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Abstract

The Pósa-Seymour conjecture asserts that every graph on n vertices with min-
imum degree at least (1 − 1/(r + 1))n contains the rth power of a Hamilton cycle.
Komlós, Sárközy and Szemerédi famously proved the conjecture for large n. The
notion of discrepancy appears in many areas of mathematics, including graph the-
ory. In this setting, a graph G is given along with a 2-coloring of its edges. One is
then asked to find in G a copy of a given subgraph with a large discrepancy, i.e.,
with significantly more than half of its edges in one color. For r > 2, we determine
the minimum degree threshold needed to find the rth power of a Hamilton cycle
of large discrepancy, answering a question posed by Balogh, Csaba, Pluhár and
Treglown. Notably, for r > 3, this threshold approximately matches the minimum
degree requirement of the Pósa-Seymour conjecture.

Mathematics Subject Classifications: 05C35

1 Introduction

Classical discrepancy theory studies problems of the following kind: given a family of
subsets of a universal set U , is it possible to partition the elements of U into two parts
such that each set in the family has roughly the same number of elements in each part?
One of the first significant results in this area is a criterion for a sequence to be uniformly
distributed in the unit interval proved by Hermann Weyl [16]. Since then, discrepancy
theory has had wide applicability in many fields such as ergodic theory, number theory,
statistics, geometry, computer science, etc. For a comprehensive overview of the field, see
the books by Beck and Chen [3], Chazelle [5] and Matoušek [14].
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This paper studies a problem in the discrepancy theory of graphs. To discuss the
topic, we start with a definition.

Definition 1. Let G = (V,E) be a graph and f : E → {−1, 1} a labelling of its edges.
Given a subgraph H of G, we define its discrepancy f(H) as

f(H) =
∑

e∈E(H)

f(e).

Furthermore, we refer to the value |f(H)| as the absolute discrepancy of H.

One of the central questions in graph discrepancy theory is the following. Suppose
we are given a graph G and a spanning subgraph H. Does G, for every edge labelling
f : E(G) → {−1, 1}, contain an isomorphic copy of H of high absolute discrepancy with
respect to f? Erdős, Füredi, Loebl and Sós [6] proved the first result of this kind. They
show that for large enough n, given a tree on n vertices Tn with maximum degree ∆ and
a {−1, 1}-coloring of the edges of the complete graph Kn, one can find a copy of Tn with
absolute discrepancy at least c(n− 1−∆), for some absolute constant c > 0.

A commonly studied topic in extremal combinatorics are Dirac-type problems where
one is given a graph G on n vertices with minimum degree at least αn and wants to
prove that G contains a copy of a specific spanning subgraph H. In the discrepancy
setting it is natural to ask whether we can also find a copy of H with large absolute
discrepancy. Balogh, Csaba, Jing and Pluhár studied this problem for spanning trees,
paths and Hamilton cycles. Among other results, they determine the minimum degree
threshold needed to force a Hamilton cycle of high discrepancy.

Theorem 2 (Balogh, Csaba, Jing and Pluhár [1]). Let 0 < c < 1/4 and n ∈ N be
sufficiently large. If G is an n-vertex graph with

δ(G) > (3/4 + c)n

and f : E(G) → {−1, 1}, then G contains a Hamilton cycle with absolute discrepancy at
least cn/32 with respect to f. Moreover, if 4 divides n, there is an n-vertex graph with
δ(G) = 3n/4 and an edge labelling f : E(G) → {−1, 1} such that any Hamilton cycle in
G has discrepancy 0 with respect to f.

Very recently, Freschi, Hyde, Lada and Treglown [7], and independently, Gishboliner,
Krivelevich and Michaeli [8] generalized this result to edge-colorings with more than two
colors.

A fundamental result in extremal graph theory is the Hajnal-Szemerédi theorem. It
states that if r divides n and G is a graph on n vertices with δ(G) > (1 − 1/r)n, then
G contains a perfect Kr-tiling, i.e. its vertex set can be partitioned into disjoint cliques
of size r. Balogh, Csaba, Pluhár and Treglown [2] proved a discrepancy version of this
theorem.
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Theorem 3 (Balogh, Csaba, Pluhár and Treglown [2]). Suppose r > 3 is an integer and
let η > 0. Then there exists n0 ∈ N and γ > 0 such that the following holds. Let G be a
graph on n > n0 vertices where r divides n and where

δ(G) >

(
1− 1

r + 1
+ η

)
n.

Given any function f : E(G)→ {−1, 1} there exists a perfect Kr-tiling T in G so that∣∣∣ ∑
e∈E(T )

f(e)
∣∣∣ > γn.

Moreover, if 2r(r + 1) divides n, there exists a graph G on n vertices with δ(G) = (1 −
1/(r+ 1))n and a 2-coloring of its edges such that the discrepancy of any perfect Kr-tiling
of G is 0.

The rth power of a graph G is the graph on the same vertex set in which two vertices
are joined by an edge if and only if their distance in G is at most r. The Pósa-Seymour
conjecture asserts that any graph on n vertices with minimum degree at least (1− 1/(r+
1))n contains the rth power of a Hamilton cycle. Komlós, Sárközy and Szemerédi [12]
proved the conjecture for large n. In [2] the authors posed the question of determining
the minimum degree needed to force the rth power of a Hamilton cycle with absolute
discrepancy linear in n. Because the rth power of a Hamilton cycle contains a (almost)
perfect Kr+1-tiling, they suggested the minimum degree required should be (1−1/(r+2)+
η)n, based on their result for Kr-tilings. We prove this value is correct for r = 2. However,
we show that for r > 3, a minimum degree of (1 − 1/(r + 1) + η)n, for arbitrarily small
η > 0, is sufficient, approximately matching the minimum degree required for finding
any rth power of a Hamilton cycle. As far as the author knows, this is the first Dirac-
type discrepancy result in which the threshold for finding a spanning subgraph of large
discrepancy is the same, up to an arbitrarily small linear term, as the minimum degree
required for finding any copy of the subgraph.

Theorem 4. For any integer r > 3 and η > 0, there exist n0 ∈ N and γ > 0 such
that the following holds. Suppose a graph G on n > n0 vertices with minimum degree
δ(G) > (1− 1/(r+ 1) + η)n and an edge coloring f : E(G)→ {−1, 1} are given. Then in
G there exists the rth power of a Hamilton cycle Hr satisfying∣∣∣ ∑

e∈E(Hr)

f(e)
∣∣∣ > γn.

Interestingly, the minimum degree needed for finding the rth power of a Hamilton cycle
of large discrepancy is the same for r ∈ {1, 2, 3} and equals (3

4
+ η)n. The cases r = 1, 3

being resolved in [1] and by the previous theorem, respectively, we also prove this for
r = 2.

the electronic journal of combinatorics 29(3) (2022), #P3.22 3



Theorem 5. For any η > 0, there exist n0 ∈ N and γ > 0 such that the following holds.
Suppose a graph G on n > n0 vertices with minimum degree δ(G) > (3/4 + η)n and
an edge coloring f : E(G) → {−1, 1} are given. Then in G there exists the square of a
Hamilton cycle H2 satisfying ∣∣∣ ∑

e∈E(H2)

f(e)
∣∣∣ > γn.

These results are tight in the following sense. If we weaken the minimum degree
requirement by replacing the term ηn with a sublinear term, then there are examples in
which any rth power of a Hamilton cycle has absolute discrepancy o(n).

The paper is organised as follows. In Section 2 we introduce some notation and
definitions and state previous results used in our proofs. Then we present lower bounds
showing the tightness of our results in Section 3. We give a short outline of the proofs
in Section 4. The proofs are then divided into two sections. In Section 5 we adapt the
proof by Komlós, Sárközy and Szemerédi of an approximate version of the Pósa-Seymour
conjecture to our setting, while the rest of the argument is presented in Section 6.

2 Preliminaries

Most of the graph theory notation we use is standard in the literature and can be found
in [4]. Let G be a graph. We use NG(v) to denote the neighbourhood of v in G. For a
set of vertices S, we use G[S] to denote the subgraph of G induced by S. We use NG(S)
for the common neighbourhood of S, formally NG(S) = {x ∈ V (G) |xv ∈ E(G),∀v ∈ S}
and we denote degG(S) = |NG(S)|. Given an edge labelling f : E(G) → {−1, 1}, we
use G+ to denote the graph containing all edges labelled 1 and G− to denote the graph
containing all edges labelled −1. We write N+(v) for the set of u in NG(v) such that
f(v, u) = 1 and N−(v) for the set of u in NG(v) such that f(v, u) = −1. We further
denote deg+(v) = degG+

(v) and deg−(v) = degG−(v). For a vertex v and a subset of

vertices U, we define N(v, U) = N(v) ∩ U and deg(v, U) = |N(v, U)|. We write
.
∪ for the

union of disjoint sets. We use the terms edge labelling and edge coloring interchangeably.
We sometimes omit the underlying graph when it is clear from the context.

