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Abstract

We define two d-polytopes, both with 2d + 2 vertices and (d + 3)(d − 1) edges,
which reduce to the cube and the 5-wedge in dimension three. We show that they
are the only minimisers of the number of edges, amongst all d-polytopes with 2d+2
vertices, when d = 6 or d > 8. We also characterise the minimising polytopes for
d = 4, 5 or 7, where four sporadic examples arise.
Mathematics Subject Classifications: 52B05, 52B12

1 Background: excess, taxonomy and decomposability

This paper is concerned with graphs of polytopes with not too many vertices. Throughout,
we will denote the number of vertices and edges of a polytope P by v(P ) and e(P )
respectively, or simply by v and e if P is clear from the context. The set of vertices is
denoted as usual by Vert(P ). Different letters will be used for the names of individual
vertices. The dimension of the ambient space is denoted by d.

In 1967, Grünbaum [7, Sec. 10.2] made a conjecture concerning the minimum number
of edges of d-polytopes with v 6 2d vertices, and confirmed it for v 6 d + 4. In [11], we
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confirmed it for v 6 2d, and also characterised the minimising polytope, which is unique
for each v (up to combinatorial equivalence). We also found the corresponding results for
polytopes with 2d+ 1 vertices. We extend this program here by calculating the minimum
number of edges of polytopes with 2d + 2 vertices, also characterising the minimising
polytopes. At the end, we make some remarks about the corresponding problem for
polytopes with 2d+ 3 vertices.

An important concept in resolving Grünbaum’s conjecture was the excess degree. Re-
call that the degree of any vertex is the number of edges incident to it; this cannot be less
than the dimension of the ambient polytope. We defined the excess degree of a vertex u as
deg u− d; thus a vertex is simple if its excess degree is zero. We then define the excess of
a d-polytope P , denoted ξ(P ), as ∑u∈Vert(P )(deg u− d), i.e. the sum of the excess degrees
of its vertices. Thus a polytope is simple, i.e. every vertex is simple, if ξ(P ) = 0. A vertex
is non-simple in a d-polytope P if its degree in P is at least d + 1. A polytope with at
least one non-simple vertex is called non-simple. It is easy to see that

ξ(P ) = 2e(P )− dv(P ). (1)

A fundamental result about the excess degree is that it cannot take arbitrary values
[10, Theorem 3.3].

Theorem 1. Let P be a non-simple d-polytope. Then ξ(P ) > d− 2.

Recall that the Minkowski sum of two polytopes Q,R is simply Q+R = {q + r : q ∈
Q, r ∈ R}. A prism based on a facet F is the Minkowski sum of F and a line segment, or
any polytope combinatorially equivalent to it. The simplicial d-prism is any prism whose
base is a (d−1)-simplex; we will often refer to these simply as prisms. Any d-dimensional
simplicial prism has 2d vertices, d2 edges, and d + 2 facets. For m,n > 0, the polytope
∆m,n is defined as the Minkowski sum of an m-dimensional simplex and an n-dimensional
simplex, lying in complementary subspaces. It is easy to see that it has dimension m+n,
(m + 1)(n + 1) vertices, m + n + 2 facets, 1

2(m + n)(m + 1)(n + 1) edges, and is simple.
For n = 1, ∆d−1,1 is simply a prism. Being simple, all the polytopes just described have
excess degree 0.
Remark 2 (Facets of ∆m,n). The facets of the (m+ n)-polytope ∆m,n, m+ n+ 2 in total,
are:

• m+ 1 copies of ∆m−1,n,

• n+ 1 copies of ∆m,n−1.

In particular, ∆m,n contains no simplex facets at all if m > 2 or n > 2.
A triplex is defined as a multifold pyramid over a simplicial prism [11, p. 29]. More

precisely a (k, d − k)-triplex, denoted M(k, d − k) is a (d − k)-fold pyramid over the
simplicial k-prism. Grünbaum [7, p 184] defined a quadratic polynomial by

φ(v, d) =
(
d+ 1

2

)
+
(
d

2

)
−
(

2d+ 1− v
2

)
=
(
v

2

)
− 2

(
v − d

2

)
,
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and conjectured that its value is the minimum number of edges of d-polytopes with v 6 2d
vertices.

Note also the equivalent expression for φ,

φ(d+ k, d) = 1
2d(d+ k) + 1

2(k − 1)(d− k).

The following result verifies Grünbaum’s conjecture.

Theorem 3. [11, Theorem 7] Let P be a d-polytope with d+k vertices, where 1 6 k 6 d.
Then P has at least φ(d + k, d) =

(
d
2

)
−
(

k
2

)
+ kd edges, equivalently P has excess degree

at least (k − 1)(d− k). Furthermore, equality is obtained only if P is a (k, d− k)-triplex,
i.e a (d− k)-fold pyramid over the simplicial k-prism.

A missing edge in a polytope is a pair of distinct vertices with no edge between them.
Theorem 3 then says that a d-polytope with v 6 2d vertices has at most 2

(
v−d

2

)
missing

edges, and that this maximum is attained only by the appropriate triplex.
For simplicial polytopes, the well known Lower Bound Theorem gives a stronger con-

clusion, without a restriction on the number of vertices.

Theorem 4. [1] Let P be a d-polytope with v = d + k vertices, and suppose that every
facet of P is a simplex. Then P has at least dv −

(
d+1

2

)
edges, equivalently P has excess

degree at least (k − 1)d.

In describing a polytope, it is enough to know all the vertex-facet incidences; this
determines the entire face lattice.

Let us recall the concept of truncation. If H is a hyperplane intersecting the interior
of a polytope P and containing no vertex of P , denote by H+ and H− the two closed
half-spaces bounded by H, and put P ′ := H+ ∩ P . In the case that there is a unique
vertex of P lying in H−, the polytope P ′ is said to have been obtained by truncating that
vertex. Truncating a simple vertex of any polytope clearly yields a new polytope with
d−1 more vertices than the original, but the same excess degree; thus the number of edges
increases by

(
d
2

)
. In case there are exactly two vertices in H−, they must be adjacent,

and the polytope P ′ is said to have been obtained by truncating that edge. Truncating an
edge joining two simple vertices will produce a polytope with 2d − 4 more vertices than
before and the same excess degree.

