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Abstract

Consider n cars C1, C2, . . . , Cn that want to park in a parking lot with parking
spaces 1, 2, . . . , n that appear in order. Each car Ci has a parking preference αi ∈
{1, 2, . . . , n}. The cars appear in order, if their preferred parking spot is not taken,
they take it, if the parking spot is taken, they move forward until they find an
empty spot. If they do not find an empty spot, they do not park. An n-tuple
(α1, α2, . . . , αn) is said to be a parking function, if this list of preferences allows
every car to park under this algorithm. For an integer k, we say that an n-tuple is a
k-Naples parking function if the cars can park with the modified algorithm, where
when car Ci’s preference is taken, Ci backs up k-spaces (one by one) and takes the
first empty spot. If there are no empty spots in the (up to) k spaces behind αi,
they then try to find a parking spot in front of them. We introduce randomness
to this problem in two ways: 1) For the original parking function definition, for
each car Ci that has their preference taken, we decide with probability p whether
Ci moves forwards or backwards when their preferred spot is taken; 2) For the k-
Naples definition, for each car Ci that has their preference taken, we decide with
probability p whether Ci backs up k spaces or not before moving forward. In each
of these models, for an n-tuple α ∈ {1, 2, . . . , n}n, there is now a probability that
the model ends in all cars parking or not. For each of these random models, we find
a formula for the expected value. Furthermore, for the second random model, in
the case k = 1, p = 1/2, we prove that for any 1 6 t 6 2n−2, there is exactly one
α ∈ {1, 2, . . . , n}n such that the probability that α parks is (2t− 1)/2n−1.

Mathematics Subject Classifications: 05A10, 05A15, 60C05
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1 Introduction

Consider n cars C1, C2, . . . , Cn that want to park in a parking lot with parking spaces
1, 2, . . . , n that appear in order. Each car Ci has a parking preference αi ∈ {1, 2, . . . , n}.
The cars appear in order, if their preferred parking spot is not taken, they take it, if the
parking spot is taken, they move forward until they find an empty spot. If they do not
find an empty spot, they do not park. An n-tuple (α1, α2, . . . , αn) is said to be a parking
function, if this list of preferences allows every car to park under this algorithm. That
the number of parking functions is (n+ 1)n−1 was first proved by Konheim and Weiss [5]
using generating functions and then Pollak [6]1 using a clever bijection. For more details
on parking functions, the survey paper by Yan [7] is a great resource.

One generalization of parking functions, introduced by Baumgardner [1], concerns
what are known as Naples parking functions. In this scenario, the cars that reach a taken
parking spot back up one spot before moving forward. For example, the tuple (4, 3, 3, 1)
is not a parking function, but it is a Naples parking function. One could then generalize
the concept to k-Naples parking functions, where cars back up up to k spots one by one
and take the first empty spot they find behind them, and if no such spot exists, they move
forward in search of a parking spot. Christensen et al. [3] found the following recursive
formula to find the number Nk(n+ 1) of k-Naples parking functions on n+ 1 cars:

Nk(n) =
n−1∑
i=0

(
n− 1

i

)
Nk(i)(n− i)n−i−2(i+ 1 + min{k, n− i− 1}). (1)

In a playful paper by Carlson, Christensen, Harris, Jones, and Ramos Rodŕıguez
[2], the authors introduce many variants of parking functions and mention many open
problems. In particular, chapter 1.9 of the paper suggests introducing randomness to
Naples parking functions. Randomness had been considered by Diaconis and Hicks [4]
where they study whether a random parking function has certain properties. In our case,
inspired by Carlson et al., we consider models where we introduce randomness to the
parking model (as opposed to randomly choosing a tuple and checking properties of it).
The two random versions of parking functions we consider are

1. Suppose the spot Ci wants is taken, then Ci continues forward with probability p
or changes direction and goes backwards with probability 1− p.

2. Suppose the spot Ci wants is taken, then Ci backs up up to k spaces with probability
p, parking in the first empty spot they find behind them before moving forward, or
just continues forward with probability 1− p.

