
Many faces of symmetric edge polytopes

Alessio D’Al̀ı∗

Mathematics Institute
University of Warwick

Coventry CV4 7AL, United Kingdom

alessio.dali@uni-osnabrueck.de

Emanuele Delucchi†

University of Applied Arts and Sciences of Southern Switzerland
Polo universitario Lugano, Campus Est

Via la Santa 1, 6962 Lugano-Viganello, Switzerland

and

Department of Mathematics
University of Pisa

Largo Bruno Pontecorvo, 5, 56127 Pisa, Italy

emanuele.delucchi@supsi.ch

Mateusz Micha!lek
Max Planck Institute for Mathematics in the Sciences

04103 Leipzig, Germany

and

University of Konstanz
78457 Konstanz, Germany

mateusz.michalek@uni-konstanz.de

Submitted: Apr 21, 2021; Accepted: May 19, 2022; Published: Jul 29, 2022

c©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Symmetric edge polytopes are a class of lattice polytopes constructed from finite
simple graphs. In the present paper we highlight their connections to the Kuramoto
synchronization model in physics – where they are called adjacency polytopes – and
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to Kantorovich–Rubinstein polytopes from finite metric space theory. Each of these
connections motivates the study of symmetric edge polytopes of particular classes
of graphs. We focus on such classes and apply algebraic-combinatorial methods to
investigate invariants of the associated symmetric edge polytopes.

Mathematics Subject Classifications: 52B20, 52B12, 13P10, 13P25, 05A15

1 Introduction

Graphs and polytopes are among the most fundamental objects in mathematics. There
are many constructions associating a polytope to a graph. In this article we focus on three
of them: symmetric edge polytopes [28, 29, 46, 47, 39], adjacency polytopes [10, 8, 7] as
well as Kantorovich–Rubinstein polytopes and Lipschitz polytopes [54, 14, 25, 31, 32].

All of the described classes are intensely investigated, but each in a separate field.
Symmetric edge polytopes, or more precisely the related Ehrhart polynomials, were first
studied by algebraic number theorists [5, 51] and later by algebraic combinatorialists.
Adjacency polytopes appeared in the context of the Kuramoto model, describing the
behavior of interacting oscillators [37]. The study of Kantorovich–Rubinstein polytopes
of metric spaces is rooted in the research on the transportation problem. This class,
together with their polar duals, Lipschitz polytopes, was brought to combinatorialists’
attention by Vershik [54] (see also [40]), who suggested to study their face structure as a
combinatorial invariant of metric spaces. We refer to Section 2 for the definitions and a
more careful contextualization of the three classes of polytopes in their respective fields.
To our knowledge, the connection between such research areas does not appear to have
been drawn yet.

The aim of our paper is precisely to exhibit such relations and exploit them in order
to obtain new results about each of these families of polytopes.

In Section 2 we describe each of the above classes of polytopes and their applications.
The main result in the section is Theorem 6, which states that symmetric edge polytopes
are exactly the adjacency polytopes and their coordinate linear cuts are Kantorovich–
Rubinstein polytopes, also known as fundamental polytopes. Hence, indeed, each class
may be studied using the methods developed in the other fields.

In Section 3 we introduce our main tools. Some of them, like the description of facets
of symmetric edge polytopes, have already appeared in one of the fields, but were not
known in the other ones. Some, like the connection to the word counting problem and
the Goulden–Jackson cluster method described in Section 3.4, are only unraveled in this
article. The technique which proves to be the most useful to us is however the explicit
description, initiated in [28], of some Gröbner bases of the associated toric algebras and
related unimodular triangulations. These triangulations are very much sought for in the
Kuramoto model context in order to develop homotopy techniques. However, to our
knowledge, techniques involving Gröbner bases have not yet been used in that context.

Our main results are presented in Section 4. Among them, we show how some im-
portant invariants of symmetric edge polytopes, such as the h∗-polynomial, change under
basic graph constructions. This allows us to confirm the Nevo–Petersen conjecture [43]
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in some cases. We also provide very explicit descriptions of the polytopes for families
of graphs that are interesting from the Kuramoto model perspective or for the study of
metric spaces in the context of computational phylogenetics. Moreover, we give a formula
for the number of integer points in polar duals of symmetric edge polytopes arising from
bipartite planar graphs. This ties in with the active line of research on integer points in
dual pairs of reflexive polytopes. We refer to the introduction to Section 4 for a more
detailed statement of our results.

2 Symmetric edge polytopes, Kuramoto model and metric
spaces

In this section we describe the polytopes that are the main object of the article. Our
focus is on their three different incarnations: as symmetric edge polytopes (Section 2.1),
as adjacency polytopes (Section 2.2) and as fundamental polytopes (Section 2.3). As
we will see, the first two are the same by definition. The main result of this section is
Theorem 6, where we show that fundamental polytopes are precisely coordinate linear
cuts of symmetric edge polytopes.

2.1 Symmetric edge polytopes

Symmetric edge polytopes are lattice polytopes associated to simple graphs. They were
first introduced in [39]. Let G be a graph with vertex set V and edge set E. Consider the
lattice ZV with basis elements ev for v ∈ V .

Definition 1 (Symmetric edge polytope). The symmetric edge polytope associated to a
graph G is:

PG := conv {ev − ew, ew − ev : {v, w} ∈ E} ⊂ RV .

Example 2. Let G be the complete bipartite graph K2,2. The polytope P is three-
dimensional with eight vertices.

