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Abstract

We show that the numerators of genus zeta function associated with local hered-
itary orders studied by Denert can be described in terms of the joint distribution
of Euler-Mahonian statistics on multiset permutations defined by Han. We use
this result to deduce a reciprocity property for genus zeta functions of local heredi-
tary orders whose associated composition is a rectangle. We also record a remark-
able identity satisfied by genus zeta functions of local hereditary orders in terms of
Hadamard products of genus zeta functions of maximal orders. Finally, we define
Mahonian companions of excedance statistics on groups of signed and even-signed
permutations.

Mathematics Subject Classifications: 05A05, 05A15, 11M41

1 Introduction

Recently, permutation statistics have found applications to various zeta functions in alge-
bra; see, for instance, [2, 5, 7, 23, 24]. An early instance of such applications arose from
the enumeration of ideals in hereditary orders encoded in so-called genus zeta functions.
It is known that local hereditary orders are parameterised by local invariants, which are
integer compositions. In order to give an explicit expression for the numerators of genus
zeta functions of such orders, Denert [10] defined a pair of statistics over permutations.

Remarkably, for “minimal” (i.e. associated with the all-one composition) hereditary
orders, the numerators of the associated genus zeta functions are, for a suitable choice of
variables, Euler-Mahonian polynomials over symmetric groups. This was first conjectured
by Denert in [10] and then proved by Foata and Zeilberger in [12].
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Inspired by Denert’s paper, Han [16, 17] gave a definition of a Denert statistic for
multiset permutations, which together with the classical excedance statistic is Euler-
Mahonian. Further generalisations of Denert’s statistic were studied, e.g., in [9, 14].

While Han’s result provides a Mahonian companion for the excedance statistic already
considered by MacMahon [19] on multiset permutations, it does not, to the best of our
knowledge, provide a combinatorial interpretation of the numerators of Denert’s genus
zeta functions; cf. [16, p. 25].

This paper is devoted to a further study of Denert’s statistic. In the first part, we
close the circle by showing that Denert’s pair of statistics (as originally defined) is indeed
equidistributed with the Euler-Mahonian statistics considered by Han on multiset permu-
tations; cf. Theorem 10. This gives an explicit description of the numerators of the genus
zeta functions of local hereditary orders with arbitrary local invariants.

By results going back to MacMahon, our equidistribution result also implies a re-
markable identity involving Hadamard products of genus zeta functions of local heredi-
tary orders. Similar identities, also involving Eulerian or Euler-Mahonian polynomials,
have appeared in recent work on so-called ask zeta functions [21, 22] and zeta functions
associated with quiver representations [18].

Generalisations of Euler-Mahonian identities to signed and even-signed permutations
have been extensively studied (see, e.g., [1, 3, 6]). The remainder of this paper is devoted
to generalisations of Denert’s statistic which provide Mahonian companions to suitable
excedance statistics on Coxeter groups of type B and D.

The paper is organised as follows. In Section 2 we collect some notation and prelim-
inaries on permutation statistics on multiset permutations, while in Section 3 we recall
Denert’s definitions of the statistics appearing in the numerators of the genus zeta func-
tions studied in [10]. Section 4 is devoted to proving that these numerators are indeed
Euler-Mahonian polynomials. In Section 5, we define analogues of Denert’s statistics in
types B andD. Together with suitable excedance statistics, these are equidistributed with
Euler-Mahonian statistics on groups of signed and even-signed permutations, respectively.
We conclude the paper with a few remarks in Section 6, including the aforementioned
identity involving Hadamard products satisfied by Denert’s genus zeta functions.

2 Notation and preliminaries

We set [n] = {1, . . . , n} and denote by {i1, . . . , im}< a set of increasing integers i1 <
· · · < im. We let |S| denote the cardinality of a set S. For the remainder of this paper,
η = (η1, . . . , ηr) is a fixed composition of n ∈ N with r parts. Given η, we let Sη denote
the set of all permutations of the multiset

{1, . . . , 1! "# $
η1

, . . . , r, . . . , r! "# $
ηr

}

comprising η1 copies of 1, η2 copies of 2, and so on. In other words, a multiset permutation
in Sη is a rearrangement of the “trivial” word idη = 1η1 · · · rηr ∈ Sη. Note that when
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η = (1, 1, . . . , 1), Sη is the symmetric group Sr. We will be interested in several statistics
on multiset permutations. We denote the descent set of w = w1 · · ·wn ∈ Sη by

Des(w) = {i ∈ [n− 1] : wi > wi+1}.

The descent and major index statistics are

des(w) = |Des(w)| and maj(w) =
%

i∈Des(w)

i.

Further, we define the descent set of a composition Des(η) := {η1, η1 + η2, . . . ,
&r−1

i=1 ηi}.
In the following, we recall a few definitions in order to define the pair of statistics

(den, exc), see also [16, 17]. When η is fixed, we will simply denote with id the trivial
word idη of the corresponding set of multiset permutations.

