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Abstract

We give an inductive procedure for finding the extremal rays of the equivari-
ant Littlewood-Richardson cone, which is closely related to the solution space to
S. Friedland’s majorized Hermitian eigenvalue problem. In so doing, we solve the
“rational version” of a problem posed by C. Robichaux, H. Yadav, and A. Yong.
Our procedure is a natural extension of P. Belkale’s algorithm for the classical
Littlewood-Richardson cone. The main tools for accommodating the equivariant
setting are certain foundational results of D. Anderson, E. Richmond, and A. Yong.
We also study two families of special rays of the cone and make observations about
the Hilbert basis of the associated lattice semigroup.

Mathematics Subject Classifications: 15A42, 52A40, 14M15, 05E15, 57R91

1 Introduction

In this work we collide the two worlds of [3] and [1] in order to answer a question of C. Ro-
bichaux, H. Yadav, and A. Yong [14]. In [3], P. Belkale introduced an algorithm for finding
the extremal rays of the Hermitian eigencone (also called the tensor cone or Littlewood-
Richardson cone) – the pointed rational cone which among other things governs the non-
vanishing of Littlewood-Richardson coefficients. In [1], D. Anderson, E. Richmond, and
A. Yong proved that the equivariant Littlewood-Richardson nonvanishing problem is de-
termined by a similar cone, of which the former is a facet, thereby proving the equivariant
nonvanishing problem to be saturated. Here, we naturally adapt Belkale’s algorithm to
the equivariant setting, repeatedly making use of the core Proposition 2.1 from [1], thus
finding most of the extremal rays of the equivariant Littlewood-Richardson cone. The
missing rays are few in number and easily described.
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To provide a little context, a famous problem from the 19th century is to determine the
possible eigenvalues of three Hermitian matrices A,B, and C which satisfy A + B = C.
Horn conjectured [9] that a certain recursive set of inequalities on the eigenvalues were
necessary and sufficient for such matrices to exist. This turned out to be true, as estab-
lished by Klyachko [11] and Totaro [16]. While Horn’s list of constraints is overdetermined,
the essential inequalities were found by Belkale [2] and proven to be minimal by Knutson,
Tao, Woodward [13]. For a much more thorough treatment of this story, see [8].

There is a natural generalization to this problem. Recall that a Hermitian matrix A
majorizes another, say B, if A−B is positive semidefinite (written A ! B). S. Friedland
[6] studied the question: what are the possible eigenvalues of A, B, and C if A+B ! C?
Friedland proposed a set of inequalities, and W. Fulton [7] showed they correctly answered
the problem but were redundant, providing a minimal set that is largely the same as the
essential Horn inequalities from above!

In both the aforementioned problems, the sets of integer eigenvalue solutions have
special significance. By the Saturation Theorem of [12], nonnegative integral solutions
to the first problem parametrize the nonzero structure constants (Littlewood-Richardson
coefficients) for multiplication in three equivalent settings: Schur polynomials, Grass-
mannian Schubert classes, and classes of irreducibles in the representation ring of GLn.
By [1, Theorem 1.3], the second problem is connected to double Schur polynomials and
multiplication in the equivariant cohomology rings of Grassmannians.

The solutions to both problems are governed by rational, linear inequalities, so the
solution sets, viewed inside the relevant real vector spaces, form convex rational polyhedral
cones. These we denote by LR for the nonvanishing of Littlewood-Richardson problem
and EqLR for the second (equivariant) problem. Such cones have finitely many extremal
rays – faces of dimension 1 – and the associated semigroups of lattice points have a finite
generating set, the Hilbert basis, which always includes the set of (primitive points on)
extremal rays.

In [17, Problem A], A. Zelevinsky posed the question of finding the Hilbert basis for
LR explicitly, and Robichaux, Yadav, and Yong [14, §6] asked the same question for EqLR.
While both questions remain open, Belkale’s algorithm [3] serves as a partial (“rational”)
solution to Zelevinsky’s question in that it gives formulas for finding the extremal rays of
LR. Our main result is an analogous solution to Robichaux, Yadav, and Yong’s question,
which we obtain by extending Belkale’s algorithm to the equivariant setting.

After reviewing the various cones and their inequalities (§2), as well as recalling
Belkale’s algorithm in detail (§3), we show that for any Horn facet of the equivariant
Littlewood-Richardson cone, our algorithm produces the extremal rays on that facet
(Theorems 15, 18). Unlike in [3], there are some rays not on any Horn facet, and we
explicitly enumerate these (Theorem 23). Finally, we show by example (§6) that there do
in general (r ! 6) exist Hilbert basis elements which do not lie on an extremal ray. This
phenomenon has not been observed for the classical Littlewood-Richardson cones.
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2 Notation and inequalities for the cones

Both of the eigenvalue problems above can be considered with a greater number of sum-
mands. Let r ! 1 and fix some s ! 3. Let us consider the space of possible eigenvalues of
r×r matrices A1, . . . , As−1, and C such that

!
Aj = C or

!
Aj ! C. We will always list

the eigenvalues of a matrix in decreasing order, counted with multiplicity, for example:
λ = (λ1 ! λ2 ! . . . ! λr) ∈ Rr. Define

Cs
r =

"
(λ1, . . . ,λs−1, ν) ∈ (Rr)s

####
∃ r × r Herm. matrices Aj, C with e-vals. λj, ν

s.t. A1 + . . .+ As−1 = C

$
.

Similarly define

EqCs
r =

"
(λ1, . . . ,λs−1, ν) ∈ (Rr)s

####
∃ r × r Herm. matrices Aj, C with e-vals. λj, ν

s.t. A1 + . . .+ As−1 ! C

$
.

2.1 Inequalities describing the cones

To describe the Horn inequalities, which cut out the above cones Cs
r, EqC

s
r inside (Rr)s, we

first introduce the notation for Grassmannian Schubert calculus. Let n be a sufficiently
large integer, to be specified as needed, and let Gr(r,Cn) denote the Grassmannian of
r-dimensional subspaces in Cn. The cohomology ring H∗(Gr(r,Cn)) has a distinguished
graded basis given by classes of Schubert varieties [Xλ], one for each partition λ = (λ1 !
. . . ! λr) ∈ Zr

!0 such that λ1 " n−r (i.e., the Young diagram for λ fits inside an r×(n−r)
rectangle). Here

Xλ = {V ∈ Gr(r,Cn)| dim(V ∩ Fn−r+i−λi
) ! i, ∀1 " i " r},

where F• is the fixed flag on the standard basis of Cn defined by Fi = Cen⊕ . . .⊕Cen−i+1.
The complex codimension of Xλ is |λ| := λ1 + . . .+ λr.

We define the (multiple-factor) structure coefficients cνλ1,...,λs−1 by the rule

[Xλ1 ] · · · [Xλs−1 ] =
%

ν

cνλ1,...,λs−1 [Xν ] ∈ H∗(Gr(r,Cn))

for n larger than r +
!s−1

j=1 λ
j
1 (these classes and products are stable: it does not matter

which n we take, as long as it is big enough.) When s = 3, these coefficients are the
Littlewood-Richardson numbers.

