Every Steiner Triple System Contains an Almost Spanning d-Ary Hypertree

Andrii Arman
Department of Mathematics
Emory University
Atlanta, GA, 30322, U.S.A.
andrewOarman@gmail.com

Vojtěch Rödl*
Department of Mathematics
Emory University
Atlanta, GA, 30322, U.S.A.
rodl@mathcs.emory.edu

Marcelo Tadeu Sales
Department of Mathematics
Emory University
Atlanta, GA, 30322, U.S.A.
marcelo.tadeu.sales@emory.edu

Submitted: May 23, 2021; Accepted: May 30, 2022; Published: Jul 15, 2022
(C) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

In this paper we make a partial progress on the following conjecture: for every $\mu>0$ and a large enough n, every Steiner triple system S on at least $(1+\mu) n$ vertices contains every hypertree T on n vertices. We prove that the conjecture holds if T is a perfect d-ary hypertree. Mathematics Subject Classifications: 05B07, 05C65

1 Introduction

In this paper we study the following conjecture, raised by the second author and Bradley Elliot [4].

Conjecture 1. Given $\mu>0$ there is n_{0}, such that for any $n \geqslant n_{0}$, any hypertree T on n vertices and any Steiner triple system S on at least $(1+\mu) n$ vertices, S contains T as a subhypergraph.

[^0]Note that any hypertree T can be embedded into any Steiner triple system S, provided $|V(T)| \leqslant \frac{1}{2}(|V(S)|+3)$. The problem becomes more interesting if the size of the tree is larger. In [3] (see also [4] Section 5) Conjecture 1 was verified for some special classes of hypertrees. In this paper we verify the conjecture for another class of hypertrees - perfect d-ary hypertrees.

Definition 2. A perfect d-ary hypertree T of height h is a hypertree T with $V(T)=$ $\bigcup_{i=0}^{h} V_{i}$, where $\left|V_{i}\right|=(2 d)^{i}$ for all $i \in[0, h]$, such that for every $i \in[0, h-1]$ and $v \in V_{i}$ there are $2 d$ vertices $\left\{u_{1}, \ldots, u_{2 d}\right\} \subseteq V_{i+1}$ such that $\left\{v, u_{2 j-1}, u_{2 j}\right\}$ is a hyperedge of T for all $j \in[d]$.

In other words, T is a perfect d-ary hypertree if every non-leaf vertex has $2 d$ children (or a forward degree d). The main result of this paper is the following theorem.

Theorem 3. For any real $\mu>0$ there is n_{0} such that the following holds for all $n \geqslant n_{0}$ and any positive integer d. If S is a Steiner triple system with at least $(1+\mu) n$ vertices and T is a perfect d-ary hypertree on at most n vertices, then $T \subseteq S$.

2 Preliminaries

For a positive integer k let $[k]=\{1, \ldots, k\}$ and for positive integers $k<\ell$ let $[k, \ell]=$ $\{k, k+1, \ldots, \ell\}$. We write $x=y \pm z$ if $x \in[y-z, y+z]$. We write $A=B \sqcup C$ if A is a union of disjoint sets B and C.

A hypertree is a connected, simple (linear) 3uniform hypergraph in which every two vertices are joined by a unique path. A hyperstar S of size a centered at v is a hypertree on the vertex set $v, v_{1}, v_{2}, \ldots, v_{2 a}$ with the edge set $E(S)=\left\{\left\{v, v_{2 i-1}, v_{2 i}\right\}: i \in[a]\right\}$. A Steiner triple system (STS) is a 3uniform hypergraph in which every pair of vertices is contained in exactly one edge.

If H is a hypergraph and $v \in V(H)$, then $d_{H}(v)$ (or $d(v)$ when the context is clear) is the degree of a vertex v in H.

For $V(H)=X \sqcup Y$ we denote by $H[X, Y]$ the spanning subhypergraph of H with

$$
E(H[X, Y])=\{e \in E(H):|e \cap X|=1,|e \cap Y|=2\} .
$$

The proof of Theorem 3 relies on the application of an existence of an almost perfect matching in an almost regular 3 -uniform simple hypergraph. We will use two versions of such results. In the first version the degrees of a small proportion of vertices are allowed to deviate from the average degree. We will use Theorem 4.7.1 from [2] (see [5] and [8] for earlier versions).

Theorem 4. For any $\delta>0$ and $k>0$ there exists ε and D_{0} such that the following holds. Let H be a 3-uniform simple hypergraph on N vertices and $D \geqslant D_{0}$ be such that
(i) for all but at most εN vertices x of H the degree of x

$$
d(x)=(1 \pm \varepsilon) D .
$$

(ii) for all $x \in V(H)$ we have

$$
d(x) \leqslant k D .
$$

Then H contains a matching on at least $N(1-\delta)$ vertices.
A second version is a result by Alon, Kim and Spencer [1], where under the assumption that all degrees are concentrated near the average, a stronger conclusion may be drawn. We use a version of this result as stated in $[7]^{*}$.
Theorem 5. For any $K>0$ there exists D_{0} such that the following holds. Let H be a 3-uniform simple hypergraph on N vertices and $D \geqslant D_{0}$ be such that $\operatorname{deg}(x)=D \pm$ $K \sqrt{D \ln D}$ for all $x \in V(H)$. Then H contains a matching on $N-O\left(N D^{-1 / 2} \ln ^{3 / 2} D\right)$ vertices.

Here the constant in $O()$-notation is depending on K only and is independent of N and D.

In Lemma 9 we consider a random partition of the vertex set of Steiner triples system S and heavily use the following version of Chernoff's bound (this is Corollary 2.3 of Janson, Luczak, Rucinski [6]).
Theorem 6. Let $X \sim \operatorname{Bi}(n, p)$ be a binomial random variable with the expectation μ, then for $t \leqslant \frac{3}{2} \mu$

$$
\mathbb{P}(|X-\mu|>t) \leqslant 2 e^{-t^{2} /(3 \mu)}
$$

In particular for $K \leqslant \frac{3}{2} \sqrt{\frac{\mu}{\ln \mu}}$ and $t=K \sqrt{\mu \ln \mu}$

$$
\begin{equation*}
\mathbb{P}(|X-\mu|>K \sqrt{\mu \ln \mu}) \leqslant 2(\mu)^{-K^{2} / 3} . \tag{1}
\end{equation*}
$$

If $\varepsilon>0$ is fixed and $\mu>\mu(\varepsilon)$, then

$$
\begin{equation*}
\mathbb{P}(X=(1 \pm \varepsilon) \mu)=1-e^{-\Omega(\mu)} . \tag{2}
\end{equation*}
$$

3 Proof of Theorem 3

3.1 Proof Idea

Assume that S is an STS on at least $(1+\mu) n$ vertices. We will choose a small constant $\varepsilon \ll \mu$.

Let T be a perfect d-ary tree on at most n vertices with levels $V_{i}, i \in[0, h]$ and let $i_{0}=\max \left\{i,\left|V_{i}\right| \leqslant \varepsilon n\right\}$. Let T_{0} be a subhypertree of T induced on $\bigcup_{i=0}^{i 0} V_{i}$. To simplify our notation we set $t=h-i_{0}$ and for all $i \in[0, t]$ we set $L_{i}=V_{i_{0}+i}$. Our goal is to find $L \subset V(S)$ with $|L|=|V(T)|$ such that $S[L]$, the subhypergraph induced by L, contains a spanning copy of T. In particular we would find such an L, level by level, first embedding T_{0}, and then L_{1}, \ldots, L_{t}.