Throughout the paper we allow cycles to have repeated vertices, unless explicitly stated
they are simple. For a cycle C, we denote by cntC(v) the number of occurences of v in C
when viewed as a closed walk. The rth power of a cycle C is defined as the multigraph
obtained by adding edges between every pair of vertices whose indices differ by at most r
in the cyclic order of C. We use mulH(e) for the multiplicity of an edge e in a multigraph
H. Then, for a cycle C = (v1, v2, . . . , vm), its rth power Cr is formally defined as the
multigraph on the vertex set {v1, v2, . . . , vm} with the following edge multiplicities:

mulCr(xy) =
∣∣{(i, j) | i ∈ [m], j ∈ [r], {vi, vi+j} = {x, y}

}∣∣ ,
where we denote vm+i = vi for 1 6 i 6 r. The rth power of a simple (r + 1)-cycle will
sometimes be referred to as an (r+1)-clique. Importantly, though, it has two copies of each
edge. Given an edge labelling f : E(G)→ {−1, 1} and a cycle C such that Cr is a subgraph
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of G, we define the discrepancy of Cr in the natural way: f(Cr) =
∑

e∈E(Cr) mulCr(e)f(e).
Here we slightly abuse notation in the following sense. We ignore edge multiplicities for the
notion of graph containment (as the ambient graph is always simple). In other words, we
only require the ambient graph to have one copy of each edge that has positive multiplicity
in a given rth power of a cycle.

Similarly as in [2], we define a Cr-template. Note that in the following definition we
only allow short cycles.

Definition 6. Let F be a graph. A Cr-template of F is a collection F = {C1, C2, . . . , Cs}
of not necessarily distinct cycles whose rth powers are subgraphs of F. In a Cr-template
each vertex appears the same number of times, that is,

∑s
i=1 cntCi(v) is the same for all

v ∈ V (F ). Moreover, we require that each cycle Ci has length between r + 1 and 10r2.
The discrepancy of a Cr-template is given as f(F) =

∑s
i=1 f(Cr

i ).

The notion of a Cr-tiling is obtained by adding the natural restriction that each vertex
appears exactly once.

Definition 7. Let F be a graph. A Cr-tiling T of F is a collection of simple cycles
T = {C1, C2, . . . , Cs} whose rth powers are subgraphs of F and each vertex appears
precisely once in these cycles. The length of each cycle is between r + 1 and 10r2. The
discrepancy of a Cr-tiling is given as f(T ) =

∑s
i=1 f(Cr

i ).

A Kr+1-tiling can be viewed as a Cr-tiling in which all cycles have length r+1, that is,
all tiles are (r+1)-cliques. We sometimes implicitly use this interpretation of a Kr+1-tiling.

We give names to special types of k-cliques with respect to an edge labelling f.

Definition 8. We write K+
k for the k-clique with all edges labelled 1 and K−k for the

k-clique with all edges labelled −1. The (Kk,+)-star is the clique whose edges labelled
1 induce a copy of K1,k−1. The root of this K1,k−1 is called the head of the (Kk,+)-star.
We define the (Kk,−)-star and its head analogously.

We write α � β � γ, if the constants can be chosen from right to left such that
all calculations in our proof are valid. More precisely, α � β means there is a positive
increasing function f(β) such that for α 6 f(β), all calculations in the proof are valid.
This notion naturally extends to hierarchies of larger length as well. We omit floors and
ceilings whenever they do not affect the argument.

In our proofs we use the famous Hajnal-Szemerédi theorem in the following form.

Theorem 9 (Hajnal and Szemerédi [9]). Every graph G whose order n is divisible by r
and has minimum degree at least (1− 1/r)n contains a perfect Kr-tiling.

2.1 The Regularity Lemma

In the proof of the main result, we use a multicolored variant of Szemerédi’s regularity
lemma [15]. Before stating the result, we define the relevant notions. The density of a
bipartite graph G with vertex classes A and B is defined as

d(A,B) =
e(A,B)

|A||B|
.
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Given ε, d > 0, the graph G is said to be (ε, d)-regular if d(A,B) > d and for any
X ⊆ A, Y ⊆ B such that |X| > ε|A| and |Y | > ε|B|, we have |d(A,B) − d(X, Y )| < ε.
The graph G is (ε, δ)-super-regular if for every X ⊆ A with |X| > ε|A| and Y ⊆ B
with |Y | > ε|B|, we have d(X, Y ) > δ, and furthermore, deg(a) > δ|B| for all a ∈ A
and deg(b) > δ|A| for all b ∈ B. Suppose we are given a graph G with an edge labelling
f : E(G)→ {−1, 1}. Given disjoint X, Y ⊆ V (G) we write (X, Y )G+ or G+[X, Y ] for the
bipartite graph with vertex classes X, Y containing edges between X and Y labelled 1.
Analogously, we define (X, Y )G− and G−[X, Y ] with respect to edges labelled −1.

We use a variant of the regularity lemma which is easily deduced from the multicolored
version in [13].

Lemma 10. For every ε > 0 and `0 ∈ N there exists L0 = L0(ε, `0) such that the
following holds. Let d ∈ [0, 1) and let G be a graph on n > L0 vertices with an edge
coloring f : E(G) → {−1, 1}. Then, there exists a partition (Vi)

`
i=0, for some ` ∈ [`0, L0]

of V (G) and a spanning subgraph G′ of G with the following properties:
(i) |V0| 6 εn and |V1| = |V2| = · · · = |V`|,

(ii) degG′(v) > degG(v)− (2d+ ε)n for every v ∈ V (G);
(iii) e(G′[Vi]) = 0 for all 1 6 i 6 `;
(iv) for all 1 6 i < j 6 ` and σ ∈ {+,−}, either (Vi, Vj)

σ
G′ is an (ε, d)-regular pair or

G′σ[Vi, Vj] is empty;

The above partition V0, V1, . . . , V` will be called an (ε, d)-regular partition of G with
respect to f . We call V1, . . . , V` clusters and V0 the exceptional set. We refer to G′ as the
pure graph. We define the reduced graph R of G with parameters ε, d, `0 to be the graph
whose vertices are V1, . . . , V` and where (Vi, Vj) is an edge if at least one of (Vi, Vj)G′+
and (Vi, Vj)G′− is (ε, d)-regular. On the reduced graph R, we define the edge coloring
fR : E(R)→ {−1, 1} as follows:

fR(Vi, Vj) =

{
1, if (Vi, Vj)G′+ is (ε, d)-regular

−1, otherwise.
(1)

Note that if both (Vi, Vj)G′+ and (Vi, Vj)G′− are (ε, d)-regular, fR only records the former
property.

Remark 11. When working with the reduced graph, it will sometimes be convenient for
us to assume that the number of its vertices is divisible by r + 1 in order to apply
Theorem 9. However, this can easily be achieved by moving at most r clusters to the
exceptional set. Provided r/`0 6 ε (which we will always be able to guarantee), we move
at most εn vertices to the exceptional set. It is easy to check that the new graph satisfies
the properties given by Lemma 10 with the same parameters except that ε increases by
at most a factor of 2. As we always choose ε to be sufficiently small, this does not affect
any of our arguments.

We use the following simple fact about the reduced graph.
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Fact 12. Let c > 0 be a given constant and G a graph on n vertices such that δ(G) > cn.
Let R be the reduced graph obtained after applying Lemma 10 with parameters ε, d and `0.
Then δ(R) > (c− 2d− 2ε)|R|.

Proof. Suppose the claim is false and let Vi, i ∈ [`] be a cluster satisfying degR(Vi) <
(c− 2d− 2ε)|R|. Then in the pure graph G′, we have:∑

v∈Vi

degG′(v) 6
∑

j : ViVj∈E(R)

eG′(Vi, Vj) + eG′(Vi, V0) 6 degR(Vi)
n

|R|
|Vi|+ |Vi||V0|

< (c− 2d− 2ε)|Vi|n+ ε|Vi|n = (c− 2d− ε)|Vi|n.

This contradicts δ(G) > cn and property (ii) given by Lemma 10.

The so-called Slicing Lemma states that large subsets of a regular pair are also regular
with slightly worse parameters.

Lemma 13 (Slicing Lemma [13]). Let (A,B) be an (ε, d)-regular pair with density d,
and, for some α > ε, let A′ ⊆ A, |A|′ > α|A|, B′ ⊆ B, |B′| > α|B|. Then (A′, B′) is an
ε′-regular pair with ε′ = max{ε/α, 2ε} and for its density d′ we have |d′ − d| < ε.

We also need the incredibly useful result of Komlós, Sárközy and Szemerédi, known
as the Blow-up lemma, which states that (ε, d)-super-regular pairs behave like complete
bipartite graphs in terms of containing subgraphs of bounded degree.

Lemma 14 (Blow-up lemma [10]). Given a graph R of order r and positive parameters
δ,∆, there exists a positive ε = ε(δ,∆, r) such that the following holds. Let n1, n2, . . . , nr
be arbitrary positive integers and let us replace the vertices v1, v2, . . . , vr of R with pairwise
disjoint sets V1, V2, . . . , Vr of sizes n1, n2, . . . , nr (blowing up). We construct two graphs
on the same vertex set V = ∪Vi. The first graph F is obtained by replacing each edge
{vi, vj} of R with the complete bipartite graph between the corresponding vertex-sets Vi
and Vj. A sparser graph G is constructed by replacing each edge {vi, vj} arbitrarily with
an (ε, δ)-super-regular pair between Vi and Vj. If a graph H with ∆(H) 6 ∆ is embeddable
into F then it is already embeddable into G.

