1], and similarly for horizontal strips. In particular, this
equivariant quantum Pieri rule is manifestly Graham-positive, using the conventions of
this paper. Moreover, setting all t; = 0 immediately recovers Postnikov’s quantum Pieri
rule from Theorem 4.

We now provide several examples illustrating how to use Theorem 1 to efficiently
compute equivariant quantum Littlewood-Richardson coefficients, directly on the skew

shape A/ or A/1/u.

Example 15. Fix p =5, and let u = (6,6,6,3,2,0,0) € P;;5. Since we have already
seen that the cylindric shape A/ for the partition A = (7,6,6,4,2,1,0) is a vertical
3-strip v?, we may use Theorem 1 to calculate the equivariant quantum Littlewood-

Richardson coefficient c?{())s " Figure 3 shows the three possible ways to extend v¢ —

v>. By Theorem 1, the left-hand configuration of addable boxes depicted in Figure 3

contributes the product (tj; — t3)(t;; — t3) of the weights calculated in Example 13. In
like manner, by Theorem 1, in QH}(Gr(7,15)) we have

A0
€y

= (tiz — t3)(tn — t3) + (tiz — t3)(ts — t2) + (t11 — t2) (s — t2),

5)}1

recording the contributions from the remaining two configurations of addable boxes from
left to right, where the weight of the top addable box is recorded on the left within each
product.

For comparison, we now use the equivariant quantum Pieri rule on cylindric shapes to
calculate a full product in a smaller Grassmannian. We highlight the fact that the entire
calculation in Example 16 is performed quickly and directly on the four skew shapes in
Figure 4, without passing to any other Grassmannian or two-step flag variety.

Example 16. We now use Theorem 1 to compute the product opeyx0pey € QHF(GT(3,5)).
Since p = 3, we first identify all partitions A € P35 such that A/d/u is a vertical r-strip
for some 0 < r < 3 and d € {0, 1}, and such that A/d/u can be extended to a vertical
3-strip. A quick inspection reveals that A € {[pcY], [pcYl,+, [pcY]}, and the 4 respective
cylindric diagrams are depicted left to right by the red shaded boxes in Figure 4; refer
to Figure 2 and the surrounding discussion for more details on constructing the relevant

cylindric loops.
\ \ \ [ ]
' \ ' \ JJ h \ ‘

Figure 4: Using Theorem 1 to calculate 013 x 02,1y € QH7(Gr(3,5)).

THE ELECTRONIC JOURNAL OF COMBINATORICS 29(2) (2022), #P2.8 16



In this example, for each A/d/u = V", there is a unique extension v© — Vv?, and the
addable boxes in each extension are indicated by a green ® in Figure 4. Calculating
the weight of each addable box using Definition 11, by Theorem 1 we then immediately
obtain

Ofpey1*Ofpey] = (ts—t1) (t3—t1) Oppeyvi +(ts—t1) Opev +q (t3—t1) oo+ qoppey) € QHT(GT(3,5)),

where we record the product in the same order as the corresponding diagram in Figure
4.

3 Equivariant Pieri rules via localization

The goal of this section is to relate the weights which arise in the equivariant quantum
Pieri rule on cylindric shapes of Theorem 1 with those appearing as localizations in the
corresponding formula of Huang and Li reviewed in Section 3.2 as Theorem 20. We
provide the required background on the localization map in Section 3.1, and then relate
the localizations appearing in Theorem 20 to the weights occurring in Theorem 1 in
Section 3.3.

3.1 The localization map

In [KK], Kostant and Kumar define a family of functions which determines the ring
structure for the equivariant cohomology of any Kac-Moody flag variety. In the special
case of the Grassmannian, the Schubert class [X,] € H}(Gr(m,n)) for any partition
Y € P is identified with a function &Y : Pn — Z[ty,...,t.]. When evaluated at an
element 11 € P, the polynomial &£Y(n) is homogeneous of degree |y|. Moreover, the
polynomials &Y(n) satisfy the Graham-positivity property, meaning that the function
values £Y(1) € Zsolt; — t1,...,tn — ty 1], using the conventions in this paper; refer to
Sections 2.1 and 2.3 for more details.

We briefly review the precise relationship between the function & and the Schubert
class [X,], referring the reader to [Kum, Section 11.3] for more details. The inclusion of
the T-fixed points in Gr(m,n), themselves also indexed by partitions n € P, induces
an injection

H;(Gr(m,n)) = H}(Gr(m,n)") = € Zlty,..., .

NEPmn

By definition, the induced map sends the Schubert class [X,] to the collection of localiza-
tions [X,][, at all T-fixed points indexed by 1 € Ppyn. In turn, under the above isomor-
phism, the localization [X, ]|, is identified with the polynomial &£Y(n). Altogether, this
localization map identifies each T-equivariant Schubert class with a polynomial-valued
function via [X,] — &Y. As such, the ring structure of H7(Gr(m,n)) with respect to
the Schubert basis is completely determined by the pointwise product of the family of
functions &Y. Moreover, the image of Hj(Gr(m,n)) in this polynomial ring has a simple
characterization due to Goresky, Kottwitz, and MacPherson [GKM], which is the starting
point for GKM theory; see the survey by Tymoczko [Tym2]. If the ambient Grassman-
nian is not clear from context (e.g. if it differs from Gr(m,n)), we shall use a subscript
&) (n) to indicate that y,n € Py, instead.
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The functions &Y are uniquely determined by several straightforward properties, in-
cluding the following support condition.

Lemma 17 (Corollary 11.1.12 [Kum]). For any vy, € Pun, we have EY(n) = 0 if and
only if y .

