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Abstract

We consider the problem of determining the number of distinct distances between
two point sets in R2 where one point set P1 of size m lies on a real algebraic curve
of fixed degree r, and the other point set P2 of size n is arbitrary. We prove that
the number of distinct distances between the point sets, D(P1,P2), satisfies

D(P1,P2) =

{
Ω(m1/2n1/2 log−1/2 n), when m = Ω(n1/2 log−1/3 n),

Ω(m1/3n1/2), when m = O(n1/2 log−1/3 n).

This generalizes work of Pohoata and Sheffer, and complements work of Pach and
de Zeeuw.

Mathematics Subject Classifications: 52C35, 52C10, 05D40, 05D05

1 Introduction

In 1946 Erdős [4] proposed the distinct distances problem asking for the minimum num-
ber of distinct distances that any set of n points in the plane can determine. Upon
posing the problem, Erdős established that f(n) = Ω(n1/2); this being the number of
distinct distances between pairs of points lying on a

√
n ×
√
n square grid. He further

established that f(n) = O(n/
√

log n). Many mathematicians (see [1],[7],[13],[14],[15])
improved Erdős’ lower bound to Ω(nα) for increasingly larger values of α < 1, but Erdős
conjectured that f(n) = Ω(nα) for every α < 1. This conjecture was finally resolved in
the breakthrough 2015 paper of Guth and Katz [6], where they proved f(n) = Ω(n/ log n),
introducing novel techniques in real algebraic geometry to the problem.
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Though Erdős’ original problem is more or less asymptotically resolved, many variants
of it still remain wide open. One particular such class of variants looks at incidences be-
tween two point sets P1,P2 ⊂ R2, and asks for the minimum number of distinct distances
between them; this is denoted D(P1,P2). This variant is referred to in literature as the
bipartite distances problem. Many results have been established on lower bounds for bipar-
tite distances when P1 and P2 have special structure. First consider when P1 and P2 are
both lie on lines that are neither parallel nor orthogonal. In this case, Elekes [3] discovered
a lower bound of Ω(n5/4) when P1 and P2 are balanced, meaning |P1| = |P2| = n. Sharir,
Sheffer and Solymosi [12] showed that when |P1| = m, |P2| = n and P1,P2 enjoy the same
restrictions as in Elekes’ result, then D(P1,P2) = Ω(min{n2/3m2/3, n2,m2}). In the bal-
anced case, this improves Elekes’ result to Ω(n4/3). Pach and de Zeeuw [9] proved a similar
lower bound in the more general case when both P1,P2 lie on two irreducible algebraic
curves of constant degree d, provided the curves are not parallel lines, orthogonal lines,
or concentric circles. Namely, they proved D(P1,P2) = Cd · Ω(min{n2/3m2/3, n2,m2}),
where the constant Cd depends on the degree d of the given curves. All these findings
place heavy restrictions on both point sets involved.

Our main contribution in this article is to establish lower bounds for D(P1,P2) that
are asymptotically looser but work in a much more general setting: when P1 is on an
unrestricted fixed degree algebraic curve, and P1 is any point set. Our main contribution
is the following theorem.

Theorem 1. Let P1 be a set of m points on a curve γ of fixed degree r in R2 and let P2

be a set of n points in R2. Then

D(P1,P2) =

{
Ω(m1/2n1/2 log−1/2 n), when m = Ω(n1/2 log−1/3 n),

Ω(m1/3n1/2), when m = O(n1/2 log−1/3 n)

In the context of previous research, Elekes [2] constructed point sets P1,P2 of sizes
m,n respectively where n > 4m3 and

D(P1,P2) 6
√
mn+

3

2
m = O(m1/2n1/2).

Theorem 1 matches Elekes’ upper bound when m = Ω(n1/2 log−1/3 n), up to a factor of
log1/2 n.

This work is benefited by recent results of Pohoata and Sheffer [11] that establishes
similar lower bounds for D(P1,P2) when P1 is restricted to a line and P2 is arbitrary.
We note here that since the submission of this article, Mathialagan [8] has developed a
further generalization that supersedes the work of Pohoata and Sheffer and the work here,
providing a bound for D(P1,P2) when both P1 and P2 are unrestricted.