Example 3. Let n > 1 and let G be the complete graph Kn. Then PG is the convex hull
of the set of all roots of a Coxeter system of type An. This is the (full) root polytope of
type An of, e.g., [11], the adjective “full” being used here in order to distinguish it from
the “positive” root polytopes considered in [22], which are convex hulls of the positive
roots of a Coxeter system. Both notions have been widely studied in the literature. They
are related via the action of a subgroup of the given Coxeter group, see e.g., [11].

Positive root polytopes were generalized to arbitrary graphs by in [50, Sec. 12]. In
this sense, symmetric edge polytopes can be regarded as the corresponding generalization
of “full” root polytopes.

Early interest in symmetric edge polytopes was spurred by the fact that certain families
of polynomials sharing properties similar to Riemann’s ζ function are Ehrhart polynomials
of special symmetric edge polytopes [5, 51]. Such polynomials have been in the focus of
active research at least since Pólya’s work [49], and they appear in different branches
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of mathematics, e.g., in the study of diophantine equations and Meixner polynomials
[35]. Algebraic combinatorialists have formulated several conjectures and proved many
theorems about zero loci of the Ehrhart polynomials of symmetric edge polytopes [28,
29, 46, 47]. In particular, PG is always a reflexive polytope, i.e., its dual is also a lattice
polytope. Reflexive polytopes, through toric geometry, play an important role in mirror
symmetry [1] and the study of Gorenstein toric varieties [33].

Several methods turned out to be very useful in the study of symmetric edge polytopes,
e.g., the theory of interlacing polynomials [29]. In our work the connection to toric ideals
and in particular to Gröbner bases played the most important role: we describe these
techniques in Section 3.2. Below we present one of the most prominent examples of
symmetric edge polytope.

Example 4. Let G be any tree with n vertices. The symmetric edge polytope PG is
unimodularly equivalent to the convex hull of the vectors {±(ei − ei+1), 1 ! i ! n − 1}
and to the cross-polytope, i.e. the convex hull of the signed basis vectors of the lattice
{±ei, 1 ! i ! n − 1}. It has 2n−1 facets corresponding to orthants of Rn−1. All roots of
the Ehrhart polynomial lie on the line {z : Re(z) = −1

2
}, cf. [29, Example 3.3].

2.2 The Kuramoto model

The Kuramoto model describes the behaviour of interacting oscillators. Classically, these
are modeled by differential equations in the phase angles of the oscillators, with constant
coefficients (one for each pair of oscillators, determining the strength of the coupling) and
one constant frequency for each oscillator [37].

The oscillators are often represented by vertices of a graph G. An edge of G joins two
given oscillators if they interact directly. The Kuramoto model found a place in many
applications, e.g. in physics, biology, chemistry, engineering and even social networks [16].
One of the fundamental problems is to understand the steady states of the system (that
is: when the differentials of the phase angles vanish).

In a recent series of papers [7, 8, 10], a new method for the study of the steady states
by means of adjacency polytopes associated to G has been put forward. It turns out that,
by definition, the adjacency polytope of a graph G is exactly the symmetric edge polytope
PG. A main feature of the new approach is a change of variables in the original system of
equations, which reduces the problem to solving (Laurent) polynomial equations in the
algebraic torus (C∗)n. In order to bound the number of solutions, the authors apply the
theory developed by Kushnirenko and Bernstein [3, 38], cf. [34], where the normalized
volume of the adjacency polytope plays a central role. The authors of [10] refer to it as
the adjacency polytope bound and prove that in many cases it gives much better estimates
of the maximal number of possible solutions than those obtained with previously available
methods. Furthermore, we note that regular triangulations of adjacency polytopes are
central in the homotopy methods developed in this context [8].

So far this technique has been carried out in practice only for very special families
of graphs. We believe that one of the main reasons is that adjacency polytopes, alias
symmetric edge polytopes, are quite complicated combinatorial objects themselves and
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providing triangulations and facet descriptions is nontrivial. One of the missing tools
seemed to be the theory of Gröbner bases, which we apply successfully here. In particular,
we provide explicit results about triangulations and volumes for many families of graphs.
Our results are not exhaustive and we believe that our method can be successfully applied
to many other graphs.

2.3 Fundamental polytopes of metric spaces

In [54] Vershik proposed a combinatorial study of finite metric spaces via the face structure
of certain polytopes that arise in the context of Kantorovich and Rubinstein’s work on
the transportation problem. Let (X, d) be a finite metric space.

Definition 5 (Kantorovich–Rubinstein polytope). Let RX be the real vector space with
the basis ej for j ∈ X. The Kantorovich–Rubinstein polytope KR(X, d) is the following
convex hull:

KR(X, d) := conv

!
ei − ej
d(i, j)

: i, j ∈ X

"
.

The dual of the KR polytope is known as the Lipschitz polytope as its points represent
Lipschitz functions on (X, d) with Lipschitz constant equal to one. Explicitly, it is defined
by

LIP (X, d) = {x ∈ RX :
#

i

xi = 0, xi − xj ! d(i, j) ∀i,j∈X}.

The name fundamental polytope of (X, d) has been used in [14, 54] in order to refer to the
polytope KR(X, d). The problem then [54, Problem 1.1] is to relate the number of faces
(and their incidences) of the fundamental polytope to the structure of the metric space.