To start we consider a partition $\mathcal{P}=\left\{C_{0}, \ldots, C_{t}, R\right\}$ of $V(S)$ with "random-like" properties (see Lemma 9 for the description of \mathcal{P}) in the following way:

[^1]- The first few levels of T, constituting T_{0} with the subset of leafs L_{0}, will be embedded greedily into $S\left[C_{0}\right]$.
- Then Lemma 7 and Lemma 8 will be used to find star forests in $S\left[L_{0}, C_{1}\right]$ and $S\left[C_{i-1}, C_{i}\right]$ for $i \in[2, t]$. The union of these star forests will establish embedding of almost all vertices of T (see Claim 12).
- Finally, reservoir vertices R will be used to complete the embedding (see Claim 13).

3.2 Auxiliary Lemmas

We start our proof with the following Lemma that will later allow us to verify that $S\left[L_{0}, C_{1}\right]$ contains an almost perfect packing of hyperstars, each of size at most d, centered at the vertices of L_{0}

Lemma 7. For any positive real $\delta, k>1$ there are $\varepsilon>0$ and D_{0} such that the following holds for all $D \geqslant D_{0}$ and all positive integers d. Let $G=(V, E)$ be a 3-uniform simple hypergraph on N vertices such that $V=X \sqcup Y$ and
(i) for all $e \in E,|e \cap X|=1$ and $|e \cap Y|=2$.
(ii) for all vertices $v \in X$ we have

$$
d(v)=d D(1 \pm \varepsilon)
$$

and for all but at most εN vertices $v \in Y$ we have

$$
d(v)=D(1 \pm \varepsilon) .
$$

(iii) $d(v) \leqslant k D$ for all $v \in Y$.

Then G contains a packing of hyperstars of size at most d centered at vertices of X that covers all but at most δN vertices.

Proof. For given δ and k set $\delta_{2.1}=2 \delta / 3$ and $k_{2.1}=k$. With these parameters as an input, Theorem 4 yields $\varepsilon_{2.1}$ and D_{0}. Set $\varepsilon=\varepsilon_{2.1} / 2$ and note that if Theorem 4 holds for some $\varepsilon_{2.1}$ and D_{0} then it also holds for smaller values of $\varepsilon_{2.1}$ and larger values of D_{0}. Therefore we may assume that ε is sufficiently small with respect to δ and k.

Let G that satisfies conditions (i)-(iii) be given. We start with constructing an auxiliary hypergraph H that is obtained from G by repeating the following splitting procedure for each vertex $v \in X$: split the hyperedges incident to v into d disjoint groups, each of size $D(1 \pm 2 \varepsilon)=D\left(1 \pm \varepsilon_{2.1}\right)$, and then replace v with new vertices v_{1}, \ldots, v_{d} and each hyperedge $\{v, u, w\}$ that belongs to the group j with a hyperedge $\left\{v_{j}, u, w\right\}$.

First, we show that $|V(H)| \leqslant \frac{3}{2} N$. Note that due to conditions (i)-(iii)

$$
|E(G)| \sim|X| d D \sim \frac{1}{2}|Y| D .
$$

Provided ε is small enough and N is large enough compared to δ we can guarantee $|X| \leqslant \frac{N}{2 d}$. Finally, $|V(H)| \leqslant d|X|+|Y|$ by the construction of H, so

$$
N<|V(H)| \leqslant(d-1)|X|+|X|+|Y| \leqslant(d-1)|X|+N \leqslant \frac{3}{2} N
$$

Hypergraph H satisfies the assumptions of Theorem 4 with parameters $\delta_{4}=\frac{2}{3} \delta, k_{2.1}=k$, $\varepsilon_{2.1}=2 \varepsilon, D_{2.1}=D$ and $N_{2.1}=|V(H)|$. Indeed, all of the vertices in H still have degrees at most $k_{2.1} D_{2.1}$, and for all but at most $\varepsilon_{2.1} N_{2.1}$ vertices we have $d_{H}(v)=D_{2.1}\left(1 \pm \varepsilon_{2.1}\right)$. Therefore, there is a matching M in H that omits at most $\delta_{4} N_{2.1} \leqslant \delta N$ vertices.

Now, the matching M in H corresponds to a collection of hyperstars S_{1}, \ldots, S_{k} in G with centers at vertices of X, and such that the size of each S_{i} is at most d. Indeed, recall that during the construction of H some vertices $v \in X$ were replaced by d vertices v_{1}, \ldots, v_{d}, hyperedges incident to v were split into d almost equal in size disjoint groups, and then each hyperedge $\{v, u, w\}$ in j-th group was replaced with $\left\{v_{j}, u, w\right\}$. Consequently, a matching in H that covers some vertices v_{i} gives a rise to a hyperstar centered at v of size at most d in G.

Moreover since M in H omits at most δN vertices, the union of hyperstars S_{1}, \ldots, S_{k} also omits at most δN vertices.

The following Lemma will later allow us to verify that for all $i \in[t-1]$ the subhypergraph $S\left[C_{i}, C_{i+1}\right]$ contains an almost perfect packing of hyperstars, each of size at most d, centered at the vertices of C_{i}.

Lemma 8. For any positive real K there is D_{0} such that the following holds for all $D \geqslant D_{0}, \Delta=K \sqrt{D \ln D}$ and any positive integer d. Let $G=(V, E)$ be a 3-uniform simple hypergraph on N vertices such that $V=X \sqcup Y$ and
(i) for all $e \in E,|e \cap X|=1$ and $|e \cap Y|=2$.
(ii) $d(v)=d(D \pm \Delta)$ for all $v \in X$ and $d(v)=D \pm \Delta$ for all $v \in Y$.

Then G contains a packing of hyperstars of size at most d centered at the vertices of X that covers all but at most $O\left(N D^{-1 / 2} \ln ^{3 / 2} D\right)$ vertices.

Here the constant in $O()$-notation depends on K only.
Proof. The proof is almost identical to the proof of Lemma 7. For a given K let D_{0} be the number guaranteed by Theorem 5 with $2 K$ as input.

Let G that satisfies conditions (i),(ii) be given. We start with constructing an auxiliary hypergraph H that is obtained from G by splitting every vertex $v \in X$ into d new vertices v_{1}, \ldots, v_{d} that have degrees $D \pm 2 \Delta$.

First, we will show that $|V(H)|=\Theta(N)$. Note that due to conditions (i) and (ii), we have

$$
\frac{|Y|(D \pm \Delta)}{2}=|E(G)|=|X| d\left(D \pm \frac{\Delta}{2}\right)
$$

In particular,

$$
|Y|=|X| d\left(\frac{2 D \pm \Delta}{D \pm \Delta}\right)
$$

As $|X|+|Y|=N$ we have that $|Y|=\Theta(N)$ and hence $d|X|=\Theta(N)$. Then $|V(H)|=$ $d|X|+|Y|$ by construction of H, so $|V(H)|=\Theta(N)$ as well.

Hypergraph H satisfies the assumptions of the Theorem 5 with parameters 2 K and $D \geqslant D_{0}$. Therefore, there is a matching M in H that omits at most $O\left(N D^{-1 / 2} \ln ^{3 / 2} D\right)$ vertices.