The polynomials £Y(n) themselves can be computed in many different ways, including by
the original formula of Billey [Bil], formulated independently by Anderson, Jantzen, and
Soergel [AJS]. ITkeda and Naruse [IN] interpret Billey’s formula for the Grassmannian
using excited Young diagrams; see Example 21 for an illustration of this method. As
we shall see, certain polynomials &Y (1)) also coincide with special cases of equivariant
Littlewood-Richardson coefficients.

3.2 An equivariant Pieri rule via localization

Huang and Li proved the first equivariant quantum Pieri rule for any type A partial flag
variety in Theorem 3.10 of [HL], a special case of which we review below as Theorem
20. Their Pieri rule for the Grassmannian records the (classical) equivariant Littlewood-
Richardson coefficient cf‘])p’p by specifying a column-shape Schubert variety in a smaller
Grassmannian, and localizing at a T-fixed point indexed by a partition obtained from A
and p via a join-and-cut algorithm.

More precisely, given a pair of partitions u C A € P, such that the skew shape
A/u = V", Huang and Li define a new diagram A, in the shorter rectangle Py_;,. The
closed formula for A, is provided in [HL, Definition 3.14], and interpreted through a join-
and-cut process explained in [HL, Definition 3.15]. We now review the construction of
Ay, using a slight reformulation of the join-and-cut algorithm from [HL]. Given any k €
[m] :={1,..., m}, the staircase diagram with k parts is defined as 8 := (k—1,...,1,0).

Definition 18. Let 1 = (wy..., um)yA € (A1y...,An) € Pnn be such that the skew
shape A/u = V" for some 0 < r < m. Construct a new partition by performing the
following join-and-cut algorithm:

1. Add the staircase 8™ to the diagram A, where parts are added coordinate-wise.

2. Delete from the diagram resulting from step (1) those r rows in which the original
shapes A and p differ; i.e. remove every row from A + 8™ for which A; # ;.

3. Remove the staircase 8™ " from the shape resulting from step (2), where parts are
subtracted coordinate-wise.

The partition resulting from this join-and-cut algorithm is denoted by A, € Py_yn.
Equivalently, if we denote by 1; < --- < in_, those parts such that A;, = p;,, we have

Av=(m, —b+r+Tp, —bL+717+2,. i, , —imor+m) € Pprn. (1)
We illustrate this join-and-cut algorithm in the following example.

Example 19. Consider p = (6,6,6,3,2,0,0) C A = (7,6,6,4,2,1,0) € P75, and recall
that the skew shape A/p in the 7 x 8 rectangle is the vertical 3-strip consisting of the
boxes containing a % in the figure below. We illustrate the join-and-cut algorithm, as
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described in Definition 18. Step (1) adds the staircase 8 to A coordinate-wise. In the
left-hand figure, the boxes of 8" in the partition A + 8" are indicated with blue shading:

71\, [ 1] |
[ 1

>+

]
N

A+ =(13,11,10,7,4,2,0)  +—  (11,10,4,0) € Py15

Step (2) calls for removing the rows where A; # p;; these 3 rows (each of which contains
a %) are indicated in the left-hand figure using strike-through. Finally, Step (3) requires
us to remove the staircase 8%, indicated in the right-hand figure with gray shading, from

which we obtain
Ay = (11,10,4,0) — & = (8,8,3,0).

For comparison, those parts such that A;, = w;, are given by {i1, 12,13, 4} =1{2,3,5,7}, so
that
Ay=(6—2+46—-3+52-5+6,0—-7+7)=(8,8,3,0) € Psys

by the closed formula (1).

Together with any available formula for computing the localization &Y (1), the following
(special case of a) theorem of Huang and Li provides a rule for computing products
by Schubert classes indexed by column shapes in the equivariant cohomology of the
Grassmannian.

Theorem 20 (Equivariant Pieri Rule, Theorem 3.17 [HL]). For any integer 1 < p < m
and any partition u € Py, we have

1P
Op 00y = Z Z ‘(-v‘(m)—r (Aw)on

0<r<p A/p=vr
in H(Gr(m,n + 1)), where A € Ppyniq.

The switch to Gr(m,n + 1) in Theorem 20, which persists throughout the remainder
of the paper, is intentionally made to prepare for the application of the equivariant rim
hook rule in the proof of Theorem 1, in order to obtain an equivariant quantum Pieri
rule for Gr(m,n). Note that Huang and Li also deliberately work in Gr(m,n + 1)
throughout [HL], albeit for different reasons.

For the sake of completeness, we now illustrate Theorem 20 by calculating the same
equivariant Littlewood-Richardson coefficient as in Example 15. See [Tym1] for a survey
on the localizations occurring in Theorem 20, including for more details on the method
of excited Young diagrams illustrated in the following example.

Example 21. Let p = 5, and recall that for u = (6,6,6,3,2,0,0) C A = (7,6,6,4,2,1,0) €
P715 with v = 3, we have A, = (8,8,3,0) € P45 by Example 19.
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Following [IN], we use the method of excited Young diagrams for calculating the local-

2
ization EE‘U (Ay) required to determine the equivariant Littlewood-Richardson coefficient
c?”;, , using Theorem 20. In this case, there are 3 possible excited states corresponding

to the column shape (1)? inside the diagram A, € Py 15, as follows:

* 17 * 12 12
* 11 11 * 11

46 7 8 910 %*| 56 7 8 910 %| 56 7 8 910
12 33 17z 37 12 33

Recording the up-steps and side-steps for A, along the boundary of the diagram in red,
the weight of an excited box (indicated in the figure above with a blue star %) is obtained
directly from the corresponding up-step and side-step as t, ) —1ts(), using the conventions
of this paper, which differ in sign from [IN]. For example, the weight of the top excited
box in the left-hand figure is t;; — t;. Altogether, we then have

C(A])s,H = (tio —t2)(tn —t2) + (ti2 — t2) (ts — t3) + (ti1 — t3)(ts — t3)

in H}(Gr(7,15)), where the weights are summed over the 3 excited states from left to
right, with the weight of the top excited box recorded on the left within each product.
Most importantly for our purposes, we invite the reader to verify by regrouping terms that
the above equivariant Littlewood-Richardson coefficient C?1)5,u = C?ﬁiu from Example 15.