This line of research has been taken up in the literature from different points of view,
see [14, 25, 31, 32]. Face numbers of fundamental polytopes were computed for a class of
“generic” metric spaces by Gordon and Petrov [25, Introduction], and in [14] for “tree-
like” metric spaces. In order to motivate the name of the latter class, recall the following
classical construction. LetG = (V,E) be a connected graph and consider a weight function
w : E → R+. This data defines a metric space on any subset V1 ⊆ V of the vertices of G
by letting the distance between any two vertices in V1 be the minimum weight of a path in
G that joins them (the weight of a path being the sum of the weights of its edges). Such
weighted graphs are used for instance in phylogenetic analysis in order to encode genetic
dissimilarity data. In this context, the structure of G reflects the fact that such data are
given as a set of weighted bipartitions of the set of vertices. The resulting graphs are
called splits networks and the metric spaces they represent are called split-decomposable,
see e.g. [30] and cf. also Section 4.4. The most basic examples of splits graphs are trees
(i.e., acyclic, connected graphs), and the associated metric spaces are called tree-like.
Somewhat surprisingly, even in this basic case the formulas for the face numbers found in
[14], although explicit, are quite involved. No explicit formulas are found in the literature
beyond the above-mentioned cases of trees and “generic” spaces. This level of complexity
is less surprising once one considers our first Theorem 6, showing that that a special class
of KR-polytopes of metric spaces consists of linear sections of symmetric edge polytopes.
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2.4 Connections

We next exhibit the connections between fundamental polytopes and symmetric edge
polytopes. Let G = (V,E) be a simple, connected graph. For a subset V1 ⊂ V we
will use the notation PG ∩ RV1 to denote the intersection of PG with the linear space
{xi = 0 | i /∈ V1}. On V1 we consider the metric d defined as above with the trivial
weighting w(e) = 1 for all e ∈ E and we set

KG,V1 := KR(V1, d).

Theorem 6. For any subset of vertices V1 ⊂ V we have:

PG ∩ RV1 = KG,V1 .

Let us record here some remarks that will come in handy in the proof of Theorem 6.

Remark 7. One has that
ei−ej
d′ ∈ KG,V1 whenever i, j ∈ V1 and d′ " dG(i, j). This holds

because 0,
ei−ej
dG(i,j)

∈ KG,V1 and the point
ei−ej
d′ lies on the line segment between 0 and

ei−ej
dG(i,j)

.

Remark 8. Let q ∈ PG. Then q is a convex combination of ±(ei − ej) for {i, j} ∈ E(G).
We can associate with q a directed weighted graph: if ei − ej and ej − ei appear in q
with weights ω1 < ω2, then we will draw the directed edge going from i to j with weight
ω2−ω1 > 0. The weights in such a directed weighted graph will always be nonnegative and
sum up to at most one. (Since 0 ∈ PG, we can still regard this as a convex combination.)
Moreover, we will always assume without loss of generality that such a directed graph is

acyclic. Indeed, if a directed cycle i1
λ1−→ i2

λ2−→ · · · λm−1−−−→ im
λm−→ i1 exists, we can obtain

a new representation of q by subtracting µ := minj λj from every edge in the cycle. At
least one of the new weights (λj − µ) is then zero, and thus the corresponding edge has
been deleted from the directed graph.

Remark 9. If q ∈ PG∩RV1 , consider a graphical representation of q as in Remark 8. Then
for each vertex not in V1 the sum of the weights of the incoming edges must equal the
sum of the weights of the outcoming ones. We will say that these vertices are balanced.

Proof of Theorem 6. By construction, KG,V1 is contained in RV1 . To see that it is also
contained in PG, pick two vertices i, j ∈ V1 and consider a minimal path in G between
them, say i = i0 → i1 → . . . → id = j. Then

1

d
(ei − ej) =

1

d
(ei0 − ei1) +

1

d
(ei1 − ei2) + . . .+

1

d
(eid−1

− eid),

which is a convex combination of points in PG.
Let us now prove that PG ∩ RV1 is contained into KG,V1 . Pick a point q in PG ∩ RV1

and consider a representation of it as a weighted directed acyclic graph as in Remark 8.
First note that, if the representation of q admits no vertices in V1 with at least one

outcoming edge, then there are no edges at all and hence q = 0. To see this, assume
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by contradiction that an edge exists. Then its source v must be not in V1. Since such
vertices are balanced by Remark 9, there must be another edge whose target is v, and so
on. Going on with this process we either create a cycle or meet a vertex in V1, and both
of these possibilities are forbidden.

Now assume that q ∕= 0 and pick a vertex i1 ∈ V1 with an outcoming edge. Following
this edge we either get to a vertex in V1 or in V \ V1. In the latter case, by balancedness
there must exist an outcoming edge, which we then follow. After a finite number of steps
we meet a vertex j1 ∈ V1 and we have thus created a path p̃1 of length d1 between the two
vertices i1 and j1 in V1. Call µ1 the smallest weight to be found on the path p̃1, and call p1
the path obtained from p̃1 by replacing all weights by µ1. We can now modify our directed
graph by “subtracting p1”, i.e. by substituting all weights λ of the edges of p̃1 by λ− µ1.
This yields a new weighted directed acyclic graph with a strictly smaller number of edges
and where vertices not in V1 are still balanced. Such a graph is a representation of the
point q − µ1(ej1 − ei1). We now repeat the whole procedure until, after a finite number
N of steps, we have the edgeless graph, which corresponds to the point 0. Summing all
the contributions we then get a decomposition

q =
N#

k=1

µk(ejk − eik) =
N#

k=1

dkµk
ejk − eik

dk
, (2.1)

where
ejk−eik

dk
∈ KG,V1 by Remark 7, and

$N
k=1 dkµk equals the sum (which is at most

one) of the original weights in the directed graph associated with q. Since 0 ∈ KG,V1 , we

can regard
$N

k=1 dkµk
ejk−eik

dk
as a convex combination of points in KG,V1 , as desired.

