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Abstract

In 2015, Brosnan and Chow, and independently Guay-Paquet, proved the
Shareshian–Wachs conjecture, which links the Stanley–Stembridge conjecture in
combinatorics to the geometry of Hessenberg varieties. This link is made precise
through Tymoczko’s permutation group action on the cohomology ring of regular
semisimple Hessenberg varieties. In previous work, the authors exploited this con-
nection to prove a graded version of the Stanley–Stembridge conjecture for a special
case in which only irreducible representations of the permutation group indexed by
partitions with at most two parts can appear. In this manuscript, we derive a
new set of linear relations satisfied by the multiplicities of certain permutation rep-
resentations in Tymoczko’s representation. We also show that these relations are
upper-triangular in an appropriate sense and that they uniquely determine the mul-
tiplicities. As an application of these results, we prove an inductive formula for the
multiplicity coefficients corresponding to partitions with a maximal number of parts.

Mathematics Subject Classifications: 14M17, 05E05

1 Introduction

Recent results have forged exciting new connections between algebraic combinatorics and
the geometry and topology of certain subvarieties of the flag variety called Hessenberg
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varieties. In particular, the Shareshian–Wachs conjecture [12], proven in 2015 by Bros-
nan and Chow [5] and independently by Guay-Paquet [8], established a new connec-
tion between Hessenberg varieties and the long-standing Stanley–Stembridge conjecture
in combinatorics. This conjecture states that the chromatic symmetric function of the
incomparability graph of a (3+1)-free poset is e-positive, i.e., it is a non-negative linear
combination of elementary symmetric functions. The Stanley–Stembridge conjecture is
well-known in the field of combinatorics and related to various other deep conjectures
about immanants.

The results mentioned above establish the following research problem: use the proper-
ties of Hessenberg varieties to prove the Stanley–Stembridge conjecture. The problem can
in fact be made more specific, as follows. The results of Brosnan–Chow and Guay-Paquet
connect the dot action representation, defined by Tymoczko in [15] on the cohomology
groups of regular semisimple Hessenberg varieties, to the Stanley–Stembridge conjecture.
From this it follows that if Tymoczko’s dot action representation is a permutation repre-
sentation in which each point stabilizer is a Young subgroup, then the Stanley–Stembridge
conjecture is true. We refer the reader to [9, Introduction and Section 2] for a more
leisurely account of the historical background and motivation for this circle of ideas.

There are already partial results to the problem stated above. For instance, we used
Hessenberg varieties to prove a graded refinement of the Stanley–Stembridge conjecture in
the so-called abelian case by giving an inductive description of the nontrivial permutation
representations that appear in that case [9]. Moreover, in that manuscript we addition-
ally stated a conjecture which gives, in the general case, an inductive description of the
multiplicities of certain nontrivial permutation representations [9, Conjecture 8.1]. One
motivation for the present manuscript was to prove this conjecture using the geometry and
combinatorics of Hessenberg varieties. In doing so, we discovered new properties obeyed
by the multiplicities of the so-called tabloid representations in Tymoczko’s representation.

We now describe the results of this manuscript in more detail. Hessenberg varieties
in type A are subvarieties of the full flag variety F`ags(Cn) of nested sequences of lin-
ear subspaces in Cn. These varieties are parameterized by a choice of linear operator
X ∈ gl(n,C) and Hessenberg function h : {1, 2, . . . , n} → {1, 2, . . . , n}. (For details see
Section 2.) For the purpose of this discussion it suffices to consider only the case when the
operator is a regular semisimple operator S in gl(n,C); we denote the corresponding Hes-
senberg variety by Hess(S, h). As mentioned above, Tymoczko defined [15] an action of
the symmetric group Sn on H2i(Hess(S, h)) for each i > 0. From the work of Shareshian–
Wachs, Brosnan–Chow, and Guay-Paquet it follows that in order to prove the (graded)
Stanley–Stembridge conjecture, it suffices to prove that the cohomology H2i(Hess(S, h))
for each i is a non-negative combination of the tabloid representations Mµ [6, Part II,
Section 7.2] of Sn for µ a partition of n. In other words, given the decomposition

H2i(Hess(S, h)) =
∑
µ`n

cµ,iM
µ (1)

in the representation ring Rep(Sn) of Sn, it suffices to show that the coefficients cµ,i are
non-negative.
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We take a moment to mention here that the coefficients cµ,i appearing in (1) were
previously known to satisfy a matrix equation∑

µ`n

Nλµcµ,i = yλ,i

where the yλ,i are derived from the Betti numbers, i.e. the dimensions of ordinary coho-
mology groups, of certain regular Hessenberg varieties. Here, Nλµ =

∑
ν`nKν,λKν,µ where

the Kν,λ, Kν,µ are Kostka numbers [9, Section 2]. However, the Kostka numbers and the
matrix N are computationally unwieldy, and it was not clear (to us) how to exploit the
above matrix equation to prove the non-negativity of the cµ,i. Another motivation for
this manuscript was to find other relations satisfied by these coefficients which are more
computationally tractable.

The main results of this manuscript are as follows. Let n be a positive integer and
h : {1, 2, . . . , n} → {1, 2, . . . , n} a Hessenberg function. Let i > 0 be a fixed non-negative
integer and Xi = (cµ,i) denote the (column) vector whose entries are the coefficients
appearing in (1) above.

• In Corollary 23, we derive a family of (new) matrix equations AXi = Wi satisfied
by the column vectors Xi for i > 0. The matrix A = (A(λ, µ))λ,µ`n is obtained by
counting certain subsets of the permutation group Sn using the data of a pair of
partitions λ, µ ` n, and is independent of both the choice of Hessenberg function
h and the integer i > 0. The column vectors Wi are obtained by counting certain
subsets of the permutation group Sn using the data of a partition λ, the Hessenberg
function h, and the integer i > 0.

• In Theorem 29, we prove that the above matrix A = (A(λ, µ)) is upper-triangular,
with 1’s along the diagonal, with respect to an appropriately chosen linear order on
the set Par(n) of partitions of n. We additionally prove an inductive formula for its
matrix entries (Proposition 24, cf. also Corollary 40).

• Generalizing results of [9, Section 4], we obtain a sink set decomposition of the sub-
sets of Sn defining the column vector Wi above (Proposition 50). As a consequence
we obtain an inductive formula for the entries of Wi for the special case in which λ
has the maximal possible number of parts (Theorem 65).

• As an application of the above results, we prove [9, Conjecture 8.1]; more precisely,
we obtain an inductive formula for the coefficients cµ,i in (1) for the special case in
which µ has the maximal possible number of parts (Theorem 66), thus providing
further evidence for the Stanley–Stembridge conjecture.

Some remarks are in order. Firstly, the main contribution of this manuscript are
the new linear relations in Corollary 23; most particularly, the upper-triangularity of
the matrix A gives substantial reason to expect that these matrix equations will play a
significant role in the solution to the full Stanley–Stembridge conjecture. Secondly, we
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are aware that there exist other proofs of our conjecture as stated in [9, Conjecture 8.1],
using the coproduct structure on the ring of symmetric functions [10]. Thirdly, in his
original paper on the subject, Stanley derives a different set of linear relations obeyed by
the coefficients cλ [13, 14, Theorem 3.4, cf. also the erratum posted on Stanley’s personal
webpage], in which he uses a notion of sink sequences. It should be noted that Stanley’s
definition of sink sequences uses the cardinality of the sinks in an inductively defined set
of graphs, whereas the sink set decompositions which are used in our arguments are a
decomposition based on the sink subsets (i.e. not just their cardinalities, but the subsets
themselves). As of this writing, we are not aware of a precise relationship between our
linear relations and those of Stanley’s.

We now give a brief overview of the contents of the manuscript. Section 2 is devoted
to the setup and definitions of appropriate notation and terminology. In Section 3 we
derive the new matrix equations AXi = Wi, and in Section 4 we prove that A is upper-
triangular, with 1’s along the diagonal. We also derive the inductive formula for the
numbers A(λ, µ). In Section 5 we derive a separate inductive formula for the entries of
the “constant vector” Wi. Finally, in Section 6 we prove Conjecture 8.1 from [9].

Finally, we take a moment to report on a recent development in this line of inquiry,
which was made public after the initial announcement of our results in the present
manuscript. Specifically, Abreu and Nigro [2] have shown that the coefficients cµ,i are
uniquely determined by a set of linear relations known as the modular law, first obtained
by Guay-Paquet using entirely different methods from ours [7]. It should be noted that
the modular law relates coefficients cµ,i associated to different Hessenberg functions h,
whereas our linear relations are between the cµ,i for a fixed Hessenberg function. As of
this writing, we do not know whether some combination of these relations can solve the
conjecture. We leave this open for future work.

2 Background and Terminology

In this section we briefly recall the setting of our paper. For a more leisurely account we
refer to [9]. Let n be a positive integer and set [n] := {1, 2, . . . , n}. Hessenberg varieties
in Lie type A are subvarieties of the (full) flag variety F`ags(Cn), which is the collection
of sequences of nested linear subspaces of Cn:

F`ags(Cn) := {V• = ({0} ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Vn = Cn) | dimC(Vi) = i, ∀ i ∈ [n]}.

A Hessenberg variety in F`ags(Cn) is specified by two pieces of data: a Hessenberg
function, that is, a nondecreasing function h : [n] → [n] such that h(i) > i for all i,
and a choice of an element X in gl(n,C). We frequently write a Hessenberg function by
listing its values in sequence, i.e., h = (h(1), h(2), . . . , h(n)). The Hessenberg variety
associated to the linear operator X and Hessenberg function h is defined as

Hess(X, h) = {V• ∈ F`ags(Cn) | XVi ⊆ Vh(i) for all i}. (2)

When the linear operator X is chosen to be a regular semisimple operator S (i.e., di-
agonalizable with distinct eigenvalues), we refer to the corresponding Hessenberg variety
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Hess(S, h) as a regular semisimple Hessenberg variety. Tymoczko defined an action
of the symmetric group Sn on the cohomology of a regular semisimple Hessenberg variety
H∗(Hess(S, h)) which is called the dot action [15]. She defines the dot action by first
defining a Sn-action on the T -equivariant cohomology ring H∗T (Hess(S, h)) in terms of its
Goresky-Kottwitz-MacPherson description, which is a purely combinatorial characteriza-
tion of this ring using certain labelled graphs. She then shows that this Sn-action descends
to an action on the ordinary cohomology H∗(Hess(S, h)). (The reader can find a more
detailed synopsis of this story in [1, Section 8].) Tymoczko’s dot action on H∗(Hess(S, h))
preserves the grading on cohomology, so in fact Sn acts on each H2i(Hess(S, h)) for i > 0
(the cohomology is concentrated in even degrees). For µ a partition of n, we denote by
Mµ the complex vector space with basis given by the set of tabloids of shape µ. Since Sn

acts on the set of tabloids, Mµ is a Sn-representation, and is called the tabloid represen-
tation (corresponding to µ) [6, Part II, Section 7.2]. It is well-known that the set of these
tabloid representations form a Z-basis for the representation ring Rep(Sn) of Sn, so we
can decompose H∗(Hess(S, h)) with respect to Tymoczko’s dot action as follows:

H∗(Hess(S, h)) =
∑
µ`n

cµM
µ and H2i(Hess(S, h)) =

∑
µ`n

cµ,iM
µ (3)

where cµ, cµ,i ∈ Z.
As explained in the Introduction, the motivation of this manuscript is to prove the

graded Stanley–Stembridge conjecture. We refer the reader to [9] for more history; for
the present manuscript we take the ‘graded Stanley–Stembridge conjecture’ to mean the
following.

