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Abstract

We study sorting by queues that can rearrange their content by applying permu-
tations from a predefined set. These new sorting devices are called shuffle queues
and we investigate those of them corresponding to sets of permutations defining
some well-known shuffling methods. If QΣ is the shuffle queue corresponding to the
shuffling method Σ, then we find a number of surprising results related to two nat-
ural variations of shuffle queues denoted by Q′

Σ and Qpop
Σ . These require the entire

content of the device to be unloaded after a permutation is applied or unloaded by
each pop operation, respectively.

First, we show that sorting by a deque is equivalent to sorting by a shuffle queue
that can reverse its content. Next, we focus on sorting by cuts. We prove that the
set of permutations that one can sort by using Q′

cuts is the set of the 321-avoiding
separable permutations. We give lower and upper bounds to the maximum number
of times the device must be used to sort a permutation. Furthermore, we give a
formula for the number of n-permutations, pn(Q′

Σ), that one can sort by using Q′
Σ,

for any shuffling method Σ, corresponding to a set of irreducible permutations.
We also show that pn(Qpop

Σ ) is given by the odd indexed Fibonacci numbers
F2n−1, for any shuffling method Σ having a specific “back-front” property. The rest
of the work is dedicated to a surprising conjecture inspired by Diaconis and Graham,
which states that one can sort the same number of permutations of any given size
by using the devices Qpop

In-sh and Qpop
Monge, corresponding to the popular In-shuffle and

Monge shuffling methods.

Mathematics Subject Classifications: 05A05, 05A15

1 Introduction and definitions

If we have a device that can rearrange the elements of a given input permutation according
to certain rules, then a natural question is: “Which permutations of 1, 2, · · · , n can be
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sorted when we use this device?” The first to consider a question with this formulation
was Tarjan [37] who, like others, was inspired by one chapter in the seminal book of
Donald Knuth [29, Chapter 2.2.1].

Knuth considered the classical data structures stack, queue and deque (double-ended
queue) which are shown at Figure 1. He asked which permutations can be obtained by
using each of these devices, if we begin with the identity permutation 12 · · ·n. The two
questions correspond to two equivalent viewpoints since a permutation π can be obtained
from the identity by applying a given sequence of operations, if and only if π−1 is sorted
by the same sequence of operations.

Below is a brief description of the three devices. All of them are linear lists which are
used frequently in programming to store and access data. For each device, we have input
operations (also called push operations), which insert an element from the input to the
device and output operations (also called pop operations), which move an element from
the device to the output:

• stack ( ): the input operations I and the output operations O are made at one
end of the list.

• queue ( ): the input operations I are made at one end of the list and the output
operations O are made at the other end of the list.

• deque ( ): two kinds of input operations (I and I) exist, as well as two kinds
of output operations (O and O). The two pairs of input and output operations are
made at the two opposite ends of the list, as shown at Figure 1c.

InputOutput

O I

(a) stack

InputOutput

O

I

(b) queue

InputOutput

O I

O I

(c) deque

Figure 1: The input and output operations on stack, queue and deque

The question of Knuth led to the development of permutation pattern research. The
most cited result of his work is the fact that the permutations that can be sorted with a
stack are the 231-avoiding permutations. A great number of subsequent articles investi-
gated sorting by different variations of a stack or networks of stacks. Some examples are
pop-stacks [7], stacks in parallel [23, 37], stacks in series [38, 39] and stacks of bounded
size [6].

Sorting by a deque and its variations has also been a subject of serious research inter-
est. It was proved by Pratt [32] that the deque sortable permutations are characterized
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by avoiding a certain infinite set of permutations and the enumeration of this set is
still an open problem. Knuth himself [29, Chapter 2.2.1] considered input-restricted and
output-restricted deques and determined the sets of obtainable (respectively, sortable)
permutations by them and his approach introduced the important kernel method. An
interesting recent result of Price [33] states that the permutations sortable by a deque
and two stacks in parallel share the same growth rate.

The only permutation that can be sorted by a queue is the identity permutation and
this, as Knuth writes, follows trivially “by the nature of the queue.” One of the few
articles discussing sorting by modification of the queue is [21], where the author looks at
a queue that is capable of doing direct transfers of elements from the input to the output.
The permutations that can be sorted with this device are the 321-avoiding permutations.
Albert et. al [2] consider a more general type of devices, called C-machines, that can
perform the same direct transfers of elements. For more background on sorting devices,
we refer to the surveys [10] and [13, Chapter 4], as well as to the books [11, Chapter 8]
and [28, Chapter 2].

A completely different, yet connected, line of research investigates shuffling methods
for a given deck (to not be confused with “deque”) of cards or a given permutation. A
shuffling method is a procedure that will lead to a uniformly shuffled deck after applying
it multiple times. This procedure is usually comprised of the following two steps: choose
a permutation out of a given set and then apply it over the deck. Thus any shuffling
method has a set of permutations associated with it. Diaconis, Fulman and Holmes [17,
Section 2.3] give an overview of the previous work related to shuffling. The mathematics
of shuffling uses tools related to mixing times [16], representation theory [25] and quasi-
symmetric polynomials [35].

In this work, we relate the areas of sorting devices and shuffling methods by considering
sorting by special type of queues, called shuffle queues, which can rearrange their content
by applying permutations in a given collection over it. We will call any such collection
of permutations a shuffling method and we will focus on collections associated with some
methods that are popular in the literature. Shuffle queues are very similar to the permuting
machines introduced in a paper of Albert et al. [1]. However, our settings are more
general, since the permuting machines have to satisfy one important property which does
not necessary hold in the case of shuffle queues. The two concepts will be equivalent if
we require the set of permutations associated with each shuffle queue to be closed under
pattern containment.

Except for the few studies mentioned above, not many previous works investigate
sorting by modifications of a queue. Shuffle queues are a natural such modification since
a sorting device is a machine whose sole function is to re-order its input data. These new
devices lead to some surprising enumerative results and raise interesting combinatorial
questions. More motivational points are described in Section 1.2.

1.1 Notation

The set of consecutive integers {i, i+1, . . . , j} will be denoted by [i, j]. A permutation of
size n is a bijective map from [n] := [1, n] to itself. When referring to permutations, we
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will use their one-line representation. The set of all permutations of size n will be denoted
by Sn. If λ is a sequence of distinct numbers, the reduction of λ, denoted red(λ), is the
permutation obtained from λ by replacing its i-th smallest entry by i. For example, we
have red(4968) = 1423. A permutation π contains a permutation, or a pattern, σ if there
is a subsequence λ of π such that red(λ) = σ. If π does not contain σ, then π avoids σ. We
denote the set of permutations of size n that avoid all the patterns in a set X by Avn(X),
with avn(X) := |Avn(X)|. If x and y are sequences of integers, then we will write x > y
(respectively, x < y) if each element of x is greater (respectively, less) than each element
of y. A segment of a permutation π = π1 · · · πn will be a subsequence πaπa+1 · · · πb of
consecutive elements of π, for some 1 ! a < b ! n and it will be denoted by [a, b] when
π is inferred from the context. A permutation class C is a set of permutations, such that
if π ∈ C and π contains σ, then σ ∈ C. Other standard definitions related to permutation
patterns that will be used can be found in [9].

The empty sequence will be denoted by ε. For a sequence of distinct numbers s, denote
by Im(s) the set of elements of s and let Im(s1, . . . , sr) =

!r
k=1 Im(sk). Consider the set

of triples of sequences that partition [n],

{(s1, s2, s3) | Im(si) ∩ Im(sj) = ∅, Im(s1, s2, s3) = [n]}.

We will call the elements of this set, for any positive integer n, configurations.
A sorting device D is a tool that transforms a given input permutation π by following

a particular algorithm which could be deterministic or non-deterministic. The result is
an output permutation π′. During the execution of the algorithm, every device D has a
given configuration (sinp, sdev, sout), comprised of three sequences (strings) corresponding
to the current string in the input, in the device, and in the output, respectively. The
initial configuration is (π, ε, ε) and the final configuration is (ε, ε, π′). Denote by D(π) the
set of possible output permutations, when using a device D on input π. If idn denotes the
identity permutation of size n, then let Sn(D) := {π | π ∈ Sn, idn ∈ D(π)} be the set of
the permutations sortable by D. Furthermore, let pn(D) := |Sn(D)|.

In this paper, a shuffling method Σ is defined by a family of sets of permutations
{Πn

Σ ⊆ Sn | n = 2, . . . } that one can apply over the content of a sorting device, when
using the method. Note that Πn

Σ contains permutations of size n, for every n " 2. We
will also assume that idn /∈ Πn

Σ, for every n " 2. We will refer to {Πn
Σ}∞n=2 as the

permutation family of the method Σ. We will also use the notations Π(Σ) :=
!∞

n=2 Π
n
Σ

and (Πk
Σ)

−1 := {σ−1 | σ ∈ Πk
Σ}. An example of a shuffling method is shuffling by cuts,

which is defined below and studied in Sections 3 and 4.

Definition 1. The shuffling method cuts.

∀n " 2 : Πn
cuts := {k(k + 1) · · ·n12 · · · (k − 1) | k ∈ [2, n]}. (1)

In the existing literature, a shuffling method transforms a given input permutation by
multiplying it by another permutation, according to a given distribution. For example,
when one uses shuffling by cuts over an input of size n, one picks a permutation in the set
{k(k + 1) · · ·n12 · · · (k − 1) | k ∈ [2, n]} according to uniform distribution and applies it
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over the input. In the present paper, we will be able to choose the permutation that can
be applied to the content deterministically and thus our definition of a shuffling method
does not involve a distribution.

For a given shuffling method Σ, we consider a non-deterministic sorting device QΣ

for which at any given step one can apply up to three possible operations over the cur-
rent configuration s = (sinp, sdev, sout). Denote the next configuration by s. The three
operations are described below.

1. Push

Move the first element x of the input sinp = xs′inp to the content of the device. We
get s = (s′inp, sdevx, sout). One can apply this operation only if sinp ∕= ε.

2. Pop

Move the first element y of the content of the device sdev = ys′dev to the output. We
get s = (sinp, s

′
dev, souty). One can apply this operation only if sdev ∕= ε.

3. Shuffle

Choose a permutation σ ∈ Πm
Σ and apply it over the content of the device sdev,

where |sdev| = m. We get s = (sinp, σsdev, sout). One can apply this operation only
if m " 2 and if the last operation that has been applied is not a shuffle operation.

Note that the device QΣ functions as a queue since it can receive entries on one of its
ends and release entries on the other end. In addition, the content of this queue can be
shuffled and thus we will call it a shuffle queue. When a certain permutation is chosen
to be applied on a shuffle operation, we will say that the shuffle operation is associated
with this permutation. Also, note that the restriction to not have two consecutive shuffle
operations is reasonable since if one allows applying multiple consecutive shuffle operations
for a shuffle queue QΣ, then sorting by this queue would be equivalent to sorting by a
queue QΣ′ , for which two consecutive shuffle operations are not allowed. Here, Σ′ would
be the shuffling method for which Πn

Σ′ = 〈Πn
Σ〉, for every n " 2, where 〈T 〉 denotes the

subgroup generated by the set T .
Our work focuses on two natural variations of the devices QΣ that will be called

shuffle queues of type (i) and type (ii). They are obtained after imposing two additional
restrictions:

(i) The entire content of the device must be unloaded after each shuffle.