Corollary 10. The Lipschitz polytope LIP (G, V1) := (KG,V1)
∗ is the projection of the

lattice polytope (PG)
∗ by the map dual to the inclusion RV1 ⊂ RV .

3 Algebraic and combinatorial methods

In this section we describe the various methods we will apply to study the symmetric edge
polytopes.

3.1 Facets of symmetric edge polytopes

A fundamental theorem of polytope theory states that a subset of Euclidean space is the
convex hull of a finite set of points (i.e., a polytope) if and only if it is the intersection
of a finite number of closed halfspaces. A face of a polytope P is any subset of P that
can be obtained as the intersection of P with a zero set of an affine linear form that is
nonnegative on P [55, §2.1]. The set of all faces of P , partially ordered by inclusion, is the
face poset F (P ) of P (notice that F (P ) has a unique maximal element, P itself, and a
unique minimal element, the empty face ∅). The f -vector of a d-dimensional polytope is
f(P ) = (f0, f1, . . . , fd−1, fd), where fi is the number of i-dimensional faces. By convention
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we often set f−1 = 1, counting the face corresponding to the empty set. We define the
f -polynomial by

f(t) =
d+1#

j=0

fj−1t
j. (3.1)

For a polytope P of dimension d, a face of dimension d−1 is called a facet, and we will
write f(P ) for the number of facets of a polytope P when the dimension of P needs not
be specified. If P is full-dimensional, i.e. P ⊂ Rd, then each facet F determines, uniquely
up to a positive constant, a linear function l ∈ (Rd)∗ such that l is constant on F and
l(f) ! l(p) for any f ∈ F and p ∈ P .

Symmetric edge polytopes are not full dimensional as they are contained in the hy-
perplane RV

0 ⊂ RV defined by setting the sum of all coordinates equal to zero. If the
graph G is connected, then PG is full dimensional in RV

0 . The inclusion RV
0 ⊂ RV gives

rise to the dual surjection (RV )∗ → (RV
0 )

∗. Hence, linear forms in (RV
0 )

∗ may be repre-
sented by elements of (RV )∗, which in turn can be identified with functions f : V → R.
Such a representation is not unique: more precisely, two functions f1, f2 are identified as
elements of (RV

0 )
∗ if they differ by a constant, i.e. f1(v1) − f2(v1) = f1(v2) − f2(v2) for

every v1, v2 ∈ V . The representation becomes unique if, for example, we fix v ∈ V and
assume f(v) = 0. Using this identification one can give an explicit description of when f
corresponds to a facet of PG.

Theorem 11. [28, Theorem 3.1] Let G = (V,E) be a finite simple connected graph. Then
f : V → Z is facet-defining if and only if

(i) for any edge e = uv we have |f(u)− f(v)| ! 1, and

(ii) the subset of edges Ef = {e = uv ∈ E : |f(u) − f(v)| = 1} forms a spanning
connected subgraph of G.

The vertices of the polytope that belong to the facet defined by f correspond to those
directed edges (u, v) ∈ E for which f(v)− f(u) = 1.

Notation 12. For a symmetric edge polytope PG and a facet F associated with the labeling
f : V (G) → Z, we will denote by GF the (oriented) subgraph of G obtained by selecting
only those edges (u, v) for which f(v)− f(u) = 1.

Example 2 (continued). Let G = K2,2. We may consider a function f that takes value
zero on two vertices that are not joined and value one on two other vertices. This function
satisfies the assumptions of Theorem 11 and hence it determines a facet F . We have four
edges (u, v) in GF (i.e. for which f(v)− f(u) = 1), namely u must belong to the part on
which f vanishes and v to the other part. These four edges correspond to four vertices:

(−1, 0, 1, 0); (−1, 0, 0, 1); (0,−1, 1, 0); (0,−1, 0, 1).

This is a square, which is a facet of the polytope described in Example 2. The graph GF

is presented in Figure 1 at the end of Section 3.2.
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As we have seen in Section 2.2 the normalized volume is one of the crucial invariants
we would like to understand. It is also important in the study of Ehrhart polynomials, as
it is (up to the factorial of the dimension of the polytope) the coefficient of the leading
term and equals the degree of the corresponding toric variety.

One of the methods to compute volumes of reflexive polytopes is to find, if possible,
a unimodular triangulation of the boundary, i.e. a subdivision into lattice simplices of
minimal possible volume. This induces a subdivision of the polytope itself into simplices,
by extending each simplex on the boundary by 0. As each facet of a reflexive polytope
is of lattice distance one to 0 each of the new simplices is also unimodular. Hence, the
normalized volume of the polytope equals the number of such simplices. The following
result provides a combinatorial description of simplices in a given facet.

Corollary 13. [28, Corollary 3.2] The unimodular simplices contained in a facet of PG

represented by a function f correspond exactly to (undirected) spanning trees that are
subgraphs of GF .

Example 2 (continued). We have four possible simplices in the facet corresponding to
Figure 1. Indeed, removing any edge from GF gives us a spanning tree. This corresponds
to the fact that if we remove one point of the square facet F the convex hull of the other
vertices is a unimodular simplex.