Conjecture 1. Let n be a positive integer, h : [n] → [n] be a Hessenberg function, and
S be a regular semisimple linear operator. Then the integers cµ,i appearing in (3) are
non-negative.

2.1 Hessenberg data

For later use, we introduce some Lie-theoretic and combinatorial notation associated to
Hessenberg varieties. We fix a Hessenberg function h : [n]→ [n].

Let t ⊆ gl(n,C) denote the Cartan subalgebra of diagonal matrices and let ti denote the
coordinate on t reading off the (i, i)-th matrix entry along the diagonal. Denote the root
system of gl(n,C) by Φ. Then the positive roots of gl(n,C) are Φ+ = {ti−tj | 1 6 i < j 6
n} where ti−tj ∈ Φ+ corresponds to the root space spanned by the elementary matrix Eij,
denoted gti−tj . Similarly, the negative roots of gl(n,C) are Φ− = {ti−tj | 1 6 j < i 6 n}.
We denote the simple positive roots in Φ+ by ∆ = {αi := ti − ti+1 | 1 6 i 6 n − 1}.
Finally, it is clear that each root ti − tj ∈ Φ can be uniquely identified with an ordered
pair (i, j), with i 6= j. We will make this identification below whenever it is notationally
convenient.

For each permutation w ∈ Sn, let

inv(w) := {(i, j) | i > j and w(i) < w(j)}
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denote the set of inversions of w. Note that we adopt the nonstandard notation of listing
the larger number in the pair (i, j) ∈ inv(w) first. This is because we identify inv(w)
with a subset of negative roots in Section 5 below. Under the correspondence between
ordered pairs and roots discussed in the last paragraph, this set indexes the negative roots
which become positive under the action of w. This action can be expressed concretely as
w(ti − tj) = tw(i) − tw(j).

The Hessenberg function h : [n] → [n] uniquely determines two subsets of roots as
follows:

Φ−h := {ti − tj | i > j and i 6 h(j)} and Φh := Φ−h t Φ+ = {ti − tj | i 6 h(j)}.

Let invh(w) := inv(w) ∩ Φ−h ; this set of inversions is used later to compute the Betti
numbers of certain Hessenberg varieties.

Recall that an ideal I of Φ− is defined to be a collection of negative roots such that if
α ∈ I, β ∈ Φ−, and α + β ∈ Φ−, then α + β ∈ I. The relation defining Φ−h immediately
implies that

Ih := Φ− \ Φ−h = {ti − tj | i > h(j)}

is an ideal in Φ−. We call it the ideal corresponding to h.
Given an ideal I ⊆ Φ−, its lower central series is the sequence of ideals defined

inductively by

I1 = I and Ij = {γ + β | γ, β ∈ Ij−1 and γ + β ∈ Φ−} for all j > 2.

The height of an ideal I is the length of its lower central series and we denote it by
ht(I).

Example 2. Let h = (2, 4, 4, 5, 5). Then

Φ−h = {t2 − t1, t3 − t2, t4 − t2, t4 − t3, t5 − t4}

and
Ih = {t3 − t1, t4 − t1, t5 − t1, t5 − t2, t5 − t3}

and ht(Ih) = 2 since
(Ih)2 = {t5 − t1} and (Ih)3 = ∅.

The data of a Hessenberg function can also be encoded by way of a graph. Given a
Hessenberg function h : [n] → [n], the incomparability graph associated to h is the
graph Γh = (Vh, Eh) with vertex set Vh = [n] and edge set Eh = {{i, j} | i < j and h(i) >
j}. Notice that the edges of Γh correspond bijectively to the roots in Φ−h .

Example 3. The graph corresponding to the Hessenberg function h = (2, 4, 4, 5, 5) from
Example 2 is

1 2 3 4 5
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In many ways, the combinatorial structure of the graph Γh and the ideal Ih mirror
one another. For example, [9, Proposition 5.8] shows that m(Γh) = ht(Ih) + 1, where
m(Γh) denotes the maximum cardinality of an independent subset of vertices (that is,
vertices which are pairwise nonadjacent) in Γh. The reader can confirm this equation
for the Hessenberg function h = (2, 4, 4, 5, 5) appearing in Example 2 and Example 3.
This correspondence is essential for the arguments of Section 5 below. Furthermore, the
structure of the ideal Ih, and that of the graph Γh, is closely connected to the dot action
representation. The following theorem relates the multiplicities of the tabloid represen-
tations appearing in (3) with the height of Ih. This is a restatement of [9, Corollary
5.12].

Theorem 4. Let cµ and cµ,i be the coefficients appearing in (3). Then cµ = cµ,i = 0 for
all µ ` n with more than m(Γh) = ht(Ih) + 1 parts.

2.2 Partitions and subsets

In this section we establish some combinatorial terminology and notation which we use
below. Let n be a positive integer.

Definition 5. Let λ = (λ1, . . . , λk) ` n. We define Jλ to be the subset of [n− 1] defined
by

Jλ := [n− 1] \ {λ1, λ1 + λ2, . . . , λ1 + · · ·+ λk−1}

Remark 6. We frequently identify the set [n−1] := {1, 2, . . . , n−1} with the set of simple
positive roots ∆ by the association αi 7→ i. Under this identification, we may view Jλ as
the subset of simple roots

Jλ := ∆ \ {αλ1 , αλ1+λ2 , . . . , αλ1+···+λk−1
} ⊆ ∆.

We illustrate in Example 7 how Definition 5 can be visualized. Note that any partition
of n corresponds to a Young diagram with n boxes, and by slight abuse of notation we
denote both the partition λ = (λ1, λ2, . . . , λk) and the corresponding Young diagram as λ.

Example 7. Let λ = (5, 4, 4, 2) ` 15. Using the Young tableau of this diagram which
fills the boxes of λ with the integers {1, 2, . . . , n} in order starting from the top left and
reading across rows from left to right, starting from the top row to the bottom row, as
indicated below, the set Jλ = [14] \ {5, 9, 13} corresponds to those boxes which are not at
the rightmost end of a row. In the figure below, these boxes are shaded in grey.

1 2 3 4 5

6 7 8 9

10 11 12 13

14 15

the electronic journal of combinatorics 29(3) (2022), #P3.16 7



Recall that the dual (or transpose) partition of λ is the partition λ′ obtained by
swapping the rows and the columns of the Young diagram of λ. We will also be interested
in the set Jλ′ corresponding to λ′. In fact it will be useful to introduce notation for the
complement of Jλ′ . We let

Jλ := [n− 1] \ Jλ′ . (4)

Example 8. Continuing Example 7, let λ = (5, 4, 4, 2) ` 15. Then it is straightforward
to see that λ′ = (4, 4, 3, 3, 1) and Jλ′ = [14] \ {4, 8, 11, 14} and thus Jλ := [14] \ Jλ′ =
{4, 8, 11, 14}. Below, the shaded boxes in the figure on the left correspond to the elements
of Jλ′ , while the shaded boxes in the figure on the right correspond to those in Jλ := ∆\Jλ′ .
Note that the diagram for λ is drawn, but the labelling of the boxes corresponds to the
Young tableau of the dual partition λ′ with filling as in Example 7. The box labelled
15 in the diagram is contained in neither Jλ′ nor Jλ since both sets are contained in
[n− 1] = [14], not [n] = [15].

1 5 9 12 15

2 6 10 13

3 7 11 14

4 8

1 5 9 12 15

2 6 10 13

3 7 11 14

4 8

We will also be interested in certain subdiagrams of a Young diagram λ. First recall
that for λ = (λ1, . . . , λk) a partition with λk > 0, the integer k is often called the number
of parts of λ (also known as the length of λ). By definition, the number of parts of λ
is equal to λ′1, the first entry of the dual partition λ′. Thus we will sometimes use the
notation λ′1 for the number of parts.

We will also need to refer to the number of boxes in the bottom row of λ, which is
equal to λλ′1 ; however, to avoid cumbersome notation we denote this as r(λ) and call it
the bottom length of λ. (Thus, if λ has k parts, then r(λ) = λk.) It follows from the
definitions that the maximum number of boxes in a column of λ is exactly λ′1, and there
are precisely r(λ) many such columns in λ.

In the inductive arguments given in the later sections, we will need to remove columns
from λ as follows.

Definition 9. Let λ be a partition of n and let ` be a positive integer. Then we denote by
λ[`] the partition obtained by removing the leftmost ` columns from the Young diagram
associated to λ.

Example 10. Let λ = (6, 4, 2, 1) and let ` = 2. Then λ[2] is the partition λ = (4, 2)
obtained by removing the leftmost 2 columns of λ. In the figure below, the boxes that
are removed are shaded, and the white boxes correspond to the smaller partition λ[2].
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Remark 11. Using the terminology and notation introduced above, we note that if λ is a
partition of n with exactly k parts and r = r(λ), and ` ∈ Z with 1 6 ` 6 r − 1, then the
partition λ[`] still has k parts, while λ[r] is a partition of n− rk which has strictly fewer
than k parts.

Definition 12. Let λ be a partition. We say a consecutive sequence {s, s+1, . . . , s+t} ⊆
[λ1] is a step of λ if

λ′s = λ′s+1 = · · · = λ′s+t

and if this sequence is maximal with respect to this property, i.e., assuming the quantities
are defined, both λ′s−1 6= λ′s and λ′s+t+1 6= λ′s+t (with the convention that λ′0 = 0).

The terminology above is motivated by viewing the Young diagram of λ as an (upside-
down) staircase.

Example 13. If λ = (8, 5, 3, 2) so that λ′ = (4, 4, 3, 2, 2, 1, 1, 1) as in the diagram below

then there are four steps of λ, namely A1 = {1, 2}, A2 = {3}, A3 = {4, 5}, A4 = {6, 7, 8}.
Each step gives the labels of a set of columns (starting from the left) of λ with the same
length.

It is clear that every column in λ belongs to exactly one step of λ, giving us the
following decomposition.

Definition 14. The step decomposition of λ ` n is the decomposition

[λ1] = A1 t A2 t · · · t Astep(λ)

where each Ai is a step of λ and step(λ) is a positive integer which we call the number of
steps (or step number) of λ. We will always assume that the Ai are listed in increasing
order, i.e. A1 = {1, 2, . . . , a1}, A2 = {a1 + 1, . . . , a2}, and so on, for some sequence of
integers 1 6 a1 < a2 < · · · < astep(λ) = λ1.

Example 15. Continuing with Example 13 above, the step decomposition of the partition
λ = (8, 5, 3, 2) is

A1 t A2 t A3 t A4 = {1, 2} t {3} t {4, 5} t {6, 7, 8}.

Since there are 4 steps, we have step(λ) = 4.
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3 Linear equations satisfied by representation multiplicities

The main result of this section, Theorem 18, gives a set of linear equations satisfied by
the multiplicity coefficients cµ and cµ,i of equation (3). In Corollary 23 below, we also
reformulate our main result into a family of matrix equations by applying Theorem 18 to
the special cases when the set J below is chosen to be Jλ for a partition λ of n.