We need to be familiar with some important examples. A pentasm (needed in case 3
of our main theorem) can be defined [10, p. 2015] as the result of truncating a simple
vertex from the triplex M(2, d − 2). It has 2d + 1 vertices, d2 + d − 1 edges, and hence
excess degree d − 2. Its facets are d + 3 in number: d − 2 pentasms of dimension d − 1;
two prisms; and three simplices. Another way to view the pentasm is as the convex hull
of two disjoint faces: a pentagon and a (d− 2)-dimensional prism.

Theorem 5. [11, Thm. 13(iii)] Let P be a d-polytope with 2d+ 1 vertices, where d > 5.
Then P has at least d2 + d− 1 edges, with equality only if P is a pentasm.
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Additional minimisers of the number of edges (of d-polytopes with 2d + 1 vertices)
appear when d = 3 or 4; these will be discussed shortly.

Some further examples [11, §2.2] of polytopes with few vertices and edges, which occur
repeatedly in our work, are as follows.

(b) B4(a) A4

Figure 1: Polytopes A4 and B4.

Denote by Ad a polytope obtained by truncating a nonsimple vertex of the triplex
M(2, d−2). Since each nonsimple vertex of M(2, d−2) is the apex of a pyramid, it makes
no difference (up to combinatorial equivalence) which one we truncate. The polytope Ad

can be also realised as a prism over a copy of M(2, d−3). It has 2d+2 vertices and excess
degree 2d− 6 (Figure 1).
Remark 6 (Facets of Ad). The facets of the d-polytope Ad, d+ 3 in total, are as follows.

• d− 3 copies of Ad−1,

• 4 simplicial prisms, and

• 2 copies of M(2, d− 3).

Denote by Bd a polytope obtained by truncating a simple vertex of the triplex M(3, d−
3). The polytope B3 is the well known 5-wedge. The polytope Bd can also be visualised
as the convex hull of B3 and a simplicial (d− 3)-prism K, with each vertex of one of the
(d − 4)-dimensional simplex faces in K being adjacent to each of the three vertices in a
triangle of B3, and each vertex of the other (d− 4)–dimensional simplex face in K being
adjacent to each of the remaining five vertices of B3. It also has 2d+2 vertices and excess
degree 2d− 6 (Figure 1).
Remark 7 (Facets of Bd). The facets of the d-polytope Bd, d+ 3 in total, are as follows.

• d− 3 copies of Bd−1,

• 2 simplices,

• 1 simplicial prism,

• 1 copy of M(2, d− 3), and
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• 2 pentasms.

Remark 8 (Similarity of Ad, Bd). There is a certain commonality in the structure of Ad

and Bd. In both cases, the polytope can be described as the convex hull of three disjoint
faces, namely two (d− 5)-dimensional simplices S1 and S2 (whose convex hull constitutes
a prism), and a simple 3-face (either a cube or a 5-wedge). The vertices of the 3-face can
be partitioned into two subsets Q1 and Q2, in such a way that a vertex in Si is adjacent
to a vertex in Qj if and only if i = j. In the case of the cube, Q1 and Q2 correspond to
two opposite faces. In the case of the 5-wedge, Q1 corresponds to a triangular face and
Q2 corresponds to the other triangular face, together with the quadrilateral with which
it shares an edge.

We have presented the structure of Ad and Bd in some detail because, in most di-
mensions, these two examples are the minimisers of the number of edges, amongst all
d-polytopes with 2d + 2 vertices. As listed in Theorem 13 below, there are some excep-
tions in low dimensions, which we now describe.

Denote by Cd a polytope obtained by truncating such a simple edge in the triplex
M(2, d− 2). It has 3d− 2 vertices and excess degree d− 2. Obviously C2 is just another
quadrilateral.

Denote by Σd a certain polytope which is combinatorially equivalent to the convex
hull of

{0, e1, e1 + ek, e2, e2 + ek, e1 + e2, e1 + e2 + 2ek : 3 6 k 6 d},

where {ei} is the standard basis of Rd. It is easily shown to have 3d− 2 vertices; of these,
one has excess degree d−2, and the rest are simple. It can be expressed as the Minkowski
sum of two simplices. For consistency, we can also define Σ2 as a quadrilateral. Note that
Σ3 = C3, but the corresponding polytopes are distinct for d > 4.

Recall from [10, p. 2017] that Jd is the simple polytope obtained by truncating one
vertex of a simplicial d-prism; it clearly has 3d−1 vertices. Of course J2 is just a pentagon
and B3 coincides with J3. The facets of Jd are d− 1 copies of Jd−1, two prisms, and two
simplices.

Now we present some technical results which will be necessary later.
It is well known that any simple d-polytope, other than a simplex or prism, has at

least 3d − 3 vertices. This follows easily from the g-theorem [18, §8.6], but elementary
arguments are also available. More precisely, we have the following classification, which
is a rewording of [15, Lemma 10(ii)].

Lemma 9. Any simple d-polytope with strictly less than 3d−1 vertices is either a simplex,
a prism, ∆2,d−2 or ∆3,3. In particular, for every d 6= 6, the smallest vertex counts of simple
d-polytopes are d + 1, 2d, 3d − 3 and 3d − 1. In dimension 6 only, there is also a simple
polytope with 3d − 2 vertices. The only one of these which contains two disjoint simplex
facets is the prism.

The next result is surprisingly useful.
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Lemma 10. [10, Lemma 2.5] Let P be a polytope, F a facet of P and u a nonsimple
vertex of P which is contained in F . If u is adjacent to a simple vertex x of P in P \ F ,
then u must be adjacent to a second vertex in P \ F , different from x.

A very useful tool for us is the following concept: a polytope P is called decomposable
if it can be expressed as the (Minkowski) sum of two polytopes which are not similar
to it, i.e. not obtainable from P just by translation and scaling. Inevitably, all other
polytopes are described as indecomposable. We refer to [14] and the references therein
for a more detailed discussion of this topic. Kallay [8] showed that decomposability of a
polytope can often be decided from properties of its graph. He introduced the concept
of a geometric graph, as any graph G whose vertex set V is a subset of Rd and in which
every edge is a line segment joining members of V ; we find it convenient to add the
restriction that no three vertices are collinear. Such a graph need not be the edge graph
of any polytope. He then extended the notion of decomposability to geometric graphs in
a consistent manner. We omit his definition; the important point [8, Theorem 1] is that a
polytope is indecomposable as just defined if and only if its edge graph is indecomposable
in his sense.