The following remark also appears in [10].

Remark 15. When using the Blow-up Lemma, we usually need the following strengthened
version: Given c > 0, there are positive numbers ε = ε(δ,∆, r, c) and α = α(δ,∆, r, c)
such that the Blow-up Lemma in the equal size case (all |Vi| are the same) remains true if
for every i there are certain vertices x to be embedded into Vi whose images are a priori
restricted to certain sets Cx ⊆ Vi provided that

(i) each Cx within a Vi is of size at least c|Vi|,
(ii) the number of such restrictions within a Vi is not more than α|Vi|.
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3 Lower bound examples

We present simple lower bound constructions showing our results are best possible in a
certain sense. For η = η(n) = o(1), the condition δ(G) > (1 − 1

r+1
+ η)n when r > 3 or

δ(G) > (3/4 + η)n when r = 2, is not enough to guarantee an rth power of a Hamilton
cycle with absolute discrepancy linear in n. Moreover, for η = 0, there exists a graph in
which every rth power of a Hamilton cycle has discrepancy 0.

First consider r > 3. Let t > 2 be even and V1, . . . , Vr+1 disjoint clusters of size t.
Additionally, let V0 be a cluster of size 0 6 m 6 t. We construct a graph G on the vertex

set V =
.⋃r+1

i=0 Vi. We put an edge between any two vertices in different clusters and we
put all edges connecting two vertices in V0. Let n = |V | = (r + 1)t + m and note that

δ(G) = rt+m =
(

1− 1
r+1

+ m
(r+1)((r+1)t+m)

)
n.

Next we describe the coloring f of the edges. We color the edges incident to vertices
in V0 arbitrarily. For each Vi, i > 1 we denote half of its vertices as positive and the
other half as negative. For a vertex v ∈ Vi and any vertex u ∈ Vj where 1 6 j < i we set
f(v, u) = 1 if v is positive and f(v, u) = −1 if v is negative.

If G contains no rth power of a Hamilton cycle, there is nothing to prove. Otherwise,
let Hr be an arbitrary rth power of a Hamilton cycle in G viewed as a 2r-regular subgraph
of G. Call a vertex v ∈ V \ V0 a bad vertex if at least one of its neighbours in Hr is in the
cluster V0, otherwise call it good. If a vertex v ∈ Vi is good then in Hr it has precisely two
neighbours in each of the clusters Vj, 1 6 j 6 r + 1, j 6= i. Note that for i > 1 at most 2
vertices in Vi can be adjacent to a vertex v ∈ V0, so there are at most 2m bad vertices in
Vi. Now consider only positive good vertices and their edges towards vertices in clusters
with a smaller index. Thus, the number of edges labelled 1 in Hr is at least

r+1∑
i=1

2(i− 1)(t/2− 2m) = r(r + 1)(t/2− 2m).

Hence, we have

f(Hr) > −nr + 2r(r + 1)(t/2− 2m) > −5r(r + 1)m.

Completely analogously, f(Hr) 6 5r(r + 1)m. Therefore, when m = 0, or equivalently
η = 0, we have f(Hr) = 0. If m = o(n), or equivalently η = o(n), we get |f(Hr)| = o(n).

For r = 2, the following construction was given in [1], where the case r = 1 was
considered. Let G be the 4-partite Turán graph on n = 4k vertices, so δ(G) = 3

4
n.

Color all edges incident to one of the parts with −1 and the rest with 1. Any square of
a Hamilton cycle contains 4k edges labelled −1, exactly 4 for each vertex in the special
class. As it has a total of 8k edges, its discrepancy is 0. Similarly as above, we can add
m = o(n) vertices connected to every other vertex and still any square of a Hamilton cycle
has absolute discrepancy o(n).
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4 Outline of the proofs of Theorems 4 and 5

Our proof follows a very similar structure to that of Balogh, Csaba, Pluhár and Treglown
[2] for Kr-tilings.

We start by applying the regularity lemma on G to obtain the reduced graph R and
the corresponding edge labelling fR.

Before proving the Pósa-Seymour conjecture for large n, Komlós, Sárközy and Sze-
merédi [11], proved an approximate version, namely they proved it for n-vertex graphs
with minimum degree at least (1− 1/(r+ 1) + ε)n. We make slight modifications to their
proof to establish two important claims.

We prove that a Kr+1-tiling of R with linear discrepancy with respect to fR can be used
to construct an rth power of a Hamilton cycle in G with linear discrepancy with respect
to f. Combined with Theorem 3, this is enough to deduce the case r = 2 (Theorem 5).

Next, we prove a very useful property of R: suppose that F is a small subgraph of R
and there are two Cr-templates of F covering the vertices the same number of times, but
having different discrepancies with respect to fR. Then in G there exists the rth power of
a Hamilton cycle with linear discrepancy with respect to f.

We assume G has no rth power of a Hamilton cycle with large absolute discrepancy.
From this point on, we only ‘work’ on the reduced graph R. To use the last claim, we need
a subgraph F on which we can find two different Cr-templates, so the simplest subgraph
we can study is an (r+ 2)-clique. We prove that every (r+ 2)-clique in R is either a copy
of K+

r+2, K
−
r+2, (Kr+2,+)-star or (Kr+2,−)-star. As R has large minimum degree, every

clique of size k 6 r + 2 can be extended to a clique of size r + 2. This shows that every
clique of size k 6 r + 2 is either a copy of K+

k , K
−
k , (Kk,+)-star or (Kk,−)-star.

By the Hajnal-Szemerédi theorem, we can find a Kr+1-tiling T of R. The previous
arguments show that only four types of cliques appear in T and T has a small discrepancy
with respect to fR. This tells us that the numbers of each of the four types of cliques in
T are balanced in some way.

We consider two cliques in T of different types. For several relevant cases when
there are many edges between the two cliques, we construct two Cr-templates of different
discrepancies, which contradicts our assumption by the claim about Cr-templates. Finally,
this restricts the number of edges between different cliques which leads to a contradiction
with the minimum degree assumption on R.

5 Using Cr-tilings of R

In [11] Komlós, Sárközy and Szemerédi proved an approximate version of the Pósa-
Seymour conjecture. More precisely, they show that for any η > 0, a graph G on n
vertices, for sufficiently large n, with minimum degree at least (r/(r + 1) + η)n contains
the rth power of a Hamilton cycle. Their argument starts by applying the regularity lemma
to get an (ε, η/3)-regular partition (Vi)

t
i=0 of V (G) and the Hajnal-Szemerédi theorem to

obtain a Kr+1-tiling of its (ε, η/3)-reduced graph R. Let K1, . . . , Ks be the (r+ 1)-cliques
in this tiling. Then they proceed to find short paths P1, . . . ,Ps whose rth powers are
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in G, each Pi ‘connecting’ subsequent cliques Ki, Ki+1 (where we denote Ks+1 = K1)
in the tiling, and ‘attach’ the exceptional vertices—the ones in V0 together with some
other vertices not respecting a certain degree condition—to these paths, thus obtaining
an (ε, η/9)-super-regular partition. Finally, for each clique Ki, the Blow-up Lemma [10]
is applied to find the rth power of a Hamilton path on the set of unused vertices in G
corresponding to this clique, which together with paths P1, . . . ,Ps closes the rth power of
a Hamilton cycle.

We need a slightly more general result for our application. Instead of a Kr+1-tiling in
R, we assume a Cr-tiling T of R is given in which most of the cycles Ci ∈ T have length
r + 1. Then we proceed similarly as outlined above, where for each Ci ∈ T we choose
an (r + 1)-clique in Cr

i to represent Ki for which the connecting path Pi is constructed.
In order to argue about the discrepancy of the found rth power of a Hamilton cycle Hr

in G, we explicitly state a property of the construction in [11], which is that most of the
edges in Hr come from the given tiling and that these edges are used in a balanced way.
Intuitively, if the Cr-tiling of R is given together with a function fR as in (1), then the
discrepancy of the found Hr in G is at most αn away from m · fR(T ), for an arbitrarily
small α > 0, where we remind the reader that m is the size of each cluster. Additionally,
we show that, given two similar Cr-tilings, we can find similar rth powers of a Hamilton
cycle. We make these notions precise in the following statement.

Proposition 16. For any integer r > 2 and any α, η > 0 there exist `0, n0 ∈ N and
ε > 0 such that the following holds. Suppose G is a graph on n > n0 vertices with
δ(G) > (r/(r + 1) + η)n and let f : E(G) → {−1, 1} be its edge labelling. Let (Vi)

`
i=0,

where ` > `0, be an (ε, η/3)-regular partition of G with respect to f with |Vi| = m,∀i ∈ [`],
and let R its (ε, η/3)-reduced graph with fR : E(R)→ {−1, 1} as defined in (1). Suppose
we are given two Cr-tilings T1 = K

.
∪ C1 and T2 = K

.
∪ C2 of R such that

• K consists only of (r + 1)-cycles, and

• |Ci| 6 10r2, for i ∈ {1, 2}.
Then there exist rth powers of Hamilton cycles Hr

1 , H
r
2 ⊆ G such that

(i) |f(Hr
i )−mfR(Ti)| 6 αn, for i ∈ {1, 2}, and

(ii) |f(Hr
1)− f(Hr

2)| > m
2
|fR(C1)− fR(C2)|.