The previous example shows how to detect all of the simplices of a facet. This is
of course not a triangulation. For instance, among the four possible simplices that are
convex hulls of 3-element subsets of the vertices of a square we have two possible choices
of pairs of simplices that triangulate the square. A very powerful tool to obtain such
triangulations is the theory of Gröbner bases, which we describe next.

3.2 Gröbner bases and triangulations

Toric geometry studies relations among finite configurations of lattice points and special
algebraic varieties. The main idea is to identify a point a ∈ Zn with a Laurent monomial
xa := xa1

1 · · · xan
n . Then a subset of points S ⊂ Zn is identified with the closure of the image

of the map given by the corresponding m := |S| many monomials. This closure is, by
definition, a toric variety. Its defining ideal IS ⊂ C[y1, . . . , ym] is generated by binomials,
i.e. polynomials of the type ya − yb for some a,b ∈ Zm

!0. A case of particular interest
is when S is the set of lattice points in a polytope with vertices contained in {1} × Zn.
There are now many textbooks devoted to toric geometry and its interplay with discrete
convex geometry [4, 13, 19, 52]. The reader may also find a short introduction in [41] and
[42, Chapter 8].

Example 14. Let S = {(1, 0, 0), (1, 1, 0), (1, 0, 1), (1, 1, 1)} ⊂ {1}× Z2 contain all lattice
points of the unit square. The associated toric variety is the closure of the image of the
map:

(C∗)3 → C4, (t, x1, x2) +→ (t, tx1, tx2, tx1x2).

Here the domain is the algebraic torus (C∗)3, as some of the monomials in general may
have negative exponents. The ideal IS ⊂ C[y1, . . . , y4] is generated by y1y4 − y2y3.
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Toric geometry offers both combinatorial tools to study toric varieties and algebraic
tools to study lattice polytopes. Here we focus on the latter connection and outline
applications of Gröbner bases to the study of triangulations of polytopes, and our main
reference is [52]. Let ≺ be a term order on monomials in C[y]. For any f ∈ C[y] the
largest monomial appearing in f with a nonzero coefficient is called the initial term of
f and is denoted by in≺(f). For any ideal I ⊂ C[y], the initial ideal of I is in≺(I) :=
〈in≺(f) : f ∈ I〉, the ideal generated by all initial terms of elements of I. By definition,
this is always a monomial ideal. We note that in general it is not enough to take the
initial terms of a set of generators of I in order to obtain the generators of the initial ideal
in≺(I).

Definition 15 (Gröbner basis). A finite set G of generators of I is called a Gröbner basis
if the initial terms of G generate in≺(I).

For any ideal, Gröbner bases exist and may be computed, e.g. by using the Buchberger
algorithm [12, 2.7].

Example 14 (continued). First consider the lexicographic term order y4 ≺ y3 ≺ y2 ≺ y1.
Then the initial ideal of I = (y1y4 − y2y3) is in≺(I) = (y1y4).

If we keep a lexicographic term order, but change the order of the variables so that
y1 ≺ y2 ≺ y4 ≺ y3, then the initial ideal of I is in≺(I) = (y2y3).

In fact, for any other term order the initial ideal will be one of the two described
above.

In what follows our ideals will always be homogeneous and our term orders compatible
with respect to the degree, i.e. monomials of higher degree will be larger in the term order
than those of smaller degree. One of the most often used term orders is the degree reverse
lexicographic order degrevlex, see [42, p. 8].

Definition 16. From now we will take S to be the set of lattice points of a polytope P
with vertices in {1}× Zn, and we will call IP the associated ideal.

Algebraically, the initial ideal is the best monomial approximation of the starting ideal
sharing a lot of important invariants, such as the dimension, the degree and the Hilbert
polynomial. Geometrically, the associated variety is a flat deformation of the original
toric variety to a (possibly nonreduced) union of coordinate subspaces. Combinatorially,
in≺(IP ) is a triangulation of the starting polytope.

We explain this last statement in detail. Recall that the variables yi correspond to
lattice points of P . Hence, (the radical of) a monomial in the yi’s corresponds to a subset
of lattice points in P . We define a family ∆ of sets of lattice points in P as follows: a set
Q of lattice points belongs to ∆ if and only if the product of the variables yi corresponding
to points in Q does not belong to the radical of in≺(I). As in≺(I) is an ideal, the family
∆ is closed under taking subsets, i.e. is a simplicial complex. We refer to elements of ∆ as
faces. We note that the minimal nonfaces of ∆ correspond to generators of Rad(in≺(I)).
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Example 14 (continued). In the considered case y1, y4 correspond to two diagonal points
in the square and y2, y3 correspond to the other two diagonal points. We focus on the case
in≺(I) = (y1y4). If we take all lattice points in the square, the corresponding monomial
is y1y2y3y4 and belongs to the initial ideal. Hence, the full set of lattice points of the
square does not belong to ∆. Next we focus on the four three-element subsets. Clearly,
two of them are not in ∆, namely those corresponding to y1y4y2 and y1y4y3. However, we
obtain two (maximal) faces of ∆ corresponding to y1y2y3 and y2y3y4. One can check that
all other faces of ∆ are subsets of these two maximal ones. We also see that the diagonal
(1, 4) is the (unique) minimal nonface.

Our next aim is to relate a geometric realization of ∆ to a triangulation of P .

Theorem 17 ([52], [42, Theorem 13.25]). Using the notation introduced above, ∆ is a
triangulation of P . The minimal nonfaces of ∆ correspond to generators of Rad in≺(I).

Example 14 (continued). We see that ∆ represents one of the possible triangulations
of the square. If we change the term order so that in≺(I) = (y2y3) we obtain the other
triangulation.