For the first of these two models, the original paper on parking functions by Konheim
and Weiss suggests that the expected number of parking functions is also (n+ 1)n−1. We
will explore this model and give a different proof of this result in section 2. The second
model is the one we study more. In section 3 we will prove a generalization of (1), namely

1Pollak’s proof was published by Riordan instead of Pollak.
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Theorem 1. Let Tk,p(n) be the expected number of random k-Naples parking functions,
then for n > 1,

Tk,p(n) =
n−1∑
i=0

(
n− 1

i

)
Tk,p(i)(n− i)n−i−2(i+ 1 + pmin{k, n− i− 1}). (2)

For example, Table 1, includes the expected number T (n) of 1-Naples parking functions
when p = 1/2. We will investigate the case k = 1 and p = 1/2 deeply in section 4, where

n 1 2 3 4 5 6 7 8
P (n) 1 3 16 125 1296 16807 262144 4782969
T (n) 1 3.5 20 163.25 1744.25 23121.375 366699 6779029.0625

N(n)+P (n)
2

1 3.5 20 164 1760.5 23437 373107.5 6920142.5
N(n) 1 4 24 203 2225 30067 484071 9057316

Table 1: N(n) is the number of Naples-parking functions, P (n) is the number of parking
functions and T (n) is the expected number of random Naples parking functions (when
p = 1/2).

we study the distribution of the probabilities for different n-tuples and in particular we
prove the following surprising result:

Theorem 2. Given n cars, there is one and only one parking preference for which the
probability that every car parks is 2t−1

2n−1 , where t ∈ [1, 2n−2].

Finally, in section 5 we study some asymptotics comparing the expected number of
random 1-Naples parking function to 1-Naples parking functions and to the usual parking
function model. Namely, we will prove the following theorem:

Theorem 3. Let N(n) = N1(n) be the number of Naples parking functions for n cars,
P (n) = (n+1)n−1 be the number of parking functions, and T (n) = T1/2,1(n) be the expected
number of random Naples parking functions for n cars, with probability 1/2 of going back
one spot. Then

P (n) 6 T (n) 6
N(n) + P (n)

2
.

2 Random Direction Parking

Here we will consider the model where if spot αi is taken for car Ci, then with probability
p they look for a parking spot ahead of them and with probability 1 − p they look for a
parking spot behind them. For example, the tuple (1, 2, 2, 1) has probability p2 of parking.
Let Rp(n) be the expected number of parking functions, i.e.,

Rp(n) =
∑

α∈{1,2,...,n}n
P(α parks).
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The following theorem was first proved by Konheim and Weiss, but we include a different
proof here.

Theorem 4. For any positive integer n, Rp(n) = (n+ 1)n−1.

Proof. Consider an n-tuple α ∈ {1, 2, . . . , n + 1}n. Consider having n + 1 parking spots
in a circle, so the spot n+ 1 represents that someone didn’t park. Let v(α) be the vector
where the i-th entry is the probability that parking spot i is not taken under this circular
random parking model. Note that if you shift every entry in α by 1 modulo n + 1, then
the distribution of v(α) shifts by 1 to the right. Therefore (since the sum of entries in
each v(α) is 1), ∑

α∈{1,2,...,n+1}n
v(α) =

1

n+ 1
((n+ 1)n, (n+ 1)n, . . . , (n+ 1)n) .

Therefore, if you consider n-tuples α ∈ {1, 2, . . . , n+ 1}n, the expected number would be
(n + 1)n−1 by linearity of expectation. We want to prove the expectation is (n + 1)n−1

when only considering tuples α ∈ {1, 2, . . . , n}n. The key observation is that if α ∈
{1, 2, . . . , n+ 1}n and α 6∈ {1, 2, . . . , n}n, then at least one car wants to park in n+ 1 and
whoever gets there first takes the parking spot. Therefore, n + 1 is not empty for those
α’s and they don’t contribute anything to Rp(n).

Therefore Rp(n) = (n+ 1)n−1.

The next result is a statement about the probability that a particular n-tuple “parks.”

Proposition 5. Let p ∈ (0, 1), and α ∈ {1, 2, . . . , n}n. If α is a permutation of
{1, 2, . . . , n}, then P(α parks) = 1, otherwise

0 < P(α parks) < 1.

Proof. When α is a permutation of {1, 2, . . . , n}, then every car takes their preferred spot
and everyone parks, so P(α parks) = 1. We can now assume α is not a permutation of
{1, 2, . . . , n}. Therefore, there is at least one pair of cars that want the same parking
spot. We will first show P(α parks) > 0. Note that anytime a car reaches a preferred spot
that is taken, then at least one of the two directions has an empty spot, so the car can
choose that direction (because 0 < p < 1) and park. This is true for any car, therefore
P(α parks) > 0.