The following sets of permutations play a key role in the analysis below.

Definition 16. Let J ⊆ [n− 1] and i ∈ Z, i > 0. We define

W(J, h) :=

{
w ∈ Sn |

w−1(j) 6 h(w−1(j + 1)) for all j ∈ J and
w−1(j) > h(w−1(j + 1)) for all j ∈ [n− 1] \ J

}
⊆ Sn.

We also define
Wi(J, h) :=W(J, h) ∩ {w ∈ Sn | |invh(w)| = i}.

Note that
W(J, h) :=

⊔
i

Wi(J, h)

where the union is taken over all i such that Wi(J, h) 6= ∅.

Remark 17. Identifying J as a subset of ∆ as in Remark 6 we may also identify the sets
Wi(J, h) as

Wi(J, h) := {w ∈ Sn | w−1(J) ⊆ Φh and w−1(∆ \ J) ⊆ Ih and |invh(w)| = i} ⊆ Sn.

We use the above interpretation of the W(J, h)-sets, below, when we connect them with
the Betti numbers of certain Hessenberg varieties.

Next, let w ∈ Sn be a permutation. Then we let

DesR(w) := {i ∈ [n− 1] | w(i) > w(i+ 1)} (5)

denote the set of right descents of w (also called the descents of w) and

DesL(w) := {i ∈ [n− 1] | w−1(i) > w−1(i+ 1)} (6)

denote the set of left descents of w (also called the inverse descents of w, i.e. descents
of w−1).1 Both of these sets have a natural interpretation in terms of the one-line notation
for w. The set of left descents corresponds to the set of ordered pairs (i, i+ 1) such that
i + 1 appears before i in the one-line notation for w. Similarly, the set of right descents
corresponds to the pairs (i, i + 1) such that, in the one-line notation of w, the (i + 1)-st
entry is less than the i-th entry.

For two subsets J and K of [n− 1] we also define

D(J,K) := {w ∈ Sn | DesL(w) = [n− 1] \ J and DesR(w) ⊆ [n− 1] \K}. (7)

The goal of this section is to prove the following.

1We note that both sets of terminology are used in the literature. For instance, in [4, p.17] we see the
terms ‘left and right descents’, whereas in other research manuscripts such as [3, 16], the terms ‘descent
and inverse descents’ are used.
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Theorem 18. Let J ⊆ [n− 1] and i ∈ Z, i > 0. Then

|Wi(J, h)| =
∑
µ`n

cµ,i |D(J, Jµ)| (8)

and

|W(J, h)| =
∑
µ`n

cµ |D(J, Jµ)|. (9)

We organize this section as follows. In Section 3.1 we prove Theorem 18 modulo some
elementary lemmas and a previous result of Brosnan-Chow, and in Section 3.2 we record
the proofs of the lemmas. Put together, this section therefore paves the way for Section 4,
in which we re-organize a certain subset of these linear relations obtained in Theorem 18
(namely, those for which J = Jλ) into a set of matrix equations, one for each i > 0. The
analysis of this matrix equation will occupy much of the remainder of the paper.

3.1 Proof of Theorem 18 modulo some lemmas

The proof of Theorem 18 relies on three results which we list below. The first is a
result of Brosnan–Chow [5] which relates the representation multiplicities in (3) to the
Betti numbers of regular Hessenberg varieties. The last two are straightforward inclusion-
exclusion arguments.

For a given subset J ⊆ [n − 1], let XJ ∈ gl(n,C) be the regular element such that
XJ = NJ + SJ where

NJ =
∑
j∈J

Ej,j+1

and SJ is a semisimple linear operator such that NJ is a regular nilpotent element in the
Levi subalgebra zg(SJ). A Hessenberg variety associated to such a regular operator XJ as
above is called a regular Hessenberg variety. Moreover, let SJ := 〈si | i ∈ J〉 be the
subgroup of the symmetric group generated by the simple reflections si := sαi for i ∈ J .
The theorem of Brosnan and Chow, which we recall below, identifies the dimension of the
subspaces H2i(Hess(S, h))SJ with the dimension of the degree-2i-cohomology (i.e., the
2i-th Betti number) of a certain regular Hessenberg variety.

Theorem 19. (Brosnan–Chow, [5, Theorem 127]) Let n be a positive integer and h :
[n] → [n] a Hessenberg function. Let XJ and SJ for J ⊆ [n− 1] be as above, and S be a
regular semisimple operator. Then for each non-negative integer i, we have

dim(H2i(Hess(S, h)))SJ = dimH2i(Hess(XJ , h)).

The next two results are straightforward inclusion-exclusion arguments which are
based on a combinatorial formula for the Betti numbers of regular Hessenberg varieties
obtained by the second author [11].
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Lemma 20. Let J ⊆ [n− 1], h any Hessenberg function, and i ∈ Z with i > 0. Then

|Wi(J, h)| =
∑
I : J⊆I

(−1)|I|−|J | dim(H2i(Hess(XI , h))). (10)

Lemma 21. Let µ be a partition of n and J ⊆ [n− 1]. Then

|D(J, Jµ)| =
∑
I : J⊆I

(−1)|I|−|J | dim(Mµ)SI . (11)

We now give a proof of Theorem 18, assuming Lemma 20 and Lemma 21 and using
Theorem 19.

Proof of Theorem 18. We have:

|Wi(J, h)| =
∑
I:J⊆I

(−1)|I|−|J | dim(H2i(Hess(XI , h))) by Lemma 20

=
∑
I:J⊆I

(−1)|I|−|J |
∑
µ`n

cµ,i dim(Mµ)SI by Theorem 19

=
∑
µ`n

cµ,i

(∑
I:J⊆I

(−1)|I|−|J | dim(Mµ)SI

)
=

∑
µ`n

cµ,i |D(J, Jµ)| by Lemma 21

which proves equation (8). Equation (9) follows directly from (8) by summing over i.

3.2 Möbius inversion on the Boolean lattice

We now give proofs of the elementary lemmas used in the previous section. Both follow
from an application of the well-known Möbius inversion formula on the Boolean lattice,
which is a version of the principle of inclusion-exclusion. We will need the following Betti
number formula [11, Lemma 1].

Theorem 22. Let J ⊆ [n − 1] and h be any Hessenberg function. Then for each non-
negative integer i, we have

dim(H2i(Hess(XJ , h))) = |{w ∈ Sn | w−1(j) 6 h(w−1(j + 1)) ∀j ∈ J and |invh(w)| = i}|.

Using the above, we first prove Lemma 20.

Proof of Lemma 20. Let Wi := {w ∈ Sn | |invh(w)| = i} and for each I ⊆ ∆ define
fI :Wi → {0, 1} as follows:

fI(w) =

{
1 if w ∈ Wi(I, h)

0 else.
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For each I ⊆ ∆, let us also define a function gI :Wi → {0, 1} by

gI(w) =

{
1 if w−1(j) 6 h(w−1(j + 1)) for all j ∈ I
0 else.

Then it is clear that, by definition of fJ ,

|Wi(J, h)| =
∑
w∈Wi

fJ(w).

Next we examine the RHS of (10). By Theorem 22 the RHS is equal to∑
I:J⊆I

(−1)|I|−|J ||{w ∈ Wi | w−1(j) 6 h(w−1(j + 1)) for all j ∈ I}|.

On the other hand, from the definition of gI , this is in turn equal to∑
I:J⊆I

(−1)|I|−|J |
∑
w∈Wi

gI(w) =
∑
w∈Wi

∑
I:J⊆I

(−1)|I|−|J |gI(w).

Therefore, to prove the proposition it would suffice to show that

fJ =
∑
I:J⊆I

(−1)|I|−|J |gI . (12)

By definition of gJ and fI we have gJ =
∑

I:J⊆I fI so (12) follows immediately from the
Möbius inversion formula on the Boolean lattice. This completes the proof.

To prove Lemma 21 we first recall the following well-known description of the numbers
dim(Mµ)SI , which can be easily seen from the fact that the integer dim(Mµ)SI counts
the number of double cosets Sµ\Sn/SI [4, Section 2.4]:

dim(Mµ)SI = |{w ∈ Sn | DesL(w) ⊆ [n− 1] \ I and DesR(w) ⊆ [n− 1] \ Jµ}|. (13)

Proof of Lemma 21. Consider Aµ := {w ∈ Sn | DesR(w) ⊆ [n − 1] \ Jµ}. On Aµ define
for each I ⊆ [n− 1] a function fI : Aµ → {0, 1} by

fI(w) =

{
1 if DesL(w) = [n− 1] \ I
0 else.

On Aµ also define for each I ⊆ [n− 1] a function gI as follows:

gI(w) =

{
1 if DesL(w) ⊆ [n− 1] \ I
0 else.
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Then it is clear that |D(J, Jµ)| =
∑

w∈Aµ fJ(w) by definition of f .

We now examine the RHS of (11). We have

RHS =
∑
I:J⊆I

(−1)|I|−|J| dim(Mµ)SI

=
∑
I:J⊆I

(−1)|I|−|J|
∣∣{w ∈ Sn | DesL(w) ⊆ [n− 1] \ I and DesR(w) ⊆ [n− 1] \ Jµ}

∣∣ by (13)

=
∑
I:J⊆I

(−1)|I|−|J|
∑
w∈Aµ

gI(w)

=
∑
w∈Aµ

∑
I:J⊆I

(−1)|I|−|J|gI(w).

Thus it suffices to show that

fJ(w) =
∑
I:J⊆I

(−1)|I|−|J |gI .

As in the proof of the previous lemma, this follows immediately from the Möbius inversion
formula on the Boolean lattice. This completes the proof.

4 The matrix equation AX = W

We now introduce the matrix equation that is the subject of this section. We will be
particularly interested in the sets Wi(J, h) in the case that J = Jλ. Thus, we introduce
notation for the cardinality of the sets in (7) for the case J = Jλ and K = Jµ for two
partitions λ, µ ` n. Specifically, we define

A(λ, µ) := |D(Jλ, Jµ)|. (14)

Using the above notation, Theorem 18 has an immediate corollary, as follows. Let Par(n)
denote the set of partitions of n.

Corollary 23. Let A = (A(λ, µ))λ,µ∈Par(n) be the matrix whose coefficients are the inte-
gers (14) and let i ∈ Z, i > 0. Let Xi be the (column) vector whose entries are the cµ,i ∈ Z
specified in (3). Let Wi be the (column) vector whose entries are the integers |Wi(Jλ, h)|.
Then AXi = Wi.

The main results of this section show that the matrixA has computationally convenient
properties with respect to an appropriate choice of total order on Par(n), in a sense we
now explain. The previous section showed that the multiplicity coefficients cµ,i in (3)
obey a set of linear equations, where there is one such linear equation for each partition
λ ` n, and by putting these together, Corollary 23 interprets this set of linear equations
as a single matrix equation AXi = Wi. Here, each row corresponds to a single linear
equation associated to a partition λ. Since the coefficients cµ,i are also indexed by the
set of partitions of n, we see that the matrix A = (A(λ, µ)) is in fact a square matrix.
With this in mind, we can state the main results of this section. Proposition 24 states
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that certain matrix entries of A have an inductive description or are equal to 0. Next,
Theorem 29 states that – with respect to an appropriately defined total order on the set
of partitions of n – the matrix A is upper-triangular with 1’s along the diagonal.