Remark 22. 1t is purely a coincidence that the number of excited states for the localization
in Example 21 equals the number of configurations of addable boxes in Example 15. In
general, there are many more extensions v’ — VP of the skew shape A/ than excited states
of (1)P7" in the diagram A, and equating individual equivariant Littlewood-Richardson
coefficients via Theorems 1 and 20 is an exercise in clever polynomial algebra.

3.3 Addable boxes as localizations

In order to directly compare the equivariant Littlewood-Richardson coefficients in Theo-
rem 1 to the corresponding localizations occurring in Theorem 20, we now explain how to
calculate the weight of an addable box using the partition A, resulting from the join-and-
cut procedure, instead of the original skew shape A/u. In light of Remark 12, throughout
the remainder of this section, we typically refer to addable boxes within a fixed rectangle,
as opposed to on the cylinder.

Lemma 23. Fiz an integer 1 <p <m, and let 0 = (W1, ..., Um) € Pmn be any partition.
Suppose that the skew shape /i =V" for some A = (A1,...,An) € Ppni and 0 < v < p.
Denote by i1 < -+ < iy those parts such that Ny, = W,, indeved from the top of the
rectangle. Given any extension VI — VP, consider an addable box & € VP\V' in row i of
w for somej € [m—rJ.

Viewing A\,/A, as a vertical 0-strip V°, then there is an addable box B in row j of
Au, tndexing rows from the top of the rectangle. As such, the given extension v — VP
corresponds uniquely to an extension v’ — VP~ of addable boxes in A, identifying o €
VP\V" in row i; of p with B € VP \V° in rowj of A,. Moreover, under this correspondence,

wiy (o) = wt, (B). (2)
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Proof. We first make explicit the correspondence between extensions of vertical strips by
addable boxes in p and A,. If for some j € [m—7], row ij of u contains an addable box o
in the extension v" — VP, we first claim that row j in A, is also nonempty. Since the skew
shape A/u supports an addable box in row i; counting from the top of the rectangle, then
by definition A;; = w;; # 0. By (1), the number of boxes in row j of A, counting from
the top of the rectangle, equals

A = Wy, — 4 +1+]. (3)

The largest possible value for i; in the m x (n —m + 1) rectangle occurs when the m —r
parts such that A, = ;; coincide with the bottom m —r rows of A/, which would then
be indexed by iy =7+ 1 < --- <1,y = m. In this scenario, ij = v +j, and so in general
we necessarily have ij < v +j. Therefore, —i; + 1+ j > 0, and since w;; > 0, then (3)
implies that (A,); > 0 as well. In particular, whenever p supports an addable box « in
row i;, then A, supports a corresponding addable box 3 in row j, indexing the rows from
the top of the corresponding rectangles. Identifying the addable box o € u in row i; with
the corresponding addable box 3 € A, in row j, the p —r addable boxes in the extension
A/l =V" — VP correspond uniquely to an extension V> — VP~ of addable boxes in A,.

We now proceed to calculate the weight of two corresponding addable boxes. By
definition,

wip (&) = tuw — trw-b@ and  wiy (B) = tup) — tip)—v(p)-

First, recall that the row numbers r(a) and () are calculated from the bottom of their
respective rectangles, which means that we can immediately calculate r(x) = m —1; 41
and r(B)=m—r—j+1.

The index u(«) is the up-step for box «, which can also be decomposed as the sum
of the count of up-steps of U(p) plus the count of side-steps of S(u), up to and including
the vertical edge of . Since « is in row ij of p € Py, indexed from the top of the
rectangle, the number of up-steps to this point is given by m —1; + 1. The number of
side-steps to this point equals pi;, and so u(a) = pi; + m —1i;+ 1. Since  is in row j
of A, counted from the top of the rectangle, which only has m —r rows, we instead have
u(B) = (Ay)j+m—r—j+1. Applying (3), we thus see that indeed

u(p) = (ui).—ij—kr%—j) +(m—r—j+1) =u(a).

We now compare the total number of addable and skew boxes below o« and 3, denoted
b(x) and b(f) respectively. First note that skew boxes do not occur in A, since all rows
in which A and p have unequal parts are deleted in the join-and-cut procedure which
produces A,. To carry out the calculation of b(3), we define an intermediate statistic
ny := #{i > k| A{ # w} which counts the number of rows below row k in which A and
i have unequal parts, counting from the top of the rectangle. Since exactly r rows are
deleted from w in step (2) of Definition 18, and m;; of these deleted rows lie below row
ij in p, then v —mn; rows are deleted from p above row i;. Thus after the join-and-cut
algorithm is carried out, the row number () for B in A, equals m —1i;+1—mny,. Notice,
though, that we already computed T() = m —r —j + 1 above. Comparing these two
calculations, we deduce that ny, = —i; +r+j.
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By construction, all of the boxes in the extension v© — VP that are below « remain
below B in the corresponding extension v° — vP~". Since the rows in which A; # w; are
precisely those rows which are removed in the join-and-cut algorithm to produce A, and
those unequal rows below i; in the skew shape A/ each contribute one box to b(«), then
by definition b(f) = b(«) —ny. Using our formulas for r(ec), 7(B), and ny, from above,
we thus have

as required to conclude our verification of (2). O
We illustrate the correspondence defined by Lemma 23 as follows.