We will now prove that P(α parks) < 1. Suppose a tuple α parked after a sequence
of correct choices. Now consider all possible choices that lead to a successful parking
configuration for that tuple α. Among these finitely many choices, consider one that had
a car Ci with i as large as possible, where Ci’s preferred parking spot is taken. Take the
same choices that led to this parking spot, except that when one reaches Ci, the car Ci
goes in the opposite direction. If Ci finds a parking spot, then there is a j > i where Cj
had taken that spot under the previous choice, so there is a larger j with Cj reaching a
conflict. The only alternative is that Ci didn’t park. Therefore, P(α parks) < 1.

the electronic journal of combinatorics 29(3) (2022), #P3.13 4



3 Generalizing k-Naples with an Unfair Coin

In this section we are considering the parking model where there are n cars, C1, C2, . . . , Cn,
where car Ci prefers to park at spot αi. Each car goes in turns, C1 first, C2 second, etc.,
where car Ci parks at αi if the spot is not taken. If αi is taken, then with probability
p, Ci moves up to k spaces backwards (if the number of spaces behind is less than k,
then that’s how far behind they go) taking the first empty spot behind them (if it exists)
before looking for a parking spot in front of them. To illustrate the model, Table 2 shows
the probability that a 3-tuple of preferences parks when k = 1.

α 111 112 113 121 122 123 131 132 133
P(α parks) 1 1 1 1 1 1 1 1 p

α 211 212 213 221 222 223 231 232 233
P(α parks) 1 1 1 1 1− (1− p)2 p 1 p 0

α 311 312 313 321 322 323 331 332 333
P(α parks) 1 1 p 1 p 0 p p2 0

Table 2: All 3-tuples α of parking preferences (written α1α2α3 instead of (α1, α2, α3)) and
the probability that they park under the random 1-Naples parking model.

Let Tk,p(n) be the expected number of parking functions under the random k-Naples
model, i.e.,

Tk,p(n) =
∑

α∈{1,2,...,n}n
P(α parks).

Proof of Theorem 1. The set of all successful parking processes for n cars can be parti-
tioned into n sets depending on where the n-th car eventually parks. Suppose the n-th
car eventually parks at spot i+ 1, where i ∈ [0, n− 1]. Right before the n-th car is going
to park, spot i+ 1 has to be open, and i cars have taken the i spots left of spot i+ 1, and
n− i− 1 cars have taken the n− i− 1 spots to the right of spot i+ 1.

First we choose i cars that take the left i spots, there are
(
n−1
i

)
ways of doing so. Then

the expected number of preferences for them to park accordingly is Tk,p(i). To count the
expected number of preferences for n− i−1 cars to take the right n− i−1 spots consider
changing their labels by subtracting i + 1, to get a tuple α ∈ {1, 2, . . . , n − i − 1}n−i−1.
Now, if any car backs up to space 0 or goes beyond space n − i − 1, that car doesn’t
park (note that space 0 is supposed to be taken by the n-th car). We can consider
the circular version where the extra spot is 0 (on the left of 1, but also on the right
of n − i − 1). A tuple α contributes to the expected value if it’s empty spot is not 0.
Noting that adding 1 (modulo n − i) to all preferences in α translates the empty spot
by 1, we see that the probability that 0 is taken is the same as every other parking
spot (if we allow α ∈ {0, 1, . . . , n − i − 1}n−i−1, which won’t change the count as having
αi = 0 automatically means that tuple won’t have an empty spot at 0). Therefore, the
contribution to the expected value from these items is (n− i)n−i−2.
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Finally, the n-th car could have any preference from 1 to i+ 1 which guarantees they
park at location i+1 or they could have a preference between i+2 and min {i+ k + 1, n}
and flipped a coin to back up k spots, which has probability p of happening. This
contributes a factor of (i+ 1 + pmin{k, n− i− 1}). Since i ranges from 0 to n− 1, using
linearity of expectation we get our desired sum.