Now, matching M in H corresponds to a collection of hyperstars S_{1}, \ldots, S_{k} in G with centers at the vertices of X. Each hyperstar S_{i} contains at most d hyperedges and hyperstars S_{1}, \ldots, S_{k} cover all but at most $O\left(N D^{-1 / 2} \ln ^{3 / 2} D\right)$ vertices of G, which finishes the proof.

3.3 Formal Proof

We start by defining constants, proving some useful inequalities and proving Lemma 9 .
Let S be a Steiner triple system on $m \geqslant(1+\mu) n$ vertices and let T be the largest perfect d-ary hypertree with at most n vertices. Our goal is to show that $T \subset S$.

We make few trivial observations. First, if $d>\sqrt{n}$ and T is perfect d-ary hypertree with $|V(T)| \leqslant n$, then T is just a hyperstar which S clearly contains. Second, if $m>2 n$, then T can be found in S greedily. Finally, if Theorem 3 holds for some value of μ, then Theorem 3 holds for larger values of μ. Hence we may assume without loss of generality that $d \leqslant \sqrt{n}, m \leqslant 2 n$ and $\mu \leqslant \frac{1}{4}$.

Constants. We will choose new constant $\varepsilon<\delta<\rho<\mu$ independent of m, n :

$$
\begin{equation*}
\rho=\left(\frac{3 \mu-\mu^{2}}{8(1+\mu)}\right)^{2}, \quad \delta=\frac{(1+\mu) \rho}{20} . \tag{3}
\end{equation*}
$$

Let $\varepsilon_{3.1}$ be a constant guaranteed by Lemma 7 with δ and $k=2$ as an input. We choose ε to be small enough, in particular we want

$$
\begin{equation*}
\varepsilon<\min \left\{\delta^{2},(\mu / 16)^{2},\left(\varepsilon_{3.1}\right)^{10}, 1 / 10^{100}\right\} \tag{4}
\end{equation*}
$$

Properties of \boldsymbol{T}. Here we define the levels of T and prove some useful inequalities. Recall that $V_{i}, i \in[0, h]$ denoted the levels of T. For $i_{0}=\max \left\{i,\left|V_{i}\right| \leqslant \varepsilon n\right\}$ let T_{0} be a subhypertree of T induced on $\bigcup_{i=0}^{i_{0}} V_{i}$. To simplify our notation we also set $t=h-i_{0}$ and for all $i \in[0, t], L_{i}=V_{i_{0}+i}$ and $\ell_{i}=\left|L_{i}\right|$. Then we have for $i \in[t]$

$$
\begin{equation*}
\ell_{i}=(2 d)^{i} \ell_{0}, \quad \varepsilon n \geqslant \ell_{0}>\frac{\varepsilon}{2 d} n . \tag{5}
\end{equation*}
$$

Since $n \geqslant \ell_{t}$, (5) implies $n \geqslant(2 d)^{t-1} \varepsilon n$, and consequently

$$
\begin{equation*}
t \leqslant 1+\frac{\log \frac{1}{\varepsilon}}{\log (2 d)} \leqslant 1+\log \frac{1}{\varepsilon} \tag{6}
\end{equation*}
$$

Finally, $T_{0}=\bigcup_{i=0}^{i_{0}} V_{i}$, where $\left|V_{i_{0}}\right|=(2 d)^{i_{0}}=\ell_{0}$, so

$$
\begin{equation*}
\left|V\left(T_{0}\right)\right|=\frac{(2 d)^{i_{0}+1}-1}{2 d-1} \leqslant \frac{(2 d) \ell_{0}}{2 d-1} \stackrel{(5)}{\leqslant} 2 \varepsilon n . \tag{7}
\end{equation*}
$$

Partition Lemma.

For a given Steiner triple system S with m vertices our goal will be to find a partition $\mathcal{P}=\left\{C_{1}, \ldots, C_{t}, R\right\}$ of $V(S)$ so that $S\left[C_{0}\right]$ contains a copy of $T_{0}\left(\right.$ and $\left.L_{0}\right)$, sets C_{1}, \ldots, C_{t} are the "candidates" for levels L_{1}, \ldots, L_{t} of T, and R is a reservoir. Such a partition will be guaranteed by Lemma 9 .

In the proof we will consider a random partition \mathcal{P}, where each vertex $v \in V(S)$ ends up in C_{i} with probability p_{i} and in R with probability γ independently of other vertices.

To that end set

$$
\begin{equation*}
p_{0}=4 \sqrt{\varepsilon} \tag{8}
\end{equation*}
$$

then by (7) and (4)

$$
\begin{equation*}
\frac{p_{0}^{2}}{4}(m-1) \geqslant\left|V\left(T_{0}\right)\right|, \quad p_{0} \leqslant \frac{\mu}{4} \tag{9}
\end{equation*}
$$

Now, for all $i \in[t]$ define

$$
\begin{equation*}
p_{i}=\frac{\ell_{i}}{m} \stackrel{(5)}{\geqslant} \frac{\varepsilon n}{m} \geqslant \frac{\varepsilon}{2} . \tag{10}
\end{equation*}
$$

Finally let $\gamma=1-\sum_{i=0}^{t} p_{i}$. Then

$$
\gamma \geqslant 1-\frac{\mu}{4}-\sum_{i=1}^{t} p_{i}=1-\frac{\mu}{4}-\frac{\sum_{i=1}^{t} \ell_{i}}{m} \geqslant 1-\frac{\mu}{4}-\frac{|V(T)|}{m}
$$

and so

$$
\begin{equation*}
\gamma \geqslant 1-\frac{\mu}{4}-\frac{n}{m} \geqslant 1-\frac{\mu}{4}-\frac{1}{1+\mu}=\frac{3 \mu-\mu^{2}}{4(1+\mu)} \stackrel{(3)}{=} 2 \sqrt{\rho} . \tag{11}
\end{equation*}
$$

Hence $\gamma \in(0,1)$.
Lemma 9. Let $\varepsilon, \ell_{0}, \ldots, \ell_{t}, p_{0}, \ldots, p_{t}, \gamma$ and ρ be defined as above. Then for some $m_{0}=m_{0}(\varepsilon)$ and $K=8$ the following is true for any $m \geqslant m_{0}$. If S is a STS on m vertices, then there is a partition $\mathcal{P}=C_{0} \sqcup C_{1} \cdots \sqcup C_{t} \sqcup R$ of $V(S)$ with the following properties:
(a) $\left|C_{i}\right|=\ell_{i} \pm K \sqrt{\ell_{i} \ln \ell_{i}}$ for all $i \in[t]$.
(b) for all $i \in[t]$ and all $v \in C_{i-1}$

$$
d_{S\left[C_{i-1}, C_{i}\right]}(v)=d\left(p_{i} \ell_{i-1} \pm K \sqrt{p_{i} \ell_{i-1} \ln p_{i} \ell_{i-1}}\right) .
$$

(c) for all $i \in[2, t]$ and all $v \in C_{i}$

$$
d_{S\left[C_{i-1}, C_{i}\right]}(v)=p_{i} \ell_{i-1} \pm K \sqrt{p_{i} \ell_{i-1} \ln p_{i} \ell_{i-1}} .
$$