Example 24. Recall that for p = (6,6,6,3,2,0,0) C A = (7,6,6,4,2,1,0) € P75, we
have A/p = V3, and {i;, 12, 13,14} = {2,3,5, 7} denote those parts in which A and p agree.
Consider the extension v> — v’ given by the pair of addable boxes in rows i, = 3 and
i3 = 5, counting from the top of the rectangle, depicted on the left in the figure below.

ki

ok

By Lemma 23, the left-hand configuration of addable boxes corresponds to the right-
hand configuration of addable boxes in the partition A, = (8,8,3,0) € P45 obtained by
the join-and-cut algorithm in Example 19. In A, the corresponding addable boxes are
instead in rows 2 and 3, counting from the top of the shorter rectangle. Moreover, recall
from Example 15 that

wiy (o) =tn —te3) =tn—t, and  wt) (o) =ts —tz1) =t — ty,

where here we denote by «; the addable box in row ; of w, counting from the top of the
rectangle. Similarly, we may compute that

wiy, (B2) =t —ta-1) =t — t2 = wi (ew,),
wiy, (B3) =t5 — tp—o) = ts — t2 = wty (ev;,),
illustrating Equation (2).

In light of Lemma 23, we aim next to repackage the weights on skew shapes in Theorem
1 in terms of weights on a partition shape, for which we require some auxiliary notation.
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Recall that 1 < p < m is a fixed integer in the context of Theorem 1. For any fixed
integer 0 < v < p, throughout the rest of the paper, we write

m:=m-r and p':=p-—m.
Define an indexing set
Apri={le Mm—p+1P |y < - < Ly}

The value m —p + 1 arises here as the largest attainable row number (counting from the
bottom of the rectangle) indexing the bottom-most addable box for a partition in Py .

Remark 25. Given any vector U= (t1,...,1,) € A, define
=0+ (0, 1,...,p — 1),

which adds the reverse of the staircase 8?" to . Equivalently, writing ts = (1, ..., Lg/),
we see that
L? = +j —1

for any j € [p’]. Since y € [m —p + 1], the entries of 5 are p’ distinct integers from
the set [m’]. Conversely, any increasing choice 5 of p’ distinct integers in [m’] uniquely
corresponds to =15 — (0,1,...,p" — 1) € A,s. The correspondence U+— T is clearly a
bijection between A, and the set Ag, of p’ strictly increasing integers in [m’].

In the remainder of this section, we also fix a diagram 1 € Py,/ 1. Recall that U(n)
denotes the set of up-steps of 1, and enumerate these up-steps here as {uy,..., umn},
recorded from the bottom of the rectangle. Given any U= (u,...,4,) € A, and any
index j € [p’], define the weight

Y (0) = tu, — . (4)
)

The following example illustrates how to calculate these weights.

Example 26. Recall A, = (8,8,3,0) € P, ;5 from Example 19, which originated from a
pair of partitions A, € P75 such that the skew shape A/u = V3. Recalling that m =7
and fixing p =5 as in Example 15, we have m’' =7 -3 =4 and p’ =5—3 =2, and so
Ay ={TeB*|y < v}

As an example, fix U = (2,2) € A;. We demonstrate how to calculate the weights
Y, (1, 1) and W, (T, 2). First, the vector s = U+ (0,1) = (2,3) € A} indexes two rows in
the partition A, counting from the bottom of the rectangle. The up-steps of A, are

u(}\u) :{1>5>”> 12})

and so the up-steps isolated by t; = (2,3) are u; =5 and uz = 11. Therefore, by (4) we
have
Y. (1) =ts—t; and W, ((2) =1ty —t,.

To take this calculation one step further, the vector 15 = (2,3) indexes two rows of
Ay, each of which supports an addable box as follows:
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Denote here by y; the addable box in row j of A, counting from the bottom of the
rectangle. Then, comparing the addable boxes 3; from Example 24 which are indexed
from the top down, we have

wty (v2) = wty (B3) =ts —t, = W) (G 1),

wiy, (v3) = wty (B2) = tn —t, = ¥5, (§, 2).

We formalize this additional observation in the next lemma.

As illustrated by Example 26, the weights W, (1, j) encode the weights of those addable
boxes occurring in Lemma 23 precisely as follows.

Lemma 27. Let 1 € Pryni1, and suppose that iy = (3,..., Lg/) € Ag, indexes the rows

of M which contain addable bozes in an extension n =V — V', counting rows from the
bottom of the rectangle. Then for U=1; —(0,1,...,p'—1) € A,/ and any j € [p’],

Wt;(ﬁtf) - q]n([;J))
where B 5 is the addable box in row Lj5 ofn, counting rows from the bottom of the rectangle.
)

Proof. For ease of notation, throughout this proof we denote by 3 := . Since 3 is
)

in row L? counting from the bottom of the rectangle, we immediately have r(f3) = Lf.

Having also enumerated U(n) = {uw;,...,u} from the bottom of the rectangle, we
automatically have w(p) = W By hypothesis, the entries of iz = (4,..., Lg,) index

the rows in 11 which contain addable boxes in an extension v — vP', counting from the
bottom of the rectangle, and so b(f3) =j — 1. Therefore,

rB)-bB) =g —-(G-N=(+ji-N-(G-1 =y,
and so Wt (B) = tup) — trp)-vip) = t“L]é —t, = ¥y (4j), as claimed. O

Ultimately, the equivariant Pieri rule on cylindric shapes requires consideration of all
possible extensions vi — vP. We thus define the following sum

Ym,p') =) [ W@, (5)
]

A, jelp’
which yields the equivariant Littlewood-Richardson coefficients in Theorem 1 as follows.