We begin with a precise statement of the first main result. Recall that λ[`] denotes
the partition obtained by deleting the first ` columns from λ as in Definition 9.

Proposition 24. Let λ ` n be a partition with exactly k parts. Let µ ` n be a partition
with at most k parts. Then

1. if µk < λk, then
D(Jλ, Jµ) = ∅ and therefore A(λ, µ) = 0

and

2. if µk > λk, then for any ` ∈ Z with 0 6 ` 6 λk, there exists a natural bijection
between the sets

D(Jλ, Jµ) and D(Jλ[`], Jµ[`])

and in particular we have

A(λ, µ) = A(λ[`], µ[`]).

Before proving Proposition 24, we state the second main result of this section – an
upper-triangularity property of the matrix A with respect to an appropriate total order
on the set of partitions of n. We have the following.

Definition 25. Let n be a positive integer and let Par(n) denote the set of partitions of
n. We define a total ordering � on Par(n) as follows:

µ � λ⇔ µ′ 6lex λ
′. (15)

Remark 26. We are not aware of where, or whether, the above total order has been studied
or used elsewhere in the literature, particularly in the area related to chromatic symmetric
functions and the Stanley–Stembridge conjecture.

Example 27. Let n = 6 and consider λ = (3, 3) and µ = (4, 1, 1). Note that λ and µ are
incomparable in the dominance order, but λ′ = (2, 2, 2) and µ′ = (3, 1, 1, 1) so λ′ <lex µ

′

and therefore, according to our definition (15), we have λ ≺ µ.

Remark 28. It is straightforward to see that lexicographical order of Par(n), which is a
total order, respects the dominance (partial) ordering on Par(n), in the sense that µE λ
implies µ 6lex λ. It is also well known that µ E λ if and only if their dual partitions
satisfy the reverse relation, i.e. λ′ E µ′. It follows that the total order � of Definition 25
on Par(n) respects the reversed dominance order.

We now state our upper-triangularity theorem.
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Theorem 29. The matrix (A(λ, µ))λ,µ∈Par(n), written with respect to the total order (15)
on the indexing set Par(n), is upper-triangular with 1’s along the diagonal. Equivalently,
for λ, µ ∈ Par(n), we have the following:

1. If µ ≺ λ with respect to the total order (15) then D(Jλ, Jµ) = ∅, so in particular,
A(λ, µ) = 0.

2. The set D(Jλ, Jλ) contains a unique element, so in particular, A(λ, λ) = 1.

Example 30. When n = 2 we get the matrix:

(A(λ, µ))λ,µ∈Par(2) =

[
A((2), (2)) A((2), (1, 1))
A((1, 1), (2)) A((1, 1), (1, 1))

]
=

[
1 1
0 1

]
and similarly for n = 3 we have Par(3) = {(3) ≺ (2, 1) ≺ (1, 1, 1)} and it can be checked
directly that we get the matrix

(A(λ, µ))λ,µ∈Par(3) =

 A((3), (3)) A((3), (2, 1)) A((3), (1, 1, 1))
A((2, 1), (3)) A((2, 1), (2, 1)) A((2, 1), (1, 1, 1))
A((1, 1, 1), (3)) A((1, 1, 1), (2, 1)) A((1, 1, 1), (1, 1, 1))


=

1 1 1
0 1 2
0 0 1

 .
Given that A is upper-triangular, it is natural to ask whether every entry above the

diagonal is non-zero. The next example shows that the answer is no, i.e., it can happen
that λ ≺ µ (so A(λ, µ) lies strictly above the diagonal) but that A(λ, µ) = 0.

Example 31. Let n = 6 and λ = (3, 3). In this case [5]\Jλ = {1, 3, 5}, so if w ∈ D(Jλ, Jµ)
then (in the one-line notation of w) 2 appears to the left of 1, 4 is to the left of 3, and 6 is
to the left of 5. When µ = λ = (3, 3), the permutation w has DesR(w) ⊆ [5]\J(3,3) = {3},
and thus w = [2, 4, 6, 1, 3, 5] is the unique permutation in D(Jλ, Jµ). This shows that
A((3, 3), (3, 3)) = 1, as expected. Consider now the case µ = (4, 1, 1). Then [5] \ J(4,1,1) =
{4, 5}. Any w ∈ D(Jλ, Jµ) must satisfy DesR(w) ⊆ {4, 5}. However, given the constraints
on the left descents of w, no such permutation can exist. Thus, although λ ≺ µ, we still
have A(λ, µ) = 0.

The previous example shows that determining when A(λ, µ) is non-zero (for λ ≺ µ)
is not immediate. On the other hand, we observe in the above example that, although
(3, 3) ≺ (4, 1, 1) for our total order ≺, these two partitions are incomparable in the
dominance order (c.f. Example 27 and Remark 28). This motivates the following question,
which (as far as we know) remains open. We leave further investigation of this question
to future work.
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Question 32. If A(λ, µ) 6= 0, then is it true that µE λ?

Returning to the previous discussion, the remainder of this section is devoted to the
proofs of Proposition 24 and Theorem 29. We need several preliminaries. Let J = {i1 <
i2 < · · · < i`} ⊆ [n− 1]. The staircase decomposition (of [n]) corresponding to J
is the decomposition

[n] = {i0 = 1, 2, . . . , i1}t{i1+1, i1+2, . . . , i2}t· · ·t{i`−1+1, . . . , i`}t{i`+1, . . . , n = i`+1}.

where by convention we set i0 := 1 and i`+1 := n. Each subset appearing in the above
decomposition is called a staircase, and we denote by F(J) := ` + 1 the number of
staircases in the associated staircase decomposition. The motivation for the “staircase”
terminology comes from studying the set of right descents of a permutation w ∈ Sn. It
follows directly from the definition of DesR(w) in (5) that if DesR(w) ⊆ J = {i1 < i2 <
· · · < i`} ⊆ [n− 1] then for all 0 6 s 6 ` we have

w(is + 1) < w(is + 2) < · · · < w(is+1) (16)

on each staircase {is + 1, is + 2, . . . , is+1} of J .
We also find it convenient to introduce analogous terminology for the permutations

themselves. Let w ∈ Sn and {is + 1, is + 2, . . . , is+1} ⊆ [n − 1] for is+1 > is be a
sequence of consecutive integers, possibly of length 1 (when is+1 = is + 1). We say w is
a staircase on the interval {is + 1, is + 2, . . . , is+1} if (16) holds. We also say that
{is + 1, is + 2, . . . , is+1} is a staircase of w. A staircase {is + 1, is + 2, . . . , is+1} of w
is maximal if neither {is, is + 1, is + 2, . . . , is+1} nor {is + 1, is + 2, . . . , is+1, is+1 + 1} is
a staircase of w. The following is immediate from the definition of the right descent set
given in (5) and we omit the proof.

Lemma 33. Let w ∈ Sn. Suppose J = {i1 < i2 < · · · < i`}. Let i0 := 1 and i`+1 := n. If
DesR(w) ⊆ J , then w is a staircase on each interval {is+1, is+2, . . . , is+1} for 0 6 s 6 `,
and there are at most ` + 1 maximal staircases in the staircase decomposition of w. In
particular, suppose µ = (µ1, . . . , µk) is a partition of n with k parts, and DesR(w) ⊆
[n−1]\Jµ = {µ1, µ1 +µ2, . . . , µ1 + · · ·+µk−1}. Then there are at most F([n−1]\Jµ) = k
maximal staircases of w.

Example 34. Let w = [1, 4, 7, 8, 2, 5, 6, 3] ∈ S8. Then DesR(w) = {4, 7} since it is
between the 4th and 5th entries, as well as the 7th and 8th entries, that there is a decrease
in the one-line notation of w. The maximal staircases of w are {1, 2, 3, 4}, {5, 6, 7} and {8}.
Note that DesR(w) ⊆ [7] \ Jµ where µ = (4, 3, 1). In this case, F([7] \ Jµ) = F({4, 7}) = 3
is the number of maximal staircases of w, in agreement with the lemma above.

We now turn our attention to left descents. As already noted, for a permutation
w ∈ Sn, if i ∈ DesL(w) then the pair (i, i+ 1) has the property that i+ 1 appears before
i in the one-line notation of w. Let w ∈ Sn and i ∈ [n]. For a given staircase of w, we
say i occurs in that staircase if i appears in the segment of the one-line notation of w
corresponding to that staircase.
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Example 35. Continuing with Example 34, let w = [1, 4, 7, 8, 2, 5, 6, 3] ∈ S8. Then
{1, 2, 3, 4} is a staircase, and we say that 7 appears in that staircase since 7 occurs as one
of the entries in positions 1, 2, 3, or 4 in the one-line notation of w.

Note that any j ∈ [n] occurs in exactly one maximal staircase of w for any w ∈ Sn.

Lemma 36. Let w ∈ Sn. Suppose that {j, j + 1, . . . , j + `− 1} ⊆ DesL(w) is a sequence
of ` consecutive integers contained in DesL(w). Then the ` + 1 many integers j + ` >
j+`−1 > · · · > j+1 > j must appear in distinct maximal staircases of w, each strictly to
the right of the previous one. In particular, the number of maximal staircases of w must
be greater than or equal to `+ 1.

Proof. Within each staircase, the entries in the one-line notation of w must be increasing,
so any pair of consecutive integers which must appear in inverted order cannot appear
in the same staircase. Moreover, if they must be inverted, then the smaller integer must
appear to the right of the greater integer i.e., must appear in a staircase strictly to the
right of the greater integer.

The next statement follows from Lemmas 33 and 36.

Corollary 37. Suppose K ⊆ [n−1] is a subset of [n−1] containing a consecutive sequence
of length `. Let µ = (µ1, . . . , µk) be a partition of n with k parts. Then the set

D([n− 1] \K, Jµ) = {w ∈ Sn | DesL(w) = K and DesR(w) ⊆ [n− 1] \ Jµ} (17)

is empty if `+ 1 > k.

Proof. Suppose w ∈ Sn and that DesL(w) = K. Since K contains a consecutive sequence
of length `, from Lemma 36 it follows that the number of maximal staircases of w is at
least ` + 1. On the other hand, if DesR(w) ⊆ [n − 1] \ Jµ then by Lemma 33, we have
F([n− 1] \ Jµ) = k, and w has at most k maximal staircases. Since `+ 1 > k, this cannot
occur. Hence (17) is empty as desired.

In fact, we can say more. The following statement is straightforward and we omit the
proof.

Lemma 38. Let µ be a partition of n with k many parts. Let w ∈ Sn and suppose
DesL(w) contains a sequence {a, a + 1, . . . , a + k − 2} ⊆ [n − 1] of maximal cardinality
k − 1 and DesR(w) ⊆ [n− 1] \ Jµ. Then:

1. DesR(w) = [n− 1] \ Jµ, so the one-line notation of w contains precisely k maximal
staircases, and

2. for each i such that 0 6 i 6 k−1, the element a+ i in the sequence {a, a+1, . . . , a+
k− 1} must appear in the (i+ 1)st staircase of the one-line notation of w (counting
from the left).
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In particular, the staircases in which each a+i must occur is fixed, and exactly one element
in the sequence {a, a+ 1, . . . , a+ k − 1} occurs in each of the k maximal staircases.