Denote the corresponding sorting device by Q′
Σ.

(ii) The entire content of the device must be unloaded by each pop operation.

Denote the corresponding sorting device by Qpop
Σ . This is the pop-version of the

device QΣ in analogy to the pop version of the stack-sorting device first considered
by Avis and Newborn in [7]. We will also call them pop shuffle queues.
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Consider the device of type (i), Q′
cuts. Example 2 shows one possible sequence of

configurations for Q′
cuts and the corresponding operations when sorting the permutation

213564 with it. Each configuration is written in the column form

"

#
sinp
sdev
sout

$

%. In general, if

D is a sorting device and π′ ∈ D(π), then any sequence of configurations for D that begins
with (π, ε, ε) and ends with (ε, ε, π′), together with the list of corresponding operations,
will be called an iteration of D over the input π.

Example 2. Iteration of Q′
cuts over 213645.

"

#
213645

ε
ε

$

% push−−→

"

#
13645
2
ε

$

% push−−→

"

#
3645
21
ε

$

%
shuffle
(cut)−−−−→

+unload

"

#
3645
ε
12

$

% push−−→

"

#
645
3
12

$

%

pop−−→

"

#
645
ε

123

$

% push−−→

"

#
45
6
123

$

% push−−→

"

#
5
64
123

$

% push−−→

"

#
ε

645
123

$

%
shuffle
(cut)−−−−→

+unload

"

#
ε
ε

123456

$

%

This device requires that we unload the entire content of the device after each shuffle
operation. Also, note that one can choose to apply multiple different cuts on each shuffle
operation. Consider the device of type (ii), Qpop

cuts. Below is shown one possible iteration
of Qpop

cuts.

Example 3. Iteration of Qpop
cuts over 41325.

"

#
41325
ε
ε

$

% push−−→

"

#
1325
4
ε

$

% push−−→

"

#
325
41
ε

$

% push−−→

"

#
25
413
ε

$

%
shuffle
(cut)−−−→

"

#
25
341
ε

$

% push−−→

"

#
5

3412
ε

$

%

shuffle
(cut)−−−→

"

#
5

1234
ε

$

%
pop

(unload)−−−−−→

"

#
5
ε

1234

$

% push−−→

"

#
ε
5

1234

$

%
pop

(unload)−−−−−→

"

#
ε
ε

12345

$

%

The device in Example 3 requires that we unload the entire content of the device by
each pop operation, but we do not have to do that after a shuffle operation.

1.2 Motivation

Here, we describe some additional motivation to consider sorting by shuffle queues, as
well as their variations of types (i) and (ii). We also motivate the investigation of sorting
by cuts, which is a main focus of the present work.

Sorting by a deque is equivalent to sorting by a simple shuffle queue (see Section 2).
Perhaps, one could find shuffle queues that mirror sorting by other popular devices. This
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would give new perspectives and might help solving certain problems related to these
devices. In addition, sorting by Qcuts has a simple interpretation in terms of railway
switching networks, which was the way used by Knuth in [29] to illustrate sorting by
stack, queue and deque. Add a circular railroad extension connecting the beginning and
the end of a railroad queue, as on Figure 2 below.

Qcuts

InputOutput

Figure 2: The shuffle queue Qcuts represented as a railway switching network.

Suppose that a railroad car cannot enter or leave the queue (no pushes or pops are
allowed), while there is a car in the extension. Thus we have a queue that can move a
group of consecutive elements from its beginning to its end. This is exactly what one can
do by cuts.

It is not difficult to show that one can sort every permutation using Qcuts (Corollary 22
gives even a stronger statement). Thus, it is reasonable to ask which permutations can be
sorted by cuts and by other methods if we consider the two natural restrictions defining
shuffle queues of types (i) and (ii), namely, to unload the content after each shuffle or
by each pop, respectively. Sorting by the shuffle queue of type (i), Q′

cuts, corresponds to
sorting by the same railway switching network shown at Figure 2, with the additional
requirement that we have to unload the queue after each use of the extension.

Q′
cuts is a non-deterministic device and we show that by using this device one can sort

a subset of the separable permutations defined at the beginning of Section 3. Therefore,
there exists a deterministic procedure that sorts all of the Q′

cuts-sortable permutations in
linear time, since we have such a procedure for the separable permutations [12]. This is
something desirable when considering sorting devices on a restricted class of permutations
since the best possible time complexity for a sorting algorithm over all permutations is
O(n log n). The popular greedy stack sorting gives such a linear deterministic procedure
for stack. The PhD thesis of Luca Ferrari [24, Section 3.4] shows that such a procedure
exists for input-restricted and output-restricted deques, and does not exist for deque.

Furthermore, popular sorting algorithms, such as Bubblesort, Insertion Sort and Se-
lection Sort correspond to deterministic sorting procedures using certain shuffle queues
corresponding to simple shuffling methods.

Sorting by cuts turns out to be an important problem connected to genome rearrange-
ments and an object of extensive study from the algorithms community. For more details,
we refer to the introduction of [27]. In particular, if we have two permutations represent-
ing sequences of genes, we want to find the shortest sequence of operations in a given set
that transforms one of the permutations into the other. Assuming that one of the permu-
tations is the identity, the problem is to find the shortest way of sorting a permutation
using the fixed set of operations, e.g., cuts and others. The article of Eriksson et al. [22]
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is one work motivated by genome rearrangements that contains results on sorting by cuts
which are closest to the bounds we obtain in Theorems 13 and 17. They establish bounds
for the maximum number of cuts one must apply when sorting a permutation, while we
give bounds for the maximum number of iterations of Q′

cuts needed to sort a permutation.
The two problems are different, since during an iteration one can apply multiple cuts.
Several other articles addressing sorting by cuts together with additional operations, e.g.
possible reversions, are listed in [14].

Finally, considering sorting by shuffle queues of type (ii) is reasonable since pop-
sorting has been sufficiently considered in the past (see [28, Chapter 2.1.4]). In addition,
we formulate a surprising conjecture involving shuffle queues of type (ii) (see Section 5.2).

1.3 Summary of our results

The article is organized as follows.
In Section 2, we show that by a deque one can sort the same set of permutations, as

with a shuffle queue that can reverse its content. We also show that this is not true for a
stack and any given shuffling method.

In Section 3, we study sorting by the device Q′
cuts. We show that Sn(Q′

cuts) is the
permutation class Avn(321, 2413, 3142). A recurrence relation is known for the number of
permutations in this class, and thus we get such a relation for pn(Q′

cuts). We generalize
this result by giving a formula for p(Q′

Σ), for every shuffling method Σ, such that σ is
an irreducible permutation for every σ ∈ Π(Σ), i.e., one for which π([j]) ∕= [j], for any
0 < j < n.

Section 4 investigates permutations having cost greater than one, where cost(π) is the
minimal number of times one has to use Q′

cuts in order to sort π. A natural quantity of
interest is M(n) := max

π∈Sn

cost(π). We establish bounds from above and below for M(n).

As we mentioned, the work of Eriksson et al. [22] considers a similar problem and obtain
similar bounds for an analogous quantity. The section continues with a conjecture on the
limiting behaviour of M(n). We conclude with a proof that cost(π) = cost(π∗) for every
permutation π, where π∗ is the reverse of the complement of π.

Section 5 is dedicated to pop shuffle queues. First, we prove a statement generalizing
the fact that one can sort any given permutation by using Qpop

cuts. In Section 5.1, we show
that the number of permutations of size n, sortable by a pop shuffle queue corresponding
to any shuffling method with a specific property is enumerated by the Fibonacci numbers
F2n−1. This fact is an analogue of Theorem 11 for shuffle queues of type (i). Section 5.2
discusses a surprising conjecture related to the pop shuffle queues of two popular shuffling
methods, namely the In-shuffle and the Monge shuffling methods. The conjectured fact
is that the two methods are Wilf-pop-equivalent, that is, pn(Qpop

In-sh) = pn(Qpop
Monge) for every

n " 1. We prove that the statement holds if one has to use a single pop operation with each
device. Furthermore, we find recursive formulas for the permutations in Sn(Qpop

Monge) that
end or do not end with n, respectively. The same formulas are obtained for Sn(Qpop

In-sh) in
inequality form and the conjecture holds if and only if these can be replaced by equalities.
Using the latter, we have checked that the conjecture holds for n < 20.
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Section 6 suggests questions for further research.

2 Shuffle queues equivalent to deque and stack

As we explained in Section 1.2, one motivation to consider shuffle queues is that sorting by
deque turns out to be equivalent to sorting by the shuffle queue of a very simple shuffling
method that can just reverse its content.

Definition 4. The shuffling method rev is defined by the following permutation family.

∀n " 2 : Πn
rev = {n(n− 1) · · · 21}.

For a sequence w, the reverse of w will be denoted by wr.

Definition 5. The sorting devices U and V are equivalent if for every n " 1,

Sn(U) = Sn(V)

We denote that by writing U ∼= V.

Theorem 6. ∼= Qrev.

Proof. [First part: Sn( ) ⊆ Sn(Qrev)] Let π ∈ Sn( ). Then, there exists an iteration
of over π that sorts it. Take one such iteration itr, determined by a sequence of the
operations I, O, I and O. Using this sequence, we can easily construct an iteration of Qrev

that sorts π, as follows. Instead of the operation shuffle over Qrev, we will write reverse.
Replace I by push, O by pop, I by reverse, push, reverse and O by reverse, pop, reverse. This
yields a list of operations defining an iteration over Qrev, which modifies π in the exact
same way as itr has modified π over .

[Second part: Sn(Qrev) ⊆ Sn( )] If s is a sequence of operations over , then
denote by s the complement sequence obtained by swapping I ↔ I and O ↔ O. Take
π ∈ Sn(Qrev) and a sequence of operations s corresponding to an iteration of Qrev that
sorts π. The sequence s consists of push, pop and reverse operations. Replace every push
by an I and every pop by an O to obtain a sequence s′. Then, for each reverse operation
in s′, from left to right, replace the sequence of operations to its left by its complement
sequence and then delete that reverse operation. We claim that you will obtain a sequence
of operations s′′ for the device that sorts π. For example, suppose that

s = push, push, reverse, pop, reverse, push, pop, push, reverse, pop, pop.

Then,
s′ = I, I, reverse, O, reverse, I, O, I, reverse, O,O.

We have three reverse operations in s′. If we follow the described procedure, we get:

s′ ⇝ I, I, O, reverse, I, O, I, reverse, O,O
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⇝ I, I, O, I, O, I, reverse, O,O

⇝ I, I, O, I, O, I, O,O =: s′′.