Proposition 28. Fix an integer 1 < p < m and a partition i € Py, For any integer
0 <71 < p and any partition N € Py i1 such that the skew shape A/u = V", we have

L) = Y T wiile. (6)

VF—VP qevP\v"
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Proof. By Lemma 23, any extension v\ — VP in p corresponds to a unique extension
v — v in Ay, and the weights of corresponding addable boxes are equal. Therefore, by

Lemma 23, we have
SOOI v = > JT wtr.(B). (7)

VI—=VP axevP\v" VO—vP’ Bevp’\v0

We proceed to rephrase the right-hand expression in (7) in terms of the weights
occurring in Lemma 27. By definition, any extension v — VP consists of p’ addable
boxes in distinct, nonzero rows of A, € Pyysn41. Recording these row numbers in increasing
order, counted from the bottom of the rectangle, gives an element 5 € Af), by Remark
25. Identifying the extension v° — vP' with the vector Ts, since row Lf of A, supports an
addable box, note that (AH)L? #0 for all j € [p'].

Note, that Lemma 27 only applies to those rows of A, which are nonzero, and so
our first reformulation of (7) will reflect this constraint. Recalling that the number of
boxes in each row weakly increases going upward from the bottom of the rectangle, since
the bottom-most row in the extension v> — VP’ is nonzero, so are all the rows above it.
Rephrasing this observation in terms of the parts of A, we have (AP—)L;S # 0 for all j € [p’]
if and only if ()‘u)t? # 0. In addition, since Lf = +j— 1, then for j = 1 we simply have
0 = ;. Lemma 27 then permits us to convert the weights WtXH(B) into polynomials of
the form W, (1,j), for those Usuch that 5 index nonzero rows of A, as follows

2 I we= ) H%H ). 8)

vO_yp’ BEVPI\VO LEA 1 JElp
760

We now consider those U € A, such that (Ay),, = 0, which are currrently omitted
from the sum in the right-hand expression in (8). In particular, we claim that each such
U contributes zero to this sum. To see this, recall that ‘PM(f, 1) = tu, —ty- Since the
up-steps U(A,) are indexed from the bottom of the rectangle, and since the number of
parts weakly increases going upward while (A,),, = 0, then the first up-steps ws,...,u,,
all satisfy we = k. In particular, u, = u, and so ¥ (1) =t,, —t, =t, —t, =0.
Since we take the product over all j € [p'], we have

Z H \J.j)\ )J (9)

LGA/ j€lp
(A )70

1

We can thus add these terms back into the sum in (8) without affecting the value:

Z H%\u 6j) Z H‘Px Gj) + Z HW;\ 0j)

teA,r jelp teA,, jelp’] teA,, jelp’]
(A, 750 (A, 750 (A, 70
=2 %@y
LEA 1 jE€lp’]
=Y(A,p"). (10)
Equation (6) now follows by combining (7), (8), and (10). O
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We demonstrate Proposition 28 in the following example.

Example 29. Fixp =5, and u = (6,6,6,3,2,0,0) € P;;5. Then A = (7,6,6,4,2,1,0) €
P75 satisfies A/ = v3. Recall from Example 15 that

> T while) = (i —t3)(tn —t3) + (12 — t3) (s — t2) + (tn — t2) (t5 — t2),

VI—=VP qevP\v"

by calculating the weights of the three possible extensions v¥ — v° depicted in Figure 3.
On the other hand, we may apply Proposition 28 to calculate the same polynomial.
Recall from Example 26 that p’ =5 —3 =2 and

A, :{EE [3]2 | L < LZ} :{(]>])) (1»2)) (1)3)» (2)2)> (2>3)) (3>3)}

By Example 19, the partition A, = (8,8,3,0) € P4;5, which has up-steps U(A,) =
{1,5,11,12}. We shall compute

YA2) =) W (G 1Y, (52).

€A,

First, consider any of the vectors of the form U = (1,k) € A,. In each case, the weight
Y, (G1) =t —t; =0, and so the three vectors (1,1),(1,2),(1,3) € A, contribute zero
to the sum W(A, 2), illustrating Equation (9) from the proof of Proposition 28.

Each of the remaining three vectors in A, contributes a nonzero term. Recall from
Example 26 that we calculated the weights Wy (1, j) for U = (2,2) and j € [2]. In particular,
we see that

W ((2,2), 1%, ((2,2),2) = (ts — 1) (ty — ).

)
Similarly, applying Equation (4) directly, we have

Wi, ((2,3), 1), ((2,3),2) = (t5 — t2)(t12 — t3),
Wi, ((3,3), W5, ((3,3),2) = (t11 — t3)(t12 — t3).
For reference, the configurations of addable boxes corresponding to the vectors (2,2),

(2,3),(3,3) € A, via Lemma 27 are recorded left to right, respectively, in the following
figure:

Taking the sum, we obtain
YA 2) = (ts —t) (tin — t2) + (t5 — t2) (t1a — t3) + (t1 — t3) (ti2 — t3), (11)

which is the same polynomial reviewed above from Example 15, after reversing the order
of the summands and multiplicands.

THE ELECTRONIC JOURNAL OF COMBINATORICS 29(2) (2022), #P2.8 26



As we shall see in the next section, the polynomial W(A,,p’) is the one which most
naturally relates to the localizations appearing in Theorem 20 of Huang and Li. In
particular, to prove Theorem 1, we shall equate the polynomials occurring in Proposition
28 with Huang-Li’s localization formula for equivariant Littlewood-Richardson coefficients
from Theorem 20 via the following key proposition.

Proposition 30. Fix an integer 1 < p < m and a partition W € Py, For any integer
0 <r < p and any partition N € Py i1 such that the skew shape A/u = V", we have

/

eV (A = YA, p).