A strategy for proving indecomposability of a polytope is to prove that certain basic
geometric graphs are indecomposable, and then to build up from them to deduce that
the entire skeleton of our polytope is indecomposable. As in [15, p. 171], let us say that
a geometric graph G = (V,E) is a simple extension of a geometric graph G0 = (V0, E0)
if G0 is a subgraph of G, V \ V0 contains just one vertex, and E \ E0 comprises two (or
more) edges containing that vertex. The following result summarizes everything we need
in the sequel; we have not included stronger known statements about decomposability.

Theorem 11.

(i) If G is a simple extension of G0, and G0 is an indecomposable geometric graph, then
G is also indecomposable.

(ii) A single edge is indecomposable; any triangle is indecomposable.

(iii) A geometric graph isomorphic to the complete bipartite graph K2,3 is decomposable
if and only if it lies in a plane.

(iv) A polytope P is indecomposable, if (and only if) its graph contains an indecomposable
subgraph G whose vertex set contains at least one vertex from every facet of P .

(v) If P is a pyramid, then it is indecomposable.

(vi) Any d-polytope with 2d or fewer vertices, other than the prism, is indecomposable.

Proof. (indication)
(i) See [15, Prop. 1].
(ii) This is easy for an edge; the case of a triangle then follows from (i).
(iii) This is proved without statement in [14, Example 12].
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(iv) This is [14, Theorem 8], which is an extension of [8, Theorem 1].
(v) Consider any edge containing the apex of the pyramid. This is an indecomposable

subgraph which touches every facet, and the conclusion follows from (iv).
(vi) See [15, Theorem 9].

In the other direction, the following sufficient condition will be useful to us several
times. It is essentially due to Shephard; for another proof, see [15, Prop. 5]. We say [11,
p. 30] that a facet F of a polytope P has Shephard’s property if for every vertex u ∈ F ,
there exists exactly one edge in P that is incident to u and does not lie in F . We also
say that a polytope is a Shephard polytope if it has at least one facet with Shephard’s
property.

Theorem 12 ([16, Result (15)]). If a polytope P has a facet F with Shephard’s property,
and there are at least two vertices outside F , then P is decomposable. In particular, any
simple polytope other than a simplex is decomposable.

2 Polytopes with 2d + 2 vertices

As in [11], we define the set E(v, d) = {e : there is a d-polytope with v vertices and e
edges}. Theorem 3 asserts, for each fixed k 6 d, that minE(d+k, d) = 1

2d(d+k) + 1
2(k−

1)(d − k), and that the triplex M(k, d − k) is the unique minimiser. So minE(v, d) is
known, whenever v 6 2d.

Theorem 5 asserts that minE(2d+ 1, d) = d2 + d− 1 for d > 5, and that the pentasm
is the unique minimiser. For low dimensions, some sporadic examples occur. For d = 3,
it is easy to check that there is a second minimiser, namely Σ3. For d = 4, the pentasm
is the only polytope with nine vertices and 19 edges, but ∆2,2 has nine vertices and 18
edges.

Similarly, we will show here that minE(2d + 2, d) = d2 + 2d − 3 for all d > 3 except
d = 5. (It is well known that minE(12, 5) = 30 < 32 = 52 +2×5−3, and that ∆2,3 is the
only 5-polytope with 12 vertices and 30 edges. It also follows from the Excess Theorem
(Theorem 1) that no 5-polytope has 12 vertices and 31 edges.) Furthermore, we show
that, for all d > 3 except d = 4 and d = 7, the only polytopes with 2d + 2 vertices and
d2 + 2d− 3 edges are the polytopes Ad and Bd defined above.

Theorem 13. For d > 3, the only d-polytopes with 2d+2 vertices and precisely d2 +2d−3
edges, equivalently with excess degree 2d− 6, are as follows.

(i) For d = 3, d = 5, d = 6 and all d > 8, only the two polytopes Ad and Bd.

(ii) For d = 4, the four polytopes A4, B4, C4 and Σ4.

(iii) For d = 7, the three polytopes A7, B7 and the pyramid over ∆2,4.

Moreover, the 5-polytope ∆2,3 is the only polytope of any dimension with 2d + 2 vertices
and strictly fewer than d2 + 2d− 3 edges.
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The case d = 3 of Theorem 13 is easy to check using Steinitz’ Theorem; one may
also consult catalogues [2, 5]. The case d = 4 was established in [10, Theorem 6.1].
Some arguments in the sequel are simplified by considering only the case d > 5. We
establish several special cases first in order to streamline the proof. Some of them are of
independent interest.

Lemma 14. Let P be a d-polytope with 2d + 2 vertices and no more than d2 + 2d − 3
edges. If P is a pyramid, then d = 7 and the base of P is ∆2,4.

Proof. Our hypothesis amounts to saying that P has excess degree at most 2d − 6. Let
F denote the base, which has 2d+ 1 vertices. The apex of the pyramid has excess degree
d + 1, and so F has excess degree at most (2d − 6) − (d + 1). Since d − 7 < d − 2, the
Excess Theorem informs us that F is simple and d = 7. By Lemma 9, the only simple
6-polytope with 15 = 3× 6− 3 vertices is ∆2,4.

A fundamental property of polytopes is that for any facet F and any ridge R contained
in F , there is a unique facet F ′ containing R and different from F . In this situation, we
have R = F ∩ F ′, and we will F ′ the other facet for R.

Lemma 15. [3, Theorem 15.5] Suppose P is a d-polytope and F is a proper face of P .
Then the subgraph of the graph of P induced by the vertices outside F is connected.

Lemma 16. Suppose P is a d-polytope, F is a facet of P , and there are precisely three
vertices, say u1, u2, u3, outside F , all of them simple. Then, at least d−4 ridges contained
in F have the property that their other facet contains all three of u1, u2, u3.

Proof. By Lemma 15, the subgraph containing u1, u2, u3 is connected. There are two
cases to consider. Either the three vertices are mutually adjacent, and each is adjacent to
exactly d− 2 vertices in F . Or (after relabelling) u1 is not adjacent to u3, in which case
u1 and u3 are both adjacent to u2 and to d− 1 vertices in F , while u2 is adjacent to d− 2
vertices in F .

In the first case, each of the three vertices will have degree d − 1 in any facet which
contains it; such a facet must therefore contain one of the other two. So no ridge in F
has the property that its other facet contains precisely one of u1, u2, u3.