We will show that the iteration over corresponding to s′′ always sort π. Assume that
s (respectively s′) has r reverse operations denoted by revi (respectively rev′i), for i ∈ [r].
Furthermore, while transforming s′ to s′′, let the sequence of operations preceding revi,
before replacing it with its complement sequence, be denoted by s(i), for i ∈ [r]. Note
that the complement sequence of s(i) is denoted by s′(i), for i ∈ [r]. Our goal is to prove

that s(i) transforms π in the same way as s′(i), for i ∈ [r]. We will proceed by induction.
The sequence s(1) transforms π in the same way as s′(1) since s(1) is the complement of
s′(1) with a reverse operation added at the end and it is easy to see that if s is a sequence

of operations over that produces output π′ on input π, then s produces (π′)r on
input π. Therefore, if s′(1) produces output π

′
(1) on input π, then s(1) produces the same

output ((π′
(1))

r)r = π′
(1) on input π. Assume that the statement holds for all i ! t and

that t < r. By the induction hypothesis, s′(t) transforms the input π in the same way as
s(t). To obtain s′(t+1) and s(t+1), respectively from s′(t) and s(t), we should first add the
same sequence of push and pop operations. Then we take the complement of s′(t) and
add a reverse operation to s(t), respectively. We obtain the sequences s′(t+1) and s(t+1)

that obviously transform the input π in the same way. If t = r, then we just add the
same sequence of push and pop operations to s′(t) and s(t) to obtain s and s′′, respectively.
Therefore, these two sequences transform π in the same way and thus the iteration over

corresponding to s′′ also sorts π.

Once we know that Theorem 6 holds, a reasonable question to ask is whether there
exists a shuffle queue that is equivalent to a stack. Recall that the device stack is denoted
by .

Theorem 7. There is no shuffling method Σ, such that ∼= QΣ.

Proof. Suppose that such a shuffling method Σ exists. Then, we must have Sn(QΣ) =
Avn(231). Therefore, since 21 ∈ Av2(231), we must have 21−1 = 21 ∈ Π2

Σ. We also have
231 /∈ S3(QΣ). If 321 ∈ Π3

Σ, then we will be able to sort 231 by the following iteration:

"

#
231
ε
ε

$

% push−−→

"

#
31
2
ε

$

% push−−→

"

#
1
23
ε

$

% shuffle−−−−→
(by 21)

"

#
1
32
ε

$

%

push−−→

"

#
ε

321
ε

$

% shuffle−−−−→
(by 321)

"

#
ε

123
ε

$

% pop−−→

"

#
ε
ε

123

$

%

Thus 321 /∈ Π3
Σ. However, we have that 321 ∈ S3(QΣ). Consider an input 321. In

order to obtain 123, a pop operation must not be performed before the first three pushes.
Note that after pushing the first two elements, one can either switch them or not, since
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21 ∈ Π2
Σ. Therefore, after pushing the third element 1, one could either have 231 or 321

in the device. Thus we can sort 321 only if 321−1 = 321 ∈ Π3
Σ or if 231−1 = 312 ∈ Π3

Σ.
However, we saw that 321 /∈ Π3

Σ. In addition, 312 /∈ Π3
Σ, since otherwise we would be able

to sort 231. This is a contradiction.

In Section 6, we ask a more general question related to shuffle queues equivalent to
devices that can sort all the permutations in a given permutation class.

3 Sorting by cuts

One of the simplest shuffling methods is shuffling by cuts. Its permutation family is
given by Equation (1). Some previous works containing results on shuffling using cuts
are [15, 26]. The significance of sorting by Qcuts and Q′

cuts is discussed in Section 1.2.
Sorting by Qcuts turns out to be trivial since one can sort every given permutation with
this shuffle queue. A more general statement is proved at the beginning of Section 5. In
this section, we investigate sorting by Q′

cuts. Example 2 shows one possible iteration of
this device.

First, we determine Sn(Q′
cuts), with the help of Lemma 9. We will call it the set of the

cut-sortable permutations. We obtain that this is the set of the separable permutations
avoiding the pattern 321. A permutation π = π1 · · · πn is separable if it avoids the patterns
3142 and 2413. This important class of permutations arose in the study of pop-stack
sorting [7]. They have a remarkable recursive description and are enumerated by the
Schröder numbers [28, Chapter 2.2.5].

Definition 8 (Direct sum and skew-sum). If σ and τ are two permutations of sizes k
and l, respectively, then their direct sum σ ⊕ τ and their skew-sum σ ⊖ τ are defined as
follows:

(σ ⊕ τ)(i) =

&
σ(i), if i ! k,

k + τ(i− k), if k + 1 ! i ! k + l.
(σ ⊖ τ)(i) =

&
l + σ(i), if i ! k,

τ(i− k), if k + 1 ! i ! k + l.

Lemma 9. A permutation π is in Sn(Q′
cuts) if and only if it has one of the forms:

1. π = idr ⊕ π′, for some 1 ! r ! n and π′ ∈ Sn−r(Q′
cuts).

2. π = (idr1⊖idr2)⊕π′′, for some r1, r2 " 1, where r := r1+r2 ! n and π′′∈Sn−r(Q′
cuts).

Proof. Let π = π1 · · · πn ∈ Sn(Q′
cuts). Consider an iteration of Q′

cuts over π that sorts it.
The sequence of operations for this iteration must contain at least one pop operation.
Let the first pop operation be performed after we have pushed r elements in the device
(1 ! r ! n), i.e., the elements π1, . . . , πr. The output string after this pop operation must
be idr. We can have at most one shuffle operation before the first pop operation, and this
shuffle must be right before the pop. If we do not have such a shuffle, then the content of
the device has not been modified, i.e., π1 · · · πr = idr. Thus, π = idr ⊕ π′ and the rest of
the iteration sorts π′. Therefore, π′ ∈ Sn−r(Q′

cuts). If a shuffle has been performed before
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the first pop, then before this shuffle, the device must contain one of the permutations
in the set (Πr

cuts)
−1 = Πr

cuts. Each permutation in Πr
cuts can be written as idr1 ⊖ idr2 for

some r1, r2 " 1, such that r := r1 + r2 ! n. Therefore, π = (idr1 ⊖ idr2) ⊕ π′′ for some
permutation π′′ ∈ Sn−r(Q′

cuts) since π′′ is sortable by the rest of the considered iteration.
Conversely, one can directly check that any permutation in one of the two listed forms
belongs to Sn(Q′

cuts).

π′

(a) Cut-sortable permutations that require
no shuffle before the first pop

π′′

(b) Cut-sortable permutations that require
a shuffle before the first pop

Figure 3

An equivalent formulation of Lemma 9 is that the set Sn(Q′
cuts) consists of the permu-

tations that can be obtained by direct sums of the trivial permutation 1 and permutations
of the kind idr1 ⊖ idr2 . The fact that Sn(Q′

cuts) is a permutation class follows directly from
a simpler version of the observation used to obtain Proposition 1 in [1]. With the next
theorem, we find this class.

Theorem 10. The permutations sortable by Q′
cuts are the 321-avoiding separable permu-

tations [31, A034943]; i.e.,

Sn(Q′
cuts) = Avn(321, 2413, 3142). (2)

Proof. Let T := {321, 2413, 3142}.
[First part: π is cut-sortable ⇒ π ∈ Avn(T )] We will use induction, Lemma 9 and the fact
that if π = x⊕ y for some permutations x, y and π has an occurrence of a pattern in T ,
then this occurrence is either in the part of π corresponding to x or the part corresponding
to y. This will be called the indecomposable property of T .

The empty permutation belongs to Av0(T ). Let n > 0. Assume, inductively, that
any cut-sortable permutation of size m < n belongs to Avm(T ). Suppose that π ∈ Sn is
cut-sortable and π = idr ⊕ π′, for some 1 ! r ! n and π′ ∈ Sn−r(Q′

cuts), as in the first
form described in Lemma 9. Then π′ ∈ Avn−r(T ) by the inductive hypothesis and idr
has no occurrence of a pattern in T . Therefore, by the indecomposable property of T , we
have π ∈ Avn(T ).

Now suppose that π is in the second form described in the lemma, i.e., that π =
(idr1 ⊖ idr2)⊕π′′, for some r1, r2 " 1, where r := r1+ r2 ! n and π′′ ∈ Sn−r(Q′

cuts). Then,
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π′′ ∈ Avn(T ) by the induction hypothesis and one can check easily that idr1 ⊖ idr2 has
no occurrence of a pattern in T . Because of the indecomposable property of T , we must
have π ∈ Avn(T ).

[Second part: π ∈ Avn(T ) ⇒ π is cut-sortable] We will use induction, again. The
empty permutation is the only permutation in Av0(T ), and it is cut-sortable. Let n > 0
and π = π1 · · · πn ∈ Avn(T ). Consider the consecutive segment 12 · · · r in π for the
greatest possible value of r, where π = π1 · · · πl12 · · · rπr+l+1 · · · πn. If π1 · · · πl is the
empty permutation, then π has the first form from Lemma 9. If not, then l ∈ [1, n−r+1]
and we will show that π has the second form from the lemma.

First, note that π1 · · · πl must be increasing to avoid a 321 pattern in π. Assume that
π1 · · · πl ∕= (r + 1)(r + 2) · · · (r + l) and let u " 1 be minimal, such that πu ∕= r + u. We
must have that u ∈ [1, l], r + l + 1 ! n, r + u ∈ πr+l+1 · · · πn and πl > r + u. If u > 1,
then π1 = r + 1 and (r + 1)πl1(r + u) would form a 2413 pattern in π. Consider u = 1.
Note that πr+l+1 ∕= r + 1 since r was maximal. In fact, πr+l+1 > r + 1. If πr+l+1 < πl,
then πlπr+l+1(r+1) would form a 321 pattern, while if πr+l+1 > πl, then πl1πr+l+1(r+1)
would form a 3142 pattern. Therefore, we must have π1 · · · πl = (r + 1)(r + 2) · · · (r + l)
and thus π has the second form from Lemma 9.

In [30], Martinez and Savage showed that an := avn(321, 2413, 3142) satisfies

an = 3an−1 − 2an−2 + an−3,

with initial conditions a1 = 1, a2 = 2, a3 = 5. This is sequence A034943 in the OEIS [31].
The recurrence implies that an = Θ(dn), where the growth rate d ≈ 2.32.

The following theorem gives an alternative way to find the total number of sortable
permutations when using cuts. An irreducible permutation π is one for which π([j]) ∕= [j]
for any 0 < j < n, i.e., the first j elements do not occupy the first j positions. By IPn, we
denote the set of the irreducible permutations of size n. They are enumerated by sequence
A003319 in [31]. For example, when n = 3, the only irreducible permutations are 231,
312 and 321 since they do not have 1, 12 or 21 as a prefix.

Theorem 11. If Πk
Σ ⊆ IPk for every k " 2 and bk := |Πk

Σ|, then

pn(Q′
Σ) = 1 +

'

k1+···+kl=n−u
ki!2,u!0

(
u+ l

l

) l*

j=1

bkj . (3)

Proof. Recall that a subsequence of consecutive elements πa · · · πb is called a segment of π
and that we denote it by [a, b]. When we use Q′

cuts, the entire content has to be unloaded
after each shuffle and the segments of the input that were not shuffled are kept the same
in the output. Thus the output after an iteration of Q′

Σ is uniquely determined by the
segments of the input that were shuffled and the corresponding permutations chosen for
each of the shuffle operations. For instance, the output id6 of the iteration of Q′

cuts shown
in Example 2 is determined by the sequence of segments ([1, 2], [4, 6]) of the input 213645
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that were shuffled and the sequence of permutations (21, 231) that were applied on the
given segments.