Not every triangulation of P may be constructed from term orders in the way described
above. Those who do are called regular.

Remark 18. Our definition of regular triangulations may be unfamiliar to readers steeped
in combinatorial constructions of regular triangulations. For experts, let us describe the
connection. It turns out that for a given ideal, any term order ≺ may be induced by
associating weights to variables [52, Proposition 1.11]. Hence, the choice of ≺ corresponds
to assigning weights to the lattice points of P . These are precisely the weights used to
obtain the regular triangulation.

In this article we will be mostly interested in unimodular triangulations, i.e. triangu-
lations into simplices of normalized volume one. Fortunately, initial ideals are very good
at detecting those.

Theorem 19 ([52, Corollary 8.9]). The regular triangulation ∆ is unimodular if and only
if in≺(I) is a radical ideal.

We next describe a construction, based on [28], that produces radical initial ideals for
any symmetric edge polytope. In this case the variables associated to lattice points of PG

are as follows: one variable z, corresponding to the point 0, and for each edge e ∈ E two
variables xe and ye corresponding to the two orientations of e. We fix a degrevlex order ≺
with z ≺ xe1 ≺ ye1 ≺ · · · ≺ xen ≺ yen for some ordering of the edge set E = {e1, . . . , en}.

Theorem 20. [28, Proposition 3.8] Let G be a simple graph. For any oriented edge
e, we denote by pe the corresponding variable, i.e. pe = xe or pe = ye depending on
the orientation. We also set qe to be equal to the variable with the opposite orientation,
i.e. {pe, qe} = {xe, ye}.

The following collection of three types of binomials forms a Gröbner basis of the toric
ideal IPG

with respect to the order ≺:
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1. For every 2k-cycle C of G, with fixed orientation, and any k-element subset J of
edges of C not containing the smallest edge among those of C in the chosen ordering,

%

e∈J

pe −
%

e∈C\J

qe.

2. For every (2k + 1)-cycle C of G, with fixed orientation, and any (k + 1)-element
subset J of edges of C, %

e∈J

pe − z
%

e∈C\J

qe.

3. For any edge e of G,
xeye − z2 .

Note that the leading monomial is always chosen to have positive sign.

Observe that the initial ideal from Theorem 20 is always radical. Further, a monomial
m in the variables xe, ye belongs to this initial ideal if and only if zm does. Hence, the
induced triangulation ∆ is unimodular and a simplex in the boundary belongs to ∆ if and
only if its extension by 0 does. This gives us the following strategy for the computation
of the normalized volume when G is connected:

1. Determine the facets of PG, by Theorem 11.

2. For each facet consider the simplices in that facet, corresponding to special spanning
trees as in Corollary 13.

3. Count those simplices/spanning trees whose directed edges, represented as a mono-
mial, are not divisible by any of the leading terms in Theorem 20.

Example 2 (continued). We have fixed a facet F of a three dimensional polytope PG for
G = K2,2. The graph GF has four edges going from one side of the bipartite graph to the
other as represented in Figure 1. The four edges form a (nonoriented) cycle. Ordering
the edges 1 ≺ 2 ≺ 3 ≺ 4, we obtain in≺(I) = (y2y3). Theorem 20(1) gives us a Gröbner
basis element y2y3 − y1y4, where the set J equals {2, 3}. Hence, we must count spanning
trees that do not contain both of the edges in J . Clearly, there are two of them. These
correspond to the two triangles {1, 2, 4} and {1, 3, 4} in the square. Hence, the normalized
volume of this facet equals two.

3.3 Ehrhart polynomials and power series

Let P be a lattice polytope, i.e. a polytope with vertices in Zn. A celebrated theorem of
Ehrhart [18] states that the function EP : Z!0 → Z defined by EP (j) = |jP ∩ Zn| is a
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1 2 3 4

Figure 1: Orientation of the edges of the graph K2,2 corresponding to one facet of PK2,2 .

polynomial, known as the Ehrhart polynomial. A closely related concept is the Hilbert-
Ehrhart series defined by:

HSP (t) :=
∞#

j=0

EP (j)t
j.

If P is full-dimensional, this is a rational function of the form

HSP (t) = h∗(t)/(1 + t)n+1.

Here h∗(t) =
$

h∗
j t

j is a polynomial of degree at most n, known as the h∗-polynomial. It
can be also defined by the formula

EP (j) = h∗
0

&
j + n

n

'
+ h∗

1

&
j + n− 1

n

'
+ · · ·+ h∗

n

&
j

n

'
.

The h∗-polynomial encodes many properties of the polytope P . For example P is reflexive
if and only if h∗ is palindromic and of degree n, as proved by Hibi in [27].

The notion of f -vector can be defined for simplicial complexes, just as in §3.1 but
setting fi to be the number of i-dimensional simplices. The h-polynomial of a polytope or
a simplicial complex is h(t) :=

$n+1
j=0 hjt

j where the coefficients are given via the following
relation with the f -polynomial given in (3.1):

f(t) =
n+1#

i=0

hit
i(1 + t)n+1−i.

The h- and h∗-polynomials should not be confused, however they are very much related.
The h-polynomial of a unimodular triangulation of the lattice polytope P is the h∗-
polynomial of this polytope. When P is reflexive, this is also the h-polynomial of the
unimodular triangulation of the boundary. As symmetric edge polytopes have unimodular
boundary triangulations, the study of their h∗-polynomials is in particular the study
of h-polynomials of special sphere triangulations. Many intriguing conjectures about
triangulations of spheres are still unsolved. We want to mention here the Charney–Davis
conjecture and two of its possible strengthenings, due to Gal and Nevo–Petersen: to this
end, we need some more definitions.