Again by the simplicity of u1, there is only one facet F ′ of P which contains u1 and
u2 but not u3. Thus there is at most one ridge in F whose other facet is F ′. Hence there
are at most three ridges in F having the property that their other facet contains precisely
two of u1, u2, u3.

Since F contains at least d ridges of P , at least d − 3 of them must have the alleged
property.

In the second case, the same reasoning shows that every facet containing u2 also
contains either u1 or u3; there is precisely one facet containing u1 and u2 but not u3, and
precisely one facet containing u2 and u3 but not u1. There will also be precisely one facet
containing u1 but not u2 or u3, and precisely one facet containing u3 but not u1 or u2. No
facet can contain u1 and u3 but not u2. Hence there are at most four ridges in F having
the property that their other facet contains either one or two of u1, u2, u3.
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Since F contains at least d ridges of P , at least d − 4 of them must have the alleged
property.

A common situation for us will be the need to estimate the number of edges involving
a particular set of vertices (often, but not always, the complement of a given facet).

Lemma 17. [11, Lemma 4] Let S be a set of n vertices of a d-polytope P , with n 6 d.
Then the total number of edges containing at least one vertex in S is at least nd −

(
n
2

)
.

Moreover, this minimum is obtained precisely when every vertex in S is simple, and every
two vertices in S are adjacent.

We need some information about the structure of d-polytopes with 2d vertices and
whose number of edges is close to minimal. It is known that such a polytope has d2 edges
only if it is a prism, and d2 + 1 edges only if d = 3 [15, Theorem 13].

Lemma 18. Let P be a d-polytope with 2d vertices and d2 + 2 edges. Then P is one of
only seven examples, all with dimension at most five. More precisely

(i) If d = 5, P is a pyramid over ∆2,2.

(ii) If d = 4, P has at least two nonsimple vertices, and is a pyramid over either a
pentasm or Σ3, or one of the two polytopes detailed in the table below.

(iii) For d = 3, P is the dual of either a pentasm or Σ3.

Proof. A special case of [11, Thm. 19] asserts that a d-polytope with 2d vertices which is
not a prism must have at least d2 + d− 3 edges, and this is > d2 + 3 if d > 6. Thus d < 6.

(i) If d = 5, then P has 27 edges and excess degree 4 = d − 1, so [10, Theorem
4.18] informs us that P is a Shephard polytope, in particular either decomposable or a
pyramid. But P is not a prism, so must be indecomposable by Theorem 11(vi). Thus P
is a pyramid, and its base must have nine vertices and 18 edges, making ∆2,2 the only
option.

(ii) In the case d = 4, P has eight vertices, 18 edges and excess degree four. Any
vertex of P has degree at most seven and hence excess degree at most three. So there
must be at least two nonsimple vertices. It is not hard to establish directly that there
are only four examples, but we simply note that this can be verified from catalogues such
as [6]. Let us now describe these four examples. Two obvious examples are the pyramid
over a pentasm and the pyramid over Σ3, which both have just two nonsimple vertices.

Another known example, which has three nonsimple vertices, is given in [12, Figure
1d]. Its facets are one prism, two tetragonal antiwedges, one pyramid and three simplices;
the vertex-facet relations are detailed in the first column in Table 1. For a concrete rep-
resentation, take the convex hull of (ε, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1),
(1, 0, 0, 1), (0, 1, 0, 1), and (0, 0, 1, 1), where ε > 0 need not be too small.

The fourth example has a simple concrete representation, with vertices (±1,±1, 0, 0),
(±1, 0, 1, 0), and (0,±1, 0, 1). It is not hard to verify that its facets are two prisms,
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Facet Polytope 1 Polytope 2
1: {1 2 3 4 5 6} {1 2 3 4 5 6}
2: {1 2 3 4 7 8} {1 2 3 4 7 8}
3: {1 2 5 6 7 8} {1 2 5 6 7}
4: {3 4 5 6 7} {1 3 5 7 8}
5: {2 4 6 8} { 3 4 5 6 8}
6: {1 3 5 7} {2 4 6 7 8}
7: {4 6 7 8} {5 6 7 8}

Table 1: Vertex-facet incidences of nonpyramidal 4-polytopes with eight vertices and
eighteen edges.

four quadrilateral pyramids and a simplex. There are four nonsimple vertices, and the
vertex-facet relations are detailed in the second column in Table 1.

(iii) Suppose d = 3. Then P has six vertices and 11 edges, so Euler’s formula ensures
that its dual P ∗ must have seven vertices and 11 edges. Thus P ∗ is either a pentasm or
Σ3.

Lemma 19. Let P be a d-polytope with 2d + 2 vertices and no more than d2 + 2d − 3
edges. Suppose that no facet of P has 2d vertices and no facet of P is a (d− 1)-pentasm,
but that some facet has 2d− 1 vertices. Then either d = 7 and P is a pyramid over ∆2,4,
or d = 4 and P is C4 or Σ4.

Proof. In three dimensions, a facet with five vertices is a pentasm, so no polytope satisfies
the hypotheses. If d = 4, we simply recall [10, Theorem 6.1], which asserts that the only
4-polytopes with 10 vertices and no more than 21 edges are A4, B4, C4, and Σ4. Note that
both A4 and B4 contain facets with eight vertices, and do not satisfy the hypotheses.

So assume d > 5. We will show that P is a pyramid. If F is a facet having 2d− 1 =
2(d−1)+1 vertices, Theorem 5 ensures that F has at least d2−d edges, and consequently
is not simple. Moreover, the three vertices u1, u2, u3 outside F must be mutually adjacent
and all simple, and so F actually has exactly d2 − d edges; otherwise by Lemma 17, P
would have strictly more than d2 + 2d− 3 edges.