Denote the set of the possible pairs of sequences of segments and permutations, for an
input of size n and a shuffling method Σ, by SSPΣ

n . For every n " 2 and every element
(s, q) ∈ SSPΣ

n , the segments in s are in lexicographical order and do not overlap with each
other since we shuffle these segments from left to right. We will first show that |SSPΣ

n |
is equal to the expression in the right-hand side of (3). Then, we will give a bijection
between the sets Sn(Q′

Σ) and SSPΣ
n .

[Finding |SSPΣ
n |] Assume that x = (s, q) ∈ SSPΣ

n and that s consists of l shuffled
segments. Only one such x exists, if l = 0. Let l " 1. Denote the sizes of the l shuffled
segments by k1, k2, . . . , kl, where kj " 2 for every j ∈ [1, l] and let their sum be n − u
for some u " 0. For instance, if n = 8, l = 2 and s = ([2, 3], [5, 7]), then k1 = 2, k2 = 3
and n − u = 5. In general, if the numbers l, n − u, k1, . . . , kl are given, then in order to
determine the sequence of segments s, one should distribute the u remaining elements
in the set of l + 1 spaces - one before each of the l segments and the one after all of
the segments. For every such choice, we obtain a different sequence of segments s. The
number of these choices is the number of ways to distribute u indistinguishable balls into
l + 1 boxes that is

+
u+(l+1)−1
(l+1)−1

,
=

+
u+l
l

,
. Then, if q = (q1, . . . , ql), the permutation qj can

be any of the bkj permutations in Π
kj
Σ for every j ∈ [1, l]. Thus q can be determined in

l-
j=1

bkj ways. In total, we obtain the right-hand side of (3).

[Sn(Q′
Σ) → SSPΣ

n ] Let π ∈ Sn(Q′
Σ). Then, there exists at least one iteration that sorts

π. Assume that π can be sorted by two different iterations it1 and it2, corresponding to
x1, x2 ∈ SSPΣ

n , where x1 = (s1, q1), x2 = (s2, q2) and x1 ∕= x2. Assume that s1 = s2.
Then, q1 ∕= q2. However, we can easily see that this is not possible. Let [r, r + k] be an
arbitrary segment in s1, and respectively in s2. If σ1 and σ2 are the two permutations
in q1 and q2, respectively, that have to be applied on this segment, then we must have
σ1 = σ2 = (πr · · · πr+k)

−1. Thus q1 = q2. Therefore, we must have s1 ∕= s2.
Let [r1, r1 + k1] be the last segment in s1 and let [r2, r2 + k2] be the last segment in

s2. Assume also that σ1 and σ2 are the last permutations in q1 and q2, respectively. We
saw that if [r1, r1 + k1] = [r2, r2 + k2], then we must have σ1 = σ2. However, s1 ∕= s2.
Therefore, without loss of generality, assume that [r1, r1 + k1] ∕= [r2, r2 + k2] and that
r1 ! r2. If r1 = r2, then assume for concreteness that k1 < k2 (see Figure 4).

1 r1=r2 r1+k1 r2+k2 n

Figure 4: The case r1 = r2

Iteration it1 permutes the elements of the segment [r1, r1+k1] in π. Hence it2 does the
same. This implies that σ2 fixes [k1 + 1] and thus σ2 /∈ IPk2+1, which is a contradiction.
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If r1 < r2, then it suffices to look at the following two cases (see Figure 5 and Figure 6):

1. r2 ! r1+k1. Then, σ1 fixes [r2 − r1]. Indeed, suppose that σ1(u) = v, where
u ∈ [r2 − r1] and v > r2 − r1. This means that it1 moves πr1+u−1 to position
r1 + v − 1 " r1 + (r2 − r1 + 1) − 1 = r2. However, it2 moves πr1+u−1 to a position
smaller than r2. Therefore, σ1 fixes [r2 − r1] and σ1 is not irreducible, which is a
contradiction.

1 r1 r2 r1+k1 r2+k2 n

Figure 5: The case r1 < r2 and r2 ! r1 + k1

2. r2 > r1+k1. Since it1 sorts π, we must have σ2 = idk2+1, which is not possible.

1 r1 r1+k1 r2 r2+k2 n

Figure 6: The case r1 < r2 and r2 > r1 + k1

We see that it is not possible to sort π by two different iterations corresponding to two
different elements of SSPΣ

n . Therefore, for every π ∈ Sn(Q′
Σ) there exists a unique

x ∈ SSPΣ
n corresponding to an iteration that sorts π.

[SSPΣ
n → Sn(Q′

Σ)] It remains to show that every x ∈ SSPΣ
n corresponds to a set of

iterations of Q′
Σ sorting exactly one permutation π. Let x = (s, q), where s = (s1, . . . , sl)

and q = (σ1, . . . , σl). Take idn, and go backwards by applying consecutively σ−1
j to the

segment sj, for j = l, l− 1, . . . , 1. We will obtain a unique permutation π that is sortable
by any iteration itr corresponding to x.

Note that when Σ = cuts, we have Πk
cuts ⊆ IPk and bk = |Πk

cuts| = k − 1, for every
k " 2. Thus, one can apply formula (3) in order to compute pn(Q′

cuts).

4 Permutations of higher cost

Obviously, not all π ∈ Sn are sortable by Q′
cuts. However, one can use a device several

times in a row by using the output after one iteration as an input to the next iteration.
This is the so-called sorting in series. Many articles investigate this idea for stack-sorting
(see [11, Section 8.2.2]). Denote the set of permutations that one can obtain after k
iterations of Q′

cuts over a permutation π ∈ Sn by (Q′
cuts)

k(π).
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Definition 12 (cost of permutation). The cost of π is the minimum number of iterations
needed to sort π using the device Q′

cuts, i.e.,

cost(π) := min{m | idn ∈ (Q′
cuts)

m(π)}.
It is not difficult to obtain an upper bound for cost(π). Indeed, one can move a

single element to its correct position using only one iteration. In particular, if the input
permutation is π = 12 · · · (i− 1)πi · · · πj−1iπj+1 · · · πn, then one can perform an iteration
consisting of only one cut right before i, after getting the subsequence πi · · · πj−1i into the
device. Such an iteration will move i at its correct position. Consecutive movements of
i, i+1, . . . , n to their correct positions will sort the permutation. Therefore, cost(π) ! n.
This upper bound is improved significantly with the theorem given below.

Theorem 13. cost(π) ! ⌈n
2
⌉, for every π ∈ Sn, where n " 1.

Proof. A computer simulation shows that the statement is true for 1 ! n ! 10. Let
n " 11 and let us assume, inductively, that the statement holds for all n′ < n. The
main observation that will be used is that if we have k + 1 consecutive numbers in [n],
forming a segment in π, then we can treat them as a single element and apply the induction
hypothesis for n−k. Two more observations will be substantially used that describe cases
when we can modify π with one iteration over Q′

cuts and then use the main observation
above. A third observation for the case when π is a direct sum of other permutations will
be also needed. These three observations are listed below with a brief justification for
each of them:

1. If a ∈ [3, n] and the numbers a − 1, a − 2 occur before a in π, then there exists
π′ ∈ Q′

cuts(π), such that π′ = . . . (a− 2)(a− 1)a . . . .

Proof: Assume that π = π1 · · · (a−1) · · · (a−2)πh · · · a · · · πn for some h > 2. If (a−2)
is before (a−1), then we can proceed in a similar way. We can perform the following
two cuts with one iteration of π over Q′

cuts: Cut the segment (a− 1) · · · (a− 2) after
(a−1) and the segment πh · · · a before a. A permutation π′ with the desired property
is obtained. If a = πh, then we will not need the second cut.

2. Assume that a, a + 1, b, b + 1 ∈ [n] are four different numbers. If a and a + 1
occur before b and b + 1 in π, then there exists π′ ∈ Q′

cuts(π), such that π′ =
. . . a(a+ 1) · · · b(b+ 1) . . .

Proof: We can simply move a + 1 immediately after a with a single cut and b + 1
immediately after b with another cut. Since a and a + 1 occur before b and b + 1,
we can perform the two cuts within one iteration.

3. Assume that π = σ1 ⊕ σ2 ⊕ · · ·⊕ σk. Then,

cost(π) ! max(cost(σ1), cost(σ2), . . . , cost(σk)).

Proof: Within one iteration, one may independently transform each of the parts of
π corresponding to σ1, σ2, . . . , σk. Thus, if m = max(cost(σ1), . . . , cost(σk)), then π
can be sorted with m iterations.
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We continue with the proof. Let xy denote the last two elements of π. Observation (1)
implies that unless y = 1 or y = 2, we will be able to transform π to a permutation π′

containing the segment (y−2)(y−1)y with just one iteration. Looking at this segment as
a single element and applying the induction hypothesis for n− 2 would give us cost(π) !
1 + ⌈n−2

2
⌉ = ⌈n

2
⌉, which is what we want. Assume that y = 1. Obviously, if x ∕= 2, 3,

we will be able to apply observation (1) again with a = x and obtain the bound via the
same calculation. If x = 2, then since n " 4, the numbers 3 and 4 will precede 1 and 2 in
π which allows us to use observation (2) and obtain the permutation π′ described there,
with one iteration of π over Q′

cuts. Treating both 1, 2 and 3, 4 as a single element and
applying the induction hypothesis gives us the same calculation and implies the desired
result, again.

Therefore, xy = 31 is the only case that remains to be considered if y = 1. If y = 2,
then if x = 1, we can move the last two elements xy = 12 at the beginning of π with
an iteration consisting of a single cut to obtain a permutation π′ = 12 ⊕ π′′. Applying
observation (3) to π′ and the induction hypotheses for π′′ gives cost(π) ! 1 + cost(π′′) !
1 + ⌈n−2

2
⌉ ! ⌈n

2
⌉. Therefore, we may assume that if y = 2, then x ∕= 1. If x ∕= 3, 4, then

we can obtain the result using observation (1), as before. If x = 3, then since n " 5, we
will be able to apply observation (2) for 2, 3 and 4, 5. Therefore, xy = 42 is the only case
that remains to be considered if y = 2.

We saw that it suffices to look at those permutations π having last two elements,
xy = 31 or xy = 42. Following the same reasoning, we can easily obtain that it suffices
to only look at permutations π beginning either with n(n − 2) or (n − 1)(n − 3). The
only difference is that an observation analogous to (1) shall be used dealing with the cases
when a− 2 precedes both a− 1 and a. Hence, we have four cases, in total. We will show
how we can complete the proof in only one of them, namely when π begins with n(n− 2)
and finishes with 42. The proofs in the other 3 cases can be completed following the same
reasoning.