In the course of the argument below it will be useful to have the following terminology.
Suppose w ∈ Sn and suppose m ∈ Z, 1 6 m < n. There is a map (which is not a group
homomorphism)

dn,m : Sn → Sn−m

obtained by deleting the entries {1, 2, . . . ,m} = [m] in the one-line notation of w, and
interpreting what remains as a permutation of n − m, under the identification {m +
1,m+ 2, . . . , n} ∼= {1, 2, . . . , n−m} given by j 7→ j −m. We will refer to this procedure
of applying dn,m as ignoring the [m] entries (of the one-line notation of w).

Example 39. Let m = 2 and n = 5. Let w = [4, 3, 2, 5, 1]. Then d5,2(w) = [2, 1, 3]
because we first ignore the entries 1 and 2 in w = [4, 3,2, 5,1] to obtain [4, 3, 5] and then
use the identification j 7→ j − 2 to obtain [2, 1, 3].

We are now ready to prove Proposition 24.

Proof of Proposition 24. The proof can be separated into two parts according to the cases
given in the statement of the proposition. For simplicity denote r := λk.

We begin with the case µk < r = λk, which itself can be separated into two subcases,
namely, µk = 0 and 0 < µk < λk. First suppose µk = 0, i.e., µ has strictly fewer than k
parts. From the definition of the set Jλ, it follows that there are r many distinct sequences
in [n− 1] \ Jλ = Jλ′ , of the form

{1, 2, . . . k − 1}, {k + 1, k + 2, . . . , 2k − 1}, . . . , {(r − 1)k + 1, . . . , kr − 1}.

This means in particular that the set [n−1]\Jλ contains at least one consecutive sequence
of length k − 1. Applying Corollary 37, we immediately obtain that D(Jλ, Jµ) = ∅ if µ
has strictly fewer than k parts.

Next suppose that µ has k parts (i.e. µk > 0) but µk < r = λk. Seeking a contradiction,
suppose that w ∈ D(Jλ, Jµ), so DesL(w) = [n−1]\Jλ and DesR(w) ⊆ [n−1]\Jµ. Then w
satisfies the hypotheses of Lemma 38 and it follows that the given conditions completely
determine the staircases in which the integers {1, 2, . . . , kr} must occur in the one-line
notation of w. In fact, since these are the smallest kr integers in [n] and since each
staircase must have increasing entries, the hypotheses determine the precise location (not
just the staircase) in which these entries must occur. In particular, the r many integers
{1, k + 1, 2k + 1, . . . , (r − 1)k + 1} must appear in the rightmost staircase of w, which
contains µk many entries. This implies that µk > r, contradicting the assumptions of this
case. This concludes the proof of statement (1) of the proposition.

Now we consider the case of µk > r = λk. By similar reasoning as in the previous
paragraph, it follows that if a permutation w ∈ Sn satisfies DesL(w) = [n− 1] \ Jλ = Jλ′
and DesR(w) ⊆ [n−1]\Jµ, then w is determined by the location (in the one-line notation)
of the integers {kr+ 1, kr+ 2, . . . , n} ∼= [n− kr], i.e., the image of w under the map dn,kr
described above. It is straightforward to see that w is also determined by its image under
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the map dn,k` for any 1 6 ` 6 r. In what follows, for concreteness we make the argument
in detail for the special case ` = r; the argument for ` such that 1 6 ` < r is addressed
below. Consider the image in Sn−kr of the set

D(Jλ, Jµ) = {w ∈ Sn | DesL(w) = [n− 1] \ Jλ and DesR(w) ⊆ [n− 1] \ Jµ} (18)

under the map dn,kr which ignores the [kr] entries. By the above argument, dn,kr is
injective on (18). To prove the desired claim, it suffices to show that

dn,kr(D(Jλ, Jµ)) = D(Jλ[r], Jµ[r]),

that is, that the image of (18) under dn,kr is precisely

D(Jλ[r], Jµ[r]) = {w′ ∈ Sn−kr | DesL(w′) = [n− kr− 1] \ Jλ[r] and DesR(w′) ⊆ [n− kr− 1] \ Jµ[r]}. (19)

To see this, we first show that any w′ = dn,kr(w) for w in (18) must lie in (19). Since
DesL(w) = [n− 1] \ Jλ = Jλ′ , we already know that the j ∈ [n− 1] such that j + 1 occurs
before j in the one-line notation for w with j > kr are precisely the ones of the form

{kr + 1, kr + 2, . . . , n} \ {kr + λ′r+1, kr + λ′r+1 + λ′r+2, . . . , kr + λ′r+1 + · · ·+ λ′t}

where λ′ = (λ′1, λ
′
2, . . . , λ

′
t) has t parts and λ′1 = · · · = λ′r = k by assumption. Notice

that λ[r]′ = (λ′r+1, λ
′
r+2, . . . , λ

′
t). Under the identification of {kr + 1, kr + 2, . . . , n} with

[n− kr] given by j 7→ j − kr, this means that w′ has left descent set [n− kr − 1] \ Jλ[r].
Next we need to show that DesR(w′) ⊆ [n−kr−1]\Jµ[r]. It follows from the above that

the entries {1, 2, . . . , kr} distribute themselves in the k staircases of the one-line notation
of w in such a way that each staircase contains precisely r many of the entries within
{1, 2, . . . , kr}. Therefore, when ignoring the [kr] entries in w to obtain w′, the locations
where the right descents can possibly occur are precisely at

{µ1 − r, µ1 + µ2 − 2r, . . . , µ1 + · · ·+ µk−1 − (k − 1)r}

which is exactly the set [n−kr−1]\Jµ[r] for the partition µ[r] = (µ1−r, µ2−r, . . . , µk−r).
In particular we conclude DesR(w′) ⊆ [n− kr − 1] \ Jµ[r] as desired.

Thus dn,kr sends the set (18) into the set (19). In fact, the argument given above
is reversible, i.e., any w′ ∈ Sn−kr lying in (19) can be extended to an element in Sn by
reversing the correspondence to j 7→ j+kr and adding the entries {1, 2, . . . , kr} in exactly
the locations specified by the hypotheses in (18), and it is clear that this extension then
lies in (18). This proves the claim in the special case ` = r. For any 1 6 ` < r, by
arguments similar to those above it follows that the entries of dn,`k(w) corresponding to
the integers {1, 2, . . . , (r − `)k} are already determined, and so an argument essentially
identical to the one above proves the desired claim. This concludes the proof of the
proposition.

From Proposition 24 we readily obtain the following.
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Corollary 40. Let λ, µ be partitions of n and suppose that there exists ` ∈ Z, ` > 1, such
that the dual partitions λ′ and µ′ agree up to the `-th entry, i.e. λ′s = µ′s for all 1 6 s 6 `.
Then

A(λ, µ) = A(λ[`], µ[`]).

Proof. The argument is a simple induction on the number of steps (in the sense of Defi-
nition 12) in the partitions λ and µ on which they agree. More precisely, suppose

[λ1] = A1 t A2 t · · · t Astep(λ)

is the step decomposition of λ and define u to be the index of the step in which ` occurs,
i.e., suppose ` ∈ Au.

We first consider the base case. Suppose u = 1. Let k denote the number of parts
of λ. Then the Young diagrams of λ and µ both contain as their leftmost ` columns a
rectangular k×` box. Proposition 24 then implies A(λ, µ) = A(λ[`], µ[`]) as desired. This
proves the base case.

Now suppose u > 1. Also suppose by induction that the claim is proved for u − 1.
Since u > 1 we know λ and µ both contain a rectangular k× r box where k is the number
of parts of both λ and µ and r = λk is the bottom length of both λ and µ. Another
application of Proposition 24 implies that A(λ, µ) = A(λ[r], µ[r]). By assumption, the
dual partitions of λ[r] and µ[r] agree up to entry ` − r, and in the step decomposition
of λ[r], the number `− r occurs in step Au−1 since we have deleted a full step from λ to
obtain λ[r]. Hence by induction we know A((λ[r])[`− r], (µ[r])[`− r]) = A(λ[r], µ[r]), but
from Definition 9 it is clear that ν[s][t] = ν[s + t] for any partition ν and s, t for which
the statement makes sense, so the result follows.

We are finally in a position to prove the upper-triangularity property.

Proof of Theorem 29. Since λ′ >lex µ
′, there exists some ` ∈ Z>1 such that λ′s = λ′s for all

0 6 s 6 ` and λ′`+1 > µ′`+1. If no such ` exists, then λ1 > µ1 and we may apply Propo-
sition 24 directly. By Corollary 40, we know A(λ, µ) = A(λ[`], µ[`]). By construction,
λ[`] and µ[`] have the property that (λ[`]′)1 > (µ[`]′)1. Hence by Proposition 24, we have
A(λ[`], µ[`]) = 0, as desired.

We also need to show that for any λ, we have A(λ, λ) = 1. Indeed, applying Corol-
lary 40 to ` = λ1 − 1 we obtain that A(λ, λ) = A(λ[λ1 − 1], λ[λ1 − 1]). By construction,
λ[λ1 − 1] is a partition with only one column. Therefore we are now reduced to showing
that if a partition ν is of the form ν = (1, 1, . . . , 1) then A(ν, ν) = 1. Let ν be such a
partition of m for some positive integer m 6 n. By definition, Jν = ∅ = Jν so we have
[m− 1] \ Jν = [m− 1] = ∆ \ Jν . This means D(Jν , Jν) consists of permutations w in Sm

with the property that every pair (i, i + 1) for all 1 6 i 6 m− 1 appears inverted in the
one-line notation of w, and that for all i such that 1 6 i 6 m−1, we have w(i) > w(i+1).
The only such permutation is the longest element [m,m− 1, . . . , 2, 1] ∈ Sm, so D(Jν , Jν)
is a singleton set and A(ν, ν) = 1 as desired. This concludes the proof.
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5 An inductive formula for the W -vector

We saw in Corollary 23 that the coefficients cµ,i of (3), when written as a column vector
Xi = (cµ,i), satisfy a matrix equation AXi = Wi. In order to solve this matrix equation,
we need to analyze the “constant vector” Wi for each i. This is the purpose of this section.

Recall that the vector Wi is defined to have entries |Wi(Jλ, h)|, where the setsWi(Jλ, h)
are introduced in Definition 16, and λ varies over the partitions of n. The main result
(Theorem 65) of this section is an inductive description of the set Wi(Jλ, h) in the case
that λ has k = ht(Ih) + 1 parts. However, we also emphasize that this assumption –
namely, that λ has exactly k = ht(Ih) + 1 parts – is not required for many of the results
in this section which lead up to Theorem 65.

For simplicity, in this section we identify the subsets J ⊆ [n − 1] with subsets of the
simple roots {αi | i ∈ J} ⊆ ∆, as explained in Remark 6. Recall that, as explained
in Remark 17, this identification yields a corresponding root-theoretic description of the
sets Wi(Jλ, h). This Lie-theoretic language is more convenient for our purposes here and
below, so henceforth we use these root-theoretic identifications.