A position i ∈ [n] is an excedance of w ∈ Sη if the i-th letter of w is strictly greater
than the i-th letter of the trivial word id. We denote with Exc(w) the set of all excedances
of w and with exc(w) its cardinality, viz.

Exc(w) = {i ∈ [n] : wi > idi} and exc(w) = |Exc(w)|. (1)

Definition 1. Let w ∈ Sη. The exceeding subword of w is

exc(w) := wi1 · · ·wik for Exc(w) = {i1, . . . , ik}<.

The non-exceeding subword of w is

nexc(w) := wj1 · · ·wjn−k
for {j1, . . . , jn−k}< := [n] \ Exc(w).

For example, for η = (3, 2, 2, 3) and w = 4232314141, the exceeding subword is
exc(w) = 42334 and the non-exceeding subword is nexc(w) = 21141.

As usual, we let inv(w) denote the inversion number of a multiset permutation w ∈ Sη

inv(w) = |{(i, j) : 1 ! i < j ! n, wi > wj}|

and imv(w) denote the weak inversion number of w

imv(w) = |{(i, j) : 1 ! i < j ! n, wi " wj}|.

Generalising work of Foata and Zeilberger on permutations [12], Han gave the following
definition of a Denert statistic on multiset permutations.

Definition 2 ([17, Définition 1.1]). Let w ∈ Sη. Denert’s statistic on multiset permuta-
tions is given by

den(w) :=
%

i∈Exc(w)

i+ imv(exc(w)) + inv(nexc(w)).
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For instance, den(4232314141) = 18 + 5 + 4 = 27. Han proved that this statistic,
together with the excedance number defined in (1), is equidistributed with the pair of
statistics (maj, des) on multiset permutations.

Theorem 3 ([17, Théorème 1.2]). The pair of statistics on Sη (den, exc) is Euler-
Mahonian, i.e.

%

w∈Sη

xden(w)yexc(w) =
%

w∈Sη

xmaj(w)ydes(w).

3 Denert’s statistic

Our first main result shows that the polynomials expressing the numerators of the genus
zeta functions of hereditary orders with local invariants η and r coincide with the polyno-
mials giving the joint distribution of (den, exc) over Sη in Theorem 3. These numerators,
as defined by Denert in [10, Theorem 11], involve statistics on so-called η-admissible
permutations, iden and iexc, which we now define, closely following [10].

Let σ ∈ Sn. Following Denert, we visualise σ as the (0, 1)-matrix whose (i, j)-th entry
is defined as

M(i, j) =

'
1 if j = σ(i),

0 otherwise.

Note that this is the transpose of the usual permutation matrix associated with σ. Nev-
ertheless, to ease the translation between Denert’s and our notation, we will refer to it as
the matrix associated with σ. Since we are interested in statistics counting certain zero
entries, we think of this matrix as an n×n grid, and we refer to matrix entries as cells in
this grid.

Figure 1: For n = 10 and η = (3, 2, 2, 3), the set [≻] is coloured in grey, while the set [≼]
is left blank.
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Definition 4. The projection or block-map with respect to the composition η is the map
πη : [n] → [r] such that

πη(i)−1%

k=1

ηi < i !
πη(i)%

k=1

ηi.

That is, πη(i) = 1 for 1 ! i ! η1, πη(i) = 2 for η1 + 1 ! i ! η1 + η2 and so on.
By slight abuse of notation, we also denote by πη : Sn → Sη the projection from

permutations to multiset permutations

πη(σ) := πη(σ(1)) · · · πη(σ(n)).

For instance, π(3,2,2,3)(68102435179) = 3441212134.
The block-map partitions a permutation matrix into r2 blocks of size ηi×ηj, 1 ! i, j !

r. For k ∈ N we define the k-th block-row (resp. k-th block-column) to be the set of pairs
(i, j) ∈ [n]2 such that πη(i) = k (resp. πη(j) = k). Let further

[≼] = {(i, j) : πη(i) ! πη(j)},
[≺] = {(i, j) : πη(i) < πη(j)},
[≻] = {(i, j) : πη(i) > πη(j)}.

We illustrate the sets [≼] and [≻] in Figure 1, see also [10, Section 1]. Following Denert,
we say that a permutation σ ∈ Sn is descending on I ⊆ [n]2 if for all (i, σ(i)), (j, σ(j)) ∈ I,
i < j if and only if σ(i) < σ(j). For instance, σ = 68102435179 ∈ S(3,2,2,3) is descending
on every block-row, but not on the first and last block-column, which can be easily seen
in Figure 2.

The polynomials we are interested in are generating polynomials on permutations
which Denert calls η-admissible permutations. These are permutations whose descent sets
are contained in the descent set of the composition η.

Definition 5. A permutation σ ∈ Sn is η-admissible if it is descending on every block-row.
We will denote Sη = {σ ∈ Sn : Des(σ) ⊂ Des(η)} the set of all η-admissible permutation
in Sn.

For instance, σ = 68102435179 is (3, 2, 2, 3)-admissible, while τ = 68104235179 is not
(see also Figure 2). Note that the set of η-admissible permutations is a parabolic quotient
of Sn; see, e.g., [4, Section 2.4].