Let π = n(n − 2) · · · 42. Then, we can assume that n − 3 and n − 1 occur after
both 1 and 3, because otherwise we will be able to apply observation (2) for certain
pairs of elements. For concreteness, let us take 3 to be before 1 and n − 1 to be before
n − 3. The following argument works regardless of this order. We can assume that
π = n(n − 2) · · · 3 · · · 1 · · · (n − 1) · · · (n − 3) · · · 42. Below, we show a particular way to
transform π by four iterations. We give the output at the end of each iteration. The
reader may try to find the exact cuts applied in these iterations.

Therefore, by four iterations π can be transformed to π′ = w1π
′′w2, where |π′′| = n−8,

|w1| = 4, |w2| = 4 and π′ = red(w1) ⊕ red(π′′) ⊕ red(w2). Recall that n " 11 and thus
|π′′| = n−8 " 3, which means that cost(π′′) " 2. In addition, cost(σ) = 2, for any σ ∈ S4.
Therefore, observation (3) applied over π′ and the induction hypothesis for π′′ gives us
cost(π′) ! cost(π′′) ! ⌈n−8

2
⌉, which implies cost(π) ! 4 + cost(π′) ! 4 + ⌈n−8

2
⌉ = ⌈n

2
⌉.

Theorem 13 gives a tight upper bound for the cost function since there exist per-
mutations of size n and cost ⌈n

2
⌉. For instance, we computed that cost(83527461) = 4.

The best absolute lower bound is obviously 0 since cost(idn) = 0, for every n. Let
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n(n− 2) · · · 3 · · · 1 · · · (n− 1) · · · (n− 3) · · · 42

n(n− 2) · · · (n− 1) · · · (n− 3) · · · 3 · · · 142

· · · (n− 1)n(n− 2)(n− 3) · · · 3142

3142 · · · (n− 1)n(n− 2)(n− 3) · · ·

3142 · · · (n− 1)n(n− 2)(n− 3)

M(n) := max
π∈Sn

cost(π) be the maximal cost of a permutation of size n. Theorem 13 gives

us that M(n) ! ⌈n
2
⌉. Next, we give a lower bound for M(n) by Theorem 17. We begin by

showing that cost is monotonically increasing with respect to pattern containment. We
will write Cn(q) := Sn \ Avn(q) for the permutations of [n] that contain the pattern q. A
main fact that will be used is that sorting by cuts has the property defined below.

Definition 14 (hereditary property). A shuffling method Σ has the hereditary property
if the following holds: Suppose that a sequence σ can be transformed to a sequence σ′

by a permutation in Π(Σ). If τ is a subsequence of σ and its symbols transform to the
subsequence τ ′ of σ′, then there exists a permutation in Π(Σ) transforming τ to τ ′.

This property is defined in [1], as a property of the so-called “permuting machines”.
Here we will use that shuffling by cuts has this property.

Lemma 15. If π ∈ Cn(q), then cost(π) " cost(q).

Proof. Let us fix an occurrence oc of q in π. Assume that we have a sequence of iterations
sorting π and let itr be one of these iterations. Every cut c in itr is transforming a certain
sequence of elements σ to a sequence σ′. If τ is the subsequence of σ, including all of
the elements of oc, that is transformed to a sequence τ ′, then by the hereditary property
of sorting by cuts, there exists a cut c′ which transforms τ to τ ′. Therefore, for every
sequence of iterations of Q′

cuts that sorts π, one can get a corresponding sequence of
iterations that sorts its subsequence oc by substituting each cut c in an iteration from the
initial sequence with the corresponding cut c′. The total number of iterations may drop
since some of the iterations in the initial sequence sorting π may not affect the elements of
oc. If we consider an optimal sequence of cost(π) iterations sorting π, then the described
correspondence gives a sequence of at most cost(π) iterations of Q′

cuts sorting q. Thus
cost(q) ! cost(π).

The last lemma shows that the cost function is monotone over the partially ordered
set of permutations ordered by pattern containment.

Recall that idrn is the reverse identity: idrn = n(n− 1) · · · 1.

Lemma 16. If π′ ∈ Q′
cuts(id

r
n), then π′ ∈ Cn(id

r
⌈n
2
⌉), i.e., π

′ contains a decreasing subse-

quence of size ⌈n
2
⌉.
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Proof. We will proceed by induction. The lemma holds for n = 1. Consider the first cut
c in an arbitrary iteration of Q′

cuts over idrn. Denote the output permutation after this
iteration by π′ = π′

1 · · · π′
n. If n does not participate in c, then π′

1 = n, because we have
just pushed and popped π1 = n. Then we can look at the considered iteration as one over
idrn−1 with the element n appended in front of the output. The element n is in front of any
decreasing subsequence in π′

2 · · · π′
n. Therefore, we may apply the induction hypothesis to

get that π′ must have a decreasing subsequence of size 1 + ⌈n−1
2
⌉ " ⌈n

2
⌉.

If n participates in c, then note that a cut can be performed only if we have more
than one number in the device. Let the cut c be performed after we have exactly k " 2
numbers in the device Q′

cuts: n(n−1) · · · (n−k+1). After the cut c, these k numbers will
be divided into two decreasing sequences. In other words, π′

1 · · · π′
k will be comprised of

two segments that are decreasing sequences. At least one of these sequences must be of
size at least ⌈k

2
⌉ and therefore π′

1 · · · π′
k contains a decreasing sequence of such size. The

rest of the iteration can be looked at as an iteration over idrn−k. Thus we can apply the
inductive hypothesis to see that π′

k+1 · · · π′
n must contain a decreasing sequence of size

⌈n−k
2
⌉. In addition, π′

1 · · · π′
k > π′

k+1 · · · π′
n, so π′ must contain a decreasing sequence of

size ⌈k
2
⌉+ ⌈n−k

2
⌉ " ⌈n

2
⌉.

Now, we are ready to establish the lower bound for M(n), i.e., the maximal cost of a
permutation of size n.

Theorem 17. M(n) " ⌈log2 n⌉, for each n " 2.

Proof. We will prove that cost(idrn) " ⌈log2 n⌉ for each n " 2, using induction. Obviously,
idr2 = 21 cannot be sorted with less than one iteration through Q′

cuts. By Lemma 16, after
one iteration over idrn, we will always get a permutation π′ ∈ Cn(id

r
⌈n
2
⌉). By Lemma 15

and the induction hypothesis,

cost(π′) " cost(idr⌈n
2
⌉) "

.
log2

.n
2

//
"

.
log2

n

2

/
= ⌈log2 n⌉ − 1.

But, π′ ∈ Q′
cuts(id

r
n), so cost(idrn) = 1 + cost(π′) " 1 + (⌈log2 n⌉ − 1) = ⌈log2 n⌉.

There exist values of n for which M(n) > ⌈log2 n⌉. We believe that the set of these
values is bounded, but we were not able to prove that.

Question 18. Is it true that M(n) −−−→
n→∞

⌈log2 n⌉?

A positive answer to this question would imply that every permutation of size n can be
sorted using O(n log n) operations by using cuts since one iteration uses O(n) operations.

We finish this section by showing that the permutations in Sn can be paired up in
terms of cost, when using Q′

cuts. For a permutation π = π1 · · · πn, let π denote the
complement permutation, defined by πi = n+ 1− πi. Recall that π

r denotes the reverse
of π, i.e., (πr)i = πn+1−i. Set π

∗ = πr = (π)r. Observe also that Πn
cuts is closed under the ∗

operation, i.e., for all σ ∈ Πn
cuts, we have σ

∗ ∈ Πn
cuts. Indeed, (k(k+1) · · ·n12 · · · (k−1))∗ =

(n+ 2− k) · · · (n− 1)n12 · · · (n+ 1− k) ∈ Πn
cuts, for each k ∈ [2, n] and n " 2.
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Theorem 19. For any permutation π, cost(π) = cost(π∗).

Proof. We will show that cost(π∗) ! cost(π). The equality follows because (π∗)∗ = π,
which will imply that cost(π) ! cost(π∗). Let π = π1 · · · πn. Consider an arbitrary
iteration itr over π, consisting of m cuts associated with the permutations σ1, . . . , σm,
respectively. Let the cut σk be applied over the segment [ik, jk] in π, for k ∈ [m]. Denote
the output permutation after the iteration itr with π′. Consider an iteration itr∗ over π∗,
corresponding to itr, that also consists of m cuts, given by the permutations σ∗

1, . . . , σ
∗
m

which are applied over the segments π∗
n+1−jk

· · · π∗
n+1−ik

, for k ∈ [m]. If (π∗)′ is the output
permutation after applying itr∗, then we claim that (π∗)′ = (π′)∗. This implies that for
any sequence of iterations itr1, itr2, . . . , itrr that sorts π, one would have a corresponding
sequence of iterations itr∗1, itr

∗
2, . . . , itr

∗
r that sorts π∗, since id∗n = idn:

π
itr1−−→ π′ itr2−−→ · · · itrr−−→ idn

π∗ (itr1)∗−−−→ (π′)∗
(itr2)∗−−−→ · · · (itrr)∗−−−→ (idn)

∗ = idn

Here is a concrete example of a single step for π = 526314 and an iteration itr consist-
ing of two cuts associated with the permutations 231 and 21 applied over the segments
π1π2π3 = 526 and π5π6 = 14, respectively. The corresponding iteration itr∗ over π∗ =
364152 consists of the two cuts associated with the permutations 312 = 231∗ and 21 = 21∗

applied over the segments π∗
7−3π

∗
7−2π

∗
7−1 = π∗

4π
∗
5π

∗
6 = 152 and π∗

7−6π
∗
7−5 = π∗

1π
∗
2 = 36.

π = 526314
itr−→ 265341 = π′

π∗ = 364152
itr∗−−→ 634215 = (π∗)′ = (π′)∗

[Proof that (π′)∗ = (π∗)′]
The graph of π∗ is obtained from the graph of π by rotating at 180◦. In addition, the

iteration itr∗ applies the same cuts as the iteration itr, but over the rotated graph of π∗

(see Figure 7). Therefore, the graphs of (π∗)′ and π′ differ by a 180◦ rotation. Thus, if
we rotate the graph of π′ by 180◦, we will get the same graphs, i.e., (π′)∗ = (π∗)′.

Note that Theorem 19 holds for any shuffling method Σ that is closed under the ∗

operation.

5 Sorting by pop shuffle queues

One can easily see that every shuffle queue of type (ii) (every pop shuffle queue) can always
sort at least as many permutations as the shuffle queue of type (i) for the same shuffling
method. For instance, we saw, at the beginning of Section 3, that pn(Q′

cuts) = O(dn),
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231 21

(a) The graphs of π = 526314, π′ = 265341 and the action of itr

231∗ = 31221∗ = 21

(b) The graphs of π∗ = 364152, (π∗)′ = 634215 and the action of itr∗

Figure 7: Example appearing in the proof of Theorem 19. Rotate the permutation graphs
on subfigure (A) at 180◦ to obtain the permutation graphs on subfigure (B).

where d = 2.32. It turns out that with the pop shuffle queue for cuts, one can sort all n!
permutations in Sn. Below, we prove a more general statement.

Theorem 20. If Σ is a shuffling method such that (Πk
Σ)

−1 contains at least one permu-
tation ending in j, for every j ∈ [k − 1] and every k " 2, then

Sn(Qpop
Σ ) = Sn,

for every n " 2. In addition, Qpop
Σ can sort every permutation using a single pop operation.