Partitions λ whose Young diagrams fit in an r× (n− r) rectangle are in bijection with
r-element subsets of [n] := {1, . . . , n}. Such a subset we will typically write in increasing
order as I = {i1 < i2 < . . . < ir}. The bijection is often denoted τ and goes as follows:

I = {i1 < i2 < . . . < ir} τ(I) = (ir − r ! . . . i2 − 2 ! i1 − 1)τ

Note that the definition is independent of n. If no confusion is likely to arise, we’ll just
write cKI1,...,Is−1

instead of c
τ(K)
τ(I1),...,τ(Is−1)

.
Now we can state the celebrated theorem resolving Horn’s conjecture:
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Theorem 1 ([11, 2, 13]). Let λj = (λj
1, . . . ,λ

j
r), for j ∈ [s − 1], and ν = (ν1, . . . , νr) lie

in Rr. Then (λ1, . . . ,λs−1, ν) ∈ Cs
r if and only if

(i) λj
1 ! . . . ! λj

r for each j ∈ [s− 1], and ν1 ! . . . ! νr (since we write eigenvalues in
nonincreasing order);

(ii)
!s−1

j=1 |λj| = |ν|; and

(iii) for every d ∈ [r − 1] and every collection I1, . . . , Is−1, K of d-element subsets of [r]
satisfying

c
τ(K)
τ(I1),...,τ(Is−1)

= 1, (1)

the inequality
s−1%

j=1

%

a∈Ij

λj
a !

%

k∈K

νk

holds.

Concerning Friedland’s problem, we have the following result of W. Fulton:

Theorem 2 ([7]). Let λj = (λj
1, . . . ,λ

j
r), for j ∈ [s − 1], and ν = (ν1, . . . , νr) lie in Rr.

Then (λ1, . . . ,λs−1, ν) ∈ EqCs
r if and only if (i) and (iii) above are satisfied, as well as

(ii’)
!s−1

j=1 |λj| ! |ν|1.

2.2 The Littlewood-Richardson cones

Amazingly, Horn’s inequalities also provide the solutions to the following problems in
Schubert calculus. One can ask for which tuples (λ1, . . . ,λs−1, ν) the Littlewood-
Richardson number cνλ1,...,λs−1 is nonzero, and the answer is in fact the same:

Theorem 3 ([11, 12]). Let λj = (λj
1, . . . ,λ

j
r), for j ∈ [s − 1], and ν = (ν1, . . . , νr) lie in

Zr
!0. Then cνλ1,...,λs−1 ∕= 0 if and only if (i), (ii), and (iii) hold above.

This has the following equivariant analogue: Gr(r,Cn) has an action of T = (C∗)n,
and T fixes each Schubert variety. Moreover, the equivariant classes [Xλ]T once again
form a basis for H∗

T (Gr(r,Cn)), as a module over Z[t1, . . . , tn] = H∗
T ({pt}). We therefore

can define structure “coefficients” (polynomials in the variables ti) C
ν
λ1,...,λs−1 by the rule

[Xλ1 ]T · · · [Xλs−1 ]T =
%

ν

Cν
λ1,...,λs−1 [Xν ]T ∈ H∗

T (Gr(r,Cn)),

once again assuming n is large enough. The nonvanishing question for Cν
λ1,...,λs−1 was

settled by D. Anderson, E. Richmond, and A. Yong2:

1in fact, this is the unique “Horn inequality” for d = r.
2technically, they cover the case s = 3. By induction, one obtains the statement for all s > 3.
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Theorem 4 ([1]). Let λj = (λj
1, . . . ,λ

j
r), for j ∈ [s − 1], and ν = (ν1, . . . , νr) lie in Zr

!0.
Then Cν

λ1,...,λs−1 ∕= 0 if and only if (i), (ii’), and (iii) hold above, as well as

(iv) νi ! λj
i for every i ∈ [r] and j ∈ [s− 1].

Criterion (iv) is also written λj ⊆ ν (for every j ∈ [s− 1]); i.e., the Young diagram for
λj fits inside the Young diagram for ν.

Let us therefore define two more cones, LRs
r ⊂ Cs

r and EqLRs
r ⊂ EqCs

r, as follows. Set

LRs
r = {(λ1, . . . ,λs−1, ν) ∈ Cs

r|λj
r ! 0 for every j ∈ [s− 1]}3

and

EqLRs
r = {(λ1, . . . ,λs−1, ν) ∈ EqCs

r|λj
r ! 0 and λj ⊆ ν for every j ∈ [s− 1]}.

Then Theorems 3 and 4 say that the partitions yielding nonvanishing (equivariant)
structure coefficients are exactly the sets of lattice points LRs

r ∩ Zrs and EqLRs
r ∩ Zrs,

respectively. (On an important historical note, Klyachko showed that (λ1, . . . ,λs−1, ν) ∈
LRs

r ∩ Zrs ⇐⇒ cNν
Nλ1,...,Nλs−1 ∕= 0 for some N > 0; the Saturation Theorem of Knutson

and Tao resolved the conjecture that cNν
Nλ1,...,Nλs−1 ∕= 0 ⇐⇒ cνλ1,...,λs−1 ∕= 0, thus proving

Theorem 3.)

3 Belkale’s algorithm for the rays of LRs
r

In [3], P. Belkale considers the following rational cone:

Γr(s) := {(λ1, . . . ,λs−1,λs)|(λ1, . . . ,λs−1,−w0λ
s) ∈ Cs

r and each |λj| = 0},

which parametrizes the possible eigenvalues for traceless r × r Hermitian matrices
A1, . . . , As such that A1 + . . .+ As = 0. Here w0 is the involutive permutation

w0(λ1, . . . ,λr) = (λr, . . . ,λ1).

Belkale describes the extremal rays that lie on an arbitrary Horn facet, i.e., the face of
Γr(s) where one of the Horn inequalities (iii) holds with equality. In order to recall that
description in our present notation, we introduce the following cone:

Cs
SLr

:= {(λ1, . . . ,λs−1, ν) ∈ Cs
r|λj

r = 0 for every j ∈ [s− 1]},

which is isomorphic to Γr(s) via the Killing form isomorphism, after twisting the last
entry by −w0. For any j ∈ [r], let ωj denote the partition (1, . . . , 1& '( )

j

, 0, . . . , 0& '( )
r−j

). Then the

linear map

Cs
SLr

→ Γr(s)

(λ1, . . . ,λs−1, ν) .→
*
λ1 − |λ1|

r
ωr, . . . ,λ

s−1 − |λs−1|
r

ωr,−w0ν +
|ν|
r
ωr

+

3the reader may notice we have omitted the requirement νr ! 0; this is because it follows from λj
r ! 0,!

|λj | = |ν|, and one of the Horn inequalities.
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is well-defined and an isomorphism of rational cones with inverse

(λ1, . . . ,λs−1,λs) .→
,
λ1 − λ1

rωr, . . . ,λ
s−1 − λs−1

r ωr,−w0λ
s −

s−1%

j=1

λj
rωr

-
.

3.1 Relationships between the cones

So far we have accumulated several related cones, which fit in this diagram:

Cs
SLr

⊂ LRs
r ⊂ Cs

r

⊂ ⊂
EqLRs

r ⊂ EqCs
r

(Though one could define a sixth cone that “completes” the lower left corner of the
diagram, that cone does not appear to be helpful for our purposes.)