5.1 Sink sets and subsets of height k

In order to obtain our inductive formula, we exploit the structural relationship between
the ideal Ih and graph Γh alluded to in Section 2. Recall the following notation from [9].

• We let A(Γh) denote the set of all acyclic orientations of Γh and Ak(Γh) denote the
set of all acyclic orientations with exactly k sinks.

• Given ω ∈ A(Γh) we denote the subset of vertices that occur as sinks of ω by sk(ω).
Note that each independent set of vertices in Γh occurs as the sink set of some
acyclic orientation and sk(ω) is independent for each ω ∈ A(Γh).

• Let SKk(Γh) be the set of all possible sink sets (or, independent sets) of Γ of cardi-
nality k.

• The maximum sink set size m(Γh) is the maximum of the cardinalities of the sink
sets sk(ω) associated to all possible acyclic orientations of Γh, i.e.,

m(Γh) := max{|sk(ω)| |ω ∈ A(Γh)}.

The sink set decomposition is

Ak(Γh) =
⊔

T∈SKk(Γh)

{ω ∈ Ak(Γh) | sk(ω) = T}. (20)

With this terminology in place, our goal is to extend the sink set decomposition of Ak(Γh)
to a sink set decomposition of the set W(Jλ, h).

For T ∈ SK(Γh) let Γh[T ] := Γh − T be the graph obtained from Γh be deleting
the vertices in T and all incident edges. Then Γh[T ] is the incomparability graph for a
Hessenberg function h[T ] : [n− k]→ [n− k] as shown in [9, Lemma 4.3].
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Remark 41. It is not difficult to see from the definitions of ht(Ih) and m(Γh) that
m(Γh[T ]) 6 m(Γh), or equivalently, that ht(Ih[T ]) 6 ht(Ih) (cf. also [9, Proposition 5.8,
Corollary 5.12, Lemma 5.13]).

Note that any acyclic orientation of Γh induces an acyclic orientation of Γh[T ], as
demonstrated in the example below.

Example 42. Let h = (2, 3, 5, 6, 7, 8, 8, 8), and consider the following acyclic orientation
ω of Γh displayed below.

1 2oo // 3 4oo //
""

5
||

// 6 7
||

oo // 8
||

This acyclic orientation has T = sk(ω) = {1, 3, 6}, where the vertices in sk(ω) and all
incident edges are highlighted in red for emphasis. For this graph, we have m(Γh) = 3.
The graph below shows Γ[T ] with the acyclic orientation induced from Γh.

2 4 // 5 7 //oo 8

which corresponds to the Hessenberg function h[T ] = (1, 3, 4, 5, 5). Note that we could
also re-index the vertices of Γ[T ] to obtain the following acyclic graph.

1 2 // 3 4 //oo 5

An orientation ω ∈ A(Γh) assigns each edge e a source and a target; we notate the
source (respectively target) of e according to the orientation ω by srcω(e) (respectively
tgtω(e)). Given an orientation ω of Γh we let

asc(ω) := {e = {a, b} | srcω(e) = a, tgtω(e) = b, and a < b}.

In other words, if Γh is drawn as in Example 42 with the labels of the vertices increasing
from left to right, then asc(ω) counts the number of edges which point to the right.

Given a sink set T ∈ SK(Γh) the degree of T is

degh(T ) := min{asc(ω) | ω ∈ A(Γh) and sk(ω) = T}.

For example, degh(T ) = 3 for the h and T as appearing in Example 42. The next lemma
is [9, Lemma 4.8], and shows that in practice it is easy to compute degh(T ) for any
T ∈ SK(Γh).

Lemma 43. ([9, Lemma 4.8]) Let T ∈ SK(Γh). Then

degh(T ) = |{e = {a, b} ∈ E(Γh) | a < b, b ∈ T}|.

We will see that sink sets in Γh correspond bijectively to certain subsets of roots in
Ih. In particular, we need the following definition.
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Definition 44. Let R ⊆ Φ−. We say R is a subset of height k if there exist integers
q1, q2, . . . , qk, qk+1 ∈ [n] such that q1 < q2 < . . . < qk < qk+1 and R = {tq2 − tq1 , tq3 −
tq2 , . . . , tqk+1

− tqk}. We let Rk(I) denote the set of all subsets of height k in an ideal I,
and define R(I) :=

⊔
k>0Rk(I).

It is easy to show that R ⊆ Φ− is a subset of height k if and only if there exists w ∈ Sn

such that w(R) is a subset of simple roots corresponding to k consecutive vertices in the
Dynkin diagram for gl(n,C). The set R(I) can also be used to compute the height of the
ideal. The following is [9, Lemma 5.5].

Lemma 45. ([9, Lemma 5.5]) Let I be a nonempty ideal in Φ−. Then

ht(I) = max{|R| | R ∈ R(I)}.

Recall that [9, Section 5] defines a bijection:

SKk(Γh)→ Rk−1(Ih); T 7→ RT := {βi = t`i+1
− t`i | 1 6 i 6 k − 1} (21)

where T = {`1 < `2 < · · · < `k}. By Lemma 45, this bijection shows that the maximum
size of any sink set in Γh is precisely ht(Ih) + 1, as noted in Section 2.

Example 46. Let h and T be an in Example 42. The bijection defined in (21) above
associates T = {1, 3, 6} ∈ SK3(Γh) to the subset

{t3 − t1, t6 − t3} ∈ R2(Γh).

Since 3 = m(Γh) = ht(Γh) + 1, we know that Ih cannot contain any subsets of height
k > 3. This line of reasoning is essential for proving the inductive formulas later in this
section.

5.2 Another sink-set decomposition

Throughout this section, λ = (λ1, λ2, . . . , λk) is a partition of n with k parts. In this
section we will show that the setsW(Jλ, h) have a sink set decomposition. First we define
a subset of W(Jλ, h) associated to each sink set.

Definition 47. Given T = {`1 < `2 < · · · < `k} ∈ SKk(Γh) we define

Wi(Jλ, h, T ) := {w ∈ Wi(Jλ, h) | w(`j) = k − j + 1, 1 6 j 6 k}.

and let W(Jλ, h, T ) = tiWi(Jλ, h, T ) where the union is taken over all i such that
Wi(Jλ, h, T ) 6= ∅.

The conditions defining W(Jλ, h, T ) tell us that if w ∈ W(Jλ, h, T ) then:

k, k − 1, . . . , 2, 1 appear in positions `1, `2, . . . , `k−1, `k in the one-line notation for w. (22)

In particular, (k, k − 1, . . . , 2, 1) is a subsequence of the one-line notation for w.
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Example 48. Let h = (2, 3, 5, 6, 7, 8, 8, 8) and T = {1, 3, 6} as in Example 42. Consider
λ = (3, 3, 2); in this case Jλ = {α3, α6}. We have, for example, that w ∈ W(Jλ, h, T )
where

w = [3, 6,2, 8, 5,1, 7, 4].

Note that in the example above, w−1({α1, α2}) = {t3 − t1, t6 − t3} = RT , where RT

was computed in Example 46. The next lemma shows that this property characterizes
the elements of Wi(Jλ, h, T ).

Lemma 49. Let T ∈ SKk(Γh). Then w ∈ Wi(Jλ, h, T ) if and only if w ∈ Wi(Jλ, h) and
RT = w−1({α1, . . . , αk−1}).

Proof. If w ∈ Wi(Jλ, h, T ) for T = {`1, `2, . . . , `k}, then w ∈ Wi(Jλ, h) and

w−1(αk−j) = w−1(tk−j − tk−j+1) = t`j+1
− t`j for all j = 1, . . . , k − 1

by definition of Wi(Jλ, h, T ). Now the definition of RT given in (21) implies

w−1({α1, . . . , αk−1}) = RT ∈ Rk−1(Ih)

as desired.
To show the converse, suppose w ∈ Wi(Jλ, h) and w−1({α1, . . . , αk−1}) = RT where

T = {`1, `2, . . . , `k} ∈ SKk(Γh). Then

w−1({α1, α2, . . . , αk−1}) = RT := {t`2 − t`1 , t`3 − t`2 , . . . , t`k − t`k−1
}.

All that remains to show is that w(`j) = k − j + 1 for all 1 6 j 6 k. The equation
above implies w(`j) ∈ {1, 2, . . . , k}. Observe that w−1({α1, . . . , αk−1}) = RT implies
w(RT ) = {α1, . . . , αk−1}. Thus we also know w(`j) = w(`j+1) + 1 since

w(t`j+1
− t`j) = tw(`j+1) − tw(`j) ∈ {α1, . . . , αk−1}.

This can only be the case if `1 = k, `2 = k− 1, and so on. We conclude w(`j) = k− j + 1
for each k as desired.

The next proposition generalizes the sink set decomposition given in (20) and gives a
sink set decomposition of the set Wi(Jλ, h) for each i.

Proposition 50. Let n be a positive integer and h : [n]→ [n] a Hessenberg function. Let
i ∈ Z, i > 0 and λ be a partition of n with k parts. Then

Wi(Jλ, h) =
⊔

T∈SKk(Γh)

Wi(Jλ, h, T ). (23)

We call the decomposition (23) the sink set decomposition of W(Jλ, h).
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Proof. It is straightforward from the definition of the sets Wi(Jλ, h, T ) that the RHS
of (23) is contained in the LHS. Thus we have only to prove the opposite inclusion. Let
w ∈ Wi(Jλ, h). By definition, w−1(∆ \ Jλ) ⊆ Ih. Since {α1, . . . , αk−1} ⊆ ∆ \ Jλ = Jλ′ it
follows immediately that

tw−1(1) − tw−1(2), tw−1(2) − tw−1(3), . . . , tw−1(k−1) − tw−1(k) ∈ Ih.

In particular, R = w−1({α1, . . . , αk−1}) is a subset of Ih of height k − 1. Since (21) is a
bijection, there exists a unique sink set T ∈ SKk(Γh) such that R = RT and therefore
w ∈ Wi(Jλ, h, T ) by Lemma 49.

5.3 Inductive Formulas

Our next goal is to identify each set Wi(J, h, T ) with a subset of permutations in Sn−k.
The following notation generalizes [9, Definition 7.3].

Definition 51. Suppose T ∈ SKk(Γh) with T = {`1 < `2 < · · · < `k} and λ ` n with k
parts. Define a permutation in Sn, denoted wT , by:

1. wT (`j) = k − j + 1, 1 6 j 6 k, i.e. wT satisfies (22), and

2. the remaining entries in the one-line notation of wT list the integers [n] \ T in
increasing order from left to right.

Example 52. Let h = (2, 3, 5, 6, 7, 8, 8, 8) and T = {1, 3, 6} as in Example 42. Then

wT = [3, 4,2, 5, 6,1, 7, 8]

where the entries in positions `1 = 1, `2 = 3 and `3 = 6 are bolded for emphasis. Note
that wT need not be an element of W(Jλ, h, T ). For example wT /∈ W(Jλ, h, T ) when
λ = (3, 3, 2) is the same partition considered in Example 48 since

w−1
T (α4) = w−1

T (t4 − t5) = t2 − t4 ∈ Φh

so wT does not satisfy the condition that w−1
T (∆ \ Jλ) ⊆ Ih.