It is well known that parabolic quotients and thus η-admissible permutations are in
bijection with the set of multiset permutations Sη via the map σ *→ πη(σ

−1). Indeed,
the projection πη is injective on the set of permutations whose inverses have descent sets
contained in Des(η). The inverse of this map is defined in terms of the standardisation
std = stdη : Sη → Sn. Informally, the standardisation of w ∈ Sη is a permutation std(w)
which we obtain from w by substituting the η1 1s from left to right with 1, . . . , η1, the η2
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Figure 2: Let n = 10 and η = (3, 2, 2, 3). The left matrix corresponds to σ = 68102435179
and the right matrix to τ = 68104235179.

2s from left to right with η1 + 1, . . . , η1 + η2 and so on; see also, e.g., [6, Section 2]. We
then obtain an η-admissible permutation by taking the inverse of std(w). That is,

Sη 1−1←→ Sη

σ *→ πη(σ
−1) (2)

(stdη(w))
−1 ← ! w.

For instance, for η = (3, 2, 2, 3) and σ = 68102435179, we have σ−1 = 84657192103 and
thus πη(σ

−1) = 4232314141. On the other hand, std(4232314141) = 84657192103 = σ−1,
and therefore (std(4232314141))−1 = σ, as claimed.

This bijection is a key ingredient in the proof of Theorem 10. We are now ready to
introduce the first of the two statistics needed to show our main result.

Definition 6. For σ ∈ Sn and η a composition of n we define

Iσ = {(i, σ(i)) ∈ [≻]} = {j : πη(σ
−1(j)) > πη(j)}.

Note that Iσ coincides with the set of excedances of πη(σ
−1)), that is Iσ = Exc(πη(σ

−1)).
Therefore, we denote its cardinality with

iexc(σ) := |Iσ|.

Remark 7. The statistic iexc appears as k in [10].

Further, we give here the definitions of the sets N+
σ and N−

σ ,

N+
σ = [≼] ∩ {(i, j) : σ(i) < j and σ−1(j) < i},

and
N−

σ = [≻] ∩ {(i, j) : σ(i) < j and σ−1(j) > i}.
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Figure 3: Let n = 10, η = (3, 2, 2, 3) and σ = 68102435179. Elements of N+
σ are marked

in blue and elements of N−
σ are marked in red.

Note that Denert uses the same notation for the cardinalities of these sets; cf. [10, Sec-
tion 2]. Figure 3 illustrates N+

σ and N−
σ for a permutation in S(3,2,2,3), where we marked

elements of N+
σ and N−

σ as coloured cells in the permutation matrix of σ.
The statistic introduced in the next definition implicitly appeared in the numerators

of Denert’s genus zeta functions. For this reason, we refer to it as Denert’s statistic (see
also Proposition 9).

Definition 8. For σ ∈ Sη, Denert’s statistic is defined as

iden(σ) =
%

j∈Iσ

j + |N+
σ |− |N−

σ |− iexc(σ).

For instance, for σ = 68102435179, iden(σ) = 18 + 17− 3− 5 = 27, see also Figure 3.
Note that thanks to the map (2) σ *→ πη(σ

−1), we obtain a statistic on the set of
multiset permutations. Our goal is to show that the statistic obtained in this way is
indeed Han’s statistic from Definition 2, which justifies our notation.

As mentioned above, Denert’s statistic appears in the numerators of genus zeta func-
tions of local hereditary orders. In the next subsection, we recall the definition of such
zeta functions and the main result of [10].

3.1 Genus zeta functions of local hereditary orders

For a composition η of n, set

Wη(x, y) :=

&
σ∈Sη xiden(σ)yiexc(σ)(
0!j!n−1(1− xiy)

∈ Q(x, y).

Then [10, Theorem 11] is a closed formula for the genus zeta function of a local hereditary
order in terms of the rational functions Wη.
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We briefly recall here the relevant definitions, the aforementioned result and a sketch
of its proof.

Let K be a non-Archimedean local field and R be its ring of integers. Let A be a
central simple algebra over K. Then A is isomorphic to Mn(D) for a unique integer n and
division K-algebra D. Let ∆ be the unique maximal order in D and let p be the unique
maximal two-sided ideal of ∆. Write q = |∆/p|.

Given an R-order Θ in A, the genus zeta function of Θ is the Dirichlet series ZΘ(s) =&
|Θ : L|−s, where the sum ranges over integral free ideals of Θ; cf. [10, Definition 3.1].

It is known that hereditary orders in A are parameterised by so-called local invariants,
which are compositions of n. Given any such composition η, an explicit description of a
hereditary order Θη with local invariant parameterised by an integer composition η can
be found in [10, Theorem 7].

Proposition 9. ZΘη(s) = Wη(q, q
−ns).

Proof. Following Denert’s proof of [10, Theorem 11], we have

ZΘη(s) =
%

σ∈Sη

q|N
+
σ |−|N−

σ |
%

λ∈Nn

λj>0 if j∈Iσ

)

1!j!n

(qj−1−ns)λj .