4 Distribution of Random 1-Naples

In this section we dive deeper into the random Naples parking in the case when k = 1
and p = 1/2. In particular we study the distribution of the probabilities for different
n-tuples. For a real number q ∈ [0, 1], let f(q) be the number of α ∈ {1, 2, . . . , n}n such
that P(α parks) = q. For example, Table 3, finds all relevant f(q)’s for n = 7 other than
f(1).2

q 0 1/64 2/64 3/64 4/64 5/64 6/64 7/64
f(q) 339472 1 136 1 2194 1 209 1
q 8/64 9/64 10/64 11/64 12/64 13/64 14/64 15/64

f(q) 12466 1 140 1 3107 1 143 1
q 16/64 17/64 18/64 19/64 20/64 21/64 22/64 23/64

f(q) 40610 1 141 1 1361 1 74 1
q 24/64 25/64 26/64 27/64 28/64 29/64 30/64 31/64

f(q) 14253 1 75 1 1589 1 148 1
q 32/64 33/64 34/64 35/64 36/64 37/64 38/64 39/64

f(q) 94792 1 30 1 1171 1 33 1
q 40/64 41/64 42/64 43/64 44/64 45/64 46/64 47/64

f(q) 4861 1 104 1 576 1 37 1
p 48/64 49/64 50/64 51/64 52/64 53/64 54/64 55/64

f(q) 35324 1 35 1 614 1 38 1
p 56/64 57/64 58/64 59/64 60/64 61/64 62/64 63/64

f(q) 6819 1 39 1 734 1 42 1

Table 3: Distribution of probability for n = 7, q for probability and f(q) for number of
preferences of probability q.

There are several patterns that appear in Table 3 that we are able to prove are satisfied,
namely, we will prove

1. We have that f(1) is the number of parking functions of length n, i.e., f(1) =
(n+ 1)n−1.

2. We have that f(0) is the number of tuples that are not 1-Naples parking functions.

2We wrote the code to compute this table (and other tables) in Python. The code can be viewed at
the URL http://campus.lakeforest.edu/trevino/GeneralizedParkingFunctions.txt.
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3. We have f(q) > 0 if and only if q can be written as a/b with b = 2n−1 and 0 6 a 6
2n−1.

4. We have f(q) = 1 if and only if q can be written as a/b with b = 2n−1 and 1 6 a 6
2n−1 odd.

The first two items show that this random model in some sense measures how close to a
parking function a tuple was originally, and it shows that only tuples that “park” under
the Naples model get positive probability. Our favorite (and hardest to prove) of these
patterns is the fourth one, which we called Theorem 2 in the Introduction.

Before we can prove these patterns, let’s translate the probabilistic model into a
counting problem. For an n-tuple α, we want to calculate P(α). Consider all tuples
(b2, b3, . . . , bn) ∈ {0, 1}n−1. If car Ci’s preferred spot αi is taken, we can simulate the
model by saying that Ci moves forward if bi = 1 and it goes one spot back before moving
forward if bi = 0. If we let g(α) be the number of tuples (b2, . . . , bn) for which α parks,
then

P(α parks) =
g(α)

2n−1
. (3)

The following lemma is crucial in proving patterns 1 and 2

Lemma 6. Let n be a positive integer. Suppose that α = (α1, α2, . . . , αn) ∈ {1, 2, . . . , n}n
parks for the choices β = (β2, β3, . . . , βn) ∈ {0, 1}n−1. If any βi = 1, then α also parks
when βi = 1 is replaced by β′i = 0.

Proof. Let A1, A2, . . . , An be the parking locations of cars C1, C2, . . . , Cn when the parking
preference is α and the choices on whether continuing forwards or taking back a step are
β. Now replace βi from 1 to 0. Suppose α doesn’t park under these new conditions. Let
e be the last spot where no one parked, and let Cj be the last car that doesn’t park.
Since Cj doesn’t park, it means there is a car Ck1 with k1 < j that parked at Aj. Then
e < αk1 6 Aj − 1 or αk1 = Aj + 1 because if αk1 6 e, then Ck1 would not leave e
empty, if Ck1 = Aj then Aj wouldn’t be open for Cj under the initial configuration, and
if Ck1 > Aj + 2, then by definition Ck1 cannot take a place before Aj + 1. We will prove
αk1 6= Aj + 1. If αk1 = Aj + 1, then Aj + 1 must be taken by another car, say Ck2 with
k2 < k1, but since Ak1 6= Aj and k1 < j, Ak1 = Aj + 1. This implies that αk2 = Aj + 2.
The same reasoning implies there exists a car Ck3 with k3 < k2 such that αk3 = Aj + 3,
and so on. But this leads to a contradiction because, eventually, you run out of cars or
you run out of parking spots. Therefore e < αk1 6 Aj − 1. Since Ak1 6= Aj, that means
that there must have been a car Ck2 that took spot Ak1 6 Aj − 1. The same reasoning
as for αk1 shows that e < αk2 6 Ak1 − 1 6 Aj − 2. But then there exist cars Ck3 , Ck4 , . . .
such that e < αk3 6 Aj − 3, e < αk4 6 Aj − 4, etcetera. This leads to a contradiction as
there are only finitely many cars.