Lemma 16 ensures that some ridge R contained in F is such that its other facet F ′
contains all three of u1, u2, u3. Each ui is simple in F ′, and so has d−3 edges running into
R, two edges running into the other uj and exactly one edge running into P \F ′. But each
vertex in F \R is adjacent to at least one ui; this implies that P \F ′ contains at most three
vertices. If P is a pyramid over F ′, Lemma 14 completes the proof. Otherwise, F ′ has 2d−
1 vertices and P \F ′ contains exactly three vertices. Then there are exactly three vertices
in F \ R, say w1, w2, w3, each of them simple, and three edges joining them to u1, u2, u3.
Then R has 2d−4 vertices, and there are 3(d−3) edges between u1, u2, u3 and R, likewise
3d−9 edges between w1, w2, w3 and R, and nine edges between u1, u2, u3, w1, w2, w3. Thus
the number of edges in R is exactly (d − 2)2 + 2 = φ(2d − 4, d − 2) + 2. According to
Lemma 18, this implies that d− 2 < 6.
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Since every vertex in F \R is simple, Lemma 10 ensures that every vertex in R which
is not simple in F has at least two neighbours in F \R. This implies that the number of
nonsimple vertices in R is at most (3d− 9)− (2d− 4) = d− 5. Since F is not simple, R
must contain a nonsimple vertex, whence d > 6. But if d = 6, then R is 4-dimensional
with eight vertices, 18 edges, and a unique nonsimple vertex, which is impossible by
Lemma 18(ii).

The only remaining possibility is that d = 7. By Lemma 18(i), the only 5-polytope
with 10 vertices and 27 edges is the pyramid over ∆2,2; this must be R. The apex of R will
then be the only nonsimple vertex in P . With excess degree eight, it must be adjacent to
every other vertex in P . A special case of [10, Corollary 2.2] asserts that a polytope with
a unique nonsimple vertex, which is adjacent to every other vertex, must be a pyramid.
Again, the base can be only ∆2,4.

Lemma 20. Let P be a d-polytope, with two disjoint faces F1 and F2 whose union contains
Vert(P). Suppose that F1 is a facet, and that F2 = [w0, w1] is an edge. Then P is
decomposable if, and only if, F1 has Shephard’s property in P . In this case, denoting
Vi = {u ∈ Vert(F1) : u is adjacent to wi}, every vertex in V0 is adjacent to at most one
vertex in V1 and vice versa. Moreover, F1 is also decomposable.

Proof. Any facet disjoint from F2 must be contained in, and hence equal to, F1.
If F1 fails Shephard’s property, there will be a vertex u ∈ F1 adjacent to both vertices

in F2. The resulting triangle will be an indecomposable graph touching every facet, which
implies indecomposability of P by Theorem 11(iv).

If F1 has Shephard’s property, then P is decomposable, according to Theorem thm:shp.
Now suppose there is a vertex a ∈ V0 which is adjacent to two distinct vertices b, c ∈
V1. Then the five vertices a, b, c, w0, w1 are not contained in any plane. The graph G
comprising these six edges is isomorphic to the complete bipartite graph K3,2. According
to Theorem 11(iii), G is indecomposable. By the remark at the beginning of this proof,
G touches every facet, contradicting the decomposability of P . Decomposability of F1
now follows from [10, Lemma 5.5], but we repeat the short argument: the graph of F1
also touches every facet, so if F1 were indecomposable, Theorem 11(iv) would imply
indecomposability of P .

We remark that in Lemma 20, the edge F2 will actually be a summand of a polytope
combinatorially equivalent to F1. This can be deduced from the proof of [15, Proposition
5]. Moreover, a generalisation of this result remains valid when F2 is merely assumed to
be an indecomposable face. We don’t need these stronger versions, so we omit the details.

The next result improves [10, Lemma 5.6(ii) and Remark 5.7].

Corollary 21. Let F be a facet of a d-polytope P , with only two vertices u0, u1 of P being
outside F . Suppose F is either C4, Σ4, a pyramid over ∆2,4, or ∆n,m with m > n > 2.
Then F fails Shephard’s property in P , and P is indecomposable. In case F is ∆n,m, there
are at least 2(m+ 1)n edges running out of F .

Proof. The two vertices outside F must be adjacent, and so constitute an edge. By
Lemma 20, failure of Shephard’s property for F is equivalent to indecomposability of P .
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For the case of a pyramid over ∆2,4, F is indecomposable by Theorem 11(v), and then
P is indecomposable by Theorem 11(iv).

Suppose next that F is C4 or Σ4. Inspection of the graphs (Figure 2) reveals that in
both cases there are four triangles T1, T2, T3, T4, with Ti ∩ Ti+1 nonempty for i = 1, 2, 3,
whose union contains at least seven vertices. Each of the three (or fewer) remaining
vertices must then be adjacent to at least two vertices in this collection of triangles. If F
had Shephard’s property, then Lemma 20 would allow us to colour the vertices of F with
two colours in such a way that every vertex is adjacent to at most one vertex of the other
color. In particular, any three mutually adjacent vertices would have the same colour. In
our situation, all vertices of F would have the same colour, i.e. no such 2-colouring is
possible.

(c) C4 (d) Σ4

Figure 2: Polytopes C4 and Σ4. In each polytope, four triangles T1, T2, T3, T4 with Ti∩Ti+1
nonempty for i = 1, 2, 3 are highlighted in dashed lines.

Finally, suppose F = ∆m,n; then m+n = d−1. We claim that there are least 2(m+1)n
edges between F and u0, u1. Fix a facet F ′ of P containing u0 but not u1. Let R be an
arbitrary ridge contained in F ′ but not containing u0. Clearly R ⊂ F and R ⊂ F ′, which
forces R = F ∩ F ′. Thus R is the unique ridge of F ′ not containing u0. This implies F ′
is a pyramid over R and u0 is adjacent to every vertex in R. Being contained in F , R
must be either of the form ∆m−1,n, with mn + m vertices, or of the form ∆m,n−1, with
mn+ n vertices (Remark 2). So u0 has at least (m+ 1)n edges running into F . Likewise
for u1. Since n > 1, we have 2mn + 2n > (m + 1)(n + 1) = v(F ), meaning that F fails
Shephard’s property.

We now have enough machinery to prove Theorem 13. We reformulate it slightly to
streamline the proof.

Theorem 22. For d > 3, the only d-polytopes with 2d + 2 vertices and d2 + 2d − 3 or
fewer edges are Ad, Bd, C4, Σ4, ∆2,3, and the pyramid over ∆2,4. Each of these examples,
except ∆2,3, has precisely d2 + 2d− 3 edges.

Proof. The case d = 3 is well known and easy to prove: A3 is the cube and B3 is the
5-wedge. See also [2] or [5]. The case d = 4 was established in [10, §6]. We proceed by
induction on d, henceforth assuming d > 5.
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Let P be a d-polytope with 2d+ 2 vertices, by hypothesis with excess degree at most
2d − 6. We distinguish a number of cases based on the maximum number of vertices of
the facets in P . We will show in each case that P either has one of the required forms or
has strictly more than d2 + 2d− 3 edges.