Setting t := q−ns, with an inclusion-exclusion argument we obtain
%

λ∈Nn

λj>0 if j∈Iσ

)

1!j!n

(qj−1t)λj =
%

λ∈Nn

)

1!j!n

(qj−1t)λj −
%

j∈Iσ

%

λ∈Nn

λj=0

)

1!j!n

(qj−1t)λj

+
%

{j1,j2}<⊂Iσ

%

λ∈Nn

λj1
=λj2

=0

)

1!j!n

(qj−1t)λj − . . . (−1)|Iσ |
%

λ∈Nn

λj=0 if j∈Iσ

)

1!j!n

(qj−1t)λj

=

*
)

1!j!n

(1− qj−1t)

+−1
,

-1 +
%

∅∕=J⊆Iσ

(−1)|J |
)

j∈J

(1− qj−1t)

.

/

=

*
)

1!j!n

(1− qj−1t)

+−1 )

j∈Iσ

qj−1t.

Therefore,

ZΘη(s) =

&
σ∈Sη q|N

+
σ |−|N−

σ | (
j∈Iσ q

j−1−ns|Iσ |
(

1!j!n(1− qj−1−ns)

=

&
σ∈Sη q

|N+
σ |−|N−

σ |+
!

j∈Iσ
j−(1+ns) iexc(σ)

(
1!j!n(1− qj−1−ns)

=

&
σ∈Sη qiden(σ)−ns iexc(σ)

(
0!i!n−1(1− qi−ns)

,

as claimed.

the electronic journal of combinatorics 29(3) (2022), #P3.1 8



4 Denert’s genus zeta function and Euler-Mahonian polynomi-
als

In this section we prove our theorem about the equidistribution of (den, exc) over the set of
multiset permutations Sη and that of (iden, iexc) over the set of η-admissible permutations
Sη.

Theorem 10. The pair of statistics (iden, iexc) is Euler-Mahonian, i.e.

%

σ∈Sη

xiden(σ)yiexc(σ) =
%

w∈Sη

xden(w)yexc(w).

In preparation for the proof, we further partition the set N+
σ into

N+
σ [≼] = {(i, j) : σ(i) < j, σ−1(j) < i, πη(i) ! πη(j), πη(i) ! πη(σ(i))! "# $

i.e. (i,σ(i))∈[≼]

}

and
N+

σ [≻] = {(i, j) : σ(i) < j, σ−1(j) < i, πη(i) ! πη(j), πη(i) > πη(σ(i))! "# $
i.e. (i,σ(i))∈[≻]

},

see Figure 4 for an example.

1
1

1
1

1
1

1
1

1
1

Figure 4: Let n = 10 and η = (3, 2, 2, 3). For σ = 68102435179 the set N+
σ [≼] is marked

in blue, the set N+
σ [≻] is marked in dark blue, while the set N−

σ is marked in red.

The following technical lemmata are key to show that iden(σ) = den(πη(σ
−1)). We

show the latter identity as a result of finer identities, starting with the following.

Lemma 11. Let η be a composition of n and σ ∈ Sη. Then

|N+
σ [≼]| = inv(nexc(πη(σ

−1))).
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1

1
1

i

j

σ−1(i)σ−1(j)

Figure 5: A block-column of σ−1.

Proof. Since σ ∈ Sη, σ is descending on every block-row. Thus σ−1 is descending on every
block-column, that is if i < j with πη(σ

−1(i)) = πη(σ
−1(j)), then σ−1(i) < σ−1(j); see

also Figure 5. But σ−1(i) > σ−1(j) also implies πη(σ
−1(i)) " πη(σ

−1(j)). Therefore, for
i < j we have

σ−1(i) > σ−1(j) ⇔ πη(σ
−1(i)) > πη(σ

−1(j)). (3)

By definition, setting k = σ(i) and using Eq. (3), we get

|N+
σ [≼]| = |{(k, j) : k < j, σ−1(j) < σ−1(k), πη(σ

−1(k)) ! πη(j), πη(σ
−1(k)) ! πη(k)}|

= |{(k, j) : k < j, πη(σ
−1(j)) < πη(σ

−1(k)) ! πη(j), πη(σ
−1(k)) ! πη(k)}|. (4)

Consider the non-exceeding subword of πη(σ
−1)

nexc(πη(σ
−1)) = πη(σ(i1)) · · · πη(σ(im)),

where πη(σ(i)) ! πη(i) if and only if i ∈ {i1, . . . , im}< = [n] \ Exc(πη(σ
−1)). The lemma

now follows by comparing Eq. (4) with

inv(nexc(πη(σ
−1))) = |{(i, j) : i < j, πη(σ

−1(j)) < πη(σ
−1(i)),

πη(σ
−1(j)) < πη(j), πη(σ

−1(i)) < πη(i)}|.

We now give a few more definitions that are needed for the next lemma. For l ∈
{2, . . . , r}, following [10, Section 1] we set

Uσ(l) := {(i, σ(i)) : l ! πη(i), πη(σ(i)) < l}.