Proof. The proof is almost a one-to-one copy of the argument by Komlós, Sárközy and
Szemerédi in [11]. Nevertheless, for completeness we present the full proof which follows
the rough outline given in the paragraphs above the statement. Several claims with
lengthy proofs which do not require any adaptation from [11] to our setting are presented
in the appendix.

We may assume 1/n � 1/`0 � ε � α � η � 1/r. Recall that |V0| 6 εn and let
m = |Vi| for 1 6 i 6 `. Let K = {Cr

1 , . . . , C
r
s} and C1 = {Cr

s+1, . . . , C
r
s+q} where s 6 `

r+1

and q 6 10r2. The cycles C1, . . . , Cs are of size r+1, that is, Cr
1 , . . . , C

r
s are (r+1)-cliques

where each edge has multiplicity 2. For i ∈ [s + q], let V i
1 , V

i
2 , . . . , V

i
r+1 be the first r + 1

vertices of Ci and let Ki denote the clique on these r+ 1 vertices. Let us denote d = η/3.
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From Fact 12, we have that for η′ = η/4,

δ(R) > (1− 1/(r + 1) + η′)`, (2)

and consequently,

∀V1, . . . , Vr+1 ∈ V (R), degR({V1, . . . , Vr+1}) > (r + 1)η′`. (3)

The first step of the proof is to find short connecting paths Pi between cliques Ki and
Ki+1 for all i ∈ [s+ q], where we denote Ks+q+1 = K1.

Claim 17. In G there exist vertex disjoint rth powers of paths Pr1 , . . . ,Prs+q, where we
denote Pi = (pi1, p

i
2, . . . , p

i
ti

) such that the following holds for all i ∈ [s+ q]:

P1) Pri connects the cliques Ki and Ki+1, that is, for any j ∈ [r + 1], pij ∈ V i
j and

piti−r−1+j ∈ V
i+1
j (where we identify V s+q+1

j = V 1
j );

P2) for any j ∈ [r],

|N({pi1, pi2, . . . , pij}) ∩ V i
j+1|, |N({piti−j+1, p

i
ti−j+2, . . . , p

i
ti
}) ∩ V i+1

r+1−j| > (d− ε)2rm/4;

P3) ti 6 O(r3).

Moreover, these paths can be constructed one by one such that the paths P1, . . . ,Ps−1 only
depend on K.

Condition P2) will ensure we can later close the rth power of a Hamilton cycle inside
each clique. In order to prove part (ii) of the statement, we will use the fact we can
construct the connecting paths such that the first s−1 of them only depend on K. Roughly
speaking, this will allow us to construct two rth powers of Hamilton cycles which only
differ in a few edges apart from the edges which touch the vertices in C1 (or equivalently
in C2). This way, the difference of the discrepancies of the two rth powers of Hamilton
cycles is essentially controlled by fR(C1) − fR(C2), as desired. The proof of Claim 17 is
nearly a direct copy of an argument from [11] so we defer it to the appendix.

Next we add some more vertices to the exceptional set V0 with the goal of obtaining
an (ε, d/3)-super-regular partition, which will be verified later. From a cluster V i

j in a
cycle Ci we move to V0 all vertices v not used on the paths P1, . . . ,Ps+q for which there
is a j′ such that

{V i
j , V

i
j′} ∈ E(Cr

i ) and degfR(V ij ,V ij′ )
(v, V i

j′) < (d− ε)|V i
j′|,

where we consider the original clusters V i
j′ , that is, we also consider the vertices already

used in the connecting paths in this calculation. Because of (ε, d)-regularity and because
|Ci| 6 10r2 for all i ∈ [s+ q] by definition of a Cr-tiling, there are at most |E(Cr

i )| · εm 6
10r3εm such vertices in each cluster V i

j . Then we move the smallest possible number
of vertices to V0 so that each cluster has the same number of vertices. We still write
V0 for the enlarged exceptional set which now satisfies |V0| 6 11r3εn and we use m′ to
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denote the new number of vertices in each cluster. Recall that we have used at most
(s+ q) ·O(r3) = O(`r2) vertices for the connecting paths. Hence,

m′ =
n− |V0| −O(`r2)

`
>
n

`
· (1− 12r3ε) > (1− 12r3ε)m. (4)

For each vertex v ∈ V0 we find all indices i ∈ [s− 1] such that

deg(v, V i+1
j ) > (d− ε)|V i+1

j |, ∀j ∈ [r + 1]. (5)

Again, in the above we consider the original clusters V i+1
j . Let x denote the number of

such indices i. Note that v has at most εn edges to the initial exceptional set and for
every i for which (5) is not satisfied at most (r + d − ε)m edges to the clusters in the
clique Ki+1. Therefore, we have(

1− 1

r + 1
+ η

)
n6deg(v)6εn+

(
|C1|+

(
s+q∑
i=s+1

|Ci|

))
m+x(r+1)m+(s−1−x)(r+d−ε)m.

Using q 6 10r2, |Ci| 6 10r2, that ε is sufficiently small and ` is sufficiently large, a simple
calculation yields x > η`/2. We assign v to one of these cliques such that no clique is
assigned too many vertices. That is, we partition V0 into small sets A1, . . . , As−1 such
that every v ∈ Ai satisfies (5) for the index i. We partition V0 by considering vertices one
by one. The next vertex v ∈ V0 is put into the currently smallest set Ai among the indices
i for which (5) holds with respect to v. It is easy to see that in the end the sets |Ai| have

size at most |V0|
η`/2

6 ε1m
′, where ε1 = 100r3ε

η
.

Claim 18. The rth power of a path Pi can be extended to contain all vertices in Ai by
using additional three vertices from each of the clusters V i+1

j , j ∈ [r+1] per added vertex.
This can be done so that property P2) holds with respect to the first and last r vertices of
the new path.

Again, we use the argument from [11] and defer the proof of this claim to the appendix.
For any i ∈ [s + q], j ∈ [|Ci|], let W i

j ⊆ V i
j be the set of unused vertices in V i

j . By
construction, for each i ∈ [s+ q], the sets W i

j are of the same size for all j ∈ [|Ci|]. From
V i
j , we have used at most ` ·O(r3) vertices to form the initial connecting paths and then

exactly 3|Ai| 6 3ε1m
′ vertices to extend the path to include the vertices in Ai. Hence,

|W i
j | > m′−`·O(r3)−3ε1m

′ > (1−300r3ε

η
)(1−12r3ε)m−`·O(r3) > (1− α

6r
)m =: m′′, (6)

where we chose ε to be small enough and n0 to be large enough.
Let us now verify that whenever {V i

j , V
i
j′} ∈ E(Cr

i ), the bipartite subgraph Gσ[W i
j ,W

i
j′ ]

is (ε, d/3)-super-regular, where σ = fR(V i
j , V

i
j′). Let i, j, j′ be such that {V i

j , V
i
j′} ∈ E(Cr

i ).
Recall that for any v ∈ W i

j , we have degσ(v, V i
j′) > (d − ε)m as otherwise v would have

been moved to V0 and so it would not be in W i
j . Thus,

degσ(v,W i
j′)>(d−ε)m−(|V i

j′ |−|W i
j′|) > (d−ε)m−(m−m′′)>(d−ε− α

6r
)m>

d

3
m>

d

3
|W i

j′ |,
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where we chose α small enough compared to η. Now, consider subsets X ⊆ W i
j , Y ⊆ W i

j′

such that |X| > ε|W i
j | and |Y | > ε|W i

j′|. Because Gσ[V i
j , V

i
j′ ] is (ε, d)-regular, it follows

that dGσ(X, Y ) > d−ε > d/3, so the bipartite graph Gσ[W i
j ,W

i
j′ ] is indeed (ε, d/3)-super-

regular.
Finally, the endpoints of the connecting paths satisfy P2) so we can apply Lemma

14 and the subsequent remark to close the rth power of a Hamilton cycle Hr such that
between clusters Vx, Vy we only use edges of color fR(Vx, Vy).

From (6), it easily follows that Hr satisfies (i). Indeed, for every edge (Vx, Vy) in some
Cr
i , i ∈ [s+ q], we included in Hr at least mulCri (Vx, Vy) · (1−

α
6r

)m corresponding edges
of color fR(Vx, Vy). Apart from these, there are at most (|V0| + α

6r
n) · 2r 6 α

2
n edges in

Hr. Hence,

|f(Hr)−mfR(T1)| 6
α

6r
m|fR(T1)|+

α

2
n 6

α

6r
m · 2r`+

α

2
n < αn.

Now suppose we are given two tilings T1, T2 as in the statement of the proposition. We
construct two rth powers of a Hamilton cycle Hr

1 and Hr
2 with a small modification to the

above procedure to ensure they do not differ too much. We think of the above algorithm
as three stages of adding edges to a subgraph which eventually becomes the rth power of
a Hamilton cycle. We use I1 and I2 to denote the runs of the algorithm on T = T1 and
T = T2, respectively.