2 Preliminaries

We begin with preliminaries pertinent to our exposition. The first of these discusses
necessary background from algebraic geometry. We often speak of curves of a fixed degree,
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so we make related terminology clear. In the polynomial ring R[x, y], the affine variety
of the polynomial f , denoted V (f), is the zero set of f , i.e. V (f) = {p ∈ R2 : f(p) = 0}.
We interchangeably use the terms affine variety, variety, algebraic curve, and curve, to
refer to V (f) when f ∈ R[x, y]. We say a variety is reducible if it is the union of proper
subvarieties, otherwise it is irreducible. Any algebraic curve is a finite union of irreducible
algebraic curves; we refer to the irreducible algebraic curves as the components of V (f).
A linear component of V (f) is a component of the form V (g) where g is linear. A circular
component of V (f) is a component of the form V (g) where V (g) is a circle.

A theorem in algebraic geometry that we exploit discusses intersections of curves:

Theorem 2 (Bezout’s Theorem). If f and g are polynomials in R[x, y] of degree deg(f)
and deg(g) respectively, and V (f) and V (g) have no common components, then V (f) ∩
V (g) has at most deg(f) · deg(g) points.

This is an extension of the classical Bezout’s Theorem, and its proof can be scene in
Section 14.4 of [5].

We now review concepts from discrete geometry, including recent developments of
Pohoata and Sheffer [11], that are pertinent for our discussion. We begin by formally
introducing the concept of incidences. Let P be a set of points, for our purposes in R2,
and let Γ be a set of geometric objects in R2. We say a point p ∈ P is incident with an
object o ∈ Γ if p lies in o. The number of such incidences between P and Γ is denoted
I(P,Γ). It will serve useful for us to find upper bounds on I(P,Γ), and these can be
developed by looking at the incidence graph G(P,Γ) of P and Γ, which is the bipartite
graph with bipartition (P,Γ) where there is an edge between p ∈ P and o ∈ Γ precisely
when p is in o. The following theorem of Pach and Sharir uses the incidence graph to
establish an upper bound for I(P,Γ) when P is a set of points and Γ is a set of algebraic
curves with specific data.

Theorem 3 (Pach and Sharir [10]). Let P be a set of m points and Γ a set of n distinct
irreducible algebraic curves of degree at most k in R2. If the complete bipartite graph Ks,t

is not a subgraph of G(P ,Γ), then

I(P ,Γ) = O
(
m

s
2s−1n

2s−2
2s−1 +m+ n

)
.

The second technique that is central in our exposition is a technique developed by
Pohoata and Sheffer [11] that is the gateway to their development of the analogue of
Theorem 1 when the points in P1 lie on a line (i.e. when r = 1). It relies on keeping track
of d-tuples of distances that are realized by a given pair of point sets, for a fixed d.

Definition 4. Let P1,P2 ⊂ R2 be finite. The dth distance energy between P1 and P2 is

Ed(P1,P2) =
∣∣{(a1, a2, . . . , ad, b1, b2, . . . , bd) ∈ Pd1 × Pd2 : |a1b1| = · · · = |adbd| > 0

}∣∣
They relate dth distance energies to distinct distances in the following way.
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Proposition 5 (Pohoata and Sheffer [11]). If m = |P1| and n = |P2|, then

Ed(P1,P2) = Ω

(
mdnd

D(P1,P2)d−1

)
.

They consequently establish upper bounds on Ed(P1,P2) to achieve lower bounds on
D(P1,P2) through Proposition 5. To establish upper bounds on Ed(P1,P2), they observe
that

Ed(P1,P2) =
∑
δ∈∆

pdδ (1)

where pδ is the number of pairs of points, one from P1 and one from P2, that realize the
distance δ, and ∆ is the set of all distances realized between the two point sets. We use
this technique to generalize their result to Theorem 1.

3 Main Result

We now prove Theorem 1. Throughout, we let γ be the curve V (f), where f has degree
r.

First, suppose m = Ω(n/ log n). Let p ∈ P2 be a point which is not at the center of
any circular component of γ. We can guarantee such a point p exists because γ has fixed
degree so the number of circular components is bounded by a constant. Let C = V (g)
be a circle centered at p, so g is a degree 2 polynomial in R[x, y]. By construction, g and
f have no common factors, so by Bezout’s Theorem there are at most 2r points in P1

that lie on the circle C. These at most 2r points are precisely the set of points in P1

whose distance from p is the radius of C. Consequently, the number of distinct distances
between p and P1 is at least |P1|/2r = m/2r. Since m = Ω(n/ log n) this implies

D(P1,P2) > D(P1, {p}) > m/2r = Ω(m) = Ω(m1/2n1/2 log−1/2 n).