For each sink set T = {`1 < `2 < · · · < `k} let fT : ([n] \ T )→ [n− k] be the bijection
such that φT (j) = j − j′ where j′ denotes the number of elements i ∈ T such that i 6 j.
This bijection can be used to give explicit formulas for wT , as noted in the following
remark.

Remark 53. The conditions defining wT can be written explicitly in formulas involving fT
as follows.

• If j > k then w−1
T (j), the position of j in the one-line notation for wT , is the unique

element of [n] such that fT (w−1
T (j)) = j − k, and

• if j ∈ [n] \ T we have wT (j) = fT (j) + k.
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In fact, the above formulas uniquely determine the bijection fT , which must then be as
defined in the preceding paragraph.

Example 54. We continue Example 52 from above. Here k = 3 and wT = [3, 4,2, 5, 6,1,
7, 8]. In particular, we have T = {1, 3, 6} and

fT (2) = 1, fT (4) = 2, fT (5) = 3, fT (7) = 4, fT (8) = 5.

Notice that fT is the natural bijection we used to relabel the vertices of Γh[T ] in Exam-
ple 42. The reader can easily verify the formulas given in Remark 53 in this case. For
example,

wT (2) = fT (2) + 3 = 4 and fT (w−1
T (6)) = fT (5) = 3 = 6− 3.

The following is a generalization of [9, Lemma 7.6].

Lemma 55. Let T = {`1 < `2 < · · · < `k} be a sink set of cardinality k. Each element
w ∈ Sn satisfying condition (1) of Definition 51 can be written uniquely as w = wTσ
where σ ∈ Stab(`1, `2, . . . , `k).

Proof. The hypotheses on w determine the entries in positions `1, `2, . . . , `k in one-line
notation. The other entries must be a permutation of the set [n] \ {`1, `2, . . . , `k}, and
the hypotheses on w place no conditions on this permutation. Recall that for wT and any
permutation σ ∈ Sn, right-composition with σ acts on the positions, i.e. if wT sends i
to wT (i), then wTσ sends i to wT (σ(i)). Thus, if σ stabilizes `1, `2, . . . , `k, then w = wTσ
satisfies w(`j) = wT (`j) = k − j + 1 for all j = 1, . . . , k. Moreover, it is straightforward
to see that such a σ is unique.

Corollary 56. Each w ∈ Wi(Jλ, h, T ) can be written uniquely as w = wTσ where
σ ∈ Stab(`1, `2, . . . , `k).

Proof. By definition, each element of Wi(Jλ, h, T ) satisfies condition (1) of Definition 51.

Example 57. Let w = [3, 6,2, 8, 5,1, 7, 4] ∈ W(J(3,3,2), h, T ) for h = (2, 3, 5, 6, 7, 8, 8, 8),
as shown in Example 48. In this case, the factorization w = wTσ gives us

σ = [1, 5,3, 8, 4,6, 7, 2] ∈ Stab(1, 3, 6).

The bijection fT defined above induces a natural isomorphism:

Stab(`1, `2, . . . , `k)→ Sn−k; σ 7→ xσ

defined as follows. Given σ ∈ Stab(`1, `2, . . . , `rk), delete positions `1, `2, . . . , `k from the
one-line notation for σ and then apply fT to the remaining entries to obtain xσ. The result
is clearly an element in Sn−k and each element of Sn−k arises in this way.

Example 58. The element σ = [1, 5,3, 8, 4,6, 7, 2] ∈ Stab(1, 3, 6) obtained in Example 57
above maps to xσ = [3, 5, 2, 4, 1] ∈ S5.
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By Lemma 55, for each T ∈ SKk(Γh) we get a well defined bijection

ΨT : {w ∈ Sn : w satisfies condition (1) of Definition 51 } → Sn−rk

defined by ΨT (wλ,Tσ) = xσ. Note that ΨT is very similar to the map dn,m : Sn → Sn−m
defined in Section 4 and used in the proof of Proposition 24. Indeed, using the language
of that section, applying ΨT can be described as ignoring the [k] entries in the one-line
notation of w.

Recall that there is a natural Lie subalgebra of gl(n,C) obtained by “setting the
variables in row/columns {`1, `2, . . . , `k} equal to zero.” More precisely, there is a natural
Lie algebra isomorphism

{X ∈ gl(n,C) |Xij = 0 if {i, j} ∩ T 6= ∅} ∼= gl(n− k,C). (24)

defined explicitly on the basis {Eij | {i, j} ∩ T = ∅} of the LHS by Eij 7→ EfT (i)fT (j).
Recall that for each T ∈ SKk(Γh) we have an associated Hessenberg function h[T ] :

[n − k] → [n − k] whose incomparability graph is obtained by deleting the vertices in
T and any incident edges from Γh. In fact, this Hessenberg function corresponds to the
Hessenberg space H ∩ gl(n− k,C) under the identification in (24). (See [9, Section 4] for
more details on this perspective.) We identify the set of roots

Φ[T ] := {ti − tj ∈ Φ | {i, j} ∩ T = ∅} ⊆ Φ

with the root system of gl(n− k,C) via

ti − tj 7→ tfT (i) − tfT (j). (25)

Example 59. We demonstrate the identifications from (24) and (25) in the running
example started in Example 42, with h = (2, 3, 5, 6, 7, 8, 8, 8). To visualize what is going
on, we represent gl(8,C) as an 8×8 grid with a star placed in the (i, j)-box precisely when
the root (i, j) is contained in Φh. The boxes highlighted in grey correspond the roots in
Φ\Φ[T ] so the white boxes containing a star correspond to the roots in Φh[T ] := Φ[T ]∩Φh,
to be discussed further below.

gl(8,C) :

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ?

? ? ? ?

? ? ?

gl(5,C) :

? ? ? ? ?

? ? ? ?

? ? ? ?

? ? ?

? ?
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Note that the map in (25) is an isomorphism of root systems, where Φ[T ] is viewed as
a subroot system of Φ (since Φ[T ] is closed under addition in Φ). Moreover, the subsets
Φh[T ] := Φh ∩ Φ[T ] and Φ−h [T ] := Φ−h ∩ Φ[T ] correspond to Φh[T ] and Φ−h[T ] respectively,

via (25).

Remark 60. The root system isomorphism given in (25) is compatible with the cor-
responding identification Stab(`1, . . . , `k) given in (24) in the following sense. If σ ∈
Stab(`1, . . . , `k) and ti − tj ∈ Φ[T ] then σ(ti − tj) ∈ Φ[T ] and

tk − t` = σ(ti − tj)⇔ tfT (k) − tfT (`) = xσ(tfT (i) − tfT (j)).

Recall that for a permutation w ∈ Sn we define

inv(w) := {(i, j) | i > j and w(i) < w(j)}.

We identify inv(w) with the subset of negative roots Φ− ∩ w−1(Φ+) = {ti − tj | (i, j) ∈
inv(w)} throughout this section. Then (25) gives a bijection between inv(σ) ∩ Φ[T ] and
inv(xσ) and a bijection between invh(σ) ∩ Φ[T ] and invh[T ](xσ).

Lemma 61. Let T ∈ SKk(Γh). Then

1. inv(wT ) = {(i, j) | i > j and i ∈ T}, and

2. if w = wTσ for σ ∈ Stab(`1, . . . , `k) then

inv(w) = inv(wT ) t (inv(σ) ∩ Φ[T ]). (26)

Proof. We begin by proving statement (1). If (i, j) ∈ inv(wT ) then i > j and wT (i) <
wT (j). If i /∈ T , then wT (j) > wT (i) > k so from the construction of wT we conclude
j /∈ T . But the entries in the one-line notation of wT for i, j 6∈ T cannot be inverted,
by Definition 51(2). Hence wT (j) > wT (i), yielding a contradiction. Therefore i ∈ T
as desired. On the other hand, consider (i, j) with i > j and i ∈ T . Since i ∈ T , we
may write i = `i0 for some i0 with 1 6 i0 6 k. If j ∈ T , then j = `j0 for some j0 with
1 6 j0 6 k such that j0 < i0 (since j < i) and we have

wT (i) = wT (`i0) = k − i0 + 1 < k − j0 + 1 = wT (`j0) = wT (j)

so (i, j) ∈ inv(wT ). If j /∈ T , then wT (j) > k and therefore

wT (i) 6 k < wT (j)

so (i, j) ∈ inv(wT ) also. This proves (1).
Next we prove (2). Let w be as given. Note that since σ ∈ Stab(`1, . . . , `k), we have

w(T ) = wT (T ) = {1, 2, . . . , k}. Our proof relies on this fact, as well as the formulas
given in Remark 53. We first show the inclusion inv(w) ⊆ inv(wT )t (inv(σ)∩Φ[T ]). Let
(i, j) ∈ inv(w). If i ∈ T then (i, j) ∈ inv(wT ) by (1). If i 6∈ T , then k < w(i) < w(j)
so j /∈ T as above and we conclude (i, j) ∈ Φ[T ]. Since σ ∈ Stab(`1, . . . , `k) and σ is a

the electronic journal of combinatorics 29(3) (2022), #P3.16 29



permutation σ also preserves the complement [n] \ {`1, . . . , `k} = [n]− T . Hence if i 6∈ T
then σ(i) 6∈ T also. Using this fact and the formulas from Remark 53 we now have

fT (σ(i)) + k = wTσ(i) < wTσ(j) = fT (σ(j)) + k ⇒ fT (σ(i)) < fT (σ(j))⇒ σ(i) < σ(j)

since f−1
T is an increasing function. Therefore (i, j) ∈ inv(σ) ∩ Φ[T ].

To prove the opposite inclusion, suppose (i, j) ∈ inv(wT ). By (1), we know i ∈ T . If
j ∈ T then

w(i) = wTσ(i) = wT (i) < wT (j) = wTσ(j) = w(j)

so (i, j) ∈ inv(w). If j /∈ T then w(j) = wTσ(j) > k and

w(i) = wTσ(i) = wT (i) 6 k < w(j)

so (i, j) ∈ inv(w) in this case also. Hence inv(wT ) ⊆ inv(w). Next suppose (i, j) ∈
inv(σ) ∩ Φ[T ]. This means i, j /∈ T and thus we know, as above, that σ(i), σ(j) /∈ T also.
Hence

w(i) = wTσ(i) = fT (σ(i)) + k < fT (σ(j)) + k = wTσ(j) = w(j)

since fT is increasing and σ(i) < σ(j) by assumption. Therefore inv(σ) ∩ Φ[T ] ⊆ inv(w)
also. This completes the proof.

Example 62. Continuing the running example, we have

wTσ = w = [3, 6,2, 8, 5,1, 7, 4] ∈ W(J(3,3,2), h, T )

where wT = [3, 4,2, 5, 6,1, 7, 8] and σ = [1, 5,3, 8, 4,6, 7, 2] ∈ Stab(1, 3, 6). In this case it
can be checked that

inv(w) = {(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (3, 1), (3, 2),

(8, 2), (8, 4), (8, 5), (8, 7), (5, 2), (5, 4), (7, 4)}

where
inv(wT ) = {(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (3, 1), (3, 2)}

and
inv(σ) ∩ Φ[T ] = {(8, 2), (8, 4), (8, 5), (8, 7), (5, 2), (5, 4), (7, 4)}.