(d) for all $v \in V(S), d_{S[v \cup R]}(v) \geqslant \rho m$.
(e) $\left|C_{0}\right|=p_{0} m \pm K \sqrt{p_{0} m \ln p_{0} m}$ and $S\left[C_{0}\right]$ contains a copy of a hypertree T_{0} with L_{0} as its last level. Moreover for all but at most $\varepsilon^{0.1}\left|C_{1}\right|$ vertices $v \in C_{1}$

$$
d_{S\left[L_{0}, C_{1}\right]}(v)=\left(1 \pm \varepsilon^{0.1}\right) p_{1} \ell_{0}
$$

and for all vertices $v \in C_{1}$

$$
d_{S\left[L_{0}, C_{1}\right]}(v) \leqslant 2 p_{1} \ell_{0} .
$$

Proof. Recall that $\sum_{i=0}^{t} p_{i}+\gamma=1$. Consider a random partition $\mathcal{P}=\left\{C_{0}, \ldots, C_{t}, R\right\}$, where vertices $v \in V(S)$ are chosen into partition classes independently so that $\mathbb{P}[v \in$ $\left.C_{i}\right]=p_{i}$ for $i \in[0, t]$ while $\mathbb{P}[v \in R]=\gamma$. For $j \in\{a, b, c, d, e\}$ let $X^{(j)}$ be the event that the corresponding part of Lemma 9 fails. We will prove that $\mathbb{P}\left[X^{(j)}\right]=o(1)$ for each $j \in\{a, b, c, d, e\}$.

Proof of Property (a). For all $i \in[t]$ let $X_{i}^{(a)}$ be the event that

$$
\left|\left|C_{i}\right|-p_{i} m\right|>K \sqrt{p_{i} m \ln p_{i} m}
$$

Then since $\left|C_{i}\right| \sim \operatorname{Bi}\left(m, p_{i}\right)$ and $\mathbb{E}\left(\left|C_{i}\right|\right)=p_{i} m \stackrel{(10)}{=} \ell_{i} \stackrel{(5)}{=} \Omega(m)$, Theorem 6 implies that

$$
\mathbb{P}\left[X_{i}^{(a)}\right] \leqslant 2\left(\ell_{i}\right)^{-K^{2} / 3}=o\left(m^{-20}\right) .
$$

Since by (6), $t \leqslant 1+\log \frac{1}{\varepsilon} \ll m$ we infer that

$$
\mathbb{P}\left[X^{(a)}\right]=\mathbb{P}\left[\bigcup_{i=1}^{t} X_{i}^{(a)}\right] \leqslant \sum_{i=1}^{t} \mathbb{P}\left[X_{i}^{(a)}\right]=o(1)
$$

Proof of Property (b). For all $i \in[t]$ and $v \in V(G)$ let $X_{i, v}^{(b)}$ be the event

$$
\left|d_{S\left[C_{i-1}, C_{i}\right]}(v)-d p_{i} \ell_{i-1}\right|>K d \sqrt{p_{i} \ell_{i-1} \ln p_{i} \ell_{i-1}},
$$

and $Y_{i, v}^{(b)}$ be the event

$$
\left|d_{S\left[C_{i-1}, C_{i}\right]}(v)-(m-1) p_{i}^{2} / 2\right|>\frac{K}{2} \sqrt{(m-1) p_{i}^{2} / 2 \ln (m-1) p_{i}^{2} / 2}
$$

Then for $i \in[t]$ and $v \in C_{i-1}$ we have $d_{S\left[C_{i-1}, C_{i}\right]}(v) \sim \operatorname{Bi}\left(\frac{m-1}{2}, p_{i}^{2}\right)$ and

$$
\mathbb{E}\left(d_{S\left[C_{i-1}, C_{i}\right]}(v)\right)=(m-1) p_{i}^{2} / 2 \stackrel{(10),(5)}{=} d p_{i} \ell_{i-1} \pm 1 .
$$

Therefore $X_{i, v}^{b} \subseteq Y_{i, v}^{b}$ for a large enough m. Moreover, Theorem 6 implies that

$$
\mathbb{P}\left[X_{i, v}^{(b)}\right] \leqslant \mathbb{P}\left[Y_{i, v}^{(b)}\right] \leqslant 2\left((m-1) p_{i}^{2} / 2\right)^{-K^{2} / 12} \stackrel{(10)}{=} O\left(m^{-2}\right)
$$

Finally, the union bound yields

$$
\mathbb{P}\left[X^{(b)}\right] \leqslant \sum_{i \in[t], v \in C_{i}} \mathbb{P}\left[X_{i, v}^{(b)}\right]=o(1)
$$

Proof of Property (c). Proof follows the lines of the proof of part (b), since for $i \in[2, t]$ and $v \in C_{i}$ we have $d_{S\left[C_{i-1}, C_{i}\right]}(v) \sim \operatorname{Bi}\left(\frac{m-1}{2}, 2 p_{i} p_{i-1}\right)$ and $\mathbb{E}\left(d_{S\left[C_{i-1}, C_{i}\right]}(v)\right)=$ $(m-1) p_{i} p_{i-1}=p_{i} \ell_{i-1} \pm 1$. Hence we have $\mathbb{P}\left[X^{(c)}\right]=o(1)$

Proof of Property (d). Proof follows the lines of the proof of part (b), since for all $v \in V(S)$ we have $d_{S[v \cup R]}(v) \sim \operatorname{Bi}\left(\frac{m-1}{2}, \gamma^{2}\right)$ and $\mathbb{E}\left(d_{S[v \cup R]}(v)\right)=\frac{m-1}{2} \gamma^{2} \stackrel{(11)}{\geqslant} 2 \rho(m-1)$. Hence we have $\mathbb{P}\left[X^{(d)}\right]=o(1)$

Proof of Property (e)

We say that a set $C \subseteq V(S)$ is typical if $|C|=p_{0} m \pm K \sqrt{p_{0} m \ln p_{o} m}$ and $S[C]$ contains a copy of T_{0}. For a partition $\mathcal{P}=\left\{C_{0}, \ldots, C_{t}, R\right\}$ set $C_{i}(\mathcal{P})=C_{i}$ for all $i \in[0, t]$.

Next we will show that the first statement of (e), namely that $C_{0}(\mathcal{P})$ is typical, holds asymptotically almost surely.
Claim 10.

$$
\mathbb{P}\left[C_{0}(\mathcal{P}) \text { is typical }\right]=1-o(1)
$$

Proof. Let X be the event that $\left|\left|C_{0}\right|-p_{0} m\right| \leqslant K \sqrt{p_{0} m \ln p_{0} m}$, and Y be the event that $S\left[C_{0}(\mathcal{P})\right]$ contains a copy of T_{0}. Since $\left|C_{0}\right| \sim \operatorname{Bi}\left(m, p_{0}\right)$ and $\mathbb{E}\left(\left|C_{0}\right|\right)=p_{0} m \stackrel{(5)}{=} \Omega(m)$, Theorem 6 implies $\mathbb{P}[X]=1-o(1)$.

For $v \in V(S)$ let Z_{v} denote the event that $d_{S\left[C_{0}\right]}(v) \geqslant\left|V\left(T_{0}\right)\right|$, then $\bigcap_{v \in V(S)} Z_{v} \subseteq Y$. Indeed, if every vertex has degree at least $\left|V\left(T_{0}\right)\right|$ is $S\left[C_{0}\right]$, then T_{0} can be found in $S\left[C_{0}\right]$ greedily, adding one hyperedge at a time.