Remark 7. Another proof, suggested by the anonymous referee, can be built from “using
one of the other definitions of classical parking functions: α ∈ {1, 2, . . . , n}n is a parking
function if and only if for all i ∈ {1, 2, . . . , n} we have |{j : αj 6 i}| > i, along with
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the observation that α is a 1-Naples parking function if and only if α∗ = (α∗1, . . . , α
∗
n) is

a classical parking function where α∗i = αi if the driver does not move backwards and
max{αi − 1, 1} if they do.”

With the lemma in hand, we can prove the following two theorems:

Theorem 8. For a positive integer n, α ∈ {1, 2, . . . , n}n is a parking function if and only
if

P(α parks) = 1.

Proof. Suppose P(α parks) = 1, then, in particular, α parks when b2 = b3 = . . . = bn = 1,
which implies α is a parking function.

Now, let’s assume α is a parking function. Therefore β = (1, 1, . . . , 1) ∈ {0, 1}n−1 leads
α to park. From Lemma 6, that means that we can replace any 1 by a 0. Repeating this
process for all replacements, we can get to any β′ ∈ {0, 1}n−1. Therefore, P(α parks) =
1.

Theorem 9. For a positive integer n, α ∈ {1, 2, . . . , n}n is not a Naples parking function
if and only if

P(α parks) = 0.

Proof. Suppose that α is a Naples-parking function. Then β = (0, 0, . . . , 0) ∈ {0, 1}n−1 is
a set of choices that lead to parking. Therefore P(α parks) > 0.

Now, suppose P(α parks) > 0. Then there is a β ∈ {0, 1}n−1 such that α parks when
making the choices from β. By Lemma 6, we can change all the 1’s to 0’s, which implies
that β′ = (0, 0, . . . , 0) ∈ {0, 1}n−1 also leads to α parking. Therefore α is a Naples parking
function.

The third pattern will be proved after we prove Theorem 2, but one direction is an
easy consequence of (3), because it follows that f(q) > 0 implies q can be written as
q = a/b with b = 2n−1 and 0 6 a 6 2n−1.

We will now embark on the proof of our favorite result, pattern 4. To give a feel of
how the proof will go, Table 4 shows the 6-tuples α that have probability a/b with a odd
and b = 25.

Note how the tuples have a very particular shape, namely α1 = α2 > α3 > · · · > α6 =
2, where αi+1 ∈ {αi − 1, αi}.

The following lemma studies g(α) when α is of the form described above. This result
will be useful in the proof of Theorem 2.

Lemma 10. Suppose that cars C1, C2, . . . , Cn have preferred parking spots

α = (t, t, . . . , t︸ ︷︷ ︸
mt

, t− 1, t− 1, . . . , t− 1︸ ︷︷ ︸
mt−1

, . . . , 3, 3, . . . , 3︸ ︷︷ ︸
m3

, 2, 2, . . . , 2︸ ︷︷ ︸
m2

),

where there are m2 2’s, m3 3’s, . . ., mt t’s. Then

g(α) = 2n−1 − 2n−m2 + 2n−m2−1 − 2n−m2−m3

+ 2n−m2−m3−1 − 2n−m2−m3−m4 + . . .+ 2mt−1 − 1.
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α (6,6,5,4,3,2) (5,5,5,4,3,2) (5,5,4,4,3,2) (4,4,4,4,3,2)
P(α parks) 1/32 3/32 5/32 7/32

α (5,5,4,3,3,2) (4,4,4,3,3,2) (4,4,3,3,3,2) (3,3,3,3,3,2)
P(α parks) 9/32 11/32 13/32 15/32

α (5,5,4,3,2,2) (4,4,4,3,2,2) (4,4,3,3,2,2) (3,3,3,3,2,2)
P(α parks) 17/32 19/32 21/32 23/32

α (4,4,3,2,2,2) (3,3,3,2,2,2) (3,3,2,2,2,2) (2,2,2,2,2,2)
P(α parks) 25/32 27/32 29/32 31/32

Table 4: The 16 parking preferences α with P(α parks) = k
32

with k is odd.