An n-dimensional simplicial complex ∆ is said to be
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• flag if its Stanley–Reisner ideal is generated in degree two, i.e. all minimal nonfaces
of ∆ are edges;

• balanced if its vertices can be partitioned into n+1 color classes in such a way that
no vertices belonging to the same face share the same color.

If a simplicial complex ∆ triangulates an n-dimensional sphere, it is known that its h-
polynomial is palindromic of degree n+ 1. As a consequence, it can be expressed as

h(t) =

⌊n+1
2

⌋#

i=0

γit
i(1 + t)n+1−2i,

where (γ0, γ1, . . . , γ⌊n+1
2

⌋) is the γ-vector of ∆. Just like the h-polynomial is better suited

than the f -polynomial to highlight some properties of a simplicial complex, it turns out
that the γ-vector plays a similarly important role when dealing with flag triangulations
of spheres.

We can now state the promised conjectures, in increasing order of strength. We remark
that all of these are usually stated for a more general class of simplicial complexes, namely
flag generalized homology spheres (also known as flag Gorenstein* complexes).

Conjecture 21 (Charney–Davis [6, Conjecture D, equivalent form on p. 135]). Let ∆ be
a flag triangulation of a (2d−1)-dimensional sphere. Then (−1)dh(−1) " 0. Equivalently,
the last entry γd of the γ-vector of ∆ is nonnegative.

Conjecture 22 (Gal [20, Conjecture 2.1.7]). Let ∆ be a flag triangulation of a sphere.
Then all the entries of the γ-vector of ∆ are nonnegative.

Conjecture 23 (Nevo–Petersen [43, Conjecture 6.3]). Let ∆ be a flag triangulation of a
sphere. Then the γ-vector of ∆ is the f -vector of a balanced simplicial complex.

Remark 24. At first sight, it is not clear why Conjectures 22 and 23 are stated for spheres
of any dimension, in contrast to Conjecture 21 which deals only with odd-dimensional
spheres. Indeed, for any triangulation of a 2d-dimensional sphere one has that −1 is a root
of the h-polynomial, so the näıve version of Conjecture 21 for even-dimensional spheres is
trivially true. However, Gal and Januszkiewicz [21, Theorem] note that the general version
of the Charney–Davis conjecture is equivalent to asking that, for every 2d-dimensional
flag generalized homology sphere, (−1)dh̃(−1) " 0 holds, where h̃(t) := h(t)

1+t
.

3.4 Recursions and word counting

As we will see in Section 4.3, some computations about special symmetric edge polytopes
will boil down to combinatorial questions about words. In particular, given a finite alpha-
bet and a finite set of forbidden words, we will be interested in counting (cyclic) words
that do not contain any of these forbidden words as a subword.

the electronic journal of combinatorics 29(3) (2022), #P3.24 14



Example 25. Let us consider the alphabet consisting of three letters +, 0 and −. How
many words of length ℓ avoid the subwords +−, −+ and 000? If ℓ = 3, there are 16 such
(non-cyclic) words:

+++,++0,+0+,+00,+0−, 0++, 0+0, 00+,

−−−,−−0,−0−,−00,−0+, 0−−, 0−0, 00−.

Now imagine that any such word is written on a strip of paper. What happens if we bring
together the two endpoints of the strip, so that the last letter of the word is adjacent to
the first? Then the number of eligible words drops to 14, since +0− and −0+ (in boldface
above) are not acceptable anymore.

Such a problem can be tackled via the Goulden–Jackson cluster method, see for in-
stance [26]. We will now describe this procedure (following the exposition by Noonan and
Zeilberger [45]) and its extension to cyclic words due to Edlin and Zeilberger [17].

3.4.1 The Goulden–Jackson cluster method

Fix an alphabet over k letters and a set B of n bad words. We assume without loss of
generality that no element of B is a proper subword of another element in B. Our goal is
to compute the generating function f(s) :=

$+∞
i=0 cis

i, where ci is the number of i-letter
words that do not contain any element of B as a subword. It turns out that this formal
series can be expressed as a rational function in s.

Given any ℓ-letter word w = w1w2 · · ·wℓ, we define its weight to be weight(w) := sℓ,
its head to be the set of all its proper prefixes {w1, w1w2, w1w2w3, . . . , w1w2 · · ·wℓ−1} and
its tail to be the set of all its proper suffixes {w2w3 · · ·wℓ, w3w4 · · ·wℓ, . . . , wℓ}. Given two
words u and v (in this order), we define their overlap to be the intersection of the tail of
u with the head of v. Moreover, whenever the overlap of u and v is nonempty, we define

(u : v) :=
#

x∈overlap(u,v)

weight
(v
x

)
,

where v
x
denotes the subword of v obtained by erasing the prefix x.

For each v ∈ B we want to compute Lv, a certain rational function in s. These rational
functions are found by solving the linear system in |B| equations and |B| unknowns

Lv = −weight(v)−
#

u∈B
overlap(u,v) ∕=∅

(u : v) · Lu .