Let us further define

U−1
σ (l) := {(i, σ(i)) : πη(i) < l, l ! πη(σ(i))}.

the electronic journal of combinatorics 29(3) (2022), #P3.1 10
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Figure 6: Uσ(2) (entries equal to 1 in the left orange rectangle) and U−1
σ (2) (entries equal

to 1 in the right orange rectangle) for η = (3, 2, 2, 3) and σ = 68102435179.

The statistics Uσ(l) and U−1
σ (l) count, respectively, the number of ones in certain north-

east and south-west quadrants of the grid, see Figure 6 for an example.
For (j0, σ(j0)) ∈ [≻], we set

N−
σ (j0) := [≻] ∩ {(j0, i) : σ(j0) < i, j0 < σ−1(i)}, (5)

and

N+
σ [≻](j0) := {(j0, i) : σ(j0) < i, σ−1(i) < j0, πη(j0) ! πη(i), πη(j0) > πη(σ(j0))}. (6)

Informally, N−
σ (j0) (resp. N+

σ [≻](j0)) counts the elements of N−
σ (resp. N+

σ [≻]) in the
j0-th row of the matrix associated with σ.

Lemma 12. Let η be a composition of n and σ ∈ Sη. Then

|N+
σ [≻]| = imv(exc(πη(σ

−1))) + |N−
σ |+ iexc(σ)

Proof. For a fixed excedance l0 ∈ Exc(πη(σ
−1)), write j0 := σ−1(l0) and set

M=
σ (j0) := {(j0, σ(i)) : σ(i) < σ(j0), i < j0, πη(j0) = πη(i), πη(σ(i)) < πη(i)}

and

M>
σ (j0) := {(j0, σ(i)) : σ(i) < σ(j0), i < j0, πη(j0) < πη(i), πη(σ(i)) < πη(i)}.

We prove the lemma in four steps.

1. imv(exc(πη(σ
−1))) =

&
(j0,σ(j0))∈[≻] (|M=

σ (j0)|+ |M>
σ (j0)|).

2. |M=
σ (j0)|+ |M>

σ (j0)|+ |N−
σ (j0)|+ 1 = |Uσ(πη(j0))|.

3. |Uσ(πη(j0))| = |U−1
σ (πη(j0))|.

the electronic journal of combinatorics 29(3) (2022), #P3.1 11



4. |U−1
σ (πη(j0))| = |N+

σ [≻](j0)|.

To prove 1 and 2 we will use the following facts.

(i) For i < j we have πη(i) ! πη(j).

(ii) σ is descending on every block-row, i.e. if i ∕= j with σ(j) < σ(i) and πη(i) = πη(j)
then j < i.

Proof of 1. The idea here is to write the number of weak inversions of the exceeding
word of πη(σ

−1) as a sum of equal pairs and strict inversions. These are, in turn, refined
according to the second element of the pair. Indeed, given l0 and j0 as before, using (ii)
and setting l := σ(i) in the definition of M=

σ (j0), we get

|M=
σ (j0)| = |{(j0, σ(i)) : σ(i) < σ(j0), i < j0, πη(j0) = πη(i), πη(σ(i)) < πη(i)}|

= |{(σ(i), j0) : σ(i) < σ(j0), πη(j0) = πη(i), πη(σ(i)) < πη(i)}| (7)

= |{(l, l0) : l < l0, πη(σ
−1(l0)) = πη(σ

−1(l)), πη(l) < πη(σ
−1(l))}|.

Similarly,

|M>
σ (j0)| = |{(j0, σ(i)) : σ(i) < σ(j0), i < j0, πη(j0) < πη(i), πη(σ(i)) < πη(i)}|

= |{(σ(i), j0) : σ(i) < σ(j0), πη(j0) < πη(i), πη(σ(i)) < πη(i)}| (8)

= |{(l, l0) : l < l0, πη(σ
−1(l0)) < πη(σ

−1(l)), πη(l) < πη(σ
−1(l))}|.

The claim follows, as

imv(exc(πη(σ
−1))) =

%

l0

|{(l, l0) : l < l0, πη(σ
−1(l0)) ! πη(σ

−1(l)), πη(l) < πη(σ
−1(l))}|,

where the sum ranges over l0 ∈ Exc(πη(σ
−1)).

Proof of 2. We partition Uσ(πη(j0)) = {(i, σ(i)) : πη(j0) ! πη(i), πη(σ(i)) < πη(j0)} as
follows:

{(i, σ(i)) : σ(i) < σ(j0), i < j0} ∩ Uσ(πη(j0))! "# $
=:U1

σ(πη(j0))

∪ {(i, σ(i)) : σ(i) < σ(j0), i > j0} ∩ Uσ(πη(j0))! "# $
=:U2

σ(πη(j0))

∪ {(i, σ(i)) : σ(i) > σ(j0), i > j0} ∩ Uσ(πη(j0))! "# $
=:U3

σ(πη(j0))

∪ {(j0, σ(j0))},

see Figure 8 for an example. Our goal is to rewrite the cardinalities of each of the
U i
σ(πη(j0)).
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1
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1