Proof. If they are all 2’s, then g(α) = 2n−1 − 1, because the only way α doesn’t park is
if β = (1, 1, . . . , 1). This covers the case n = 2. We’ll prove it by induction. Suppose the
formula is accurate for m cars for any m 6 n− 1. Now consider

α = (t, t, . . . , t︸ ︷︷ ︸
mt

, t− 1, t− 1, . . . , t− 1︸ ︷︷ ︸
mt−1

, . . . , 3, 3, . . . , 3︸ ︷︷ ︸
m3

, 2, 2, . . . , 2︸ ︷︷ ︸
m2

).

If t = 2, they are all 2’s and we are done. Suppose t > 3. Now, note that after the
first n − m2 cars park, they either end up in spots {2, 3, 4, . . . , n − m2 + 1} or in spots
{3, 4, . . . , n − m2 + 2}. That’s because the numbers are consecutive, so there’s never a
bigger gap. Note that to end up in {2, 3, 4, . . . , n−m2+1} is the equivalent of transforming

(t, t, . . . , t︸ ︷︷ ︸
mt

, t− 1, t− 1, . . . , t− 1︸ ︷︷ ︸
mt−1

, . . . , 3, 3, . . . , 3︸ ︷︷ ︸
m3

)

into
α′ = (t− 1, t− 1, . . . , t− 1︸ ︷︷ ︸

mt

, t− 2, t− 2, . . . , t− 2︸ ︷︷ ︸
mt−2

, . . . , 2, 2, . . . , 2︸ ︷︷ ︸
m3

)

and seeing if α′ parks. Now note that if you reach the last m2 2’s with spots {2, 3, . . . , n−
m2 + 1} taken, there are 2m2 − 1 ways of parking (if any of the 2’s backs up, α parks,
otherwise it doesn’t), whereas if you reach the last m2 2’s with spots {3, 4, . . . , n−m2+2}
taken, then there are 2(2m2−1 − 1) ways to park because the first car with preference 2
takes spot 2 automatically, and so whether the car wanted to go back or forward is
irrelevant, contributing a factor of 2, and the rest now succeed if any of the m2 − 1 cars
with preference 2 backs up, which contributes a factor of 2m2−1 − 1. Therefore

g(α) = g(α′)(2m2 − 1) + (2n−m2−1 − g(α′))(2m2 − 2) = 2n−1 − 2n−m2 + g(α′).

The claim follows from applying the induction hypothesis on g(α′).

We are now ready to prove Theorem 2.
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Proof of Theorem 2. Table 4 provides the 16 parking preferences α with P(α parks) = k
32

with k is odd. This proves the n = 6 case, and one can easily check that it’s also true for
n < 6. We may assume n > 6. Define g = g(α) as in (3). We will first prove that if g is
odd, then α1 = α2, αi+1 = αi or αi+1 = αi−1, and αn = 2. Suppose α2 6= α1, then C1 and
C2 parks in α1 and α2, respectively. Therefore, the value of β2 is irrelevant, which implies
that g is even. Therefore α1 = α2. We also know that αi > 2 because if for any i > 2
we have αi = 1, then βi = 0 and βi = 1 both mean that the car searches forward, which
implies g is even. Consider α3. We know C1 parks at α1, for β2 = 0, C2 parks at α1 + 1,
and for β2 = 1, C2 parks at α2− 1. Note that if |α3−α2| > 2, then β3 is irrelevant, which
would then make g even. If α3 = α2+1, then in the case where C2 parks at α2−1 we have
that C3 parks at α2 + 1 without β3 mattering, and in the case that C2 parks at α2 + 1, C3