The first stage of connecting the cliques is done exactly as above. Note that the paths
P1, . . . ,Ps−1 are the same in both instances. Let V 1

0 denote the exceptional set and U1

the set of vertices used for the connecting paths in I1. Analogously define V 2
0 and U2 with

respect to I2. Note that |U1∆U2| 6 2(q + 1) · O(r3) = O(r5) because the two runs only
deviate after finding the first s−1 paths and each path has length O(r3). Since the degree
of any vertex in the rth power of a Hamilton cycle is 2r, this implies the two subgraphs
differ in O(r6) edges at this point.

We can assume that the new number of vertices per cluster m′ is the same in I1 and
I2, otherwise simply add a few vertices to V j

0 if m′ is larger in Ij. Set V0 = V 1
0 ∪ V 2

0 and
note that now |V0| 6 22r3εn which does not affect the above argument. To make the
two found subgraphs similar, we treat V0 \ U1 and V0 \ U2 as the new exceptional sets
for I1 and I2, respectively. In the second stage, we add the exceptional vertices to paths
P1, . . . ,Ps−1. As noted above, the cliques to which a vertex can be assigned do not depend
on the connecting paths. Therefore, we can assign the vertices in V0 \ (U1 ∪ U2) to the
same cliques for the two runs. We can then embed the vertices from V0 \ (U1 ∪ U2) in
exactly the same way in I1 and I2. Thus I1 and I2 only deviate after embedding all but
at most |U1∆U2| = O(r5) vertices. Each added vertex extends the path by O(r) vertices,
so this stage introduces at most O(r7) edges to Hr

1∆Hr
2 .

Finally, in the third stage, we find connecting paths inside cliques Ki. The edges in
these paths have the same labels in I1 and I2 for all cliques Ki, i ∈ [s]. The number of
vertices left in cliques K1, . . . , Ks might differ in I1 and I2 at this point, but in total only
by |U1∆U2| ·O(r). Hence, the difference between the values of edges in cliques K1, . . . , Ks,
introduced at this stage is at most O(r7). If fR(C1) = fR(C2), there is nothing to prove so
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let us assume fR(C1) 6= fR(C2). Since for each edge in C1 we add m′ > (1− α
6r

)m edges to
Hr

1 and analogously for C2 and Hr
2 , we have

|f(Hr
1)− f(Hr

2)| >
(

1− α

6r

)
m · |fR(C1)− fR(C2)| −O(r7) >

m

2

∣∣fR(C1)− fR(C2)
∣∣,

where we used |fR(C1)− fR(C2)| > 1 and m� r.

6 Proofs of Theorems 4 and 5

It is enough to prove the theorems for η � 1/r.We define additional constants α, β, γ, ε, d >
0 and n0, `0, L0 ∈ N such that

0 < 1/n0 � γ � 1/L0 6 1/`0 � ε� α� β � d = η/3� 1/r,

where `0, n0, ε are chosen so that Proposition 16 holds for r, α, η and L0 is the constant
obtained from Lemma 10 with parameters ε/2, `0. Let G be a graph with n > n0 vertices
and f : E(G)→ {−1, 1} an edge labelling as in the theorem statements.

Both proofs start by applying Lemma 10 to G with parameters ε/2, d and `0 and the
subsequent remark to make the number of clusters divisible by r + 1. We thus obtain an
(ε, d)-regular partition of G with respect to f and the reduced graph R whose vertices are
clusters V1, V2, . . . , V`, where r+1 | ` and each of the clusters Vi is of size m. We also have
the exceptional set V0 of size at most εn. The reduced graph R inherits the edge labelling
fR as given in (1).

The following claim is a direct consequence of Proposition 16 part (i).

Claim 19. Suppose there exists a Kr+1-tiling T of R such that |fR(T )| > β`. Then, in
G there exists the rth power of a Hamilton cycle Hr satisfying |f(Hr)| > γn.

Proof. Suppose we are given a Kr+1-tiling T of R satisfying |fR(T )| > β`. Recall that
we can view T as a Cr-tiling of R so by Proposition 16 part (i), in G there exists an rth

power of a Hamiton cycle Hr satisfying

|f(Hr)−mfR(T )| 6 αn,

which implies
|f(Hr)| > mβ`− αn > (1− ε)βn− αn > γn,

where we chose α, γ, ε to be small enough compared to β.

Now we resolve the case r = 2 which can be easily deduced from Theorem 3 and Claim
19.

Proof of Theorem 5. Recall that δ(G) > (3/4 + η)n, so by Fact 12, we get δ(R) > (3/4 +
η/4)|R|. Let β be the value of γ given by Theorem 3 with parameters r = 3 and η/4.
Applying Theorem 3 to the reduced graph R we obtain a K3-tiling T of R of absolute
discrepancy at least β`. By Claim 19, G contains the square of a Hamilton cycle with
absolute discrepancy at least γn.
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In the rest of the paper we prove Theorem 4. Recall that δ(G) > (1− 1/(r+ 1) + η)n,
so by Fact 12, the reduced graph satisfies

δ(R) >

(
1− 1

r + 1
+
η

4

)
`, (7)

where we remind the reader that ` = |R|. The following simple observation follows directly.

Claim 20. For any v1, v2, . . . , vr+1 ∈ R, we have |N({v1, v2, . . . , vr+1})| > (r+1)η`/4.

Next we derive an additional claim from Proposition 16.

Claim 21. Let F be a subgraph of R on at most 10r vertices and let
F1 = {C11, C12, . . . , C1s1} and F2 = {C21, C22, . . . , C2s2} be two Cr-templates of F such
that each vertex of F appears exactly k times in F1 and k times in F2 for some k 6 10r.
If F1 and F2 have different discrepancies with respect to fR, then in G there exists the rth

power of a Hamilton cycle Hr satisfying |f(Hr)| > γn.

Proof. Split each of the clusters Vi, 1 6 i 6 `, of the regular partition into k clusters
Vi,1, . . . , Vi,k of size m′ = bm/kc and put the remaining vertices in V0. Let c(Vi) =

{Vi,1, . . . , Vi,k}. Define R′ as a blow-up of R on the vertex set
⋃`
i=1 c(Vi) with the edge

coloring fR′ in the natural way: if Vi and Vj were joined by an edge in R, then put a
complete bipartite graph between c(Vi) and c(Vj) with all edges of color fR(Vi, Vj). Let
F ′ denote the corresponding blow-up of F. Formally, we define V (F ′) =

⋃
Vi∈V (F ) c(Vi)

and E(F ′) =
⋃

(Vi,Vj)∈E(F ){XY | X ∈ c(Vi), Y ∈ c(Vj)}. By Lemma 13, we get that every

pair of clusters joined by an edge in R′ form an ε′ regular pair in G for ε′ = 2kε and have
density at least d′ = d− ε.

By Remark 11, we may assume that the number of vertices of R′ \ F ′ is divisible
by r + 1 by moving at most r clusters into the exceptional set V ′0 which now satisfies
|V ′0 | 6 ε′n. Note that |R′| = k|R| and δ(R′) = kδ(R), implying δ(R′) > (1− 1

r+1
+ η

4
)|R′|

and therefore, δ(R′ \ F ′) > (1 − 1
r+1

)|R′|. Applying Theorem 9, we obtain a Kr+1-tiling
K of R′ \ F ′. Using F1 we construct a Cr-tiling C1 of F ′ as follows. In the cycles in F1,
simply replace every occurrence of a vertex Vi with a different vertex from c(Vi). It is easy
to verify that C1 is a Cr-tiling of F ′. Analogously, we construct C2 from F2.

Let T1 = K
.
∪ C1 and T2 = K

.
∪ C2. We apply Proposition 16 to obtain two rth powers

of Hamilton cycles Hr
1 and Hr

2 which satisfy (ii) with respect to m′ and fR′ . Finally, note
that fR′(Ti) = fR′(K) + fR′(Ci) and fR′(Ci) = fR(Fi) for i = 1, 2. Hence, we have

|f(Hr
1)− f(Hr

2)| > m′

2
|fR′(T1)− fR′(T2)| >

m

2(k + 1)
· 1 > 2γn.

Therefore, at least one of Hr
1 , H

r
2 has absolute discrepancy at least γn.

First we resolve the case r = 2 which can be easily deduced from Theorems 3 and
Claim 19.
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Proof of Theorem 5. Recall that δ(G) > (3/4 + η)n, so by Fact 12, we get δ(R) > (3/4 +
η/4)|R|. Let β be the value of γ given by Theorem 3 with parameters r = 3 and η/4.
Applying Theorem 3 to the reduced graph R we obtain a K3-tiling T of R of absolute
discrepancy at least β`. By Claim 19, G contains the square of a Hamilton cycle with
absolute discrepancy at least γn.

In the rest of the paper, we finish the proof of Theorem 4.

Proof of Theorem 4. We prove the theorem by contradiction, so we assume that G does
not contain the rth power of a Hamilton cycle with absolute discrepancy at least γn.
Recall that we have r > 3, δ(G) >

(
1− 1

r+1
+ η
)
n and δ(R) > (1− 1

r+1
+ η/4)`.

The following claim shows that R is highly structured with respect to fR.

Claim 22. Let K be a clique in R of size k 6 r + 2. Then K is a copy of one of the
following: K+

k , K
−
k , (Kk,+)-star or (Kk,−)-star.