We can now assume throughout that m = O(n/ log n). Suppose furthermore that
Ω(n) points of P2 lie on γ. Choose a point p ∈ P1 that does not lie at the center of
any circular component of γ. Then as in the previous argument, at most 2r points on γ
share a common fixed distance to p, so D(P1,P2) > D({p},P2 ∩ V (f)) = Ω(n). Since
m = O(n/ log n), we get D(P1,P2) = Ω(m1/2n1/2 log−1/2 n). So it remains only to consider
when less than a constant fraction of the points of P2 lie on γ. In other words, if we let P ′2
be the set of points in P2 not lying on γ, we can assume |P ′2| = Ω(n). For our convenience,
we further restrict P ′2 to the subset P ′′2 consisting of points in P ′2 that do not lie at the
center of any circular component of γ. Again since r is fixed there are a fixed number of
points that lie the center of circular components, so |P ′′2 | = Θ(n).

Suppose now that Ω(m) points in P1 lie on linear components of γ. Since γ is a curve
of fixed degree r, there are at most r linear components in γ, so Θ(m) of these points
lie on a single linear component, say the line `. Now applying Theorem 1.6 in [11] with
P1 ∩ ` and P ′′2 we get D(P1 ∩ `,P ′′2 ) = Ω(m1/2n1/2 log−1/2 n) and Theorem 1 then follows
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because D(P1,P2) > D(P1∩ `,P ′′2 ). Therefore, if we let P ′1 be the set of points in P1 that
do not lie on linear components of γ, we can assume |P ′1| = Θ(m).

The remainder of the proof establishes the lower bounds given in Theorem 1 with P1

and P2 replaced by P ′1 and P ′′2 respectively. The theorem then follows from the facts that
|P ′1| = Θ(m), |P ′′2 | = Θ(n) and D(P1,P2) > D(P ′1,P ′′2 ). We begin with the first case
of Theorem 1 in which m = Ω(n1/2 log−1/3 n). To establish the desired lower bound for
D(P ′1,P ′′2 ), we consider the 3rd distance energy E3(P ′1,P ′′2 ) between P ′1 and P ′′2 . From
Proposition 5,

E3(P ′1,P ′′2 ) = Ω

(
m3n3

D(P ′1,P ′′2 )2

)
so finding lower bounds on D(P ′1,P ′′2 ) amounts to finding upper bounds on E3(P ′1,P ′′2 ).
From Equation (1),

E3(P ′1,P ′′2 ) =
∑
δ∈∆

p3
δ

where ∆ is the set of all distances realized between P ′1 and P ′′2 , and for δ ∈ ∆ the statistic
pδ is the number of pairs of points, one from P ′1 and one from P ′′2 , that realize the distance
δ. Now fix δ and let p ∈ P ′′2 . Let C = V (g), where g is quadratic in R[x, y], be the circle
of radius δ centered at p. The number of points in P ′1 of distance δ from p is at most
|V (g) ∩ V (f)|. The polynomials f, g have no common factors because p does not lie at
the center of any circular component of γ, so by Bezout’s Theorem, |V (g) ∩ V (f)| 6 2r.
Consequently, pδ 6 2r · |P ′′2 | 6 2rn.

Let ∆j = {δ ∈ ∆ : pδ > j}, and kj = |∆j|. Then we have

E3(P ′1,P ′′2 ) =
∑
δ∈∆

p3
δ

6
log2 2rn∑
j=0

∑
{δ∈∆ : 2j6pδ62j+1}

p3
δ

<

log2 2rn∑
j=0

∑
{δ∈∆ : 2j6pδ62j+1}

(2j+1)3

6 8

log2 2rn∑
j=0

(2j)3k2j .

Now for a fixed j, let q = 2j. We bound q3kq in order to bound E3(P ′1,P ′′2 ). Let Γq be the
set of circles centered at points of P ′1 whose radii lie in ∆q, (so there are Θ(m) · kq such
circles) and consider the incidence graph between P ′′2 and these circles, namely G(P ′′2 ,Γq).
We claim this graph avoids K2,r+1 as a subgraph. If not, then there would be two points
in P ′′2 that lie on r + 1 circles in Γq. If this were the case, then the centers of these r + 1
circles would be collinear, lying all on some line ` = V (g) where deg(g) = 1. These centers
lie in P ′1, which by assumption does not contain any point lying on linear components of
γ. So, if we construct the curve γ′ = V (f̃) that is obtained from γ by deleting its linear
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components, P ′1 ⊂ γ′ and ` is not a subvariety of γ′ so f̃ and g have no common factors.
Consequently by Bezout’s Theorem,

|P ′1 ∩ `| 6 |γ′ ∩ `| = |V (f̃) ∩ V (g)| < r · 1 = r.