Proof. We will use induction on n, relying on a neat observation allowing us to make
the induction step. Note that S2(Qpop

Σ ) = S2, since (Π2
Σ)

−1 must contain 21 and the
permutation 12 obviously belongs to S2(Qpop

Σ ). Assume that n > 2 and that the statement
is true for all n′ < n. Take an arbitrary permutation π with last element x ∈ [n] and
prefix π′, i.e., π = π′x ∈ Sn. If x = n, then by the induction hypothesis, one can sort
π′ and then simply push and pop n to sort π. If x ∕= n, then we know that there exists
σ ∈ (Πn

Σ)
−1 ending with x. Take one such σ and let σ := σ′x. If we can get output σ′ on

input π′ using Qpop
Σ and only one pop operation, then π would also be sortable by Qpop

Σ
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and only one pop operation since one can get σ′ in the device, push x, and shuffle by
applying σ−1.

However, the induction hypothesis gives us that for any input of size n − 1, we can
always get the identity as an output. In order to get output σ′ on input π′, we can relabel
the elements of π′ with 1, . . . , n by looking at σ′ as the identity. Formally, since both π′

and σ′ are permutations of [n] \ {x}, let τ ∈ Sn−1 be the permutation satisfying τπ′ = σ′.
By the induction hypothesis, τ can be sorted by Qpop

Σ using only one pop operation. Let
itr be one such iteration that sorts τ with a single pop operation. Observe that if we apply
the same sequence of operations and permutations as in itr to input π′, we will get σ′.

Example 21. Consider shuffling by cuts and let π = 25143. Then, σ = 45123 is a
permutation in Π−1

cuts that ends with 3. We have π′ = 2514, σ′ = 4512. The solution to
τπ′ = σ′ is τ = 4231. Below is an iteration of Qpop

cuts that sorts τ .

"

#
4231
ε
ε

$

% push−−→

"

#
231
4
ε

$

% push−−→

"

#
31
42
ε

$

% push−−→

"

#
1
423
ε

$

%
shuffle
(cut)−−−→

"

#
1
234
ε

$

%

push−−→

"

#
ε

2341
ε

$

%
shuffle
(cut)−−−→

"

#
ε

1234
ε

$

%
pop

(unload)−−−−−→

"

#
ε
ε

1234

$

%

The same sequence of operations and permutations applied on each shuffle will give an
output σ′ = 4512 on input π′ = 2514 :

"

#
2514
ε
ε

$

% push−−→

"

#
514
2
ε

$

% push−−→

"

#
14
25
ε

$

% push−−→

"

#
4
251
ε

$

%
shuffle
(cut)−−−→

"

#
4
512
ε

$

%

push−−→

"

#
ε

5124
ε

$

%
shuffle
(cut)−−−→

"

#
ε

4512
ε

$

%
pop

(unload)−−−−−→

"

#
ε
ε

4512

$

%

Since the shuffling by cuts satisfies the condition described in Theorem 20, we get the
following corollary.

Corollary 22.
pn(Qpop

cuts) = n!.
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5.1 Pop shuffle queues for back-front shuffling methods

In this subsection, we prove Theorem 26, which is an analogue of Theorem 11 for pop
shuffle queues. However, Theorem 26 holds for a smaller set of shuffling methods compared
to Theorem 11, which requires the corresponding shuffling method to have a permutation
family consisting of sets of irreducible permutations. Some examples show that if we
consider the same collection of shuffling methods for pop shuffle queues, we would not
have a similar one-to-one correspondence as in the proof of Theorem 11. Nevertheless,
we have such a correspondence if we constrain ourselves to shuffling methods having a
stronger property which we call the back-front property.

Definition 23 (Back-front shuffling method). A shuffling method Σ is back-front if for
every n " 2, |Πn

Σ| = 1, i.e., Πn
Σ = {σn} for some σn ∈ Sn and σn begins with n, i.e., the

card at the back always goes at the front.

One shuffling method having this property is the rev method defined in Section 2.
Another example is the shuffling method top-bottom that is defined below. This method
simply switches the top and bottom card.

Definition 24. The shuffling method top-bottom:

∀n " 2 : Πn
top-bottom = {n23 · · · (n− 1)1}.

Example 25. Consider an iteration of Qpop
top-bottom over 32415.

"

#
32415
ε
ε

$

% push−−→

"

#
2415
3
ε

$

% push−−→

"

#
415
32
ε

$

% push−−→

"

#
15
324
ε

$

% shuffle−−−→

"

#
15
423
ε

$

% push−−→

"

#
5

4231
ε

$

%

shuffle−−−→

"

#
5

1234
ε

$

%
pop

(unload)−−−−−→

"

#
5
ε

1234

$

% push−−→

"

#
ε
5

1234

$

%
pop

(unload)−−−−−→

"

#
ε
ε

12345

$

%

Theorem 26. For every back-front shuffling method Σ and every n " 2,

pn(Qpop
Σ ) = F2n−1, (4)

where Fi is the i-th Fibonacci number with F1 = F2 = 1.

Proof. First, recall that we do not allow two consecutive shuffle operations when using
shuffle queues. Therefore, the output after an iteration of Qpop

Σ over a permutation π
is determined by the list of segments of π that were shuffled, since |Πm

Σ | = 1 for every
m " 2. For instance, the list of shuffled segments for the iteration of Qpop

top-bottom over
324165 shown in Example 25 is ([1, 3], [1, 4], [5, 6]), since exactly three shuffle operations
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were performed and the device contained the corresponding segment of π before each of
them, respectively. A list of shuffled segments l will always be in lexicographical order,
i.e., l = ([a1, b1], . . . , [ar, br]), where ai ! aj whenever i < j and bu < bv whenever au = av
and u < v. Since we are using pop shuffle queues, if two segments overlap, they must have
the same beginning. Thus when describing a list of segments with the same beginning,
we will use the shorthand [a; b1, b2, . . . , bv] to denote [a, b1], [a, b2], . . . , [a, bv] and we will
call such a list a cluster.

We are interested in the possible lists of shuffled segments when sorting a permutation
with Qpop

Σ or equivalently in the possible lists of clusters. Denote this set of possible lists
of clusters for input of size n by LCn. Note that the set LCn does not depend on the
shuffling method.

The idea of this proof is to show that for any π ∈ Sn(Qpop
Σ ), there exists a single list

of clusters in LCn, such that any iteration over Qpop
Σ corresponding to it sorts π and vice

versa - for any given list of clusters in LCn, there exists a single π ∈ Sn(Qpop
Σ ) that can be

sorted by the iterations corresponding to this list, i.e., by shuffling the given clusters. This
will establish a one-to-one correspondence between the sets Sn(Qpop

Σ ) and LCn. Then, we
will show that |LCn| = F2n−1.

[LCn → Sn(Qpop
Σ )] Let Πm

Σ = {σm} and let l = ([a1, b1], . . . , [ar, br]) ∈ LCn. Take
idn and apply consecutively σ−1

br−ar
over the segment [ar, br], σ

−1
br−1−ar−1

over the segment

[ar−1, br−1] and so on. After applying σ−1
b1−a1

over [a1, b1], we will obtain a permutation
π ∈ Sn, which can obviously be sorted by Qpop

Σ by shuffling the segments of π in the list
l. There cannot be another such permutation π′ since π′ must be obtained from idn after
applying consecutively σ−1

bj−aj
over the segment [aj, bj], for j = r, r − 1, . . . , 1. There is

only one permutation that can be obtained in this way and therefore for every l ∈ LCn,
we have only one π ∈ Sn(Qpop

Σ ) that can be sorted with the iterations corresponding to l.
[Sn(Qpop

Σ ) → LCn] Let π ∈ Sn(Qpop
Σ ) and let us assume that π can be sorted by two

different iterations it1 and it2 over Qpop
Σ corresponding to two different lists of clusters

in LCn, denoted by l1 and l2 with their last clusters denoted by [a1; b11, . . . , b1c1 ] and
[a′1; b

′
11, . . . , b

′
1d1

], respectively. If these last clusters are the same, then before applying
the shuffles in each of them, we must have the same permutation in the content of the
device. Therefore, without loss of generality, we can assume that [a1; b11, . . . , b1c1 ] ∕=
[a′1; b

′
11, . . . , b

′
1d1

] and that [a1, b1c1 ] ∕= [a′1, b
′
1d1

]. If b1c1 ∕= b′1d1 , then let b1c1 < b′1d1 , without
loss of generality. In this case, we will have that the element πb′1d1

is not moved anywhere

when sorting π by it1 (and thus πb′1d1
= b′1d1). However, when sorting π by it2, πb′1d1

is moved at position a′1 since the method Σ is back-front and this is the last time this
element is moved. Note also that a′1 ∕= b′1d1 . Therefore, it2 does not sort π, which is a
contradiction.

Thus b1c1 = b′1d1 and we must have that a1 ∕= a′1. Let x := b1c1 = b′1d1 . Then, πx goes
to position a1 and a′1, when we sort π with it1 and it2, respectively. This means that
πx = a1 and that πx = a′1, but a1 ∕= a′1. This is a contradiction, which shows that any
π ∈ Sn(Qpop

Σ ) can be sorted by iterations over Qpop
Σ corresponding to exactly one list of

clusters in LCn.
[Finding |LCn|] The desired correspondence between Sn(Qpop

Σ ) and LCn was estab-
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lished. Therefore, it suffices to get the number of different possible lists of clusters,
|LCn|, in order to find pn(Qpop

Σ ). If l = ([a1; b11, . . . , b1c1 ], . . . , [am; bm1, . . . , bmcm ]) ∈ LCn,
then l is determined by the c′1 + · · · + c′m := k numbers in [n] comprising l, where we
have c′j := cj + 1 numbers in the j-th cluster and c′j " 2 for each j ∈ [m]. We have
a1 < b11 < · · · < b1c1 < a2 < · · · < am < bm1 < · · · < bmcm and thus these k numbers can
be chosen in

+
n
k

,
ways, where k ∈ [2, n]. The number of compositions c′1 + · · · + c′m = k,

where each c′j " 2 is Fk−1, as proved in Lemma 27 following this proof. When k = 0, we

have the empty set of clusters. Therefore, we obtain |LCn| = 1 +
n0

k=2

+
n
k

,
Fk−1, which is

shown to be equal to F2n−1 in Lemma 28 via a nice combinatorial argument.

We include proofs of the following two lemmas for the sake of completeness.

Lemma 27. ([36, Exercise 1.35b]) The number of compositions

α1 + α2 + · · ·+ αm = k,

of an integer k " 2, where each part αj " 2, is given by the Fibonacci number Fk−1, where
F1 = F2 = 1.

Proof. We will use induction. One such composition exists when k = 2 or k = 3. Assume
that the statement holds for all integers less than some k " 4. Consider the first part
α1 of a composition α1 + · · · + αm = k having parts αj " 2 for all j ∈ [m] and some
m " 1. If α1 = 2, then by the induction hypothesis, there are Fk−3 compositions,
α2+ · · ·+αm = k− 2. If α1 > 2, then take α′

1 := α1− 1. It will suffice to find the number
of compositions α′

1 +α2 + · · ·+αm = k− 1. We have that α′
1 " 2, so the number of these

compositions is Fk−2, by the induction hypothesis. In total, we have Fk−2 + Fk−3 = Fk−1

compositions.