Proof. First we prove the claim for (r+2)-cliques. Let K = {v1, v2, . . . , vr+2} be an (r+2)-
clique in R. Define C1 = (v1, v2, v3, v4, v5, . . . , vr+2) and C2 = (v1, v3, v2, v4, v5, . . . , vr+2).
We can view {C1} and {C2} as Cr-templates on K. Thus, by Claim 21, we get fR(Cr

1) =
fR(Cr

2). Note that

fR(Cr
1) = 2

∑
16i<j6r+2

fR(vi, vj)−
r+2∑
i=1

fR(vi, vi+1),

where we denote vr+3 = v1. Hence, 0 = fR(Cr
1) − fR(Cr

2) = fR(v1, v3) + fR(v2, v4) −
fR(v1, v2) − fR(v3, v4). As the enumeration of the vertices was arbitrary, for any distinct
a, b, c, d ∈ K, the following holds:

fR(a, b) + fR(c, d) = fR(a, c) + fR(b, d). (8)

The rest of the proof appears in [2]. We present a slightly shorter argument. Assume
that K is not monochromatic, so there exists a vertex v ∈ K with N+

K(v), N−K(v) 6= ∅.
Without loss of generality, assume |N+

K(v)| > 2 and let u ∈ N−K(v). Consider arbitrary
distinct x, y ∈ N+

K(v). By (8), we get fR(x, v)+fR(u, y) = fR(x, y)+fR(u, v). By, definition
fR(x, v) = 1 and fR(u, v) = −1, so this implies fR(u, y) = −1 and fR(x, y) = 1. If
|N−K(v)| > 2, a completely analogous argument shows fR(u, y) = 1, a contradiction. From
this we conclude N−R (v) = {u}. Applying the same reasoning to every pair x, y ∈ N+

R (v),
we get f(x, y) = 1 and f(u, y) = −1 for any x, y ∈ N+

R (v). In other words, K is a
(Kr+2,−)-star with u as its head.

Now, suppose K is a clique in R of size k 6 r + 2. By Claim 20, K can be extended,
vertex by vertex, to some clique K ′ of size r + 2. The statement now easily follows from
the result for (r + 2)-cliques.

By (7), R has large minimum degree, so we can apply Theorem 9 to obtain a Kr+1-
tiling T of R. From Claim 22 we conclude there are only four types of cliques in T . Let
A denote the set of K+

r+1 in T ; B the set of K−r+1 in T ; C the set of (Kr+1,+)-stars in
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T ; and D the set of (Kr+1,−)-stars in T . Under the assumption that G does not have rth

powers of Hamilton cycles with large discrepancy, we establish several claims about edges
between cliques of different types. We state these claims here and defer their proofs to
the end of the paper.

Claim 23. Consider a vertex x1 of a clique X ∈ A and let Y be a copy of K−r+1 in B.
Then we may assume deg(x1, Y ) 6 r − 1.

Claim 24. Consider a vertex x1 of a clique X ∈ A and let Y be a (Kr+1,+)-star in C.
Then we may assume deg(x1, Y ) 6 r − 1.

Claim 25. Suppose x1 is the head of a clique X ∈ D and let Y ∈ C. Then, we may
assume deg(x1, Y ) 6 r − 1.

Claim 26. Suppose x1 is the head of a clique X ∈ C and let Y ∈ C. Then, we may
assume deg(x1, Y ) 6 r.

With these claims at hand, we are ready to prove the main theorem. Recall that we
assumed G has no rth power of a Hamilton cycle with absolute discrepancy at least γn.
We can assume |fR(T )| < β`, as otherwise we can find the desired rth power of a Hamilton
cycle by Claim 19. Note that

|A|+ |B|+ |C|+ |D| = `/(r + 1). (9)

Without loss of generality, we may assume

|B|+ |C| > |A|+ |D|. (10)

First, we show that A = ∅. Otherwise, consider some vertex v of a clique in A. By
Claims 23 and 24, v can have at most r − 1 edges toward any clique in B ∪ C and it can
trivially have at most r + 1 edges to any clique in A ∪D. Using (9) and (10), we get

deg(v) 6 (r − 1)(|B|+ |C|) + (r + 1)(|A|+ |D|) 6 r

r + 1
`,

which contradicts the degree assumption (7). Hence, A = ∅.
Note that

fR(T ) = −
(
r + 1

2

)
|B|+

(
−
(
r + 1

2

)
+ 2r

)
(|C| − |D|)

=

(
−
(
r + 1

2

)
+ 2r

)
(|B|+ |C| − |D|)− 2r|B| 6 −2r|B|,

where in the last inequality we used (10) and the fact that
(
r+1
2

)
> 2r for r > 3. By our

assumption, it follows that |B| < β`.
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Next we show that D = ∅. Indeed, suppose this is not the case and let v be the head
of some clique in D. Then using Claim 25, (9) and (10), we obtain

deg(v) 6 (r + 1)(|B|+ |D|) + (r − 1)|C| = r − 1

r + 1
`+ 2(|B|+ |D|)

6
r − 1

r + 1
`+ 2

(
β`+

`

2(r + 1)

)
6

(
r

r + 1
+ 2β

)
` < δ(R),

a contradiction. Thus, D = ∅.
Observe that |C| > `

r+1
− |B| > 0. Now let v be the head of a (Kr+1,+)-star in C. By

Claim 26, we can bound its degree as follows:

deg(v) 6 (r + 1)|B|+ r|C| = r

r + 1
`+ |B| 6

(
r

r + 1
+ β

)
` < δ(R).

Again, we have reached a contradiction so the proof is complete.

Proofs of Claims 23–26

In the following we will consider two (r + 1)-cliques in T which we denote by X =
{x1, . . . , xr+1} and Y = {y1, . . . , yr+1}. Additionally, we assume that x1 has at least r
edges towards vertices of Y. Without loss of generality, we assume x1 is connected to
y1, y2, . . . , yr. From Claim 20 it follows that there is a vertex x′ such that X ′ = X ∪ {x′}
forms an (r + 2)-clique. Similarly, there is a vertex y′ such that Y ′ = Y ∪ {y′} forms an
(r+ 2)-clique and all the vertices x1, . . . xr+1, x

′, y1, . . . , yr+1, y
′ are distinct. We construct

two templates on F = R[X ′
.
∪ Y ′] and show, for the cases mentioned in the claims, that

these templates have different discrepancy. By Claim 21, this contradicts the assumption
that G has no rth power of a Hamilton cycle with a large discrepancy. We start by defining
four cycles which will be used in the templates.

C1 = (x2, x3, . . . , xr+1, x
′)

C2 = (x1, x2, x3, . . . , xr+1, x
′)

C3 = (y1, y2, y3, . . . , yr+1, y
′)

C4 = (x1, y1, y2, . . . , yr,

yr+1, y
′, y1, y2, . . . , yr−2, yr−1,

yr+1, y
′, y1, y2, . . . , yr−2, yr,

. . . ,

yr+1, y
′, y1, y3, . . . , yr,

yr+1, y
′, y2, y3, . . . , yr,

yr+1, y
′, y1, y2, . . . , yr)

Using these, we define two templates F1 and F2 as follows:

F1 =
(
(r + 1)× C2, (r + 1)× C3

)
and

F2 =
(
C1, r × C2, C4

)
,
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where we write a× Ci to indicate a copies of Ci. Note that F1 contains each vertex in F
exactly r + 1 times. Each vertex in X ′ \ {x1} appears once in C1 and C2, so F2 contains
each of these vertices r + 1 times. C4 contains x1 once and each of the vertices in Y ′

exactly r + 1 times which gives

|C4| = 1 + (r + 2)(r + 1) = r2 + 3r + 3, (11)

which will be useful later on. Additionally, it is easy to see that F2 contains each vertex
in F exactly r+ 1 times. Therefore, if F1 and F2 have different discrepancies, we reach a
contradiction by Claim 21. In the following claims we show this is true for several cases
of interest. When calculating the discrepancy of a particular rth power of a cycle, we will
mostly use the following recipe. As the (r + 1)-cliques we consider are highly structured,
most of the edge values under consideration are known given the types of cliques of X
and Y. More precisely, we find a small subset of edges E ′ such that all edges in E(Cr

i )\E ′
have the same color c. Then, we can calculate the discrepancy of Cr

i as

fR(Cr
i ) = c

(
r|Ci| − |E ′|

)
+ fR(E ′).

Additionally, observe that

fR(F1)− fR(F2) = −fR(Cr
1) + fR(Cr

2) + (r + 1)fR(Cr
3)− fR(Cr

4). (12)

Finally, we proceed to prove the individual claims.

Claim 27. Consider a vertex x1 of a clique X ∈ A and let Y be a copy of K−r+1 in B.
Then we may assume deg(x1, Y ) 6 r − 1.

Proof. Suppose deg(x1, Y ) > r and let F1,F2 be defined as above. Applying Claim
22 to the clique X ′, we get that all edges from x′ to X have the same color fR(x′, x1).
Analogously, all edges from y′ to Y have color fR(y′, y1) and all edges from x1 to Y \{yr+1}
have color fR(x1, y1). We calculate the discrepancies of Cr

i , 1 6 i 6 4 following our recipe
described above. For example, f(Cr

1) is calculated as follows. Observe that Cr
1 contains

r + 1 vertices and every vertex has degree 2r in Cr
1 so there are r(r + 1) edges. All edges

not incident to x′ are between two vertices of X and thus have color +1 because X forms
a copy of K+

r+1. There are r(r + 1)− 2r such edges and the remaining 2r edges have the
same color fR(x′, x1) as shown. Therefore, we obtain

fR(Cr
1) = ((r + 1)r − 2r) · 1 + 2r · fR(x′, x1) = r2 − r + 2rfR(x′, x1).