parks at α2 + 2 (or doesn’t park if α2 > n − 2), which means β3 is irrelevant. Therefore
g is even whenever α3 > α2 + 1 and when α3 6 α2 − 2. Therefore α3 ∈ {α2 − 1, α2}.
Now suppose that for all 1 6 i 6 m − 1 we have αi+1 ∈ {αi − 1, αi}. Let’s prove that
αm+1 ∈ {αm− 1, αm}. The first m cars are parked at {αm− 1, αm, . . . , αm +m− 2} or at
{αm, αm+1, . . . , αm+m−1}. If αm+1 ∈ {αm+1, . . . , αm+m−2}, then Cm+1’s preferred
spot is taken and the spot behind them is also taken, so βm+1 is irrelevant, which implies
g is even. If αm+1 = αm + m − 1, then in the first case Cm+1 parks at αm + m − 1 and
βm+1 is irrelevant, or in the second case, since αm+m−1 and αm+m−2 are both taken,
Cm+1 parks at αm + m (or fails to park), in which case βm+1 is irrelevant, forcing g to
be even. Therefore αm+1 6= αm + m − 1. If αm+1 > αm + m − 1, then Cm+1 parks at
αm+1 and βm+1 is irrelevant. Therefore αm+1 6 αm. If αm+1 6 αm − 2, then Cm+1 parks
at αm+1 and βm+1 is irrelevant, which means g is even. Therefore αm+1 ∈ {αm − 1, αm}.
Finally, to complete the proof of our claim, we need to prove αn = 2. Suppose αn > 3,
then nobody parked at position 1 since αi > αn for all i < n.

Therefore, if g is odd, then

α1 = α2 > α3 > · · · > αn = 2 with αi+1 ∈ {αi − 1, αi}. (4)

There are 2n−2 α’s satisfying (4) because αn = 2 and αn−1 has two choices {2, 3}, then
αn−2 has two choices {αn−1, αn−1 + 1}, and so on, until α2 has two choices {α3, α3 + 1}
while α1 = α2. Note that all elements had those choices because if you increase one by
one you get α1 = α2 = n, α3 = n − 1, . . . , αn−1 = 3, αn = 2. So if g(α) is odd, then α is
one of these 2n−2 possible n-tuples.

Let A be the set of α ∈ {1, 2, . . . , n}n satisfying (4). We know |A| = 2n−2. Let α ∈ A.
Then α is of the form

α = (t, t, . . . , t︸ ︷︷ ︸
mt

, t− 1, t− 1, . . . , t− 1︸ ︷︷ ︸
mt−1

, . . . , 3, 3, . . . , 3︸ ︷︷ ︸
m3

, 2, 2, . . . , 2︸ ︷︷ ︸
m2

). (5)

By Lemma 10,

g(α) = 2n−1 − 2n−m2 + 2n−m2−1 − 2n−m2−m3

+ 2n−m2−m3−1 − 2n−m2−m3−m4 + . . .+ 2mt−1 − 1.
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Since mt > 2 because α1 = α2, and mi > 1 for i ∈ {2, 3, . . . , t− 1},

n−m2 > n−m2 − 1 > n−m2 −m3 > n−m2 −m3 > · · · > mt − 1 > 1,

so all of the exponents in the powers of 2 are positive, and hence g(α) is odd. Therefore
for an arbitrary n-tuple α, g(α) is odd if and only if α ∈ A.

Now, let α, α′ ∈ A. We will show that α 6= α′ implies g(α) 6= g(α′). Write α as in (5)
and let α′ be

α′ = (s, s, . . . , s︸ ︷︷ ︸
m′s

, s− 1, s− 1, . . . , s− 1︸ ︷︷ ︸
m′s−1

, . . . , 3, 3, . . . , 3︸ ︷︷ ︸
m′3

, 2, 2, . . . , 2︸ ︷︷ ︸
m′2

). (6)

Then
g(α′) = 2n−1 − 2n−m

′
2 + 2n−m

′
2−1 − 2n−m

′
2−m′3 + . . .+ 2m

′
s−1 − 1.

Suppose g(α) = g(α′). Let’s prove m2 = m′2. Without loss of generality, suppose m2 >
m′2. From the proof of Lemma 10, we can see that

g(α) = g(α1 − 1, α2 − 1, . . . , αn−m2 − 1) + 2n−1 − 2n−m2 ,

and
g(α′) = g(α′1 − 1, α′2 − 1, . . . , α′n−m′2 − 1) + 2n−1 − 2n−m

′
2 .

Then
g(α′) 6 2n−m

′
2−1 + 2n−1 − 2n−m

′
2 = 2n−1 − 2n−m

′
2−1 − 1.