Following the lines of proof of (d), we have $d_{S\left[C_{0}\right]}(v) \sim \operatorname{Bi}\left(\frac{m-1}{2}, p_{0}^{2}\right)$, and

$$
\mathbb{E}\left(d_{S\left[C_{0}\right]}(v)\right)=\frac{m-1}{2} p_{0}^{2} \stackrel{(9)}{\geqslant} 2\left|V\left(T_{0}\right)\right|,
$$

so by Theorem 6 for all $v \in V(S)$ we have $\mathbb{P}\left[Z_{v}\right] \geqslant 1-o\left(m^{-20}\right)$. Finally,

$$
\mathbb{P}[Y] \geqslant \mathbb{P}\left[\bigcap_{v \in V(S)} Z_{v}\right] \geqslant 1-m \cdot o\left(m^{-20}\right) \geqslant 1-o(1)
$$

Therefore $\mathbb{P}[X]=\mathbb{P}[Y]=1-o(1)$ and hence $\mathbb{P}[X \cap Y]=\mathbb{P}\left[C_{0}(\mathcal{P})\right.$ is typical $]=1-$ $o(1)$.

Now, for every typical set C, we fix one copy of T_{0} in $S[C]$.
We first show that there are not many vertices in $\bar{C}=V(S) \backslash C$ that have low degree in $S\left[L_{0}, \bar{C}\right]$.
Claim 11. For any $\alpha>0$ and any typical set C all but at most $|C| / \alpha$ vertices in $v \in \bar{C}$ satisfy

$$
d_{S\left[L_{0}, \bar{C}\right]}(v)=(1 \pm \alpha) \ell_{0} .
$$

Proof of Claim. For $v \in \bar{C}$ and $x \in L_{0}$ there is a unique $w \in V(S)$ such that $\{v, x, w\} \in$ $E(S)$. Consequently, $d_{S\left[L_{0}, \bar{C}\right]}(v) \leqslant \ell_{0}$ holds for any $v \in \bar{C}$.

Let $A=\left\{\{x, v, w\}: x \in L_{0}, v \in \bar{C}, w \in \bar{C}\right\}$. Since for every $x \in L_{0}$ there are at most $|C|$ edges $\{v, x, w\}$ with $v \in \bar{C}$ and $w \in C$

$$
\begin{equation*}
|A| \geqslant \ell_{0}(|\bar{C}|-|C|) . \tag{12}
\end{equation*}
$$

On the other hand, let b be the number of "bad" vertices $v \in \bar{C}$, i.e., vertices v with $d_{S\left[L_{0}, \bar{C}\right]}(v)<(1-\alpha) \ell_{0}$. Then we have

$$
\begin{equation*}
|A| \leqslant b(1-\alpha) \ell_{0}+(|\bar{C}|-b) \ell_{0} \tag{13}
\end{equation*}
$$

Comparing (12) and (13) yields that $b \leqslant|C| / \alpha$.
Let E be the event that property (e) holds. Next we will show that

$$
\begin{equation*}
\mathbb{P}\left[E \mid C_{0}(\mathcal{P})=C\right]=1-o(1) \text { for every typical } C . \tag{14}
\end{equation*}
$$

This implies that E holds with probability $1-o(1)$.
Indeed, by Claim 10, $\mathbb{P}\left[C_{0}(\mathcal{P})\right.$ is typical $]=\sum_{C \text { is typical }} \mathbb{P}\left[C_{0}(\mathcal{P})=C\right]=(1-o(1))$ and so

$$
\begin{aligned}
& \mathbb{P}[E] \geqslant \sum_{C \text { is typical }} \mathbb{P}\left(C_{0}(\mathcal{P})=C\right) \mathbb{P}\left[E \mid C_{0}(\mathcal{P})=C\right] \\
& \quad \stackrel{(14)}{\geqslant}(1-o(1)) \sum_{C \text { is typical }} \mathbb{P}\left(C_{0}(\mathcal{P})=C\right) \geqslant 1-o(1) .
\end{aligned}
$$

It remains to prove (14).
Denote by $(\Omega, \mathcal{F}, \mathbb{P})$ the space of all partitions of $V(S)$ with $\mathbb{P}\left[v \in C_{i}\right]=p_{i}$ for $i \in[0, t]$ and $\mathbb{P}[v \in R]=\gamma$, and for fixed C let $\left(\Omega, \mathcal{F}, \mathbb{P}_{C}\right)$ to be the space of all partitions of $V(S)$ with the probability function $\mathbb{P}_{C}(A)=\mathbb{P}\left(A \mid C_{0}(\mathcal{P})=C\right)$.

With this notation we need to show that $\mathbb{P}_{C}(E)=1-o(1)$ for every typical C.
Recall that $\bar{C}=V(S) / C$ and for all $v \in \bar{C}$ let

$$
\chi(v)= \begin{cases}1, & \text { if } v \in C_{1} \\ 0, & \text { otherwise }\end{cases}
$$

Note that for all $v \in \bar{C}$

$$
\begin{aligned}
\mathbb{P}_{C}(\chi(v)=1) & =\mathbb{P}_{C}\left(v \in C_{1}\right)=\mathbb{P}\left(v \in C_{1} \mid C_{0}(\mathcal{P})=C\right)=\frac{\mathbb{P}\left(v \in C_{1} \wedge C_{0}(\mathcal{P})=C\right)}{\mathbb{P}\left(C_{0}(\mathcal{P})=C\right)} \\
& =\frac{p_{1} \cdot p_{0}^{|C|}\left(1-p_{0}\right)^{m-|C|-1}}{p_{0}^{|C|}\left(1-p_{0}\right)^{m-|C|}}=\frac{p_{1}}{1-p_{0}}=q .
\end{aligned}
$$

Then by (8)

$$
\begin{equation*}
q=\left(1 \pm \varepsilon^{0.3}\right) p_{1} \tag{15}
\end{equation*}
$$

Moreover, since for fixed $v \in V(S)$ the event $\left\{v \in C_{1}\right\}$ was, in the "initial" space $(\Omega, \mathcal{F}, \mathbb{P})$, independent of the outcome of a random experiment for the remaining vertices $w \in$ $V(S) \backslash\{v\}$, we infer that the random variables $\{\chi(v): v \in \bar{C}\}$ are mutually independent.

Therefore for the rest of the proof we assume that typical C with $L_{0} \subset C$ is fixed and all events and random variables are considered in the space $\left(\Omega, \mathcal{F}, \mathbb{P}_{C}\right)$.