=

>

>

Figure 7: For η = (3, 2, 2, 3) and σ−1 = 84697152103, pick l0 = 5, so j0 = σ−1(l0) = 7. The
cells corresponding to the elements of the set in (7) are marked with orange symbols “=”
and those corresponding to the elements of the set in (8) are marked by orange symbols
“>”.

|U1
σ(πη(j0))|

= |{(i,σ(i)) : σ(i) < σ(j0), i < j0,πη(j0) ! πη(i), πη(σ(i)) < πη(j0),πη(σ(j0)) < πη(j0)}|
(i)
= |{(i,σ(i)) : σ(i) < σ(j0), i < j0,πη(j0) = πη(i), πη(σ(i)) < πη(j0),πη(σ(j0)) < πη(j0)}|
= |{(j0,σ(i)) : σ(i) < σ(j0), i < j0,πη(j0) = πη(i), πη(σ(i)) < πη(i),πη(σ(j0)) < πη(j0)}|
= |M=

σ (j0)|,

Similarly,

|U2
σ(πη(j0))|

= |{(i,σ(i)) : σ(i) < σ(j0), j0 < i,πη(j0) ! πη(i), πη(σ(i)) < πη(j0),πη(σ(j0)) < πη(j0)}|
(ii)
= |{(j0,σ(i)) : σ(i) < σ(j0), j0 < i,πη(j0) < πη(i), πη(σ(i)) < πη(j0),πη(σ(j0)) < πη(j0)}|
= |M>

σ (j0)|.

Finally,

|U3
σ(πη(j0))|

=|{(i,σ(i)) : σ(j0) < σ(i), j0 < i,πη(j0) ! πη(i), πη(σ(i)) < πη(j0),πη(σ(j0)) < πη(j0)}|
(i)
=|{(j0,σ(i)) : σ(j0) < σ(i), j0 < i,πη(σ(i)) < πη(j0)}|
=|{(j0, h) : σ(j0) < h, j0 < σ−1(h),πη(j0) > πη(h)}|
=|N−

σ (j0)|,

where h := σ(i).
Therefore we obtain

|Uσ(πη(j0))| = |U1
σ(πη(j0))|+ |U2

σ(πη(j0))|+ |U3
σ(πη(j0))|+ 1
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U1
σ(πη(j0))

U2
σ(πη(j0)) U3

σ(πη(j0))

Figure 8: Let η = (3, 2, 2, 3), σ = 68102435179 and j0 = 7. U i
σ(πη(j0)), i ∈ [3], is given

by the entries equal to 1 in the regions indicated by the grey lines intersected with the
orange rectangle.

= |M=
σ (j0)|+ |M>

σ (j0)|+ |N−
σ (j0)|+ 1.

Proof of 3. For n1, n2 ∈ N and a permutation matrix divided into blocks
0
B11 B12

B21 B22

1

where each block Bij is an ni × nj matrix, we let l ∈ N0 denote the number of entries
equal to 1 in B21. That is, l = |{(i, σ(i)) : σ(i) ! n1 < i} which is also the number of
entries equal to 1 in B12, while the number of entries equal to 1 in B11 is n1 − l.

Proof of 4. For an excedance l0 ∈ Exc(πη(σ
−1)) and j0 = σ−1(l0), we have

|U−1
σ (πη(j0))| = |{(i, σ(i)) : πη(i) < πη(j0), πη(j0) ! πη(σ(i)), πη(σ(j0)) < πη(j0)}|.

Since πη(σ(j0)) ! πη(σ(i)), it follows that σ(j0) < σ(i), Thus the above is equal to

|{(j0, σ(i)) : σ(j0) < σ(i), i < j0, πη(j0) ! πη(σ(i)), πη(σ(j0)) < πη(j0)}|
= |{(j0, h) : σ(j0) < h, σ−1(h) < j0, πη(j0) ! πη(h), πη(σ(j0)) < πη(j0)}|
= |N+

σ [≻](j0)|,

proving 4.

For j0 = σ−1(l0), where l0 ∈ Exc(πη(σ
−1), it now follows that

|N+
σ [≻](j0)|

4.
= |U−1

σ (πη(j0))|
3.
= |Uσ(πη(j0))|

2.
= |M=

σ (j0)|+ |M>
σ (j0)|+ |N−

σ (j0)|+ 1.

Therefore, by Eq. (6),

|N+
σ [≻]| =

%

(j,σ(j))∈[≻]

|N+
σ [≻](j)| =

%

(j,σ(j))∈[≻]

|M=
σ (j)|+ |M>

σ (j)|+ |N−
σ (j)|+ 1
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= imv(exc(πη(σ
−1))) + |N−

σ |+ iexc(σ),

where the latter equality follows from 1, Eq. (5) and the definition of iexc.

Proof of Theorem 10. Combining Lemma 11 and Lemma 12, for σ ∈ Sη we get

den(πη(σ
−1)) = iden(σ).