Case 1: Some facet has 2d+1 vertices. In this case, P is a pyramid and Lemma 14
informs us that the base is ∆2,4.

Case 2: P is not a pyramid, but some facet F has 2d = 2(d−1)+2 vertices.
There are two adjacent vertices outside F , which we will call u1 and u2, and at least 2d

edges running out of F . Thus F has at most d2 +2d−3− (2d+1) = (d−1)2 +2(d−1)−3
edges. By induction, F must be Ad−1, Bd−1, ∆2,3, C4, Σ4 or a pyramid over ∆2,4. If F
were ∆2,3, Corollary 21 would ensure at least 16 edges running out of F , giving P at least
47 > 62 +2×6−3 edges. In all the other cases, F has exactly (d−1)2 +2(d−1)−3 edges,
and so there are exactly 2d edges running out of F . Thus F has Shephard’s property, and
Corollary 21 rules out C4, Σ4 and the pyramid over ∆2,4 as options.

So F is of the form Ad−1 or Bd−1: Recall their structure from Remarks 6 and 7. In
both cases, there are d + 2 ridges (of P ) contained in F and d − 4 of them have same
form, i.e. either Ad−2 or Bd−2 respectively. If the other facet F ′ for one of these d − 4
ridges were a pyramid, its apex, say u1, would be adjacent to all 2d − 2 vertices in the
ridge, giving d2 − 4 + 2d − 2 edges in the union of the two facets. But u2 has degree at
least d, which would give P at least d2 + 3d− 6 > d2 + 2d− 3 edges. So each such “other
facet” must contain both u1 and u2, i.e. F ′ has 2(d − 1) + 2 vertices. It follows that F ′
also has at most (d2 + 2d− 3)− (2d+ 1) edges. The induction hypothesis tells us that F ′
is also of the form Ad−1 or Bd−1, respectively.

Let Si and Qi be as in Remark 8. The d− 4 ridges referred to above each omit one of
the d− 4 edges linking S1 and S2. Given that their other facets have the same form as F
(Ad−1 or Bd−1 respectively), we can suppose that u1 is adjacent to every vertex in S1 and
Q1, and that u2 is adjacent to every vertex in S2 and Q2. Thus P has the same graph as
Ad or Bd. We claim this ensures that P is Ad or Bd respectively.

If F is Ad−1, the six ridges of P contained in F which are not of the form Ad−2
correspond to the six faces of the cube, i.e. each is the convex hull of one face of the cube
and the (d− 3)-prism. They are two copies of M(2, d− 4) (the convex hull of Qi ∪ Si for
i = 1, 2); and four (d − 2)-prisms (the convex hull of S1 ∪ S2 ∪ E, for each of the four
edges E linking Q1 and Q2). The other facets for these ridges are now easy to see. The
other facet corresponding to each copy of M(2, d − 4) is a copy of M(2, d − 3), namely
the convex hull Qi, Si and ui. For each prism facet, the other facet is a (d − 2)-prism,
containing both u1 and u2. This completely describes the facet-vertex incidences of P ;
they are the same as Ad.

Likewise, if F is Bd−1, the other six ridges of P contained in F correspond to the six
faces of the 5-wedge. They are one copy of M(2, d− 4), one (d− 2)-prism, two simplices
and two pentasms. A similar argument investigating their other facets determines the
facet-vertex incidences. (Alternatively, since P has only d − 3 nonsimple vertices, we
could apply [4, Theorem 3.1], which asserts that the face lattice in this case is determined
by the 2-skeleton.)
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Case 3A: No facet has 2d or more vertices, and some facet F is a (d − 1)-
pentasm.

We show that this case cannot arise. Recall that a (d − 1)-pentasm has 2d − 1 =
2(d− 1) + 1 vertices and d2 − d− 1 = (d− 1)2 + (d− 1)− 1 edges.

One of the (d− 2)-faces of F is a (d− 2)-pentasm R, which has (d− 2)2 + (d− 2)− 1
edges; there will then be 2d − 2 edges incident with vertices in F \ R, and one of the
vertices in F \R will be nonsimple. We consider the other facet F ′ of P containing R. As
a pentasm, R has excess degree d− 4. If F ′ were a pyramid, its apex would have degree
2d− 3, and hence excess d− 2, in F ′. This would give F ′ excess degree 2d− 6. Now the
excess degree of any facet of a nonsimple polytope is strictly less than the excess degree of
the whole polytope [10, Lemma 3.2]; thus P would have excess degree > 2d− 6, contrary
to hypothesis. So we can assume that F ′ is not a pyramid.

The hypotheses of this case ensure that the facet F ′ contains only two of the three
vertices t, u, w outside F , say t, u. Furthermore, the vertices u, t must be adjacent. Then
by Theorem 5, F ∪F ′ contains at least (d2− d− 1) + (2d− 3) + 1 = d2 + d− 3 edges; note
that this total does not include any edges between F \R and F ′\R. If w, the unique vertex
outside F ∪F ′, is not simple, then P will have at least (d2 + d− 3) + (d+ 1) = d2 + 2d− 2
edges, contrary to hypothesis. So we assume that w is simple.

Clearly the nonsimple vertex in F \ R is adjacent to some vertex outside F ; if it is
not adjacent to w, then it must be adjacent to u or t. But if it is adjacent to w, it must,
by Lemma 10, be adjacent to another vertex outside F , which can only be one of t, u. In
either case, this gives us an edge between F \ R and F ′ \ R. Of course there are d edges
containing w, so again P has at least (d2 + d− 3) + d+ 1 = d2 + 2d− 2 edges.

Case 3B: No facet has 2d or more vertices, no facet is a pentasm, but some
facet F has 2d − 1 = 2(d − 1) + 1 vertices.

This case is settled by Lemma 19.
Case 4A. No facet has 2d − 1 or more vertices, some facet F has 2d − 2 =

2(d − 1) vertices, but is not a prism.
We show that this case cannot arise; our argument depends on the dimension. First

note that F has at least (d− 1)2 + (d− 1)− 3 edges [11, Theorem 19], and by Lemma 17
the four vertices outside F belong to at least 4d−6 edges. Thus P has at least d2 +3d−9
edges, and for d > 6, this exceeds d2 + 2d− 3.