The two vertical inclusions, as well as the left-most one, are inclusions of faces – that
is, the smaller cone is defined inside the bigger one by taking one or more linear inequality
valid on the bigger cone and forcing it/them to hold with equality. Moreover, we have
the following structural results.

Proposition 5. For each j ∈ [s− 1], let xj = (0, . . . , ωr&'()
jth position

, 0, . . . , 0,ωr) ∈ Rrs.

We have the following internal decompositions, the first of them direct:

LRs
r = Cs

SLr
⊕

s−1.

j=1

R!0xj

Cs
r = LRs

r +
s−1.

j=1

Rxj

EqCs
r = EqLRs

r +
s−1.

j=1

Rxj

We postpone the straightforward proof until Section 5.2. As a consequence, we get
relationships among extremal rays: for example, the extremal rays of LRs

r are the rays of
Cs
SLr

together with {xj|j ∈ [s−1]}. Since Cs
r and EqCs

r are not pointed cones (they contain
the linear subspaces Rxj), their sets of extremal rays are not well-defined. Nonetheless,
they are generated over R!0 by the extremal rays of LRs

r and EqLRs
r (respectively) and

{±xj|j ∈ [s− 1]}.
While Belkale’s algorithm was developed for the Horn facets of Cs

SLr
, it applies equally

well to the Horn facets of LRs
r, as each xj belongs to every Horn facet and is in the image

of every induction map.
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3.2 Belkale’s algorithm

Definition 6. Suppose I1, . . . , Is−1, K satisfy (1). The associated Horn facet FK
I1,...,Is−1

is

FK
I1,...,Is−1

:=

/
0

1(λ1, . . . ,λs−1, ν)|
s−1%

j=1

%

a∈Ij

λj
a =

%

k∈K

νk

2
3

4 ∩ LRs
r.

We will often write F for short, if the d-element subsets of [r] are understood.

Fix such a collection I1, . . . , Is−1, K satisfying (1). The rays on F come in two types.
The first are obtained by Algorithm 7 below and are called “type I” rays. The “type II”
rays are by default the remaining extremal rays on F . In fact, there is an internal direct
sum decomposition F = F1 ⊕ F2 (see the isomorphism (2) below) such that the type I
rays are the extremal rays of F1 and the type II rays are the rays of F2. The type II rays
are obtained via a surjective linear map C ↠ F2 from a smaller-dimensional cone C; see
Theorem 12 and the discussion following.

Each type I ray is the result of a “type I datum” as follows: Fix any j ∈ [s − 1] and
an a ∈ Ij such that a + 1 ∕∈ Ij, and a < r. Alternatively, let j = s and find an a ∈ K
such that a − 1 ∕∈ K, but a > 1. The pair (j, a) is a type I ray datum. Modify just
Ij by swapping a for a + 1 (or a for a − 1 in case j = s) to produce a new collection
I ′1, . . . , I

′
s−1, K

′. From the choice of j, a, we get a “type I” ray r(j, a) = (λ1, . . . ,λs−1, ν)
by this procedural definition:

Algorithm 7. 1. First, set λk
r = 0 for every k ∈ [s− 1].

2. For every k ∈ [s−1], if b > 1 satisfies b ∈ I ′k and b−1 ∕∈ I ′k, set I
′′
k = I ′k∪{b−1}\{b}

and I ′′ℓ = I ′ℓ for ℓ ∕= k, K ′′ = K ′. Then set

λk
b−1 − λk

b = cK
′′

I′′1 ,...,I
′′
s−1

.

If b > 1 satisfies b ∕∈ I ′k or b − 1 ∈ I ′k, then set λk
b−1 − λk

b = 0. Thus we have
determined λ1, . . . ,λs−1 completely.

3. If c < r satisfies c ∈ K ′ and c+1 ∕∈ K ′, set I ′′k = I ′k for all k andK ′′ = K ′∪{c+1}\{c}.
Then set

νc − νc+1 = cK
′′

I′′1 ,...,I
′′
s−1

.

If c < r satisfies c ∕∈ K ′ or c+ 1 ∈ K ′, then set νc − νc+1 = 0.

4. All that remains is to find νr. This can be done by using the requirement

|λ1|+ . . .+ |λs−1| = |ν|.

However, there is an alternative rule. If r ∕∈ K ′, then νr = 0; otherwise, set K ′′ =
K ′ ∪ {r + 1} \ {r}, and I ′′k = I ′k for all k. Then

νr = cK
′′

I′′1 ,...,I
′′
s−1

,

where technically this Littlewood-Richardson coefficient is calculated in the coho-
mology of a bigger Grassmannian (Gr(d,Cr+1) will suffice).
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Remark 8. The author is indebted to G. Orelowitz for observing the alternative rule in
step 4., which allows one to treat 4. as a new case of 3., defining “νr+1 = 0”.

See Section 6.1.1 for examples of using Algorithm 7.

Theorem 9 (Belkale). Every r(j, a) produced by Algorithm 7 generates an extremal ray
of Cs

SLr
⊂ LRs

r which lies on the face F . They form a linearly independent set, enumerated
{r1, . . . , rq}, and they span a simplicial subcone F1 =

5q
i=1 R!0ri ⊆ F .

In fact, linear independence follows from [3, Lemma 4.2]:

Lemma 10. Say r(j, a) = (λ1, . . . ,λs−1, ν) and r(6j, â) = (λ̂1, . . . , λ̂s−1, ν̂) are two distinct
type I rays on F . (For simplicity assume j,6j < s; analogous statements hold if j = s

or 6j = s or both.) Then λj
a − λj

a+1 = 1 and λ
!j
â − λ

!j
â+1 = 0; likewise λ̂

!j
â − λ̂

!j
â+1 = 1 and

λ̂j
a − λ̂j

a+1 = 0.

This leads one to define the subcone

F2 :=

"
(λ1, . . . ,λs−1, ν) ∈ F

####
λj
a − λj

a+1 = 0 for every type I datum (j, a), j < s;
νa−1 − νa = 0 for every type I datum (s, a)

$
.

Clearly the addition map

F1 × F2 → F (2)

is an injection of rational cones, given the above lemma and the definition of F2. In [3,
Proposition 4.3], we find that this map is also surjective. Therefore the remaining extremal
rays of F are just the extremal rays of F2; these are called “type II”. For this, we have a
surjective linear map onto F2 from a cone whose rays we can determine inductively.

We’ll define that map momentarily. First, for a d-element subset I of [r] and λ ∈ Rr,
we define

λI = (λi1 ,λi2 , . . . ,λid).

Note that if λ is a partition, so is λI . We also write Ī for the complement of I inside [r].
Next, define the invertible map

π : Rrs → Rds × R(r−d)s

(λ1, . . . ,λs−1, ν) .→ (λ1
I1
, . . . ,λs−1

Is−1
, νK), (λ

1
Ī1
, . . . ,λs−1

Īs−1
, νK̄).

The proof of the following result can be found in [8, Proposition 8] and is also a
consequence of the factorization rule of [10].

Proposition 11. The above π restricts to a map

π : F → LRs
d × LRs

r−d.
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Although this restriction of π is not necessarily surjective, we do clearly have

π−1(LRs
d × LRs

r−d) ⊆ RF .

Finally let
p2 : RF → RF2

be the projection onto the second factor. Then define the induction map Ind to be p2◦π−1.