The theorem follows, as by definition iexc(σ) = exc(πη(σ
−1)) and the map defined in

Eq. (2) is a bijection between Sη and Sη.

Let η = (η1, . . . , ηr) be a composition of n. Theorems 3 and 10 imply that the genus
zeta function of the local hereditary order Θ = Θη can be rewritten in terms of the pair
of statistics (maj, des).

Corollary 13.

ZΘη(s) =

&
w∈Sη

qmaj(w)−ns des(w)

(n−1
i=0 (1− qi−ns)

.

The next corollary follows directly from [8, Proposition 2.12] (see also [8, Theorem
1.3]) and establishes a reciprocity property for the genus zeta function of local hereditary
orders whose associated composition is a rectangle (i.e. all its parts are equal).

Corollary 14. Let r,m ∈ N and η = (m, . . . ,m! "# $
r

) =: (mr). Then

ZΘη(s)|q→q−1 = (−1)rmq
rm(m−1)

2
−mnsZΘη(s).

If η is not a rectangle, then ZΘη(s) does not satisfy a functional equation of the form

ZΘη(s)|q→q−1 = ±qa−bsZΘη(s).

for a, b ∈ N0.

It would be interesting to establish a purely algebraic explanation of this result.

5 Signed and even-signed permutations

In this section, we define signed analogues of the Denert statistic and show that they are,
together with the number of absolute excedances, equidistributed with the the flag major
index and the number of flag descents over the hyperoctahedral groups. For a suitable
definition of type D descents and major indices, we define a type D Denert statistic and
number of excedances which are equidistributed over the even-signed permutations.
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5.1 Euler-Mahonian statistics on Bn

Let Bn denote the group of signed permutations on n letters, i.e. permutations of the set
[−n, n] such that σ(−i) = −σ(i) for i ∈ [0, n]. For a signed permutation σ ∈ Bn, we
use the window notation σ = σ(1) . . . σ(n). By slight abuse of notation, we denote by
des(σ) and maj(σ) the type A descent number and major index statistics of the signed
permutation σ, as defined in Section 2.

Well-known statistics on signed permutations (see for example [1]) include the negative
statistics

neg(σ) = |{i ∈ [n] : σ(i) < 0}|,

ndes(σ) = des(σ) + neg(σ) and nmaj(σ) = maj(σ)−
%

σ(i)<0

σ(i)

and the flag statistics

fdes(σ) = 2 des(σ) + χ(σ(1) < 0) and fmaj(σ) = 2maj(σ) + neg(σ),

where

χ(σ(1) < 0) =

'
1 if σ(1) < 0

0 otherwise.

In [1] the two pairs of statistics (nmaj, ndes) and (fmaj, fdes) were shown to be equidis-
tributed.

Theorem 15. [1, Corollary 4.5]

%

σ∈Bn

qnmaj(σ)tndes(σ) =
%

σ∈Bn

qfmaj(σ)tfdes(σ).

Denert’s statistic has been extended to signed permutations before (see, e.g., [11]). To
the best of our knowledge, none of the type B extensions previously considered gives rise,
together with a suitable definition of excedances, to an Euler-Mahonian pair in the sense
of Theorem 15.

Definition 16. [20, Definition 4.1] For σ ∈ Bn, we define |σ| = |σ(1)| . . . |σ(n)| ∈ Sn.
The absolute excedance number is

excabs(σ) = exc(|σ|) + neg(σ).

We define a Denert statistic for signed permutations as follows.

Definition 17. Let σ ∈ Bn. The negative Denert statistic is

nden(σ) = den(|σ|)−
%

σ(i)<0

σ(i).
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The following theorem shows that the pairs of statistics (nden, excabs) and (fmaj, fdes)
are equidistributed over the hyperoctahedral groups.

Theorem 18.

%

σ∈Bn

qnden(σ)texc
abs(σ) =

%

σ∈Bn

qfmaj(σ)tfdes(σ).

Proof. Writing a signed permutation as a product of an element in the symmetric group
and a sign vector yields:

%

σ∈Bn

qnden(σ)texc
abs(σ) =

%

σ∈Bn

qden(|σ|)q−
!

σ(i)<0 σ(i)texc(|σ|)tneg(σ)

=

*
%

σ∈Sn

qden(σ)texc(σ)

+,

-
%

J⊆[n]

%

j∈J

qjt

.

/

=

*
%

σ∈Sn

qmaj(σ)tdes(σ)

+,

-
%

J⊆[n]

%

j∈J

qjt

.

/

=
%

σ∈Bn

qnmaj(σ)tndes(σ),

where the penultimate equality follows from Theorem 3. The claim now follows by The-
orem 15.

5.2 Euler-Mahonian statistics on Dn

We define a typeD analogue of Denert’s statistic which, together with a suitable definition
of an excedance statistic, forms an Euler-Mahonian pair. The Coxeter group Dn is the
subgroup of Bn of even-signed permutations,

Dn = {σ ∈ Bn : neg(σ) ≡ 0 mod 2}.

A negative descent set on Dn and corresponding descent number and major index were
defined in [3].