But this is a contradiction because the centers of the r + 1 circles all lie in P ′1 ∩ `. So,
K2,r+1 is not a subgraph of G(P ′′2 ,Γq), and hence Theorem 3 implies

I(P ′′2 ,Γq) = O(n2/3(mkq)
2/3 + n+mkq).

We continue based on which summand dominates the expression n2/3(mkq)
2/3 +n+mkq.

If mkq dominates, then n2/3(mkq)
2/3 = O(mkq) so kq = Ω(n2/m). Now m = O(n/ log n)

so

D(P ′1,P ′′2 ) > kq = Ω(n2/m) = Ω(n log n) = Ω(m1/2n1/2 log3/2 n) = Ω(m1/2n1/2 log−1/2 n),

as desired. So if the summand mkq dominates, we do not need to bound kq as we will get
the desired result for Theorem 1.

If any of the other two summands dominate, we will then bound q3kq. First suppose
n dominates the sum. Then m2/3n2/3k2/3

q = O(n) so kq = O(n1/2/m) and hence

q3kq = O(q3n1/2/m). (2)

If instead m2/3n2/3k2/3
q dominates, we use the fact that by the definition of kq, I(P ′′2 ,Γq) >

qkq so qkq = O(m2/3n2/3k2/3
q ) and consequently

q3kq = O(m2n2). (3)

Combining Equations (2) and (3), we have

q3kq = O(q3n1/2/m+m2n2).

Consequently,

E3(P ′1,P ′′2 ) < 8

log2(2rn)∑
j=0

23jk2j

= O

log2(2rn)∑
j=0

(
m2n2 +

23jn1/2

m

)
= O

(
m2n2(log2(2rn)) +

(2rn)3n1/2

m

)
= O

(
m2n2 log n+

n7/2

m

)
.
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Now if m = Ω(n1/2 log−1/3 n), the above bound is dominated by m2n2 log n, so
E3(P ′1,P ′′2 ) = O(m2n2 log n). Thus, by Proposition 5,

D(P ′1,P ′′2 ) = Ω

((
m3n3

m2n2 log n

)1/2
)

= Ω(n1/2m1/2 log−1/2 n)

as desired.
Our remaining case to consider is when m = O(n1/2 log−1/3 n), and much of this case

follows the analogous proof in [11], but we include it for completeness. First, suppose
there is a δ for which pδ > n1/2m4/3. Consider the pairs of points (p, q) ∈ P ′1 × P ′′2 for
which the distance from p to q is δ. If we let C be the set of circles centered at the
points p ∈ P ′1 that occur in some such pair (p, q), then there are at least n1/2m4/3 many
incidences between C and P ′′2 . Since |P ′1| 6 |P1| = m, there are at most m circles in C,
so there is some circle γ0 ∈ C that has at least n1/2m1/3 incidences with P ′′2 . Now choose
any point p′ ∈ P ′1 that is not at the center of the circle γ0. Then at most two points on
γ0 have the same distance from p′, so the number of distinct distances from p′ to P ′′2 on
the circle γ0 is at least n1/2m1/3/2. Consequently,

D(P ′1,P ′′2 ) > D({p′},P ′′2 ∩ γ0) > n1/2m1/3/2 = Ω(m1/3n1/2),

establishing Theorem 1. Finally, suppose instead that pδ < n1/2m4/3 for every δ ∈ ∆.
Now for a fixed j, there are at least j pairs of points, one from P ′1 one from P ′′2 , that
realize the distance δ ∈ ∆j. Consequently, kj = |∆j| 6 mn/j. So, using second distance
energies, we have

E2(P ′1,P ′′2 ) < 4

log2 n
1/2m4/3∑
j=0

22jk2j

= 4

log
√
mn∑

j=0

22jk2j +

log2 n
1/2m4/3∑

j=log
√
mn

22jk2j


= O

log
√
mn∑

j=0

mn2j +

log2 n
1/2m4/3∑

j=log
√
mn

(22jn1/2m−1 +m2n22−j)


= O

(
n3/2m5/3

)
.

The bounds in the second last line coming from the fact that kj 6 mn/j in the first
summand, and from the Equations (2) and (3) in the second summand. As a consequence,
by Proposition 5,

D(P ′1,P ′′2 ) = Ω

(
m2n2

m5/3n3/2

)
= Ω(n1/2m1/3)

as desired.
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[4] Paul Erdős. On sets of distances of n points. The American Mathematical Monthly,
53(5):248–250, 1946.

[5] Christopher G. Gibson. Elementary geometry of algebraic curves: an undergraduate
introduction. Cambridge University Press, 1998.

[6] Larry Guth and Nets Hawk Katz. On the Erdős distinct distances problem in the
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