Theorem 12 (Belkale). The linear map

Ind = p2 ◦ π−1 : LRs
d × LRs

r−d → F2

is well-defined and surjective.

The surjectivity means that every extremal ray of F2 is the image of an extremal ray
of LRs

d × LRs
r−d. Moreover, the extremal rays of LRs

d × LRs
r−d are all of the form a× 0 or

0 × b where a (resp., b) is an extremal ray of LRs
d (resp., LRs

r−d). As both d and r − d
are strictly smaller than r, we get an inductive algorithm for finding the extremal rays of
LRs

r, starting with LRs
1.

Remark 13. Actually, Belkale’s Ind has a proper subspace of LRs
d × LRs

r−d as its domain,
but it nonetheless surjects onto F2 ∩ Cs

SLr
. With the larger domain comes a larger kernel

(see Corollary 20) but a more transparent generalization to EqLRs
r.

4 Adaptation of the algorithm for EqLRs
r

Theorems 9 and 12 can be straightforwardly adapted to find the extremal rays of the
Horn facets of EqLRs

r. Once again assume that I1, . . . , Is−1, K satisfy (1). Define

F̂ =

/
0

1(λ1, . . . ,λs−1, ν)

######

s−1%

j=1

%

a∈Ij

λj
a =

%

k∈K

νk

2
3

4 ∩ EqLRs
r.

Note that F = F̂ ∩ LRs
r, and since F is a facet of F̂ , every extremal ray of F is a ray of

F̂ as well.
Therefore type I rays on F are naturally considered type I rays on F̂ ; i.e., Theorem 9

holds verbatim with F̂ instead of F . It is the set of type II rays which will increase from
F to F̂ . Define

F̂2 :=

"
(λ1, . . . ,λs−1, ν) ∈ F̂

####
λj
a − λj

a+1 = 0 for every type I datum (j, a), j < s;
νa−1 − νa = 0 for every type I datum (s, a)

$
.

Extremal rays of F̂2 will continue to be called type II rays for F̂ .
Before we come to the proof of the decomposition F̂ = F1 × F̂2, let us recall an

important consequence of [1, Proposition 2.1(B)] (they state it for s = 3 and for integer
vectors, but the statement below follows easily). For a pair of vectors λ, µ we use λ ⊆ µ
to mean λi " µi for every i ∈ [r].
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Proposition 14 (Anderson-Richmond-Yong). Suppose (λ1, . . . ,λs−1, ν) ∈ EqLRs
r. Then

for any j ∈ [s− 1], one can find a λj,↓ such that

1. λj,↓ ⊆ λj,

2. (λ1, . . . ,λj,↓, . . . ,λs−1, ν) ∈ EqLRs
r, and

3.
!

k ∕=j |λk|+ |λj,↓| = |ν|.

In other words, every element of EqLRs
r possesses several “shadows” in LRs

r obtainable
by shrinking any one of the first s− 1 partitions.

Theorem 15. The addition map

F1 × F̂2 → F̂

is an isomorphism of cones.

Proof. Once again, this map is clearly injective given Lemma 10 and the definition of F̂2.
Now let us show it is surjective.

Let x = (λ1, . . . ,λs−1, ν) ∈ F̂ be arbitrary. If x already belongs to F̂2, then we are
done. Otherwise, there exists some type I datum (j, a) such that λj

a − λj
a+1 > 0 (in case

j < s) or νa−1 − νa > 0 (in case j = s). Set β = λj
a − λj

a+1 or β = νa−1 − νa, depending
on the case. We will show that

x− βr(j, a) ∈ F̂ ; (3)

then by induction on the number of such type I data, we can assume x−βr(j, a) ∈ F1×F̂2,
from which the result follows. In fact, to show (3) it suffices to show x−βr(j, a) ∈ EqLRs

r,
since their difference clearly lies in the hyperplane spanned by F̂ .

Toward that end, we begin with a simple observation. Write r(j, a) = (λ̄1, . . . , λ̄s−1, ν̄).
Fix any ℓ ∈ [s− 1] and let x̃ℓ = (λ1, . . . ,λℓ,↓, . . . ,λs−1, ν) be an element of LRs

r as guaran-
teed by Proposition 14. Set µk = λk for k ∕= ℓ and µℓ = λℓ,↓, so in this notation

x̃ℓ = (µ1, . . . , µs−1, ν).

Observe that x̃ℓ is automatically on F̂ since

s−1%

k=1

%

b∈Ik

λk
b !

s−1%

k=1

%

b∈Ik

µk
b !

%

k∈K

νk

(the second inequality holds due to x̃ℓ ∈ LRs
r) and

s−1%

k=1

%

b∈Ik

λk
b =

%

k∈K

νk
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due to x ∈ F̂ ; hence
s−1%

k=1

%

b∈Ik

µk
b =

%

k∈K

νk.

Moreover, this shows us that λℓ
a = µℓ

a whenever a ∈ Iℓ. This means that µj
a − µj

a+1 ! β
(equality holds if ℓ ∕= j, but if ℓ = j then µℓ

a+1 could be smaller while µℓ
a is unchanged.)

So x̃ℓ still has µ
j
a − µj

a+1 (or νa−1 − νa) at least equal to β. By [3, Proposition 4.3], we
know that

x̃ℓ − βr(j, a) ∈ F ⊂ F̂ ,

and this holds for every ℓ ∈ [s− 1].
Finally, we show that x− βr(j, a) ∈ EqLRs

r by verifying each of inequalities (i) (along
with nonnegativity), (ii’), (iii), and (iv).

(i) Let k ∈ [s − 1]. Then λk = µk from x̃ℓ as long as ℓ ∕= k, so choose some such ℓ.
Because x̃ℓ − βr(j, a) belongs to LRs

r, µ
k − βλ̄k is a partition; therefore λk − βλ̄k is

a partition. For any ℓ, ν − βν̄ is a partition for the same reason.

(ii’) This inequality follows by subtracting β
!s−1

k=1 |λ̄k| = β|ν̄| from
!s−1

k=1 |λk| ! |ν|.

(iii) Let (J1, . . . , Js−1, L) parametrize a Horn inequality (i.e., cLJ1,...,Js−1
= 1). Fix an

arbitrary ℓ ∈ [s− 1]. Then since x̃ℓ − βr(j, a) satisfies this Horn inequality, we have

s−1%

k=1

%

b∈Jk

λk
b − βλ̄k

b !
s−1%

k=1

%

b∈Jk

µk
b − βλ̄k

b !
%

k∈L

νk.

(iv) Let k ∈ [s− 1] and choose ℓ ∕= k. Since x̃ℓ − βr(j, a) ∈ LRs
r, we know that

µk − βλ̄k ⊆ ν − βν̄.

Since λk = µk, the needed inequalities follow.

Remark 16. The proof shows that the addition map is surjective even on lattice points.

So just like in the classical setting, to find the remaining extremal rays of F̂ it now
suffices to find the extremal rays of F̂2 (the type II rays). Recall the definition of π from
earlier:

π : Rrs → Rds × R(r−d)s

(λ1, . . . ,λs−1, ν) .→ (λ1
I1
, . . . ,λs−1

Is−1
, νK), (λ

1
Ī1
, . . . ,λs−1

Īs−1
, νK̄).