If d = 6, and F has 28 edges or more, then P has at least 46 edges by Lemma 17.
Otherwise, F has 27 = 52 + 2 edges and must, by Lemma 18(i), be a pyramid over ∆2,2.
The other facet containing the ridge ∆2,2 has only 10 vertices, so must also be a pyramid.
Then these two facets have 36 edges between them, and the three remaining vertices must
belong to at least 15 edges. This gives P at least 51 edges.

Finally if d = 5, then F will have eight vertices and hence more than sixteen edges.
It cannot have seventeen edges, thanks to [7, Thm. 10.4.2]; see also [12, remarks after
Prop. 2.7]. So F has at least eighteen edges, and excess degree at least four. The excess
degree of P is strictly greater than that of F [10, Lemma 3.2], and even, hence at least
6 > 2d− 6, contrary to hypothesis.

Case 4B. No facet has 2d − 1 or more vertices, some facet F has 2d − 2 =
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2(d − 1) vertices, and every such facet is a prism.
We show that this case does not arise either. Suppose F is a simplicial (d− 1)-prism.

We can label its vertices as {u1, · · · , ud−1, w1, · · · , wd−1}, so that ui is adjacent to uj

and wi is adjacent to wj for all i, j, but ui is adjacent to wj if and only if i = j. The
graph and face lattice are clear from this. Then the ridge R contained in F with vertices
{u1, · · · , ud−2, w1, · · · , wd−2} is a simplicial (d − 2)-prism. Consider the other facet F ′
containing R. If F ′ were a pyramid, then F ∪F ′ would contain (d−1)2 +2(d−2) = d2−3
edges, and by Lemma 17 the remaining three vertices would belong to at least 3d − 3
edges. But then P would have at least d2 + 3d− 6 > d2 + 2d− 3 edges. Then F ′ must be
another prism. We can label the two vertices of F ′ \R as u0 and w0, with the adjacency
relationships clear from the notation. Now the graph of F ∪ F ′ has d2 − 2 edges, and by
Lemma 17 again, there are at least 2d− 1 edges involving the other two vertices, say a, b.
Since d2 − 2 + 2d− 1 = d2 + 2d− 3, there must be precisely 2d− 1 edges involving a and
b, and no edge between u0 and ud−1, wd−1, nor between w0 and ud−1, wd−1. In particular,
u0, w0, ud−1, wd−1 each have degree d − 1 in F ∪ F ′, so each of them must be connected
to either a or b. On the other hand, there are at most 2d− 1 vertices in F ∪ F ′ adjacent
to either a or b. Without loss of generality, we suppose that ud−3 is adjacent neither to a
nor to b.

Now consider the ridge R′ in F ′ with vertices {u0, · · · , ud−3, w0, · · · , wd−3}. The other
facet F ′′ containing R′ must be a prism. It cannot contain ud−2 or wd−2 because they
belong to F ′. Nor can it contain ud−1 or wd−1, because they are not adjacent to u0 and
w0. And it cannot contain a or b, because they are not adjacent to ud−3. This is absurd.

Case 5. Some facet F has between d+3 = d−1+4 and 2d−3 = d−1+d−2
vertices, but no facet has 2d − 2 or more vertices.

Denote by n the number of vertices outside F ; then 5 6 n 6 d− 1. Then the facet F
has (d− 1) + (d− n + 3) vertices and d− n + 3 < d− 1, so [10, Theorem 8(iii)] ensures
that F has excess at least (d − n + 2)(n − 3 − 1). By Theorem 1, the total number of
edges in F is at least 1

2((d − 1)(2d + 2 − n) + (d − n + 2)(n − 4)), with equality only if
F is a triplex. Lemma 17 informs us that the total number of edges outside F is at least
1
2(2nd− n2 + n). Thus the number of edges in P is at least d2 + (n− 2)d− (n2− 4n+ 5),
which is > d2 + 2d− 3 provided

d > n+ 2
n− 4 .

If n > 7, then n+ 2
n−4 < n+ 1 6 d, so we are fine. If n = 6, we need to consider the case

d = 7 separately. If n = 5, we need to consider the cases d = 6, 7 separately.
Note that d−n+3 = 4 or 5 in all three cases. If F is not a triplex, then [11, Theorems

19 and 20] guarantee F has at least φ(2d + 2− n, d− 1) + 2 edges. So the total number
of edges in P is at least d2 + (n− 2)d− (n2 − 4n)− 3 > d2 + 2d− 3.

If F is a triplex, it is a pyramid over some ridge R which is also a triplex. No facet
has more vertices than F , so the other facet F ′ must also be a triplex. Now R has
(d− 2) + (d− n+ 3) vertices, and hence φ(2d− n+ 1, d− 2) = d2 − 4d− 1

2(n2 − 9n+ 12)
edges. The two apices of F, F ′ belong to 2(2d−n+ 3) edges in F ∪F ′. The n− 1 vertices
outside F ∪ F ′ must belong to at least (n − 1)d −

(
n−1

2

)
edges. Adding these up gives a
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total of at least d2 + (n− 1)d− (n2 − 4n+ 1) edges, and this exceeds d2 + 2d− 3 in each
case of interest, namely (n, d) = (5, 6), (5, 7) and (6, 7).

Case 6. Some facet F has d + 2 = d − 1 + 3 vertices, and no facet has more
vertices.

First suppose F is a pyramid. Then the base is a ridge R with exactly d+1 = d−2+3
vertices, and so has at most six missing edges. The other facet F ′ containing R must also
be a pyramid over R, and so the union of the two facets F ∪F ′ has at most seven missing
edges. The union has at least

(
d+3

2

)
− 7 = 1

2(d2 + 5d)− 4 edges. The d− 1 vertices outside
F ∪ F ′ belong to at least (d − 1)d −

(
d−1

2

)
= 1

2(d2 + d) − 1 edges. Thus P has at least
d2 + 3d− 5 > d2 + 2d− 3 edges.

Next suppose that F is simplicial. The Lower Bound Theorem ensures that F has
at least

(
d+2

2

)
− 3 = 1

2(d2 + 3d) − 2 edges. The d vertices outside F belong to at least
d2 −

(
d
2

)
= 1

2(d2 + d) edges. Thus P has at least d2 + 2d− 2 edges.
If F is neither simplicial nor a pyramid, then some ridge R in F has exactly d vertices.