For a typical C define

$$
\begin{equation*}
M=M(C)=\left\{v \in \bar{C}: d_{S\left[L_{0}, \bar{C}\right]}(v)=\left(1 \pm \varepsilon^{0.2}\right) \ell_{0}\right\} . \tag{16}
\end{equation*}
$$

Recall that since C is typical we have

$$
\begin{equation*}
|C|=(1+o(1)) p_{0} m, \text { and }|\bar{C}|=(1-o(1))\left(1-p_{0}\right) m . \tag{17}
\end{equation*}
$$

Then by Claim 11 with $\alpha=\varepsilon^{0.2}$

$$
\begin{equation*}
|M| \geqslant \bar{C}-\frac{|C|}{\varepsilon^{0.2}} \stackrel{(17)}{=}|\bar{C}|-\frac{|\bar{C}| p_{0}}{\varepsilon^{0.2}\left(1-p_{0}\right)}(1-o(1)) \stackrel{(8)}{\geqslant}\left(1-\varepsilon^{0.2}\right)|\bar{C}| . \tag{18}
\end{equation*}
$$

Note that M is independent of the choice of C_{1} and is fully determined by C and S.
Next we verify that certain events $E^{(1)}, E^{(2)}, E^{(3)}$ hold asymptotically almost surely and that $E^{(1)} \wedge E^{(2)} \wedge E^{(3)} \subseteq E$. Let event $E^{(1)}$ be defined as

$$
E^{(1)}:\left|M \cap C_{1}\right| \geqslant\left(1-\varepsilon^{0.1}\right)\left|C_{1}\right| .
$$

Since $\left|C_{1}\right| \sim \operatorname{Bi}(|\bar{C}|, q)$ and $\left|M \cap C_{1}\right| \sim \operatorname{Bi}(|M|, q)$, we have

$$
\mathbb{E}\left(\left|C_{1}\right|\right)=|\bar{C}| q \text { and } \mathbb{E}\left(\left|M \cap C_{1}\right|\right) \stackrel{(18)}{\geqslant}\left(1-\varepsilon^{0.2}\right)|\bar{C}| q .
$$

Hence Theorem 6 implies that with probability $1-o(1)$ we have $\left|M \cap C_{1}\right| /\left|C_{1}\right| \geqslant 1-\varepsilon^{0.1}$ and so $\mathbb{P}_{C}\left[E^{(1)}\right]=1-o(1)$.

Now for every $v \in \bar{C}$ let $N(v)$ be the random variable that equals to the number of hyperedges $\{v, x, w\}$, where $x \in L_{0}$ and $w \in C_{1}$. Then $N(v) \sim \operatorname{Bi}\left(d_{S\left[L_{0}, \bar{C}\right]}(v), q\right)$ for all $v \in \bar{C}$.

Let $E^{(2)}$ be the event

$$
E^{(2)}: N(v)=\left(1 \pm \varepsilon^{0.1}\right) \ell_{0} p_{1} \text { for all } v \in M .
$$

For every $v \in M$, we have $N(v) \sim \operatorname{Bi}\left(d_{S\left[L_{0}, \bar{C}\right]}(v), q\right)$ and so $\mathbb{E}(N(v))=\left(1 \pm 2 \varepsilon^{0.2}\right) \ell_{0} p_{1}$ by (16) and (15). Then Theorem 6 combined with the union bound implies $\mathbb{P}_{C}\left[E^{(2)}\right]=$ $1-o(1)$.

Let $E^{(3)}$ be the event

$$
E^{(3)}: N(v) \leqslant 2 \ell_{0} p_{1} \text { for all } v \in \bar{C} .
$$

For every $v \in \bar{C}$ we have $N(v) \sim \operatorname{Bi}\left(d_{S\left[L_{0}, \bar{C}\right]}(v), q\right)$ and $d_{S\left[L_{0}, \bar{C}\right]} \leqslant \ell_{0}$, hence we always have $\mathbb{E}(N(v)) \stackrel{(15)}{\leqslant}\left(1+\varepsilon^{0.3}\right) \ell_{0} p_{1}$. Therefore by Theorem 6 and the union bound we have $\mathbb{P}_{C}\left[E^{(3)}\right]=1-o(1)$.

It remains to notice that for $v \in C_{1}$ we have $d_{S\left[L_{0}, C_{1}\right]}(v)=N(v)$ and so $E^{(1)} \wedge E^{(2)} \wedge$ $E^{(3)} \subseteq E$. Therefore, $\mathbb{P}_{C}[E] \geqslant 1-o(1)$, finishing the proof of (14).

Embedding of \boldsymbol{T}. We start with applying Lemma 9 to S obtaining a partition $\mathcal{P}=\left\{C_{0}, \ldots, C_{t}, R\right\}$ of $V(S)$ that satisfies properties (a)-(e) of Lemma 9. To simplify our notation we set $G_{1}=S\left[L_{0}, C_{1}\right]$ and for $i \in[2, t] G_{i}=S\left[C_{i-1}, C_{i}\right]$.

1) We first verify that Lemma 9 guarantees that the assumptions of Lemma 7 and Lemma 8 are satisfied. These Lemmas then yield systems of stars $\mathcal{S}_{i}=\left\{S_{i}^{1}, \ldots, S_{i}^{p_{i}}\right\}$ for $i \in[2, t]$, such that each \mathcal{S}_{i} covers almost all vertices of the respective G_{i}. (See Figure 1, where each star S_{i}^{j} is represented by a single grey edge.)
2) Let F be the union of T_{0} with \mathcal{S}_{i} 's. The "almost cover" property of \mathcal{S}_{i} 's then allows us to show that hyperforest F contains a large connected component T_{1} which contains almost all vertices of T. (See Figure 1, green and grey edges form T_{1}.)
3) Finally, we extend T_{1} into a full copy of T in a greedy procedure using the vertices of R. (See Figure 1, vertices of R are blue.)

Figure 1: Case $d=1$ and $t=2$. Green edges form T_{0}, grey edges are hyperstars S_{i}^{j}, blue edges are constructed by using vertices in reservoir R.

Step 1. Construction of the hyperforest F.
We start with applying Lemma 9 to S and obtaining a partition $\mathcal{P}=\left\{C_{0}, \ldots, C_{t}, R\right\}$ of $V(S)$ that satisfies properties (a)-(e) of Lemma 9. Recall that $G_{1}=S\left[L_{0}, C_{1}\right]$ and for $i \in[2, t]$ let $G_{i}=S\left[C_{i-1}, C_{i}\right]$.

Let $N_{i}=\left|V\left(G_{i}\right)\right|$, then $N_{1}=\ell_{0}+\left|C_{1}\right|$ and $N_{i}=\left|C_{i-1}\right|+\left|C_{i}\right|$ for $i \in[2, t]$. Due to property (a) of Lemma 9 we have that for a sufficiently large m and for all $i \in[t]$

$$
\begin{equation*}
N_{i}=(1 \pm \varepsilon)\left(\ell_{i-1}+\ell_{i}\right) \leqslant(1 \pm \varepsilon)\left(\frac{\ell_{i}}{2 d}+\ell_{i}\right) \leqslant 2 \ell_{i} . \tag{19}
\end{equation*}
$$

In what follows we will show that G_{1} satisfies the assumptions of Lemma 7 and for $i \in[2, t]$, G_{i} satisfies the assumptions of Lemma 8.

We start with G_{1}. Recall that for a given μ we have defined δ (see (3)), and $\varepsilon_{3.1}$ was a constant guaranteed by Lemma 7 with δ and $k=2$ as input. We then defined ε (see (4)) to be small enough, in particular such that $\varepsilon_{3.1} \geqslant \varepsilon^{0.1}$. We will now show that G_{1} satisfies conditions of Lemma 7 with $D=D_{1}=p_{1} \ell_{0}$ and $N=N_{1}$.

To verify condition (i) of Lemma 7 it is enough to recall that $G_{1}=S\left[L_{0}, C_{1}\right]$ and so (i) holds with $X=L_{0}$ and $Y=C_{1}$.