Akin to Proposition 11, we have the following generalization in the equivariant setting.
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Proposition 17. The map π restricts to

π : F̂ → LRs
d × EqLRs

r−d.

The proof of this fact can be found in [7, Claim, pg. 30]. We also provide a short
argument based on Proposition 11 and [1, Proposition 2.1].

Proof. Suppose (λ1, . . . ,λs−1, ν) ∈ EqLRs
r satisfies the Horn inequality given by

(I1, . . . , Is−1, K) with equality. By Proposition 14 we know that we can find an x̃ =
(λ1, . . . ,λj,↓, . . . ,λs−1, ν) ∈ LRs

r. Moreover, we showed in the previous proof that x̃ ∈ F ,
and that λj,↓

Ij
= λj

Ij
. Applying Proposition 11, we have

π(x̃) = (λ1
I1
, . . . ,λs−1

Is−1
, νK)× (λ1

Ī1
, . . . ,λj,↓

Īj
, . . . ,λs−1

Īs−1
, νK̄) ∈ LRs

d × LRs
r−d.

Since (λ1
Ī1
, . . . ,λj,↓

Īj
, . . . ,λs−1

Īs−1
, νK̄) ∈ LRs

r−d, and since λj

Īj
⊆ νK̄ (by [1, Lemma 2.7]), we

can apply [1, Proposition 2.1(A)] to conclude that (λ1
Ī1
, . . . ,λs−1

Īs−1
, νK̄) ∈ EqLRs

r−d.

Once again, even though π is not surjective, it is true that π−1(LRs
d×EqLRs

r−d) ⊆ RF̂ .
Let

p̂2 : RF̂ → RF̂2

be the second projection, and define 7Ind = p̂2 ◦ π−1. Note that, if ι denotes the inclusion
map F2 ⊂ F̂2, we have 7Ind

##
LRs

d×LRs
r−d

= ι ◦ Ind.

Theorem 18. The linear map

7Ind = p̂2 ◦ π−1 : LRs
d × EqLRs

r−d → F̂2

is well-defined and surjective.

In order to save some on notation in what follows, we will use v(k) to denote the kth

entry (itself a vector in Rr) of v; i.e., v = (v(1), v(2), . . . , v(s)) ∈ Rrs.

Proof. Linearity is obvious and surjectivity follows since Proposition 17 implies 7Ind has
a section given by π.

It remains to show that the image of 7Ind is contained in F̂2. Let x = (µ1, . . . , µs−1,κ) ∈
LRs

d and y = (α1, . . . ,αs−1, γ) ∈ EqLRs
r−d. Write π−1(x, y) as (λ1, . . . ,λs−1, ν), but remem-

ber that λ1, . . . ,λs−1, ν may not be partitions.
For each ℓ ∈ [s− 1], find a yℓ = (β1, . . . , βs−1, γ) with βℓ = αℓ,↓, βk = αk for k ∕= ℓ as

in the conclusion of Proposition 14. Let J be the set of all the type I pairs (j, a).
Write

π−1(x, y) =
%

J

cj,ar(j, a) + z

where cj,a ∈ R and z = 7Ind(x, y) ∈ RF̂2. Likewise, express

π−1(x, yℓ) =
%

J

dℓj,ar(j, a) + zℓ.
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We claim that for every (j, a) ∈ J, dℓj,a ! cj,a.
First examine the case j < s. Then a ∈ Ij and a + 1 ∈ Īj. Therefore λj

a = µp

for some p and λj
a+1 = αq for some q, and (by Lemma 10 and the definition of F̂2)

cj,a = λj
a − λj

a+1 = µp − αq. Likewise, d
ℓ
j,a = µp − βq. Since βq " αq, we get dℓj,a ! cj,a.

Second, for j = s, we have a ∈ K and a− 1 ∈ K̄. So νa−1 = γq for some q and νa = κp

for some p, and cj,a = γq − κp. But since the last coordinates of y and yℓ agree, we also
have dℓj,a = γq − κp, hence cj,a = dℓj,a.

Now we verify that z ∈ EqLRs
r by verifying the inequalities (i) (plus nonnegativity),

(ii’), (iii), and (iv).

(i) If k ∕= ℓ, then π−1(x, yℓ)
(k) = π−1(x, y)(k). Therefore

z(k) = z
(k)
ℓ +

%

J

(dℓj,a − cj,a)r(j, a)
(k). (4)

It follows at once that each z(k) is a partition (recall that the above claim holds for
arbitrary ℓ).

(ii’) We have
!s−1

j=1 |z(j)|− |z(s)| =
!s−1

j=1 |µj|− |κ|+
!s−1

j=1 |αj|− |γ| =
!s−1

j=1 |αj|− |γ| ! 0.

(iii) Fix any ℓ ∈ [s − 1]. Even though π−1(x, y)(ℓ) and π−1(x, yℓ)
(ℓ) are not likely to be

partitions, they do still satisfy the entrywise bound

π−1(x, yℓ)
(ℓ) ⊆ π−1(x, y)(ℓ).

Therefore z(ℓ) ⊇ z
(ℓ)
ℓ +

!
J(d

ℓ
j,a − cj,a)r(j, a)

(ℓ). Since zℓ = Ind(x, yℓ) satisfies all the
Horn inequalities, as of course do the r(j, a), and since every dℓj,a − cj,a ! 0, z must
satisfy the Horn inequalities as well.

(iv) If k0 ∕= ℓ, then since z
(k0)
ℓ ⊆ z

(s)
ℓ and each r(j, a)(k0) ⊆ r(j, a)(s), we get from (4)

applied to both k = k0 and k = s that z(k0) ⊆ z(s).

We have just shown that z = 7Ind(x, y) belongs to EqLRs
r. Since z ∈ RF̂2, we get that

z ∈ F̂2 as desired.

So each type II ray on 6F2 is the image of a ray from LRs
d × EqLRs

r−d under the map
7Ind. In Section 6.1.2, we give an example of finding the type II rays on a face 6F . For
this, it is helpful to have a formula for 7Ind, or really for 6p2, so we record that here.

Lemma 19. Once again let J = {(j, a)} be the collection of type I data on the facet F̂ ,
with associated rays r(j, a). The map 6p2 : RF̂ → RF̂2 sends (λ1, . . . ,λs−1, ν) to

(λ1, . . . ,λs−1, ν)−
%

(j, a) ∈ J
j < s

(λj
a − λj

a+1)r(j, a)−
%

(j, a) ∈ J
j = s

(νa−1 − νa)r(j, a). (5)

It is possible, in general, for 7Ind to take extremal rays to non-extremal rays, or even
to 0. In fact, by [3, Proposition 9.3], we have a good understanding of the kernel of 7Ind.
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Corollary 20. The kernel of 7Ind is spanned by the elements π(r(j, a)) as (j, a) ranges
over J. Moreover, the number of extremal rays of LRs

d × EqLRs
r−d which map to 0 under

7Ind is equal to |J|, and these rays therefore also form a basis of ker 7Ind.

Proof. Clearly each π(r(j, a)) is in the kernel. Since π is an invertible map, the collection

{π(r(j, a))|(j, a) ∈ J} is a linearly independent set. If it has the cardinality of dim ker 7Ind
we will have shown that they are a basis. For this we observe that

dim ker 7Ind = dim(RLRs
r × REqLRs

r)− dimRF̂2

= dimRF̂ − dimRF̂2

= dimRF1 = |J|.