A similar analysis yields the following:

fR(Cr
2) = (r + 2)r − 2r + 2rfR(x′, x1) = r2 + 2rfR(x′, x1)

fR(Cr
3) = −((r + 2)r − 2r) + 2rfR(y′, y1) = −r2 + 2rfR(y′, y1)

fR(Cr
4) = −

(
r|C4| − 2r − 2r(r + 1)

)
+ 2rfR(x1, y1) + 2r(r + 1)fR(y′, y1)

= −r3 − r2 + r + 2rfR(x1, y1) + 2r(r + 1)fR(y′, y1).
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Plugging these values into (12), we obtain:

fR(F1)− fR(F2) = −2rfR(x1, y1) 6= 0.

We are done by Claim 21.

Claim 28. Consider a vertex x1 of a clique X ∈ A and let Y be a (Kr+1,+)-star in C.
Then we may assume deg(x1, Y ) 6 r − 1.

Proof. Assume deg(x1, Y ) > r and define F1,F2 as above. By Claim 22, all edges from
x′ to X have the same color fR(x′, x1). By Claim 22, Y ′ is a (Kr+2,+)-star with its head
in Y. Note that the values of fR(Cr

1) and fR(Cr
2) are as in the previous claim; we also

calculate fR(Cr
3):

fR(Cr
1) = r2 − r + 2rfR(x′, x1)

fR(Cr
2) = r2 + 2rfR(x′, x1)

fR(Cr
3) = −

(
(r + 2)r − 2r

)
+ 2r = −r(r − 2).

Now, we consider two cases:

(a) yr+1 is the head of Y.
Applying Claim 22 to (Y \ {yr+1}) ∪ {x1}, we conclude that all edges from x1 to
yi, i ∈ [r] are of color fR(x1, y1). Using this, we obtain:

fR(Cr
4) = −(r|C4| − 2r − 2r(r + 1)) + 2rfR(x1, y1) + 2r(r + 1)

= −r3 + r2 + 3r + 2rfR(x1, y1).

Substituting into (12), we have

fR(F1)− fR(F2) = −2rfR(x1, y1) 6= 0.

(b) yr+1 is not the head of Y.
Applying Claim 22 to (Y \{yr+1})∪{x1}, we get that all edges in Cr

4 incident to the
head of Y have value +1, while all other edges have value −1. From this we have:

fR(Cr
4) = −(r|C4| − 2r(r + 1)) + 2r(r + 1) = −r3 + r2 + r

and
fR(F1)− fR(F2) = 2r 6= 0

In both cases, the proof is finished by Claim 21.

Claim 29. Suppose x1 is the head of a clique X ∈ D and let Y ∈ C. Then, we may
assume deg(x1, Y ) 6 r − 1.
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Proof. Again, suppose deg(x1, Y ) > r and define F1 and F2 as above. By Claim 22, Y ′

is a (Kr+2,+)-star with its head in Y. We have

fR(Cr
1) = r(r + 1), fR(Cr

2) = r(r − 2) and fR(Cr
3) = −r(r − 2).

Note that the same edges of Cr
4 are known as those in Claim 24. Again, we consider

two cases:

(a) yr+1 is the head of Y.
Applying Claim 22 to (Y \ {yr+1}) ∪ {x1}, we conclude that all edges from x1 to
yi, i ∈ [r] are of color fR(x1, y1). So, we get

fR(Cr
4) = −r3 + r2 + 3r + 2rfR(x1, y1).

Substituting into (12), we have

fR(F1)− fR(F2) = −4r − 2rfR(x1, y1) 6= 0.

(b) yr+1 is not the head of Y.
We apply Claim 22 to (Y \ {yr+1}) ∪ {x1} and obtain that all edges in Cr

4 incident
to the head of Y have value 1, while all other edges have value −1. From this we
have:

fR(Cr
4) = −r3 + r2 + r

and
fR(F1)− fR(F2) = −2r 6= 0

Again, we are done by Claim 21.

Claim 30. Suppose x1 is the head of a clique X ∈ C and let Y ∈ C. Then, we may
assume deg(x1, Y ) 6 r.

Proof. Let x1 be the head of a clique in C, let Y be a clique in C and assume that
degR(x1, Y ) = r + 1. Clearly, Y is not the clique containing x1. Since x1 is connected to
all the vertices in Y we may assume that y1 is the head of Y and use the same template as
before. Similarly as in the proof of Claim 25, we have that X ′ and Y ′ are (Kr+2,+)-stars
with heads x1 and y1, respectively. Since {x1}∪Y forms a clique and Y is a (Kr+1,+)-star,
it follows that {x1} ∪ Y is a (Kr+2,+)-star with head y1. This implies that fR(x1, y1) = 1
and fR(x1, yi) = −1, 2 6 i 6 r + 1. As in the proof of Claim 25, but with opposite signs,
we have:

fR(Cr
1) = −r(r + 1), fR(Cr

2) = −r(r − 2) and fR(Cr
3) = −r(r − 2).

Note that all edges of Cr
4 have value −1 apart from all the edges incident to y1. Therefore,

fR(Cr
4) = −r(|Cr

4 | − 2(r + 1)) + 2r(r + 1) = −r3 + r2 + r.

Substituting into (12), we get

fR(F1)− fR(F2) = r(r + 1)− r(r − 2)− (r + 1)r(r − 2) + r3 − r2 − r = 4r

and we are done by Claim 21.
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János Bolyai, 4, 01 1970.
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A Appendix

Here we present the missing proofs of Claims 17 and 18. We begin with an auxiliary claim
which will be used in the proofs.

Claim 31. Let C−r+1, C−r+2, . . . , Ct+r be a sequnce of clusters forming the rth power of a
path in R with t = O(r3). Furthermore, let Ui ⊆ Ci, for −r+1 6 i 6 t+r, be given subsets
of size at least (d − ε)3rm/8. Then, there exist vertices p1, . . . , pt with pi ∈ Ui,∀i ∈ [t],
forming the rth power of a path in G such that

|N({p1, p2, . . . , pj}) ∩ U−r+j| > (d− ε)2r|U−r+j|/2,∀j ∈ [r] and

|N({pt, pt−1, . . . , pt+1−j}) ∩ Ut+r+1−j| > (d− ε)2r|Ut+r+1−j|/2,∀j ∈ [r].
(13)

Proof. We will choose the vertices p1, . . . , pt one by one. For this purpose, we maintain sets
Hi,j from which the vertices will be selected starting with H0,j = Uj, −r + 1 6 j 6 r + t.
Assume we have selected vertices p1, . . . , pi−1 and that |Hi−1,i| > 2rε|Ci|, which will follow
from the construction. Then we select a vertex pi from Hi−1,i satisfying:

deg(pi, Hi−1,j) > (d− ε)|Hi−1,j| for all j 6= i, |j − i| 6 r.

Provided |Hi−1,j| > ε|Cj|, by (ε, d)-regularity, this holds for all but at most 2rε|Ci| <
|Hi−1,i| vertices in Hi−1,i, so we can choose such a vertex. We then update the sets as
follows:

Hi,j =

{
Hi−1,j ∩N(pi), if 1 6 |j − i| 6 r,

Hi−1,j \ {pi}, otherwise.

We need to argue that the sets Hi,j are large enough for the above arguments to hold. This
follows from the fact that for each j, 1 6 j 6 t, the set H0,j shrinks by a factor of d − ε
at most 2r times and we remove from it single vertices O(r3) times. Since we can assume
(d − ε)5 > 32rε and m is large compared to r, we obtain that |Hi,j| > (d − ε)2r|Uj|/2 >
2rε|Cj|, for all i, j.

By construction, the vertices p1, . . . , pt form the rth power of a path while the prop-
erty (13) follows from |Ht,j| > (d − ε)2r|Uj|/2 for j < 0 and j > t, thus finishing the
proof.

Claim 32. In G there exist vertex disjoint rth powers of paths Pr1 , . . . ,Prs+q, where we
denote Pi = (pi1, p

i
2, . . . , p

i
ti

) such that the following holds for all i ∈ [s+ q]:
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P1) Pri connects the cliques Ki and Ki+1, that is, for any j ∈ [r + 1], pij ∈ V i
j and

piti−r−1+j ∈ V
i+1
j (where we identify V s+q+1

j = V 1
j );

P2) for any j ∈ [r],

|N({pi1, pi2, . . . , pij}) ∩ V i
j+1|, |N({piti−j+1, p

i
ti−j+2, . . . , p

i
ti
}) ∩ V i+1

r+1−j| > (d− ε)2rm/4;

P3) ti 6 O(r3).

Moreover, these paths can be constructed one by one such that the paths P1, . . . ,Ps−1 only
depend on K.