Definition 19. [3, Section 3.1] Let σ ∈ Dn. The type D negative descent set of σ is

DNeg(σ) = {i ∈ [n] : σ(i) < −1} and dneg(σ) = |DNeg(σ)|.

The corresponding descent and major index statistics are

ddes(σ) = des(σ) + dneg(σ),

dmaj(σ) = maj(σ)−
%

i∈DNeg(σ)

σ(i)− dneg(σ).
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Definition 20. For σ ∈ Dn, we define the number of type D excedances to be

dexc(σ) := exc(|σ|) + dneg(σ).

Note that the number of type D excedances of σ ∈ Dn differs from the number of
absolute excedances of σ if σ(i) = −1 for some i ∈ [n].

Definition 21. We define Denert’s statistic for even-signed permutations as

dden(σ) := den(|σ|)−
%

i∈DNeg(σ)

σ(i)− dneg(σ) = den(|σ|) + nsp(σ),

where nsp(σ) := |{(i, j) ∈ [n] × [n] : i < j, σ(i) + σ(j) < 0}| denotes the negative sum
pairs.

The next theorem shows that (dden, dexc) and (dmaj, ddes) are equidistributed over
the even-signed permutations.

Theorem 22.

%

σ∈Dn

qdden(σ)tdexc(σ) =
%

σ∈Dn

qdmaj(σ)tddes(σ).

Proof. Write Dn as

Dn =
2

π∈Sn

{τπ : τ ∈ T},

where T = {τ ∈ Dn : des(τ) = 0} and the union is disjoint. Then

%

σ∈Dn

qdden(σ)tdexc(σ) =
%

π∈Sn

%

τ∈T

qden(|τπ|)−
!

i∈DNeg(τπ) τπ(i)−dneg(τπ)texc(|τπ|)+dneg(τπ). (9)

It is easy to see that
&

i∈DNeg(τπ) τπ(i) =
&

i∈DNeg(τ) τ(i) and dneg(τπ) = dneg(τ) for any

π ∈ Sn and τ ∈ T . Thus Eq. (9) is equal to

%

τ∈T

q−
!

i∈DNeg(τ) τ(i)−dneg(τ)tdneg(τ)
%

π∈Sn

qden(π)texc(π).

By Theorem 3, this is equal to

=
%

τ∈T

q−
!

i∈DNeg(τ) τ(i)−dneg(τ)tdneg(τ)
%

π∈Sn

qmaj(π)tdes(π)

=
%

σ∈Dn

qdmaj(σ)tddes(σ),

which proves the theorem.
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6 Final remarks

6.1 Hadamard products

By a formula due to MacMahon [19, 462, Vol. 2, Ch. IV, Sect. IX] and Theorem 10, it
turns out that genus zeta functions as in Corollary 13, viewed as rational functions in q
and q−ns are closely related to Hadamard products of the rational functions expressing
genus zeta functions of maximal orders (i.e. orders whose local type is a composition
with one part). In the following, given rational functions F (y) and G(y), we denote with
(F &G)(y) their Hadamard product. Then

Wη(x, y) = (1− xny)

r

!
i=1

W(ηi+1)(x, y) = (1− xny)

r

!
i=1

*
)

0!j!ηi

1

1− xjy

+
, (10)

where the Hadamard product is taken with respect to y.
At present, we are not aware of an algebraic interpretation, say in terms of factorisation

of ideals in Θη, of the Hadamard product in Eq. (10).
Certain orbit Dirichlet series exhibit a similar behaviour; cf. [8, Proposition 1.2]. An

algebraic framework for interpreting Hadamard products of closely related generating
functions was recently developed by Gessel and Zhuang [15].

6.2 Factorisation

It is well known that classical Eulerian polynomials over Sn have all real, simple negative
roots and that −1 is a root if and only n is even; see [13]. It was proved in [8, Lemma
2.7] that this generalises to a factorisation of the q-Carlitz polynomial for n even. In
the same paper, it also was conjectured that a similar factorisation result should hold
for the polynomials giving the joint distribution of (des,maj) over multiset permutations
associated with compositions which are rectangles and satisfy certain conditions (see [8,
Conjecture B]). Han’s result Theorem 3 and Theorem 10 allow for reformulations of this
conjecture in terms of the pair of statistics (exc, den) over multiset permutations and in
terms of Denert’s original statistic over η-admissible permutations. More precisely, the
conjecture revolves around the existence of so-called unitary factors of Euler-Mahonian
polynomials. A nonconstant polynomial f ∈ Z[x, y] is called unitary if there exists F ∈
Z[Y ] such that f(x, y) = F (xayb) for some a, b ∈ N0 and all complex roots of F have
absolute value 1.

Conjecture 23. Let η be a composition. Then the polynomial of the joint distribution
of (den, exc) over Sη has a unitary factor if and only if η = (mr) is a rectangle, with r
even and m odd. In this case,

%

w∈Sη

xden(w)yexc(w) =
3
1 + x

rm
2 y

4
f η
0 (x, y)

where f η
0 (x, y) has no unitary factor.
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