Now, the only rays of LRs
d×EqLRs

r−d which map to 0 are in fact rays of LRs
d×LRs

r−d, since
7Ind preserves the extent to which inequality (ii’) is strict.

From [3, Proposition 9.3(3) and Corollary 9.4], there are exactly |J| − (s − 1) rays
of Cs

SLd
× Cs

SLr−d
which map to 0. Moreover xj × 0 maps to 0 for every j ∈ [s − 1], as

follows from [4, Corollary 60]. For dimension reasons, the elements 0× xj cannot map to

0; otherwise ker 7Ind would have dimension greater than |J|.

For an illustration of Corollary 20, see Section 6.1.2.

5 Special rays

5.1 Rays of EqLRs
r not on any Horn facet

In this section, we find the exceptional rays that are not on any Horn facet. We begin
with a couple of lemmas on certain rays.

Lemma 21. Suppose x = (ωk1 ,ωk2 , . . . ,ωks−1 ,ωℓ) belongs to EqLRs
r. Then R!0x is an

extremal ray.

Proof. By hypothesis, the inequalities (iv) imply that each ki " ℓ. The only way to write
x as a sum of partitions is

(ωk1 , . . . ,ωks−1 ,ωℓ) = (q1ωk1 , . . . , qs−1ωks−1 , qsωℓ) + (r1ωk1 , . . . , rs−1ωks−1 , rsωℓ),

where qi + ri = 1 for each i. If both elements on the RHS belong to EqLRs
r, then we have

both qs ! qi and rs ! ri for each i by (iv), which forces equalities to hold since the two
sides each add to 1. So the summands are parallel.

Lemma 22. The tuple (ωk1 , . . . ,ωks−1 ,ωℓ) ∈ EqLRs
r if and only if the inequalities

∀i ∈ [s− 1], ki " ℓ and
s−1%

i=1

ki ! ℓ

are satisfied.
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Proof. (⇒) These are just inequalities (iv) and (ii’).
(⇐) Observe that (ωℓ, 0, . . . , 0,ωℓ) ∈ EqLRs

r since the corresponding LR coefficient is
1. By [1, Proposition 2.1(A)], we also have (ωℓ,ωk2 ,ωk3 , . . . ,ωks−1 ,ωℓ) ∈ EqLRs

r.
By [1, Proposition 2.1(B)], for any value t between ℓ −

!
i!2 ki = |ωℓ| −

!
i!2 |ωki |

and ℓ = |ωℓ| we may find λ such that (λ,ωk2 , . . . ,ωℓ) ∈ EqLRs
r, λ ⊂ ωℓ, and |λ| = t. By

assumption, ℓ−
!

i!2 ki " k1 " ℓ, so we may find such a λ with |λ| = k1. Of course, the
only partition of k1 fitting inside ωℓ is ωk1 , so (ωk1 , . . . ,ωks−1 ,ωℓ) ∈ EqLRs

r as promised.

Theorem 23.

(I) Suppose (λ1, . . . ,λs−1, ν) gives an extremal ray of EqLRs
r satisfying

(A)
!s−1

j=1 |λj| > |ν|;
(B) each inequality of (iii) holds strictly.

Then λ1 = . . . = λs−1 = ν and this common partition is ωℓ for some ℓ.

(II) Furthermore, every element of the form (ωℓ,ωℓ, . . . ,ωℓ) is an extremal ray of EqLRs
r,

and such a ray lies on no Horn facet if and only if ℓ ! r/(s− 1).

Proof of (I). Assume for the sake of contradiction that νj > λ1
j for some j, and assume j

is as small as possible. Then since λ1
j−1 = νj−1 ! νj > λ1

j , we know that λ1± εωj−1 is still
a partition for ε > 0 a small enough real number.

Let k be the greatest index satisfying k ! j and νk = νj, and for each p = 2, . . . , s−1,
let ip be the smallest index satisfying ip " k and λp

ip+1 = λp
k+1 (where λp

r+1 = 0 by
definition). Thus in particular λp

ip
> λp

ip+1, so both ν ± εωk and λp ± εωip are also
partitions for small ε.

Set
z±ε := (λ1, . . . ,λs−1, ν)± ε

8
ωj−1,ωi2 , . . . ,ωis−1 ,ωk

9
.

If we show that for small enough ε both z+ε and z−ε belong to EqLRs
r, we will have a

contradiction regarding the extremality of (λ1, . . . ,λs−1, ν). Since (λ1, . . . ,λs−1, ν) satisfies
(ii’) and (iii) strictly, we are guaranteed that z±ε satisfy (ii’) and (iii) for small enough ε.
The preceding paragraph showed that z±ε satisfy (i) (and nonnegativity) for small ε as
well. So it suffices to show they satisfy (iv) for small enough ε:

• We first show z
(1)
±ε ⊆ z

(s)
±ε . If i " j, the inequality λi ± ε " νi ± ε is satisfied. For

k ! i > j, we have λi < νj = νi, so λi < νi ± ε for small enough ε. For i > k, the
inequality λi " νi is unchanged.

• Now let p ∈ {2, . . . , s − 1}; we’ll verify that z
(p)
±ε ⊆ z

(s)
±ε . If i " i2, the inequality

λp
i ± ε " νi ± ε is satisfied. For i2 < i " k, we have λp

i = λp
k+1 " νk+1 < νk " νi, so

λp
i < νi ± ε for small enough ε. For i > k, the inequality µi " νi is unchanged.
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So we have a contradiction and it must instead be true that λ1 = ν. The same argument
applies to any λj.

If our common partition λ1 = . . . = λs−1 = ν is expressed
!

ciωi in the {ωi} basis,
note that for any ci ∕= 0, (λ1, . . . ,λs−1, ν)± ε(ωi, . . .ωi,ωi) satisfies (ii’) and (iii) for small
enough ε and maintains (iv) with equalities, so there must be only one such nonzero
coefficient.

Proof of (II). Each (ωℓ, . . . ,ωℓ,ωℓ) is an extremal ray by Lemma 22.
Finally, we show that ℓ < r/(s− 1) ⇐⇒ (ωℓ, . . . ,ωℓ,ωℓ) lies on a Horn facet.
First, suppose ℓ < r/(s− 1). Find integers a1, . . . , as−1 such that4

r − 1 = a1 + . . .+ as−1,

each aj !
:
r − 1

s− 1

;
.

Set Ip = {ap + 1} and K = {r}. Then c
τ(K)
τ(I1),...,τ(Is−1)

= 1. Since

ℓ < r/(s− 1) "
:
r − 1

s− 1

;
+ 1 " ap + 1

for each p, the associated Horn inequality, applied to (ωℓ, . . . ,ωℓ,ωℓ), is 0 + . . . + 0 ! 0,
and thus is satisfied with equality.

Second, suppose ℓ ! r/(s − 1). Assume that (ωℓ, . . . ,ωℓ,ωℓ) lies on a Horn facet
associated to d-element subsets I1, . . . , Is−1, K. So

%

a∈I1,a"ℓ

1 + . . .+
%

a∈Is−1,a"ℓ

1 =
%

k∈K,k"ℓ

1.