Lemma 28. ([8, Chapter 1, Identity 20])

F2n−1 = 1 +
n'

k=2

(
n

k

)
Fk−1, (5)

where Fj denotes the j-th Fibonacci number and F1 = F2 = 1.

Proof. It is a well-known fact that F2n−1 is the number of ways of tiling a strip of length
2n− 2 with tiles of length either 1 (squares) or 2 (dominoes). If 0 of the tiles are squares,
then we have a single possible tiling of the strip. It is not possible to have exactly 1 square,
since 2n − 2 is even. The cases when the number of squares is two or more remains. In
these cases, the total number of tiles is not less than 2 + 2n−4

2
= n and it is not possible

to have less than two squares among any n of the tiles. Let k be the number of squares
among the first n tiles. We have k " 2 and there are

+
n
k

,
ways of arranging these first n

tiles. This will be a collection of k squares and n − k dominoes, which has total length
2n− k. The strip that remains has length k− 2, which means that it can be tiled in Fk−1

ways. Summation over k gives the desired sum.
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5.2 A conjecture on Wilf-pop-equivalence

Theorem 26 enumerates the number of sortable permutations for a small subset of pop
shuffle queues. One can consider sorting by pop shuffle queues for various other shuffling
methods common in the literature. Some of them are the In-shuffles and the Out-shuffles,
as well as the Monge shuffles and the Milk shuffles. The book of Diaconis and Graham
[18, Chapter 6] discusses these and other shuffling methods. There, the authors mention
an interesting connection between the Out-shuffles and the Milk shuffles, shown to them
by John Conway. The same connection exists for the In-shuffles and the Monge shuffles.
In this section, we conjecture and investigate another possible connection between the
last two shuffling methods that is related to their pop shuffle queues. In order to describe
it, we first define the two methods formally.

The In-shuffle method is one of the two kinds of perfect riffle shuffles that are probably
the most popular shuffling methods. When using the perfect riffle shuffles, half of the
deck is held in each hand with the thumbs inward, then cards are released by the thumbs
so that they fall to the table interleaved perfectly, i.e., the first card is coming from
one of the halves, the second from the other half and so on. The Out-shuffles leaves
the original top card back on top. The In-shuffles leaves the original top card second
from top. For example, a deck of eight cards numbered by 1, 2, 3, 4, 5, 6, 7, 8 from top
to bottom, is transformed to 5, 1, 6, 2, 7, 3, 8, 4 after one In-shuffle. Some applications of
the riffle shuffles and some of their mathematical properties are discussed in [5, 19]. The
permutation family of the In-shuffle method is

∀n " 2 : Πn
In-sh =

&
{(k + 1)1(k + 2)2 · · · (2k)k}, if n = 2k, and

{(k + 1)1(k + 2)2 · · · (2k)k(2k + 1)}, if n = 2k + 1.

The Monge shuffle method is named after the eighteenth-century geometer Gaspard
Monge, who worked out the basic mathematical details of these shuffles [18]. The Monge
shuffle is carried out by successively putting cards over and under. The top card is taken
into the other hand, the next is placed above, the third below these two cards and so on.
For example, a deck of eight cards numbered by 1, 2, 3, 4, 5, 6, 7, 8 from top to bottom, is
transformed to 8, 6, 4, 2, 1, 3, 5, 7 after one Monge shuffle. The permutation family of the
Monge shuffling method is

∀n " 2 : Πn
Monge = {· · · 642135 · · · }.

Definition 29 (Wilf-pop-equivalent shuffling methods). The shuffling methods Σ1 and
Σ2 are Wilf-pop-equivalent if for each n " 1,

pn(Qpop
Σ1

) = pn(Qpop
Σ2

).

We make the following conjecture.

Conjecture 30. The In-shuffle and the Monge shuffling methods are Wilf-pop-equivalent.
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A first step that may help to establish the conjecture is the next theorem, which
confirms it if one has to use a single pop operation. Let S1

n(Q
pop
Σ ) be the set of permutations

of size n sortable by Qpop
Σ using only one pop operation and let p1n(Q

pop
Σ ) := |S1

n(Q
pop
Σ )|.

Theorem 31. For every n " 1,

p1n(Q
pop
In-sh) = p1n(Q

pop
Monge).

In addition, for every n " 3, p1n(Q
pop
In-sh) = p1n(Q

pop
Monge) = an−2, where a1 = 2, a2 = 4 and

an = 3an−2 for n " 3 (sequence A068911 in [31]).

We will show separately, with the next two lemmas, that p1n(Q
pop
In-sh) and p1n(Q

pop
Monge)

are equal to an−2, for all n > 4. This will suffice to establish Theorem 31, since one can
check directly that the statement of the theorem holds for n ! 4.

Lemma 32. p1n(Q
pop
Monge) = an−2, for all n > 4.

Proof. Let Πi
Monge = {σi}, for i > 1. We will need to use permutations of the same size.

Thus let

τi(x) :=

&
σi(x), if x ! i,

x, if x > i.
(6)

be a permutation of size n, for i ∈ [2, n]. Recall that sorting π ∈ Sn with an iteration
over Qpop

Monge having a single pop, corresponds to a cluster [1; b1, b2, . . . , n], where one
performs a shuffle after pushing b1, b2, . . . , n elements, respectively. The output will be
πτb1τb2 · · · τn = idn. In general, the set of the possible iterations with a single pop over
Qpop

Monge is described by the set of vectors (δ2, . . . , δn), where δi = 0 or 1, for each i ∈ [2, n]

and the set of possible outputs on input π is described by πτ δ22 · · · τ δnn . Note that if
2j + 1 < n and j " 1, then τ2j = τ2j+1.

Therefore, if n = 2k + 1, for a given k, then the possible outputs on input π are

πτ
δ′2
2 τ

δ′4
4 · · · τ δ

′
2k

2k , where δ′2i = 0, 1 or 2, for each i ∈ [k]. If π ∈ S1
n(Q

pop
Monge), then π is

a solution to πτ
δ′2
2 τ

δ′4
4 · · · τ δ

′
2k

2k = idn for some (δ′2, . . . , δ
′
2k). Thus, p1n(Q

pop
Monge) is given

by the number of different products τ
δ′2
2 τ

δ′4
4 · · · τ δ

′
2k

2k . We will show that τ
δ′2
2 τ

δ′4
4 · · · τ δ

′
2k

2k ∕=
τ
δ′′2
2 τ

δ′′4
4 · · · τ δ

′′
2k

2k , if (δ′2, . . . , δ
′
2k) ∕= (δ′′2 , . . . , δ

′′
2k). This means that it suffices to count the

number of different vectors (δ′2, . . . , δ
′
2k) which implies that p1n(Q

pop
Monge) = 3p1n−2(Q

pop
Monge)

since δ′2k has three possible values.

Assume that τ
δ′2
2 τ

δ′4
4 · · · τ δ

′
2k

2k = τ
δ′′2
2 τ

δ′′4
4 · · · τ δ

′′
2k

2k for some (δ′2, . . . , δ
′
2k) ∕= (δ′′2 , . . . , δ

′′
2k). We

can further assume that δ′2k < δ′′2k. Therefore, τ
δ′2
2 τ

δ′4
4 · · · τ δ

′
2k−2

2k−2 = τ
δ′′2
2 τ

δ′′4
4 · · · τ δ

′′
2k−2

2k−2 τ
δ′′2k−δ′2k
2k ,

where δ′′2k − δ′2k ∈ {1, 2}. However, τ2k(1) = 2k and τ 22k(1) = 2k − 1, i.e., τ
δ′′2k−δ′2k
2k moves

one of the last two elements to the first position, while neither of τ2, . . . , τ2k−2 moves any
of these two elements, which is a contradiction. If n = 2k, we can proceed in a similar
way. We would still have p1n(Q

pop
Monge) = 3p1n−2(Q

pop
Monge) since we have three times more

possibilities for the vector (δ2, . . . , δ2k−2, δ2k), where δ2k is 0 or 1 and δ2i is 0, 1 or 2 for
i ∈ [2, k − 1], compared to (δ2, . . . , δ2k−2), where δ2k−2 is 0 or 1 and δ2i is 0, 1 or 2 for
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i ∈ [2, k − 2].

Lemma 33. p1n(Q
pop
In-sh) = an−2, for all n > 4.

Proof. Let Πi
In-sh = {σi}, for i > 1 and let

τi(x) :=

&
σi(x), if x ! i,

x, if x > i.

be a permutation of size n, for i ∈ [2, n]. Again, we have that τ2j = τ2j+1, if 2j + 1 ! n.

The number p1n(Q
pop
In-sh) is given by the number of solutions of πτ

δ′2
2 τ

δ′4
4 · · · τ δ

′
2k

2k = idn for some

(δ′2, . . . , δ
′
2k), where δ′2i = 0, 1 or 2, for i ∈ [k]. We will show, again, that τ

δ′2
2 τ

δ′4
4 · · · τ δ

′
2k

2k ∕=
τ
δ′′2
2 τ

δ′′4
4 · · · τ δ

′′
2k

2k , if (δ′2, . . . , δ
′
2k) ∕= (δ′′2 , . . . , δ

′′
2k). Assume the opposite. Assume also that

δ′2k < δ′′2k, without loss of generality. Therefore, τ
δ′2
2 τ

δ′4
4 · · · τ δ

′
2k−2

2k−2 = τ
δ′′2
2 τ

δ′′4
4 · · · τ δ

′′
2k−2

2k−2 τ
δ′′2k−δ′2k
2k ,

where δ′′2k−δ′2k > 0. The possible values of δ′′2k−δ′2k are 1 and 2. Now, it suffices to see that
τ2k(2k − 1) = 2k and τ 22k(2k − 3) = 2k, while neither of τ2, . . . , τ2k−2 moves the element
2k. This is a contradiction, implying that p1n(Q

pop
In-sh) is equal to the number of different

vectors (δ′2, . . . , δ
′
2k). Thus p1n(Q

pop
In-sh) = 3p1n−2(Q

pop
In-sh) for both odd and even values of n,

in the same way as for Monge shuffles.

With the next two facts, we give recurrence relations for the number of permutations in
Sn(Qpop

Monge) that end with n and that do not end with n. We also show that we have similar
inequalities for these two subsets of Sn(Qpop

In-sh). Let p
′
n(Q

pop
Σ ) = |{π ∈ Sn(Qpop

Σ ) | πn = n}|
and let p′′n(Q

pop
Σ ) = |{π ∈ Sn(Qpop

Σ ) | πn ∕= n}|, where Σ is a shuffling method. Denote
the number of elements in the device D before the last pop operation, for an iteration itr
over D, by lps(itr), which stands for last pop size. One observation we use is that if π
can be sorted by an iteration itr over either Qpop

Monge or Qpop
In-sh, then the last element of π

determines whether lps(itr) is odd or even.