It is, in general, not the case that `(w) = `(wT ) + `(σ) (where `(w) denotes the
Bruhat length of w ∈ Sn); indeed, this is not true for the example above. Therefore the
decomposition of the inversions given in Lemma 61 above is not a simple application of
known formulas for the inversion set of a given permutation (see [4, Sections 2.4-2.5]).

Lemma 63. Let λ = (λ1, λ2, . . . , λk) be a partition of n with exactly k parts and T ∈
SKk(Γh). Then:

1. w−1
T (Jλ) ∩ Φ[T ] is mapped to Jλ[1] under the identification in (25) and
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2. w−1
T (∆ \ Jλ) ∩ Φ[T ] is mapped to {α1, . . . , αn−k−1} \ Jλ[1] under the identification

in (25),

where λ[1] = (λ1 − 1, λ2 − 1, . . . , λk − 1).

Proof. By definition, wT (T ) = {1, 2, . . . , k}. Therefore

w−1
T (αj) = tw−1

T (j) − tw−1
T (j+1) ∈ Φ[T ] ⇔ {w−1

T (j), w−1
T (j + 1)} ∩ T = ∅

⇔ {j, j + 1} ∩ {1, 2, . . . , k} = ∅

and we conclude that w−1
T (αj) ∈ Φ[T ] if and only if k+1 6 j 6 n−1. This shows that, for

the remainder of the argument, and since we are only interested in simple roots αj such
that w−1

T (αj) lands in Φ[T ], we may assume that j > k. To simply notation we define
Jλ[1]+k := {αi+k : αi ∈ Jλ[1]} and Jcλ[1]+k := {αk+1, . . . , αn−1} \ Jλ[1]+k. Then by definition

Jλ = {αk} t Jλ[1]+k and ∆ \ Jλ = {α1, . . . , αk} t Jcλ[1]+k.

Thus, w−1
T (Jλ) ∩ Φ[T ] = w−1

T (Jλ[1]+k) and w−1
T (∆ \ Jλ) ∩ Φ[T ] = w−1

T (Jcλ[1]+k). From the
formula given in Remark 53 we have

w−1
T (αj) = tw−1

T (j) − tw−1
T (j+1) 7→ tfT (w−1

T (j)) − tfT (w−1
T (j+1)) = tj−k − tj+1−k

under the identification in (25). Therefore (25) maps w−1
T (Jλ[1]+k) to Jλ[1] and w−1

T (Jcλ[1]+k)

to {α1, . . . , αn−k−1} \ Jλ[1] as desired.

The next lemma is the technical heart of our argument. Notice that this is the first
time we require the assumption that k = ht(Ih) + 1.

Lemma 64. Let λ = (λ1, λ2, . . . , λk) be a partition of n with k parts, where k = ht(Ih) +
1 and T ∈ SKk(Γh). Then w = wTσ ∈ W(Jλ, h, T ) if and only if ΨT (w) = xσ ∈
W(Jλ[1], h[T ]).

Proof. By Corollary 56, each w ∈ W(Jλ, h, T ) is of the form w = wTσ for a unique
σ ∈ Stab(`1, `2, . . . , `k) and

w−1(Jλ) ⊆ Φh and w−1(∆ \ Jλ) ⊆ Ih.

Since Φ[T ] is invariant under σ and Φh[T ] = Φ[T ]∩Φh, intersecting the sets appearing in
the equations above with Φ[T ] yields

σ−1(w−1
T (Jλ) ∩ Φ[T ]) ⊆ Φh[T ] and σ−1(w−1

T (∆ \ Jλ) ∩ Φ[T ]) ⊆ Ih[T ] (27)

where Ih[T ] := Φ[T ] ∩ Ih. The forward direction of the statement now follows directly
from Lemma 63 and Remark 60.

On the other hand, if xσ ∈ W(J[1], h[T ]) then Lemma 63 and Remark 60 together
imply that equation (27) still holds. In order to show w = wTσ ∈ W(Jλ, h, T ) we must
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prove w−1(αk) ∈ Φh and w−1({α1, . . . , αk−1}) ⊆ Ih. The latter fact is straightforward,
since from the definition of wT we have

w−1({α1, . . . , αk−1}) = RT ⊆ Ih.

Thus, we have only to show that w−1(αk) ∈ Φh. If not, then w−1(αk) ∈ Ih and

R = w−1({α1, . . . , αk−1, αk}) ⊆ Ih

is a subset of height k in Ih. Lemma 45 now implies ht(Ih) > k − 1, a contradiction. We
conclude that w ∈ W(Jλ, h, T ) as desired.

We are now ready to prove the main result of this section.

Theorem 65. Let λ be a partition of n with k parts, where k = ht(Ih) + 1 and T ∈
SKk(Γh). Then ΨT maps Wi(Jλ, h, T ) bijectively onto Wi−degh(T )(Jλ[1], h[T ]).

Proof. Let w ∈ Wi(Jλ, h, T ) and T = {`1 < `2 < · · · < `k}. By Corollary 56, w = wTσ
for a unique σ ∈ Stab(`1, . . . , `k) and ΨT (w) = xσ by definition. Lemma 64 implies
ΨT :W(Jλ, h, T )→W(Jλ[1], h[T ]) is a bijection, so we have only to show that this bijection
respects the grading as indicated. But this follows from Lemma 61 by intersecting both
sides of (26) with Φh. We obtain

invh(w) = invh(wT ) t (inv(σ) ∩ Φh[T ])

so
i = |invh(w)| = |invh(wT )|+ |invh[T ](xσ)| = degh(T ) + |invh[T ](xσ)|

where the equation above follows directly from Lemma 43 and Remark 60. From this it
follows that ΨT (w) ∈ Wi−degh[T ](Jλ[1], h[T ]) as desired.

6 Inductive formulas for the multiplicities associated to maxi-
mal sink sets

The main result of this section is a first application of the results obtained in the pre-
vious sections. Specifically, we derive an inductive formula for the multiplicities cµ,i
of the tabloid representations in the decomposition of the dot action representation on
H2i(Hess(S, h)), for partitions µ with the maximal number of parts. This result proves
[9, Conjecture 8.1].

In the following we use the notation and terminology of Section 5. Let n be a positive
integer, h : [n]→ [n] a Hessenberg function, Γh its associated incomparability graph. Let
k = ht(Ih) + 1. Let ω ∈ Ak(Γh) be an acyclic orientation of Γh and let T = sk(ω) be
the sink set of ω of maximal size k. We can delete the vertices of T and all incident
edges from Γh to obtain a strictly smaller graph Γh[T ] associated to a smaller Hessenberg
function h[T ] : [n− k]→ [n− k] (see [9, Section 4] for more details).
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Let Sn−k ∈ gl(n − k,C) be a regular semisimple operator. The cohomology of the
Hessenberg variety Hess(Sn−k, h[T ]) ⊆ F`ags(Cn−k) has a dot action of the permutation
group Sn−k and therefore has a corresponding decomposition analogous to (3). We denote
the coefficients for this decomposition by cTµ′,i as follows:

H2i(Hess(Sn−k, h[T ])) =
∑

µ′`(n−k)

cTµ′,iM
µ′ . (28)

With the notation in place we can state our inductive formula, which was first stated
as Conjecture 8.1 in [9].

Theorem 66. Let n be a positive integer and h : [n] → [n] a Hessenberg function. Let
k = ht(Ih) + 1. Suppose µ ` n is a partition of n with exactly k = ht(Ih) + 1 parts. Then
for all i > 0 we have

cµ,i =
∑

T∈SKk(Γh)

cTµ[1],i−degh(T ). (29)

Proof. Let Par>k(n) denote the set of all partitions of n with at least k parts and Park(n)
denote the set of all partitions of n with exactly k parts. Let A = (A(λ, µ))λ,µ∈Par>k(n).

By definition, if λ ∈ Par>k(n) and λ � µ, then µ has at least k parts so A is the lower
right-hand |Par>k(n)| × |Par>k(n)| submatrix of A. In particular, A is upper-triangular
since A is by Theorem 29. We consider the matrix equation

AX i = W i where X i = (cµ,i)µ∈Par>k(n) and W i = (|Wi(Jλ, h)|)λ∈Par>k(n). (30)

The matrix equation appearing in (30) is consistent since we already know a priori that
there exists a solution, given by the coefficients cµ,i of (3). Moreover, since A is upper-
triangular, this solution is unique. Furthermore, cµ,i = 0 for all partitions µ with more
than k parts by Theorem 4. We may therefore rewrite the matrix equation AX i = W i

as the following system of linear equations, one equation for each partition λ ` n with
exactly k parts:

|Wi(Jλ, h)| =
∑

µ∈Park(n)

cµ,iA(λ, µ). (31)

In order to proved the desired result, it suffices to show that the RHS of (29) satisfies,
as µ varies among all partitions of n with exactly k parts, the linear relations obtained
in (31). From the sink set decomposition of Wi(Jλ, h) given in Proposition 50 and the
bijection between Wi(Jλ, h, T ) and Wi−degh(T )(Jλ[1], h[T ]) given in Theorem 65 we obtain

|Wi(Jλ, h)| =
∑

T∈SKk(Γh)

|Wi−degh(T )(Jλ[1], h[T ])|

=
∑

T∈SKk(Γh)

∑
µ′`(n−k)

cTµ′,i−degh(T ) |D(Jλ[1], Jµ′)|
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where the second equality follows from Theorem 18, applied to J = Jλ[1], h[T ] and n− k.
Notice that |D(Jλ[1], Jµ′)| = A(λ[1], µ′) by (14).

From Remark 41 it follows that for any T ∈ SKk(Γh), the height of the ideal Ih[T ] is at
most k− 1 = ht(Ih) and hence the coefficient cTµ′,i−degh(T ) appearing in the last expression
above is zero if µ′ has more than k parts. Therefore we may rewrite the above expression
and exchange the summation operations as follows:∑
T∈SKk(Γh)

∑
µ′`(n−k)

cTµ′,i−degh(T ) A(λ[1], µ′) =
∑

T∈SKk(Γh)

∑
µ′`(n−k)

µ′ has 6 k parts

cTµ′,i−degh(T ) A(λ[1], µ′)

=
∑

µ′`(n−k)
µ′ has 6 k parts

 ∑
T∈SKk(Γh)

cTµ′,i−degh(T )

A(λ[1], µ′).

Next we observe that any partition µ′ of n− k which has at most k parts is equal to µ[1]
for a unique partition µ of n with the properties that µ has exactly k parts. Indeed, it is
not hard to see that µ := (µ′1 + 1, µ′2 + 1, . . . , µ′k + 1) is precisely this (unique) µ.

Using this correspondence µ ↔ µ[1] = µ′, we may therefore conclude that the last
expression in the displayed equations above is equal to

∑
µ∈Park(n)

 ∑
T∈SKk(Γh)

cTµ[1],i−degh(T )

A(λ[1], µ[1])

which is in turn equal to

∑
µ∈Park(n)

 ∑
T∈SKk(Γh)

cTµ[1],i−degh(T )

A(λ, µ)

by Corollary 40. Putting the above together we have obtained

|Wi(Jλ, h)| =
∑

µ∈Park(n)

 ∑
T∈SKk(Γh)

cTµ[1],i−degh(T )

A(λ, µ). (32)

This proves the desired result.
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