Let F ′ be the other facet containing R. We need to distinguish two cases, depending
whether F ′ has d+ 1 or d+ 2 vertices. In either case, F has at least φ(d− 1 + 3, d− 1) =
1
2(d2 + 3d)− 5 edges.

If F ′ has d+ 1 vertices, it is a pyramid over R, and its apex belongs to d edges in F ′.
Again by Lemma 17, the d−1 vertices outside F ∪F ′ belong to at least d(d−1)−

(
d−1

2

)
=

1
2(d2 + d)− 1 edges. Thus P has at least d2 + 3d− 6 > d2 + 2d− 3 edges.

If F ′ has d + 2 vertices, there are two vertices in F ′ \ F , which must belong to at
least 2d − 3 edges in F ′. Moreover, the d − 2 vertices outside F ∪ F ′ belong to at least
d(d− 2)−

(
d−2

2

)
= 1

2(d2 + d)− 3 edges. Thus P has at least d2 + 4d− 11 > d2 + 2d− 3
edges.

Case 7. Some facet F has d + 1 = (d − 1) + 2 vertices, and no facet has
more vertices.

First consider the case when F is simplicial; then it has at most one missing edge. Let
R be any ridge in F , and let G be the other facet facet containing R. Of course R is a
simplex, while F ′ may have either d or d+ 1 vertices.

If F ′ has just d vertices, then it is also a pyramid over R, whose apex is adjacent to
every vertex in R but possibly not adjacent to the two vertices in F \ R. With at most
three missing edges, F ∪ F ′ has at least

(
d+2

2

)
− 3 edges and Lemma 17 ensures that the

d vertices outside F ∪ F ′ belong to at least d2 −
(

d
2

)
edges. This gives a total of at least

d2 + 2d− 2 edges in P .
If on the other hand F ′ has d + 1 vertices, then the two vertices in F ′ \ R belong

to at least 2d − 3 edges in F ′, giving F ∪ F ′ at least 1
2(d2 + 5d) − 4 edges. Again, the

d− 1 vertices outside F ∪ F ′ contribute at least 1
2(d2 + d)− 1 edges. Thus P has at least

d2 + 3d− 5 > d2 + 2d− 3 edges.
Now suppose that F is not simplicial; then it is M(2, d− 3). In particular, it contains

a ridge R with d vertices, and so must be a pyramid over R. Then F ′ must have d + 1
vertices and also be a pyramid. Now R has at least φ(d, d− 2) = 1

2(d2− d)− 2 edges, the
two apices belong to 2d edges in F ∪ F ′, and the d vertices outside F ∪ F ′ belong to at
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least 1
2(d2 + d) edges. This gives a total of at least d2 + 2d− 2 edges.

Case 8. Every facet F has just d vertices.
Then P is simplicial and the conclusion follows from the Lower Bound Theorem (The-

orem 4): P has at least
(

d
1

)
(2d+ 3)−

(
d+1

2

)
= 3

2d
2 + 5

2d > d2 + 2d− 3 edges.

3 Further research

One obvious extension of this research is to consider the same problem for polytopes with
2d+ 3 or more vertices. The preceding techniques are more difficult to apply in this case.
The problem of minimising the number of edges, over a family of all d-polytopes which
all have the same number of vertices, is the same as minimising the excess degree over
the same family. Accordingly, we find it convenient to consider this problem in terms of
the excess degree.

Truncating a simple vertex of M(4, d− 4) yields a new polytope with 2d+ 3 vertices,
and excess degree 3d−12. It seems plausible that this will be the unique minimiser of the
number of edges for polytopes with 2d+3 vertices, at least in sufficiently high dimensions.
This is not true for d = 8, where this truncated polytope has excess 12, but a pyramid
over ∆2,5 has 3d− 5 vertices and excess 10.

Likewise for 4 6 k 6 d− 4, truncating a simple vertex of M(k + 1, d− k − 1) yields a
new polytope with 2d+ k vertices, and excess degree k(d− k − 1). These are candidates
for minimal excess amongst polytopes with v vertices, for 2d+ 4 6 v 6 3d− 6.

But for v = 3d− 5, the corresponding truncated polytope has excess 4d− 20, which is
not minimal, because a pyramid over ∆2,d−3 has 3d− 5 vertices and excess 2d− 6. Recall
also that there are simple polytopes in all dimensions with 3d − 3 vertices, and 3d − 1
vertices, while Cd and Σd have 3d− 2 vertices and excess d− 2.

Another natural extension is to consider the minimum number of k-dimensional faces,
where 1 6 k < d, for all d-polytopes with a fixed number v of vertices. This problem was
also considered by Grünbaum [7], for d-polytopes with v 6 2d vertices. He formulated
a conjecture about the minimum values, and verified it in the case v 6 d + 4. Further
special cases were solved later:

• k = d− 1 by McMullen in [7],

• k = 1 and k > 0.62d in [11],

• all k by Xue in [17].

Moving beyond 2d vertices, it is noteworthy that McMullen’s result about facets is
actually valid for all v 6 2d+ 1

4d
2. For d-polytopes with 2d+ 1 vertices, we proved in [13]

that the pentasm is the unique minimiser of the number of k-faces, for 1 6 k 6 d − 2,
when d is prime, but not when d is composite.

Returning to d-polytopes with 2d+ 2 vertices, it is not hard to show that both Ad and
Bd have exactly (

d+ 1
k + 1

)
+ 2

(
d

k + 1

)
−
(
d− 2
k + 1

)
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k-dimensional faces, for 1 < k < d. Our guess is that when d + 1 is prime, these two
polytopes are the only minimisers of the number of k-faces, for all such k. But when d+1
is composite, there are d-polytopes with 2d + 2 vertices and fewer k-faces than Ad and
Bd, for most values of k. More precisely, let p be the smallest prime factor of d + 1, and
set q = (d+ 1)/p, t = d− p− q. Then a t-fold pyramid over ∆(p, q) has exactly(

d+ 2
k + 2

)
−
(
pq − p
k + 2

)
−
(
pq − q
k + 2

)
+
(
pq − p− q
k + 2

)

k-dimensional faces, for 1 < k < d. Numerical evidence suggests that this is less than
the previous value, at least for k > 0.4d, but we have only been able to prove this for
k = d− 1 and d− 2.
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