Note that condition (iii) is guaranteed by property (e), since for all $v \in C_{1}=Y$ we have $d_{G_{1}}(v) \leqslant 2 D$.

We now verify condition (ii) of Lemma 7. Property (b) with $i=1$ guarantees that for all $v \in X=L_{0}$

$$
d_{G_{1}}(v)=d(D \pm K \sqrt{D \ln D}) .
$$

Since $D=p_{1} \ell_{0} \stackrel{(5),(10)}{=} \Omega(\sqrt{n})$, for a large enough n we have for all $v \in X=L_{0}$

$$
\begin{equation*}
d_{G_{1}}(v)=d D\left(1 \pm \varepsilon_{3.1}\right) . \tag{20}
\end{equation*}
$$

Property (e) in turn guarantees that for all but at most $\varepsilon^{0.1}\left|C_{1}\right| \leqslant \varepsilon_{3.1} N_{1}$ vertices $v \in Y=$ C_{1} we have

$$
\begin{equation*}
d_{G_{1}}(v)=\left(1 \pm \varepsilon^{0.1}\right) p_{1} \ell_{0}=D\left(1 \pm \varepsilon_{3.1}\right) . \tag{21}
\end{equation*}
$$

Now, (20) and (21) imply that G_{1} satisfies condition (ii) of Lemma 7.
Lemma 7 produces a collection $\left\{S_{1}^{1}, \ldots, S_{p_{1}}^{1}\right\}$ of disjoint hyperstars of G_{1} centered at vertices of L_{0}, each S_{j}^{1} has at most d hyperedges, and

$$
\begin{equation*}
\text { the star forest } \mathcal{S}_{1}=\bigcup_{j=1}^{p_{1}} S_{j}^{1} \text { covers all but at most } \delta N_{1} \text { vertices of } G_{1} \text {. } \tag{22}
\end{equation*}
$$

Similarly for all $i \in[2, t]$, the hypergraph G_{i} satisfies the assumptions of Lemma 8 with the parameters $K_{3.2}=8, d_{3.2}=d$ and $D=D_{i}=p_{i} \ell_{i-1}$. Indeed, condition (i) of Lemma 8 is guaranteed by taking $X=C_{i-1}$ and $Y=C_{i}$, and condition (ii) is guaranteed by properties (b) and (c) of Lemma 9.

Then for $i \in[2, t]$, Lemma 8 when applied to G_{i} yields a collection $\left\{S_{1}^{i}, \ldots, S_{p_{i}}^{i}\right\}$ of disjoint hyperstars centered at vertices of C_{i-1}, each S_{j}^{i} has at most d hyperedges, and the
star forest $\mathcal{S}_{i}=\bigcup_{j=1}^{p_{i}} S_{j}$ covers all but at most $O\left(N_{i} D_{i}^{-1 / 2} \ln ^{3 / 2} D_{i}\right)$ vertices of G_{i}. Once again recall that for $i \in[2, t]$ we have $D_{i}=p_{i} \ell_{i-1} \stackrel{(5),(10)}{=} \Omega(n)$ and so for a large enough n,

$$
\begin{equation*}
\mathcal{S}_{i} \text { covers all but at most } \varepsilon N_{i} \text { vertices of } G_{i} \text {. } \tag{23}
\end{equation*}
$$

Now, let $F=T_{0} \cup \bigcup_{i=1}^{t} \mathcal{S}_{i}$, then F is a hyperforest and we will now find a hypertree $T_{1} \subseteq F$ such that T_{1} is an almost spanning subhypertree of T.

We first will estimate $|V(F)|$. Since for $i \in[2, t]$ a star forest \mathcal{S}_{i} misses at most εN_{i} vertices of C_{i} and \mathcal{S}_{1} misses at most δN_{1} vertices of C_{1} we have:

$$
|V(F)| \geqslant\left|V\left(T_{0}\right)\right|+\left|C_{1}\right|-\delta N_{1}+\sum_{i=2}^{t}\left(\left|C_{i}\right|-\varepsilon N_{i}\right)
$$

Now, by property (a) of Lemma 9, for large enough m and for any $i \in[t]$, we have $\left|C_{i}\right|=(1 \pm \varepsilon) \ell_{i}$. Therefore

$$
|V(F)| \geqslant\left|V\left(T_{0}\right)\right|+\sum_{i=1}^{t}(1-\varepsilon) \ell_{i}-\delta N_{1}-\varepsilon \sum_{i=2}^{t} N_{i} \stackrel{(19)}{\geqslant}\left|V\left(T_{0}\right)\right|+\sum_{i=1}^{t} \ell_{i}-(\varepsilon+2 \delta) \ell_{1}-3 \varepsilon \sum_{i=2}^{t} \ell_{i} .
$$

Since $\left|V\left(T_{0}\right)\right|+\sum_{i=1}^{t} \ell_{i}=|V(T)|$ and $\varepsilon<\delta$ we have

$$
\begin{equation*}
|V(F)| \geqslant|V(T)|-3 \delta \sum_{i=1}^{t} \ell_{i} \geqslant(1-3 \delta)|V(T)| . \tag{24}
\end{equation*}
$$

Step 2. Embedding the most of T.
Claim 12. S contains a hypertree $T_{1} \subseteq F$ such that T_{1} is a subhypertree of T and $\left|E\left(T_{1}\right)\right| \geqslant(1-20 \delta)|E(T)|$.
Proof. Recall that while $V(T)=\bigcup_{i=0}^{h} V_{i}$, the forest F has the vertex set $V(F)=\bigcup_{i=0}^{i_{0}} V_{i} \cup$ $\bigcup_{i=1}^{t} C_{i}$, where we have set $t=h-i_{0}$ and $V_{i_{0}}=L_{0}$. Also recall that $V_{0}=\left\{v_{0}\right\}$ was a root of T (and F).

For a non-root vertex $v \in V_{i}$ (or $v \in C_{i}$) a parent of v is a unique vertex $u \in V_{i-1}$ (or $u \in C_{i-1}$) such that $\{u, v, w\} \in F$. If a vertex v has a parent u we will write $p(v)=u$, if a vertex v has no parent we will say that v is an orphan.

For each $v \in V(F) \backslash\left\{v_{0}\right\}$ consider "a path of ancestors" $v=a_{i}, a_{i-1}, \ldots, a_{1}=a^{*}$, i.e., a path satisfying $p\left(a_{j}\right)=a_{j-1}, j \in[2, i]$ and such that $a^{*}=a^{*}(v)$ is an orphan in F.

Let $T_{1} \subseteq F$ be a subtree of F induced on a set $\left\{v \in V(F): a^{*}(v)=v_{0}\right\}$. Note that if for some $v \in V(F)$ we have $a^{*}(v) \neq v_{0}$, then $a^{*}(v) \notin V\left(T_{0}\right)$.