Combining Proposition 28 with Proposition 30 proves the equality of all classical
Littlewood-Richardson coefficients in Theorems 1 and 20. Since the quantum terms
are easily obtained from the classical ones by applying the equivariant rim hook rule
from [BMT], the proof of Proposition 30 will be the focus of the rest of the paper.

4 Specializations of Factorial Schur Polynomials

The proof of Proposition 30 is the primary goal of this final section of the paper. This
proof proceeds by realizing in Section 4.2 the localizations &Y(1) as specializations of
factorial Schur polynomials, whose definition we review in Section 4.1. The proof of
Theorem 1 then immediately follows in Section 4.3.

4.1 Factorial Schur polynomials

A semi-standard Young tableaux (SSYT) of shape A € Py, is a filling of each box of the
Young diagram for A with a single number from the set [m] such that numbers are weakly
increasing across rows (reading from left to right) and strictly increasing down columns
(reading from top to bottom). Denote by SSYT, the set of all SSYT of shape A. The
Schur polynomial for A in the variables (x) = x1,..., Xy, is then defined to be

sa(x) = Z HXTA(B)) (12)

TAESSYT,) BETH

where T, () denotes the number filling box (3 in tableaux Ty. The elementary symmetric
polynomial e;(x) is the Schur polynomial s(1)i(x), and the homogeneous symmetric poly-
nomial hi(x) equals si)(x). The classical cohomology H*(Gr(m,n)) has a well-known
presentation as a polynomial ring generated by the elementary symmetric polynomials
e1(x),...,en(x), in which the Schubert class oy is identified with the Schur polynomial
sa(x).

There is a corresponding presentation for Hj(Gr(m,n)) in terms of the equivari-
ant analogs of the elementary and homogeneous symmetric polynomials; namely the
factorial elementary symmetric polynomials e;(x|t) and the factorial homogeneous sym-
metric polynomials hi(x|t) in the variables (x) and (t) = ti,...,ts. If we denote by
A :=Zlt,...,t,], then the T-equivariant cohomology ring H}(Gr(m,n)) has the follow-
ing presentation
/\[61 (Xlt)> cey em(x|t)]

Mot (X[, - hy (x]D))

Hr(Gr(m,n)) =
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see [Mih2, Corollary 5.1]. Moreover, under this isomorphism, the equivariant Schubert
class oy is represented by the equivariant generalization of the Schur polynomial sy(x),
given by the associated factorial Schur polynomial; see [Mih2, Proposition 5.2]. For our
purposes, we define the factorial Schur polynomial sj(x[t) analogously to (12) by

axlt)= > J*ne—theio (13)

TAESSYT, BETH

where the box (3 € T, is located in row 1 and column j of the tableaux, indexing rows
from top to bottom and columns from left to right. As in the classical case, we have
ei(x[t) = sy (x[t) and hi(x[t) = s (x[t).

4.2 Specializations of factorial Schur polynomials

The localization &Y (n) of the equivariant Schubert class o, at the T-fixed point 1 coincides
with a certain specialization of the factorial Schur polynomial s, (x[t). We follow the
treatment in [IN], though they credit Theorem 31 below to earlier work of Knutson and
Tao [KT] and Lakshmibai, Raghavan, and Sankaran [LRS].

Any partition n € P,,, can be associated to a permutation in S,,, as we now review.
The window notation for a permutation 7t € S,, records the action of 7t on the set [n]
as 7 = [y -+ - T, where 71y ;= 7t(1). A permutation 7t € S, has a descent in position k
if (k) > mt(k + 1), and a permutation with at most one descent is called a Grassmann
permutation. The set of all Grassmann permutations with a descent in position m,
together with the identity permutation, is denoted by ST

Given n € Py, record the up-steps and side-steps of the partition from the bottom
of the rectangle as U(1) = {wy,...,un} and S(n) = {s1,...,Sn_m}. Define the associated
permutation 7, € St by the following window

M, = (Wi W |S1 Snoml- (14)

Note that if n is nonzero, then 7, has exactly one descent in position m, as suggested
by the vertical line in the window above. We define a collection (xﬂn) of m variables
associated to the permutation 7, by

(Xﬂn) = (tﬂn(i)) (15)
for i € [m]. In particular, note that (xﬂn)i = t,, by definition.
Theorem 31 (Theorem 5.4 [IN]). For any partitions y €1 € Pun, we have

E'(M) = sy (xp,[t)

We remark that the above statement differs from [IN, Theorem 5.4] by the sign (—1)"!
because our convention for torus weights follows [BMT], in order to apply the equivariant
rim hook rule in the proof of Theorem 1 later in Section 4.3. Our next and final lemma
provides the critical link required to prove Proposition 30, and thus the main theorem.

Lemma 32. Fiz any integers 1 <p <m and 0 < v < p. For any partition M € Py ny,
we have

W(ﬂ»P/) = ep’(xnn“:)»
where ey (x[t) is the factorial elementary symmetric polynomial in Xi,...,Xm/ and
t‘],...,tn+‘|.
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Note that Example 33 below illustrates both the statement of Lemma 32, as well as
the weight-preserving bijection which is the key ingredient in the proof.

Proof. For notational convenience throughout this proof alone, we shall write k := p’.
We thus aim to show that W(n, k) = ex(x,.[t) for any 1 € Prys .
Recalling that e (x[t) is the factorial Schur polynomial sy (x[t), formula (13) gives

us
k
ek(x!t) = Z H ng — te].,jjq . (16)

E’esswmk j=1

Here SSYT(j)« denotes the set of all strictly increasing fillings of the column shape con-
taining k boxes using the alphabet [m’]. By recording only the fillings, we may thus
identify SSYTjj)x with the set A} = (e m*|t <--- <t} from Remark 25.