Since cωℓ
ωℓ,0,...,0

= 1, it must also be true that

%

a∈I1,a"ℓ

1 + 0 !
%

k∈K,k"ℓ

1,

in which case the above must hold with equality and the sets {a ∈ Ip|a " ℓ} must be
empty for p ! 2. By symmetry, the set {a ∈ I1 : a " ℓ} is also empty, so every Ip consists
only of elements > ℓ.

Now, the stipulation |τ(I1)|+ . . .+ |τ(Is−1)| = |τ(K)| forces

s−1%

p=1

%

a∈Ip

a =
%

k∈K

k + (s− 2)d(d+ 1)/2.

However, a lower bound for the LHS (i.e., each Ip is as small as possible at {ℓ+1, . . . , ℓ+d})
is (s − 1)dℓ + (s − 1)d(d + 1)/2, while an upper bound for the RHS (i.e., where K =

4unless r− 1 is divisible by s− 1, choices abound here. Say r− 1 ≡ b mod s− 1, where 0 " b < s− 1.
Then one can take ai = (r − 1− b)/(s− 1) for i ! 2 and a1 = (r − 1 + b(s− 2))/(s− 1).
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{r−d+1, . . . , r−d+d}) is d(r−d)+(s−1)d(d+1)/2. Therefore we get (s−1)dℓ " dr−d2.
Assuming r " (s− 1)ℓ, this forces

(s− 1)dℓ+ d2 " rd " (s− 1)dℓ,

an obvious contradiction to d > 0.

5.2 Rays of EqLRs
r on every Horn facet

In contrast, there are some extremal rays of EqLRs
r that lie on every Horn facet. If r = 1,

then there are no inequalities (iii), so to make the current discussion more uniform, we
will treat (ii’) as a Horn inequality, at least if r = 1.

Proposition 24. Suppose that (λ1, . . . ,λs−1, ν) belongs to EqLRs
r and lies on every Horn

facet (so really belongs to LRs
r). Then each λp is a scalar multiple of ωr, as is ν.

Proof. Actually, we will need surprisingly few of the Horn inequalities. We begin with!s−1
p=1 λ

p
1 = ν1. Now for any 1 < k " r, there is also the equality

λ1
k +

s−1%

p=2

λp
1 = νk.

Combining these two equations, we get λ1
1−λ1

k = ν1− νk. The choice of λ
1 was arbitrary,

so we get
λ1
1 − λ1

k = . . . = λs−1
1 − λs−1

k = ν1 − νk.

Letting a represent that common difference, we wish to show a = 0. Consider the quan-
tities

0 =
s−1%

p=1

λp
1 − ν1,

b =
s−1%

p=1

k−1%

i=1

λp
i −

k−1%

i=1

νi,

c =
s−1%

p=1

k%

i=1

λp
i −

k%

i=1

νi.

Of course b and c are also 0 by assumption, but even if we had not assumed that these Horn
inequalities held with equality, we could use the following argument to show a = c = 0,
given that (inducting on k) b = 0, because

0 + b− c = a+ . . .+ a& '( )
s−1

−a

and at the very least c ! 0, a ! 0.
Therefore all partitions λp and ν are multiples of ωr. Furthermore, even if we had not

assumed
!

|λp| = |ν|, we would have proved it along the way, except in the single case
r = 1.
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Corollary 25. The extremal rays of EqLRs
r lying on every Horn facet are spanned by the

collection
xj = (0, . . . , 0, ωr&'()

j

, 0, . . . ,ωr), j ∈ [s− 1].

Proposition 26. Consider the addition map f :
<

R!0xj ⊕ Cs
SLr

→ LRs
r. We claim f is

an additive, R!0-linear bijection.

Proof. Clearly there are no dependencies among the direct summands on the left. Let
(λ1, . . . ,λs−1, ν) ∈ LRs

r be arbitrary. Since λ
1
r " νr, (λ

1−λ1
rωr,λ

2, . . . ,λs−1, ν−λ1
rωr) still

satisfies (i), nonnegativity, (ii), and (iii).
But therefore λ2

r " νr − λ1
r, from which we deduce that

(λ1 − λ1
rωr,λ

2 − λ2
rωr, . . . ,λ

s−1, ν − λ1
rωr − λ2

rωr)

once again satisfies (i), nonnegativity, (ii), and (iii). Continuing in this manner we arrive
at an element of Cs

SLr
, each time subtracting λj

rxj.

Proposition 27. Any element of Cs
r can be written as a sum z +

!
ajxj, where z ∈ LRs

r

and aj ∈ R. Likewise, any element of EqCs
r can be written as a sum ẑ +

!
âjxj, where

ẑ ∈ EqLRs
r and âj ∈ R.

Proof. Let x ∈ Cs
r be arbitrary. If all entries of x are nonnegative, then x ∈ LRs

r. Other-
wise, x + B(x1 + x2 + . . . + xs−1) will have nonnegative entries for B ≫ 0, and will still
belong to Cs

r, so

x = (x+B(x1 + x2 + . . .+ xs−1))− B(x1 + x2 + . . .+ xs−1).

A similar argument works for EqCs
r, recognizing that the containment inequalities (iv) will

also be satisfied for B ≫ 0.

6 Examples and Counterexamples

6.1 Using the algorithm

To illustrate the rays algorithm, let us take a small example where s = 3, r = 3. Consider
the Horn facet F̂ given by I1 = I2 = {2}, K = {3}, with associated equality

λ1
2 + λ2

2 = ν3.

6.1.1 Type I rays

One choice of type I datum is j = 1, a = 2. Using these, we get I ′1 = {3}, I ′2 = {2}, K ′ =
{3}. Now we follow Algorithm 7 to determine r(1, 2) = (λ1,λ2, ν). The ways to decrement
either of the first two sets or increment K ′ are as follows:

• I ′′1 = {2}, I ′′2 = {2}, K ′′ = {3} ⇝ c
{3}
{2},{2} = 1 =⇒ λ1

2 − λ1
3 = 1.
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• I ′′1 = {3}, I ′′2 = {1}, K ′′ = {3} ⇝ c
{3}
{3},{1} = 1 =⇒ λ2

1 − λ2
2 = 1.

• I ′′1 = {3}, I ′′2 = {2}, K ′′ = {4} ⇝ c
{4}
{3},{2} = 1 =⇒ ν3 = 1.

All other consecutive differences in λ1,λ2, ν are 0 and we get the ray

((1, 1, 0), (1, 0, 0), (1, 1, 1)) .

A second type I datum is j = 2, a = 2. By symmetry, we know from our first
calculation that the ray is ((1, 0, 0), (1, 1, 0), (1, 1, 1)).

The final type I datum is j = 3, a = 3, resulting in I ′1 = I ′2 = K ′ = {2}. The possible
ways to decrement/increment are:

• I ′′1 = {1}, I ′′2 = {2}, K ′′ = {2} ⇝ c
{2}
{1},{2} = 1 =⇒ λ1

1 − λ1
2 = 1.

• I ′′1 = {2}, I ′′2 = {1}, K ′′ = {2} ⇝ c
{2}
{2},{1} = 1 =⇒ λ2

1 − λ2
2 = 1.

• I ′′1 = {2}, I ′′2 = {2}, K ′′ = {3} ⇝ c
{3}
{2},{2} = 1 =⇒ ν2 − ν3 = 1.

So the ray produced is
((1, 0, 0), (1, 0, 0), (1, 1, 0)).