For $i \in[t]$ let $U_{i} \subseteq C_{i}$ be the set of vertices not covered by \mathcal{S}_{i}. Then

$$
\begin{equation*}
\left|U_{1}\right| \stackrel{(22)}{\leqslant} \delta N_{1} \text { and }\left|U_{i}\right| \stackrel{(23)}{\leqslant} \varepsilon N_{i} \text { for all } i \in[2, t] . \tag{25}
\end{equation*}
$$

Note that all orphan vertices, except of v_{0}, belong to $\bigcup_{i=1}^{t} U_{i}$ as they were not covered by some \mathcal{S}_{i}. In particular, for every $v \notin V\left(T_{1}\right)$ its ancestor $a^{*}(v)$ is an orphan and hence belongs to $\bigcup_{i=1}^{t} U_{i}$

For an orphan vertex a^{*} let $T\left(a^{*}\right)$ be a subtree of F rooted at a^{*}. Then for every orphan vertex $a^{*} \in U_{i}$ we have

$$
\left|V\left(T\left(a^{*}\right)\right)\right| \leqslant 1+2 d+\cdots+(2 d)^{t-i} \leqslant 3(2 d)^{t-i}
$$

Finally, every $v \notin V\left(T_{1}\right)$ is in $T\left(a^{*}(v)\right)$, where $a^{*}(v) \in U_{i}$ for some $i \in[t]$, and therefore we have

$$
\left|V\left(T_{1}\right)\right| \geqslant|V(F)|-\sum_{i=1}^{t}\left|U_{i}\right| \cdot 3(2 d)^{t-i} \stackrel{(24),(25)}{\geqslant}(1-3 \delta)|V(T)|-3 \delta N_{1}(2 d)^{t-1}-3 \varepsilon \sum_{i=2}^{t} N_{i}(2 d)^{t-i} .
$$

Now, by (19), we have $N_{i} \leqslant 2 \ell_{i}$ and, by (5), $\ell_{i}(2 d)^{t-i}=\ell_{t}$ for all $i \in[t]$, and so

$$
\left|V\left(T_{1}\right)\right| \geqslant(1-3 \delta)|V(T)|-6 \delta \ell_{t}-6 \varepsilon(t-1) \ell_{t} .
$$

Recall that ℓ_{t} is the size of the last level of T, so $\ell_{t} \leqslant|V(T)|$. Also $t \leqslant 1+\log \left(\frac{1}{\varepsilon}\right)$, and since ε is sufficiently small $6 \varepsilon(t-1) \leqslant \sqrt{\varepsilon} \leqslant \delta$ and so

$$
\left|V\left(T_{1}\right)\right| \geqslant(1-10 \delta)|V(T)| .
$$

For every hypertree T^{\prime} we have $\left|V\left(T^{\prime}\right)\right|=2\left|E\left(T^{\prime}\right)\right|+1$, and so

$$
\left|E\left(T_{1}\right)\right| \geqslant(1-20 \delta)|E(T)|,
$$

finishing the proof of the Claim.
Step 3. Finally, we complete T_{1} to a full copy of T by using the reservoir R.
Claim 13. Assume that \mathcal{P} is a partition guaranteed by Lemma 9 and T_{1} be a hypertree guaranteed by Claim 12. Then T_{1} can be extended to a copy of T in S.

Proof. Since T_{1} is a subhypertree of T, there is a sequence of hyperedges $\left\{e_{1}, \ldots, e_{p-1}\right\}$ such that each $T_{i}=T_{1} \bigcup_{j=1}^{i-1} e_{j}$ for $i \in[p]$ is a hypertree an $T_{p} \cong T$. Every vertex $v \in V(S)$ has degree at least ρm in R (by Lemma 9) and

$$
p-1=|E(T)|-\left|E\left(T_{1}\right)\right| \stackrel{\text { Claim } 12}{\leqslant} 20 \delta|E(T)| \leqslant 10 \delta n \stackrel{(3)}{\leqslant} \frac{\rho m}{2} .
$$

Hence we can greedily embed edges e_{1}, \ldots, e_{p-1}. Indeed, having embedded the edges e_{1}, \ldots, e_{i-1} for some $i \in[p-1]$, for set $R_{i}=R \backslash \bigcup_{j=1}^{i-1} e_{j}$ and all $v \in V(S)$ we have

$$
d_{S\left[v \cup R_{i}\right]} \geqslant \rho m-2(i-1)>0
$$

allowing the greedy embeding to continue. Then the last hypertree T_{p} is, by the construction, isomorphic to T.

4 Concluding remarks

We notice that with a similar proof one can verify Conjecture 1 for some other types of hypertrees.

Let $D=\left\{d_{1}, \ldots, d_{k}\right\}$ be a sequence of integers. Let T be a tree rooted at v_{0} and let $V(T)=V_{0} \sqcup V_{1} \sqcup \cdots \sqcup V_{h}$ be a partition of $V(T)$ into levels, so that V_{i} consist of vertices distance i from v_{0}. We say that T is D-ary hypertree if for every $i \in[0, h-1]$ there is $j \in[k]$ such that for every $v \in V_{i}$ the forward degree of v is d_{j}. In other words, forward degree of every non-leaf vertex of T is in D, and depends only on the height of a vertex in T.

Following the lines of the proof of Theorem 3 one can conclude that for any finite set $D \subset \mathbb{N}$, and any μ, any large enough STS S contains any D-ary hypertree T, provided $|V(T)| \leqslant|V(S)| /(1+\mu)$.

Another type of hypertrees for which Conjecture 1 holds are truncated d-ary hypertrees. In a perfect d-ary hypertree label children of every vertex with numbers $\{1, \ldots, 2 d\}$. Then every leaf can be identified with a sequence $\left\{a_{1}, \ldots, a_{h}\right\} \in[2 d]^{h}$ based on the way that leaf is reached from the root, and all leafs can be ordered by a lexicographic order. We say that T is a truncated perfect d-ary hypertree if, for some integer t, the hypertree T is obtained from a perfect d-ary hypertree by removing the smallest $2 t$ leafs (according to the lexicographic order).

With an essentially same proof as of Theorem 3, for every $\mu>0$ and d, any sufficiently large Steiner triple system S contains any truncated d-ary hypertree T with $|V(T)| \leqslant$ $|V(S)| /(1+\mu)$.

References

[1] N. Alon, J.-H. Kim, J. H. Spencer. Nearly perfect matchings in regular simple hypergraphs. Israel J. Math. 100 (1997), 171-187.
[2] N. Alon, J. H. Spencer. The probabilistic method. Wiley Series in Discrete Mathematics and Optimization, John Wiley \& Sons, Inc., Hoboken, NJ, 2016.
[3] A. Arman, V. Rödl, Marcelo Tadeu Sales. Colorful matchings. arXiv:2102.09633.
[4] B. Elliott, V. Rödl. Embedding hypertrees into Steiner triple systems. J. Combin. Des. 27(2) (2019), 82-105.
[5] P. Frankl, V. Rödl, Near perfect coverings in graphs and hypergraphs. European J. Combin. 6(4) (1985), 317-326.
[6] S. Janson, T. Łuczak, A. Rucinski. Random graphs. Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley-Interscience, New York, 2000.
[7] A. V. Kostochka, V. Rödl. Partial Steiner systems and matchings in hypergraphs. Random Structures Algorithms 13(3-4) (1998), 335-347.
[8] N. Pippenger, J. H. Spencer. Asymptotic behavior of the chromatic index for hypergraphs. J. Combin. Theory Ser. A 5(1) (1989), 24-42.

[^0]: *The second author was supported by NSF grant DMS 1764385

[^1]: *We refer to Theorem 3 from that paper. There is a typo in the conclusion part of that theorem, where instead of $O\left(N D^{1 / 2} \ln ^{3 / 2} D\right)$ there should be $O\left(N D^{-1 / 2} \ln ^{3 / 2} D\right)$