For any { e SSYT(1)x, denote the corresponding summand by eg(x!t) = H};] Xy —
ty,—j+1. Enumerate the up-steps of n as U(n) = {w, ..., un}, recorded from the bottom
of the rectangle. Specializing the variables x; — t, 1) = ty, as prescribed by x,,, via (15),

we obtain
k

ef;(xnnlt) = H tuej — tgj,j+] . (17)
j=1
On the other hand, since SSYT;)x and A? are in bijection, the set SSYT 3y« is also in
bijection with Ay = {{ € [m —p + 1% | yy < --- < uJ by Remark 25. If we fix any
= (u,...,4) € Ay, then the corresponding summand in expression (5) for ¥(n, k) may
be recorded via (4) as

W?(ﬂa k) = H tuL§ - tLj)
j

where we recall from Remark 25 that Lf = i +j — 1, and more generally that 5 =
(By..., ) =T+ (0,1,...,k—1). In particular, the map T+ (s gives the bijection from
Ay to SSYT 3y« noted above.

Now given any U € Ay and j € [Kk], consider the corresponding multiplicand tu, —
j

in the product ¥*(n, k). The j*" multiplicand in the associated product e?k5 (X, |t) is then

tu, —to i = tu, —t, since Lf = 1 +j — 1. Therefore, Yin, k) = efké(xﬂnlt) for any
Lj ) L.

t € Ay. Summing Sver all Ay and SSYT )k, respectively, we then have W(n, k) = ex(xy,.[t),
which proves the lemma. O

We now revisit our running example from Section 3, to illustrate both the statement
of Lemma 32 and the method of proof.

Example 33. Fix p = 5 and r = 3, in which case p’ = 5—3 = 2. Consider n =
(8,8,3,0) € P45, and recall from Example 19 that n = A, for partitions u C A € P15 so
that here m’ =7 —3 = 4. Recall by (11) in Example 29 that

Yn,2) = (ts —t2) (tn — t2) + (t5 — t2) (tia — t3) + (ti1 — t3)(t12 — t3). (18)
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On the other hand, we now compute e;(xr,[t) directly from the definition. The set
SSYTj)2 conmsists of the 6 strictly increasing fillings of the column shape (1 )? using the
alphabet [m’] = [4], which we depict as

2 3] [a] [3) [4] [

If we encode each of these SSYT as a vector { = (€1, £;) where €1 < £, denotes the filling,

then by (16) we have
2
ez(X’t) = Z HX@J. — tg].,]ur]. (19)
lessyT 2 1=1

Recall that for n = (8,8,3,0) € P45, we have U(n) = {1,5,11,12} = {uy, up, uz, uq}
so that
m, = [(1,5,11,12|2,3,4,6,7,8,9,10,13,14,15]

by formula (14). Specializing the variables x; tr, ) in this example thus sends x7 — t;.
Therefore, the 3 left-hand SSY'T, all of which satisfy ¢; = 1, correspond to a product
having (t; —t;) as a factor; that is, these 3 left-hand SSYT contribute zero to the sum in
expression (19) for e;(xx,|t). Recall from Example 29 that the polynomial ¥(n,2) also
contains 3 zero terms corresponding to the vectors (1, 1), (1,2),(1,3) € A,. Moreover, for
these 3 vectors U € A,, the associated vector 15 € A5 gives the fillings of the 3 left-hand
SSYT.

For the 3 right-hand SSYT, note more generally that x; — t,, when we specialize
€2(xn, [t). Indexing the summands of e;(xx,[t) as in (17) then gives us

(2,3)

e, (Xm,It) = (tu, —tam11) (tuy — t3241) = (t5 — t2) (t11 — t2),
2,4
eé )(Xnn|t) = (tu, =t (tw, —ta21) = (t5 — t2) (ti2 — t3),

€£3’4)(Xnn|t) = (tu; — 3141 (tuy, — taz1) = (ti1 —t3)(ti2 — t3).
Taking the sum of the three above expressions and comparing with (18), we see that
indeed e;(xg,[t) = W(n,2) term by term, confirming the statement of Lemma 32 in
this example. Moreover, the 3 nonzero terms in ¥(n,2) correspond to the 3 vectors
(2,2),(2,3),(3,3) € A, from Example 29, whose respective associates in A5 via Remark
25 give the fillings (2,3), (2,4), (3,4) of the 3 right-hand SSYT above, completing our
illustration of the weight-preserving bijection in the proof of Lemma 32.

Amusingly, there is a dual version of Lemma 32, obtained by noting that Ay is also in
natural bijection with the set SSYT(y) of row-shaped semi-standard Young tableaux. This
observation gives us a similar statement for the complete homogeneous factorial Schur
functions, although the localization is dual in a sense, and the geometric interpretation
is less clear.

Remark 34. Fix any integers 1 <p < m and 0 < v < p. For any partition 1 € Prysny1,
we have

/

W(TLP/) = (_] )p h’p’(xid|tnn))
where h,/(x[t) is the factorial homogeneous symmetric polynomial in Xi,...,Xys and
t1y...,tay1, and we instead specialize the torus weights via t; — tr, 1), whereas x; — t;.
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4.3 Proof of the equivariant quantum Pieri rule on cylindric shapes

We are now able to prove the key proposition upon which the proof of Theorem 1 relies.

Proof of Proposition 30. Fix an integer T < p < m and a partition p € Py,,. Consider
any partition A € Py w41 such that the skew shape A/p = V" for some integer 0 < 1 < p.
Apply Lemma 32 to Ay € Py ny1 to obtain

W()\p)p/) = ep’(xﬂ(;\u)“’)' (20)

In the case (1)P" C A, applying Theorem 31 to (20), we thus have

Y(A,p') = ep’(xn(mlm - S(Up'(xﬂ(xmm - E’Ex]x)’P (A,

confirming Proposition 30 in this case.