6.1.2 Type II rays

To find the type II rays on F̂2, we need to know the rays of LR3
1 × EqLR3

2, which are

((1), (0), (1))×((0, 0), (0, 0), (0, 0))

((0), (1), (1))×((0, 0), (0, 0), (0, 0))

together with the 10 rays of the form ((0), (0), (0))× z where z belongs to the r = 2 table

in Section 6.2. For example, let’s apply 7Ind to ((0), (0), (0)) × ((1, 0), (1, 1), (1, 1)). First
π−1 takes it to ((1, 0, 0), (1, 0, 1), (1, 1, 0)). Then using formula (5), p̂2 sends this to

((1, 0, 0), (1, 0, 1), (1, 1, 0)) + ((1, 0, 0), (1, 1, 0), (1, 1, 1))− ((1, 0, 0), (1, 0, 0), (1, 1, 0))

= ((1, 0, 0), (1, 1, 1), (1, 1, 1)),

which is one of the rays in Table 2.
For another example, let’s apply the induction map to

((1), (0), (1))×((0, 0), (0, 0), (0, 0)). Applying π−1 we get ((0, 1, 0), (0, 0, 0), (0, 0, 1)). Then
p̂2 takes this to

((0, 1, 0), (0, 0, 0), (0, 0, 1))− ((1, 1, 0), (1, 0, 0), (1, 1, 1)) + ((1, 0, 0), (1, 0, 0), (1, 1, 0)) = 0.

This we expect as noted in the proof of Corollary 20.
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r = 1

((1),(0),(1))

((0),(1),(1))

((1),(1),(1))

r = 2

((0,0),(1,0),(1,0))

((0,0),(1,1),(1,1))

((1,0),(0,0),(1,0))

((1,1),(0,0),(1,1))

((1,0),(1,0),(1,1))

((1,0),(1,0),(1,0))

((1,0),(1,1),(1,1))

((1,1),(1,0),(1,1))

((1,1),(1,1),(1,1))

((1,1),(1,1),(2,1))

Table 1: Extremal rays of EqLR3
1 and EqLR3

2

The total outputs produced include the following rays:

((0, 0, 0), (1, 0, 0), (1, 0, 0)) ((0, 0, 0), (1, 1, 1), (1, 1, 1))

((1, 0, 0), (0, 0, 0), (1, 0, 0)) ((1, 1, 1), (0, 0, 0), (1, 1, 1))

((1, 0, 0), (1, 0, 0), (1, 0, 0)) ((1, 0, 0), (1, 1, 1), (1, 1, 1))

((1, 1, 1), (1, 0, 0), (1, 1, 1))

Additionally, 0 is output three times in accordance with Corollary 20 (in our example
|J| = 3), and two elements are produced which are not on an extremal ray:

((0), (0), (0))× ((1, 1), (1, 1), (1, 1))
"Ind.−−→ ((2, 1, 1), (2, 1, 1), (2, 2, 2))

((0), (0), (0))× ((1, 1), (1, 1), (2, 1))
"Ind.−−→ ((2, 1, 1), (2, 1, 1), (3, 2, 2))

6.2 Data for small r

To give a sense of the extremal rays of EqLR3
r, we have recorded in Tables 1 and 2 the

complete list of rays for r " 3. The “strictly equivariant” rays (those violating (ii)) are
below the dashed line; those which lie on LR3

r are above.
In Table 3, we have recorded the number of extremal rays of the cones LR3

r and EqLR3
r

for the first few values of r. Calculations were done using Sage [15] and Normaliz [5].

6.3 Extra Hilbert basis elements

The semigroup of lattice points EqLRs
r ∩ Zrs has a finite list of indecomposable elements

– those which are not the sum of two nonzero elements – called the Hilbert basis. Equiv-
alently, the Hilbert basis is the (unique) minimal generating set of EqLRs

r ∩ Zrs over Z!0.
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r = 3

((0,0,0),(1,0,0),(1,0,0)) ((1,0,0),(1,0,0),(1,1,0))

((0,0,0),(1,1,0),(1,1,0)) ((1,0,0),(1,1,0),(1,1,1))

((0,0,0),(1,1,1),(1,1,1)) ((1,1,0),(0,0,0),(1,1,0))

((1,0,0),(0,0,0),(1,0,0)) ((1,1,0),(1,0,0),(1,1,1))

((1,1,0),(1,1,0),(2,1,1)) ((1,1,1),(0,0,0),(1,1,1))

((1,0,0),(1,0,0),(1,0,0)) ((1,1,0),(1,1,0),(2,1,0))

((1,0,0),(1,1,0),(1,1,0)) ((1,1,0),(1,1,1),(1,1,1))

((1,0,0),(1,1,1),(1,1,1)) ((1,1,0),(1,1,1),(2,1,1))

((1,1,0),(1,0,0),(1,1,0)) ((1,1,1),(1,0,0),(1,1,1))

((1,1,0),(1,1,0),(1,1,0)) ((1,1,1),(1,1,0),(1,1,1))

((1,1,0),(1,1,0),(1,1,1)) ((1,1,1),(1,1,0),(2,1,1))

((1,1,1),(1,1,1),(1,1,1)) ((1,1,1),(1,1,1),(2,1,1))

((1,1,1),(1,1,1),(2,2,1)) ((1,1,1),(2,1,1),(2,2,1))

((2,1,1),(1,1,1),(2,2,1))

Table 2: Extremal rays of EqLR3
3

r # rays of LR3
r # rays of EqLR3

r

1 2 3
2 5 10
3 10 27
4 20 72
5 44 195
6 114 532
7 362 1469

Table 3: Extremal rays of LR3
r and EqLR3

r
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r # rays of EqLR3
r # H.b. elts. of EqLR3

r ∩ Z3r

1 3 3
2 10 10
3 27 27
4 72 72
5 195 195
6 532 535
7 1469 1500

Table 4: Extremal rays and Hilbert basis elements of EqLR3
r

Now every extremal ray affords us with exactly one Hilbert basis element, namely the
first lattice point along that ray. This element is indecomposable since any summands
must be parallel (by extremality) and therefore one of them equal to 0 (by being the first
lattice point).

For general pointed rational cones, the Hilbert basis can be much larger than the set
of extremal rays. We observe that for EqLR3

r, this does not happen until r = 6; see Table
4. Since the natural inclusions EqLRs

r ⊂ EqLRs
r+1 given by appending 0’s preserve the

properties of extremal ray and Hilbert basis element, we conclude that for r ! 6 the
Hilbert basis of EqLR3

r ∩ Z3r is greater in size than the set of extremal rays. To produce
Table 4, calculations were once again done using Sage and Normaliz. Here are the three
“extra” Hilbert basis elements at r = 6:

((2, 1, 1, 1, 1, 1), (2, 2, 2, 1, 1, 1), (3, 3, 2, 2, 2, 1))

((2, 2, 1, 1, 1, 1), (2, 2, 1, 1, 1, 1), (3, 2, 2, 2, 2, 1))

((2, 2, 2, 1, 1, 1), (2, 1, 1, 1, 1, 1), (3, 3, 2, 2, 2, 1))

The phenomenon of extra Hilbert basis elements has neither been observed nor ruled out
for the cones LR3

r, having checked the cases r " 9 by computer.
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