Theorem 34. For every n " 1,

p′n(Q
pop
Monge) = pn−1(Qpop

Monge) +
1

3

⌊n−1
2

⌋'

j=2

p12j+1(Q
pop
Monge)pn−(2j+1)(Qpop

Monge) (7)

and

p′n(Q
pop
In-sh) ! pn−1(Qpop

In-sh) +
1

3

⌊n−1
2

⌋'

j=2

p12j+1(Q
pop
In-sh)pn−(2j+1)(Qpop

In-sh). (8)

Proof. Let π ∈ Sn(Qpop
Monge), where πn = n and let itr be an iteration sorting π by the given

device. Let lps(itr) = k. The sequence of operations for itr ends either with push, pop or
with push, shuffle, pop.

In the first case, the possible prefixes π′ = π1 · · · πn−1 are exactly the permutations in
Sn−1(Qpop

Monge), since the iteration itr sorts π′ and conversely if we have an iteration itr’ that
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sorts some π′ ∈ Sn−1(Qpop
Monge), then π′n would be sorted by applying itr’ and then adding

the operations push, pop at the end. Therefore, we have pn−1(Qpop
Monge) such permutations

π.
In the second case, the last shuffle must leave the element πn = n at the same position.

The latter means that σk(k) = k, where Πk
Monge = {σk}, which is true if and only if k is odd.

Let k > 1 be a fixed odd number. Let us also have π′ := red(πn−k+1 · · · πn). As in the proof

of Theorem 31, we must have that π′ is a solution of the equation π′τ δ22 · · · τ δk−1

k−1 τ
δk
k = idk,

for a binary vector (δ2, . . . , δk) and where the permutations τj are defined by Equation
(6) in the same proof. Recall that δj = 1 if and only if the iteration itr has a shuffle
operation immediately after the j-th element of π′ is pushed. Take one such solution π′

corresponding to the vector (δ2, . . . , δk). We have a shuffle before the last pop, which

means that δk = 1. If δk−1 = 0, then we must also have π′τ δ22 · · · τ δk−2

k−2 τk−1 = idk since k
is odd and τk−1 = τk. This means that π′ can be sorted with an iteration ending with
the operations push and pop and thus the same holds for π. These permutations π were
already counted in the first case. Therefore, we must have π′ for which δk−1 = δk = 1 in
order for π to not be yet counted. The number of these permutations π′ is the same as
the number of different products τ δ22 · · · τ δk−2

k−2 , which is p1k−2(Q
pop
Monge) =

1
3
p1k(Q

pop
Monge). The

permutation π1 · · · πn−k could be any of the permutations in Sn−k(Qpop
Monge). Therefore,

summing over all odd values of k = 2j +1, we get an inequality similar to Equation (7):

p′n(Q
pop
Monge) ! pn−1(Qpop

Monge) +
1

3

⌊n−1
2

⌋'

j=2

p12j+1(Q
pop
Monge)pn−(2j+1)(Qpop

Monge) (9)

All of the steps of the proof so far are applicable to In-shuffles as well. Therefore, we have
obtained Inequality (8).

It remains to show that instead of Inequality (9) one can write an equality. This
is true because of the following observation. Assume that π can be sorted by Qpop

Monge

using two different iterations itr and itr’ with lps(itr) = 2j + 1 and lps(itr’) = 2j′ + 1,
where j ∕= j′. Assume also, that πn = n and that π1 · · · πn−1 /∈ Sn−1(Qpop

Monge). Then,
both itr and itr’ must have two shuffle operations after pushing the elements πn−1 and πn,
respectively. In addition, τ 22v(1) = 2v − 1 for each v " 1. Therefore, since itr sorts π, we
must have πn−1 = n − (2j + 1) + 1 = n − 2j. However, since itr’ sorts π, we must also
have πn−1 = n− 2j′, which is a contradiction.

Theorem 35. For every n " 1,

p′′n(Q
pop
Monge) =

⌊n
2
⌋'

j=1

p12j(Q
pop
Monge)pn−2j(Qpop

Monge) (10)

and

p′′n(Q
pop
In-sh) !

⌊n
2
⌋'

j=1

p12j(Q
pop
In-sh)pn−2j(Qpop

In-sh). (11)
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Equation (10) follows from a property of the Monge shuffle, which we formulate below.

Definition 36 (Pop-simple shuffling method). The shuffling method Σ is pop-simple if
there is no permutation π ∈ S1(Qpop

Σ ), not ending with n, such that π = π′ ⊕ π′′ for some
π′ and π′′, where |π′| " 2, |π′′| " 2 and π′′ ∈ S1(Qpop

Σ ).

Intuitively, if a shuffling method Σ is pop-simple and σ ∈ Sn(Qpop
Σ ) does not end with

n, then lps(itr) has the same value for every iteration itr of Qpop
Σ sorting σ.

Lemma 37. The Monge shuffling method is pop-simple.

Proof. Suppose that there exists π ∈ Sn, not ending with n, such that π = π′ ⊕ π′′ for
some π′ and π′′, such that |π′| " 2, |π′′| " 2, and each of π and π′′ can be sorted by Qpop

Σ

using a single pop operation. Every iteration sorting a permutation by Qpop
Monge that uses

a single pop operation can be written as a cluster beginning with the element 1. Consider
an arbitrary cluster [1; b1, b2, . . . , bv] representing an iteration that sorts π. Since π does
not end with n, then the last shuffle must be after we push the last element, i.e., bv = n.
In addition, we must have σn ∕= n, where Πn

Monge = {σ} and σ = σ1 · · · σn. Note that σ
either begins with n (when n is even) or ends with n (when n is odd). Therefore, σ must
begin with n, which means that πn = 1. However, since π = π′ ⊕ π′′, we must have that
1 is among the first |π′| elements of π. It cannot be the last element of π′, since π′′ is
non-empty, which is a contradiction.

Proof of Theorem 35. Let π ∈ Sn(Qpop
Monge), where πn ∕= n and let itr be an iteration sorting

π by Qpop
Monge. Note that the sequence of operations for itr must end with push, shuffle, pop

since πn must be moved to another position. This is also the reason that if lps(itr) = k,
then k must be even since all permutations of odd size associated with the Monge shuffle
fix its last element. The permutation π1 · · · πn−k could be any of the permutations in
Sn−k(Qpop

Monge). Therefore, summing over all even values of k = 2j, we get

p′′n(Q
pop
Monge) !

⌊n
2
⌋'

j=1

p12j(Q
pop
Monge)pn−2j(Qpop

Monge). (12)

All of the steps of the proof so far are applicable to In-shuffles, as well, and thus Inequality
(11) can be obtained analogously.

It remains to show that instead of Inequality (12), one can write Equation (10). As-
sume that π can be sorted byQpop

Monge using two different iterations itr and itr’ with lps(itr) =
2j and lps(itr’) = 2j′, where j > j′. Then, both sequences γ = red(πn−2j+1 · · · πn) and
κ = red(πn−2j′+1 · · · πn) must be permutations of [2j] and [2j′], respectively, and they
must be sortable with a single pop. However, this would imply that the Monge shuffling
method is not pop-simple, because γ = γ′ ⊕ κ for γ′ = red(πn−2j+1 · · · πn−2j′), |γ′| " 2,
|κ| " 2 and γ,κ ∈ S1(Qpop

Monge). This contradicts Lemma 37.

If one can replace Inequalities (8) and (11) with equations, then one can obtain Con-
jecture 30 using induction and Theorem 31. Inequality (11) can be replaced by an
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equation if and only if the In-shuffle method is also pop-simple. There exist permu-
tations π = π′ ⊕ π′′ for some π′ and π′′, such that |π′|, |π′′| " 2 and π ∈ S1(Qpop

In-sh).
For instance, if π = 21 ⊕ 62481357, then π ∈ S1(Qpop

In-sh). However, in this example,
π′′ = 62481357 /∈ S1(Qpop

In-sh). We have performed computer simulations using Theorem 35
which show that there is no such permutation π ∈ Sn for n < 20 and thus we have an
equality in (11) for n < 20 . Similarly, we have checked that Inequality (8) is an equality
for n < 20. Therefore, we have obtained that Conjecture 30 holds for n < 20.

6 Further questions

The considered sorting devices and the obtained results raise some additional questions
that we list below.

1) Can we use Theorem 6 to make progress on the long-standing problem of finding
the number of permutations sortable by a deque [31, A182216]? Some results on
the asymptotic of these numbers can be found in [33, 34].

2) Can we find shuffle queues that are equivalent to the input and the output restricted
deques defined in [29]? In general, if T is a set of patterns, then for which T exists
a shuffle queue QΣ, such that Sn(QΣ) = Avn(T ), for each n " 2?

3) Find characterizations in terms of pattern avoiding classes for the set of permuta-
tions of given cost. Theorem 10 gives such a characterization for the set of permu-
tations of cost 1.

4) In Section 1.2, we noted that there exists a deterministic linear time algorithm that
sorts all of the permutations in Sn(Q′

cuts). Which are the shuffling methods Σ for
which there exists such a linear procedure that sorts all of the permutations in
Sn(Q′

Σ)?

5) Find characterization of the shuffling methods, whose shuffle queues without restric-
tions or of types (i) and (ii), can sort all permutations in Sn? Theorem 20 identifies
one class of such shuffling methods for shuffle queues of type (ii).

6) Suppose that the expected number of random shuffles until one obtains a sorted deck
of cards, beginning with a random permutation, is greater or equal asymptotically
when using the shuffling method Σ1, compared to the shuffling method Σ2. Then,
is it always true that pn(Q′

Σ1
) " pn(Q′

Σ2
) asymptotically?

One may also, of course, consider sorting by shuffle queues for other popular shuffling
methods (see [18, Chapter 6]), in order to find more connections with other combinatorial
objects.
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[1] Albert, M.H., Atkinson, M.D. and Ruŝkuc, N., 2003. Regular closed sets of permu-
tations. Theoretical Computer Science, 306(1-3), pp.85-100.

[2] Albert, M.H., Homberger, C., Pantone, J., Shar, N. and Vatter, V., 2018. Generating
permutations with restricted containers. Journal of Combinatorial Theory, Series A,
157, pp.205-232.

[3] Aldous, D. and Diaconis, P., 1986. Shuffling cards and stopping times. The American
Mathematical Monthly, 93(5), pp.333-348.

[4] Asinowski, A., Banderier, C. and Hackl, B., 2020. Flip-sort and combinatorial aspects
of pop-stack sorting. arXiv:2003.04912.

[5] Atkinson, M.D., 1999. Restricted permutations. Discrete Mathematics, 195(1-3),
pp.27-38.

[6] Atkinson, M.D., Livesey, M.J. and Tulley, D., 1997. Permutations generated by token
passing in graphs. Theoretical Computer Science, 178(1-2), pp.103-118.

[7] Avis, D. and Newborn, M., 1981. On pop-stacks in series. Utilitas Math, 19(129-140),
p.410.

[8] Benjamin, A.T. and Quinn, J.J., 2003. Proofs that really count: the art of combina-
torial proof (Vol. 27). American Mathematical Soc..

[9] Bevan, D., 2015. Permutation patterns: basic definitions and notation.
arXiv:1506.06673.
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