If (17 ¢ Ay, then by Lemma 17, we know that Egl),p (A) = 0. The condition
(1P ¢ Ay implies that the number of nonzero parts of Ay € Prysq41 is strictly less than
p’. In particular, for all U € A/, we have (A,), = 0. By (9) and (10) in the proof of
Proposition 28, we know that W(A,,p’) = 0 in this case. Therefore, if (1)?" Z A, we have

/

0=YA,p) =&D" (A,

m/
as required to complete the proof of Proposition 30. O]

Equipped with Proposition 30, we are now prepared to prove the main theorem of
this paper.

Proof of Theorem 1. We first prove the rule for multiplying by a Schubert class indexed
by a column-shaped partition. Fix an integer 1 < p < m and a partition p € Ppy,.
Consider any partition A € Py, n41 such that the skew shape A/p = v for some integer
0 < r < p. Applying Proposition 28, Proposition 30, and Theorem 20 in turn, we obtain

> 1T while =¥, p) = &0 (A =l s

v VP xevP \\}T

where C%‘”pyu is an equivariant Littlewood-Richardson coefficient in Hy(Gr(m,n + 1)).
Further, note that in the Pieri case, o(1jp 0 0, € Hf(Gr(m,n + 1)) is the same as the
product oy o 0, € H7(Gr(m,2n — 1)) required to apply the equivariant rim hook rule
from [BMT], reviewed here as Theorem 5.

The argument now naturally divides into two cases: A € Pyn and A € P, If A € Py,
then by the equivariant rim hook rule, ¢y, , = ¢if}, , for oap 0, € QHF(Gr(m,n))
as well, since rim hook reduction acts as the identity both on o, and the torus weights
t1,...,t, in this case. The formula for the classical terms in Theorem 1 thus follows.

Now suppose that A ¢ P,,,. Since the parts of A = (Aq,...,A,) are weakly decreasing
and A € Pyng1\Pmn, we must have Ay = n — m + 1. Recall by Theorem 5 that if the
n-core v of A is not in Py, then the equivariant rim hook rule sends o) — 0, and this
term does not contribute to the product oqp * 0, € QH7(Gr(m,n)). We thus reduce
to the case where v € P.,,,. The n-core v € P, in this case if and only if the partition
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A € Ppny1 contains a removable n-rim hook, in which case we must have A, > 1 as
well. In the Pieri case, we can remove exactly one n-rim hook of height m, so that in
the statement of Theorem 5, we have ¢ = m. The equivariant rim hook rule thus sends
o) — (=1)"™qo, = qoy. Further, recall from our discussion in Section 2.2 that since
A and v are related by removing a single n-rim hook with these coordinates, then the
closed loops A[0] = v[1] on the cylinder Cpmni1.

Since A € Py 41, for any addable box o in an extension v© — VP, the row number
satisfies T() < m < n, and the number of boxes below « also satisfies b(ax) < m < n.
In addition, since i € P, while Ay = n— m + 1, we know that the skew shape A/p
contains a box in the top row of the rectangle. In particular, any addable box o € vP\V"
sits in or below row m — 1, indexing rows from the bottom of the rectangle. Therefore,
all up-step indices satisfy u(a) < n—1 < n. Since the equivariant rim hook rule sends
ti — tiimoan) and each of these three statistics is strictly less than n for any addable box
x € VP\V', each torus weight t,(x) — tr«)—b(a) OCCurring in cf‘”p,u is mapped to itself by
the equivariant rim hook rule. Therefore, in case A ¢ Py, we have

A 1
Clpu = Z H wty () = iy s

VI—VP qevP\v"

where the skew shape vl = A/p = v[1]/u[0] = v/1/u. The formula for the quantum terms
in the product o *x 0, € QH7(Gr(m,n)) in Theorem 1 thus follows by re-indexing.

We now deduce the rule for multiplying by a Schubert class indexed by a row-shaped
partition from the column-shape rule via level-rank duality. Fix an integer 1 <k < n—m
and a partition p© € P,,. Consider any partition A € Py, such that the skew shape
A/d/u = h" for some integer 0 < v < k and d € {0,1}. Let o« € h*\h" be an addable box
in an extension h™ — h*.

Since A/d/u is a horizontal r-strip, then the transposed skew shape A’/d/u’ is a
vertical T-strip V" with a corresponding extension v' — v¥. Moreover, the addable box
o € h*\h" corresponds to a unique addable box B € V¥\v" in the image of the transpose
map. Since & and 3 are related by the transpose, by Definition 10 we automatically have
T(B) = c(a) and b(B) = rt(), and therefore r(B)—b(p) = c(a) —rt(x). In addition, the
up-step w(p) corresponds precisely to the side-step s(«) under the transpose map, both
of which are enumerated from the bottom of the rectangle, and thus w(f)+s(ax) =n+1.

Under the involution on torus weights from level-rank duality as in Theorem 6 we

now have
t — —t
—Wp : { u(e) st

—tp)—b(p) 2 bt —(c(o)—rt(w)-
Comparing with Definition 11 gives us —wy : wt}, (B) — th(oc). Having already proved
above that
Ad o
it =D T wtw(®
v —vk Bevk\yr
in QH%(Gr(n —m,n)), applying the level-rank duality from Theorem 6 to both sides of

this expression yields
Ad h
=2 ]I wiile,
h'—hk qchk\h"
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as required to complete the proof of the formula for oo, € QHF(Gr(m,n)) in Theorem
1. L]
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