Proof. We construct these paths one by one in order. We show how to construct a path
P1 satisfying the desired properties. The remaining paths can be constructed analogously,
the only difference being that we cannot use the vertices in the previously constructed
paths. This can be easily guaranteed as at any point the number of used vertices is only
a constant compared to m, the size of each cluster.

First, we determine the sequence of clusters from which we choose the vertices of P1.
This sequence of clusters will form the rth power of a (not necessarily simple) path in R.
To achieve this, we find a sequence L1, L2, . . . , Lt of (r + 1)-cliques in R such that:

a) L1 = K1, Lt = K2,

b) |Li+1 ∩ Li| = r, for all 1 6 i 6 t− 1,

c) t = O(r2).

For this purpose, for any two cliques L,L′ in R and any cluster C ∈ V (R), we define its
weight with respect to L,L′ as w(L,L′)(C) = degR(C,L) + degR(C,L′). We will need the
following simple claim.

Claim 33. For any two (r+1)-cliques L,L′ in R there are at least η′

r+1
` clusters C ∈ V (R)

such that
w(L,L′)(C) > 2r + 1.

Proof. By (2), we have∑
C∈V (R)

w(L,L′)(C) > 2(r + 1)δ(R) > 2(r + η′)`.

The contribution to the above sum of the clusters C with w(L,L′)(C) 6 2r is at most 2r`.
Since for any C, w(L,L′)(C) 6 2r + 2, the statement follows.

We construct the sequence L1, . . . , Lt of (r + 1)-cliques in two phases. First, we
construct two sequences of (r + 1)-cliques A1, A2, . . . , At1 and B1, B2, . . . , Bt2 with the
following properties:

1) A1 = K1, B1 = K2,
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2) |Ai ∩ Ai+1| = r, |Bj ∩Bj+1| = r, for all 1 6 i 6 t1 − 1, 1 6 j 6 t2 − 1,

3) degR(C,At1) > r for all C ∈ Bt2 , or degR(C,Bt2) > r for all C ∈ At1 .

These sequences can be construted as follows. Set A1 = K1, B1 = K2 and suppose we
have so far constructed A1, . . . , Ai and B1, . . . , Bj and 3) does not hold. By Claim 33,
there exists a cluster C 6∈ Ai∪Bj such that w(Ai,Bj)(C) > 2r+ 1. Hence dR(C,Ai) > r+ 1
and dR(C,Bj) > r or vice-versa. Assume the former holds, the other case being handled
analogously. As 3) is not satisfied, there is a cluster C ′ ∈ Ai with degR(C ′, Bj) 6 r−1. To
get Ai+1, from Ai we remove C ′ and add C. Note that we maintain the property that the
last cliques in the two sequences, Ai+1 and Bj, are disjoint and in each step we increased
the number of edges between them so in O(r2) steps 3) is satisfied.

Now we construct a sequence of (r+1)-cliques D0, . . . , Dr+1 forming a transition from
At1 to Bt2 . Assume that degR(C,At1) > r for all C ∈ Bt2 , the other case being analogous.
We will construct these cliques such that for all 0 6 i 6 r + 1, |Di ∩ At1| = r + 1 − i
and |Di ∩ Bt2| = i. Set D0 = At1 , let 0 6 i 6 r and suppose we have already constructed
D0, . . . , Di. Let C be an arbitrary cluster in Bt2 \Di. By assumption, there is at most one
cluster in Di \ Bt2 ⊆ At1 not adjacent to C. We remove this cluster, or if none exists, an
arbitrary cluster in Di \Bt2 from Di and add C to obtain Di+1.

By construction, the clique sequence

A1, A2, . . . , At1 , D1, D2, . . . , Dr, Bt2 , Bt2−1, . . . , B1

satisfies a)–c). We denote this sequence by L1, . . . Lt, where t = t1 + t2 + r = O(r2).
To get the sequence of clusters from which we will choose the vertices of P1, we do the
following. Recall that L1 = V 1. We start with V 1

1 , V
1
2 , . . . , V

1
r+1. Then we start another

cycle V 1
1 , V

1
2 , . . . until we reach the cluster before the unique cluster in L1 \L2. The next

cluster in the sequence is then the unique cluster in L2 \ L1. To ensure the sequence of
clusters forms the rth power of a path we make a cycle through the clusters in L2 and
part of another cycle before reaching the cluster in L2 \L3. We append the unique cluster
in L3 \ L2 and so on. We proceed in a similar fashion until we reach the point where the
last r+ 1 clusters form the clique K2. Therefore, we have a seqence of clusters C1, . . . , Ct′
with t′ = O(r3) such that Ci = V 1

i , for i ∈ [r + 1], and the last r + 1 clusters are the
clusters of K2 in some order.

However, we want the last r + 1 clusters to be V 2
1 , . . . , V

2
r+1 in precisely this or-

der. To achieve this, it is enough to show that if U1, . . . , Ur+1 is an arbitrary per-
mutation of V 2

1 , . . . , V
2
r+1 and 1 6 i < j 6 r + 1, then we can create a sequence

of clusters forming the rth power of a path in R which starts with U1, . . . , Ur+1 and
ends with U1, . . . , Ui−1, Uj, Ui+1, . . . , Uj−1, Ui, Uj+1, . . . , Ur+1. By (3), there is a cluster
C ∈ NR({U1, . . . , Ur+1}). The desired sequence is then given as follows:

U1, . . . , Ur+1,

U1, . . . , Ui−1, C, Ui+1, . . . , Ur+1,

U1, . . . , Ui−1, C, Ui+1, . . . , Uj−1, Ui, Uj+1, . . . , Ur+1,

U1, . . . , Ui−1, Uj, Ui+1, . . . , Uj−1, Ui, Uj+1, . . . , Ur+1.
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As we can get the desired permutation using at most r of these swaps, we obtain
a sequence of clusters C1, . . . , Ct′′ which form the rth power of a path in R of length
t′′ = O(r3) such that for all j ∈ [r + 1], Cj = V 1

j and Ct′′−r−1+j = V 2
j . We further denote

C0 = V 1
r+1, C−1 = V 1

r , . . . , C−r+1 = V 1
2 , and Ct′′+1 = V 2

1 , Ct′′+2 = V 2
2 , . . . , Ct′′+r = V 2

r .

Now we can find P1 by applying Claim 31 with Uj = Cj,∀j,−r + 1 6 j 6 t′′ + r.
When constructing the path Pk, the only difference to the above argument is that we

remove the set of vertices used in the previous paths from the sets Ui. Since we remove
at most ` ·O(r3) < m/2 vertices, Claim 31 is still applicable.

Claim 34. The rth power of a path Pi can be extended to contain all vertices in Ai by
using additional three vertices from each of the clusters V i+1

j , j ∈ [r+1] per added vertex.
This can be done so that property P2) holds with respect to the first and last r vertices of
the new path.

Proof. For convenience of notation we only show how to extend P1 and the other paths
are extended analogously. Recall that |A1| 6 ε1m

′ = 100r3ε
η

m′. We embed the ver-

tices in A1 one by one while maintaining property P2). Slightly abusing notation, let
p−r+1, p−r+2, . . . , p0 denote the last r vertices of P1, where by construction pi ∈ V 2

r+1+i,−r+
1 6 i 6 0, and suppose we wish to extend P1 to additionally contain a vertex v ∈ A1

which, by definition, satisfies

deg(v, V 2
j ) > (d− ε)|V 2

j |, ∀j ∈ [r + 1]. (14)

We aim to extend P1 by going around the clusters in K2 twice, then embedding v and
then going around the clusters in K2 once again. To achieve this, we will apply Claim 31.
We set C(r+1)k+j = V 2

j for −1 6 k 6 3 and 1 6 j 6 r + 1. Additionally we set, for all
j ∈ [r + 1]:

U(r+1)k+j =


(
C(r+1)k+j∩N({pi | −r+16i60,pi 6∈C(r+1)k+j}

)
\Used, for k ∈ {−1, 0},(

C(r+1)k+j ∩N(v)
)
\ Used, for k ∈ {1, 2},(

C(r+1)k+j \ Used, for k = 3,

where Used denotes the set of vertices already used in all of the paths so far plus the new
vertex v. Note that |Used ∩ C(r+1)k+j| 6 ` · O(r3) + 3εm′ < m/8, for all −1 6 k 6 3, 1 6
j 6 r + 1. Using this, the fact that P1 satisfies P2) and (14), it follows that

|U(r+1)k+j| >

{
(d− ε)2rm/8 for − 1 6 k 6 2, 1 6 j 6 r + 1,

m/2 for k = 3, 1 6 j 6 r + 1.

Finally, let q1, . . . , q3(r+1) be the vertices obtained by applying Claim 31 for the sets
Ci, Ui, −r + 1 6 i 6 4r + 3. We extend Pi with the vertices q1, q2, . . . , q2(r+1), v,
q2(r+1)+1, . . . , q3(r+1) in this order. Using |U3(r+1)+j| > m/2 for 1 6 j 6 r + 1 and (13),
we see that the new new path still satisfies P2). By definition of Uk(r+1)+j for 1 6 k 6 2,
it follows that vqk(r+1)+j ∈ E(G) for 1 6 k 6 2, j ∈ [r + 1]. Since q1, . . . , q3(r+1) form the
rth power of a path, it follows that P1 is still the rth power of a path, completing the
proof.
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