But g(α) > 2n−1 − 2n−m2 > 2n−1 − 2n−m
′
2−1 > g(α′). Therefore m2 = m′2. But now, we

have
g(α1 − 1, α2 − 1, . . . , αn−m2 − 1) = g(α′1 − 1, α′2 − 1, . . . , α′n−m2

− 1),

so the same argument shows m3 = m′3, and by induction, we conclude α = α′.
Therefore, all elements α ∈ A map (under g) to different odd numbers less than or

equal to 2n−1. There are 2n−2 elements in A and there are 2n−2 odd numbers in the set
{1, 2, . . . , 2n−1}. We also know that if α 6∈ A, then g(α) is not odd. Therefore, for every
odd number 2t − 1 in the interval [1, 2n−1], there is exactly one α ∈ {1, 2, . . . , n}n such
that g(α) = 2t− 1. Therefore

P(α parks) =
2t− 1

2n−1
.

We finish the section by proving the part of pattern 3 we hadn’t proved.

Theorem 11. Given a number of the form a/2n−1 with 0 6 a 6 2n−1, there is at least
one α ∈ {1, 2, . . . , n}n such that P(α parks) = a/2n−1.

Proof. It is easy to verify the statement is true for small n, for example, for n = 7, Table
3 proves it for a < 26, for a = 26 it follows from the fact that there are 86 > 0 parking
functions. We may assume the statement is true for some n− 1 and we want to prove it
for n.
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Theorem 2 implies the statement is true for a odd. Suppose a is even, then a = 2a′

for some integer a′ 6 2n−2. Then, by the induction hypothesis, there is an (n − 1)-tuple
α′ ∈ {1, 2, . . . , n− 1}n−1 such that P(α′ parks) = a′/2n−2. Let

α = (1, α′1 + 1, α′2 + 1, . . . , α′n−1 + 1).

The probability that α parks is the same as the probability that α′ parks because after C1

takes spot 1, then with αi = α′i−1 + 1, the cars C2, C3, . . . , Cn can only take spots between
2 and n, since their preferences are shifted by 1, it is as if the preferences were α′ and
they wanted to park on spots from 1 to n− 1. Therefore

P(α parks) =
a′

2n−2
=

2a′

2n−1
=

a

2n−1
.

5 Comparing Naples parking to random-Naples and some asymp-
totics

Theorem 3 is basically showing that Tp(n) is bounded above by the line with parameter
p connecting N(n) to (n+ 1)n−1, which would give a naive estimate of what Tp(n) could
be.

Let P (n) = (n + 1)n−1 be the number of parking functions. The following recursive
formula for P (n) has been proved in [5] and [3], but can also be seen as plugging in p = 0
into our recursive formula (2) for Tp,k(n) (because if p = 0, then for α to park, α must be
a parking function)

P (n) =
n−1∑
i=0

(
n− 1

i

)
P (i)(n− i)n−i−2(i+ 1). (7)

Plugging k = 1 into (1) (or plugging p = 1, k = 1 into (2)) we get

N(n) =
n−1∑
i=0

(
n− 1

i

)
N(i)(n− i)n−i−2(i+ 1 + min{1, n− i− 1}). (8)

Proof of Theorem 3. Table 1 shows that the theorem is true for 1 6 n 6 8. Suppose the
theorem is true for all i 6 n − 1. That T (n) > P (n) follows directly from (7) and (2).
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For the upper bound, from the induction hypothesis, (7) and (8), we have

T (n) =
n−1∑
i=0

(
n− 1

i

)
T (i)(n− i)n−i−2(i+ 1 +

1

2
min{1, n− i− 1})

6
n−1∑
i=0

(
n− 1

i

)(
N(i) + P (i)

2

)
(n− i)n−i−2(i+ 1 +

1

2
min{1, n− i− 1})

=
n−1∑
i=0

(
n− 1

i

)
N(i)

2
(n− i)n−i−2(i+ 1 +

1

2
min{1, n− i− 1})

+
n−1∑
i=0

(
n− 1

i

)
P (i)

2
(n− i)n−i−2(i+ 1 +

1

2
min{1, n− i− 1})

=
N(n) + P (n)

2
−

n−1∑
i=0

(
n− 1

i

)
N(i)− P (i)

4
(n− i)n−i−2 min{1, n− i− 1}

6
N(n) + P (n)

2
.
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