Finally, let L =
$

v∈B Lv . Then

Theorem 26 ([45]). With the above notation, the rational generating function f(s) sat-
isfies

f(s) =
1

1− ks− L
.
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Example 25 (continued). Consider the alphabet {+, 0,−} and the set of bad words
B = {+−,−+, 000}. This gives rise to the linear system

*
+,

+-

L+− = −weight(+−)− (−+ : +−) · L−+

L−+ = −weight(−+)− (+− : −+) · L+−

L000 = −weight(000)− (000 : 000) · L000

which becomes *
+,

+-

L+− = −s2 − s · L−+

L−+ = −s2 − s · L+−

L000 = −s3 − (s+ s2) · L000

and hence gives L+− = L−+ = − s2

1+s
and L000 = − s3

1+s+s2
. Thus,

L = L+− + L−+ + L000 =
−2s2 − 3s3 − 3s4

(1 + s)(1 + s+ s2)

and

f(s) =
1

1− 3s− L
=

−s3 − 2s2 − 2s− 1

2s3 + 2s2 + s− 1
= 1 + 3s+ 7s2 + 16s3 + 36s4 + 82s5 + . . .

As already computed, there are indeed 16 3-letter words satisfying the constraints.

3.4.2 The cyclic case

We now want to address the case when words are cyclic, i.e. the last letter of the word
is adjacent to the first (but we still remember where the word starts). As explained in
Example 25, this introduces some new constraints that need to be taken care of. Let us
introduce some notation in view of this.

Fix an ordering b1, . . . , bn for the bad words in B and define an n × n matrix A =
(aij)

n
i,j=1 by

aij :=

.
−(bi : bj) if overlap(bi, bj) ∕= ∅
0 otherwise.

Define then another n by n matrix M = (mij)
n
i,j=1 by

M := A · (In − A)−1 · s · dA
ds

,

where In is the n by n identity matrix and both multiplication by s and differentiation
are taken entrywise.

Finally, given any formal power series
$+∞

i=0 cis
i and any integer r > 0, we set

chopr

/
+∞#

i=0

cis
i

0
:=

+∞#

i=r

cis
i.

We are now ready to state the main result from [17].
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Theorem 27 ([17, Theorem]). With the above notation, the rational generating function
for the cyclic case equals

1 + sdL
ds

− L

1− ks− L
+

n#

i=1

chopℓi
(mii),

where ℓi is the length of the i-th bad word bi.

Example 25 (continued). One checks that

A =

1

2

+− −+ 000

+− 0 −s 0
−+ −s 0 0
000 0 0 −s− s2

3

4 and M =

1

52

+− −+ 000

+− s2

1−s2
−s3

1−s2
0

−+ −s3

1−s2
s2

1−s2
0

000 0 0 s2+3s3+2s4

1+s+s2

3

64.

Since chop2(
s2

1−s2
) = s2

1−s2
and chop3(

s2+3s3+2s4

1+s+s2
) = s2+3s3+2s4

1+s+s2
− s2 = 2s3+s4

1+s+s2
, one has that

the generating function is

1 + sdL
ds

− L

1− 3s− L
+

3#

i=1

chopℓi
(mii) = −3 + s+ s2 +

−2s2 − 6s+ 4

2s4 − s2 − 2s+ 1

= 1 + 3s+ 7s2 + 14s3 + 26s4 + 62s5 + 138s6 + 310s7 + . . .

As expected, we find 14 3-letter cyclic words satisfying the constraints.

4 Results and applications

In this section we show how combining methods from different fields can help us to
obtain explicit information about symmetric edge polytopes. Some of the cases of graphs
were already studied, e.g. trees, cycles, complete bipartite graphs and complete graphs
[28, 39, 29, 47]. In this section we assume familiarity with the basics of graph theory, and
point the reader to Diestel’s book [15] as a reference for any undefined terminology.

Our main motivation comes from questions asked by Robert Davis and Tianran Chen:
“(. . .) our current focus is on wheel graphs as well as graphs formed by gluing cycles to
cycles or complete graphs to complete graphs. Any additional information on the normal-
ized volume or facet count will give us important root count information for the Kuramoto
model. Description of all the facets will tell us how the subnetworks are formed. Eventu-
ally, we will need regular triangulations to construct homotopy algorithms.”[9]

On the other hand, Vershik asks to “study and classify finite metric spaces according
to combinatorial properties of their fundamental polytopes”[54, § 1]. Here we focus on
classes of metric spaces that are relevant in the context of computational phylogenetics
and whose associated graph can be generated by gluing even cycles and trees (i.e., “circular
split-decomposable metrics”).
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We start by presenting the f -vector in case of even cycles in Section 4.1. Cycles
played a central role in [8]: there, a facet description was particularly important, however
no general formula for the f -vector was given. The symmetric edge polytopes associated
with cycles were also studied in depth in [47]. In the case of odd cycles, they were used to
disprove two conjectures about the locus of roots of the Ehrhart polynomials of smooth
Fano polytopes.

After this warm-up, in Section 4.2 we show how the polytopes and their invariants
change under various graph-theoretic constructions. The enumeratively quite challenging
treatment of wheel graphs is presented in Section 4.3. In Section 4.4 we describe fun-
damental polytopes of circular split-decomposable metrics, as a sample contribution to
Vershik’s program of combinatorial classification of metric spaces in the special context
of metric spaces with relevance in phylogenetics.

Finally, narrowing our focus to bipartite graphs, in Section 4.5 we draw a connection
with the theory of integer flows on graphs. Using Beck and Zaslavsky’s “inside-out” ap-
proach to Ehrhart theory, we obtain a formula that relates the number of integer points
in polar duals of symmetric edge polytopes to the number of facets in the (primal) sym-
metric edge polytopes of bipartite contractions of the graph. This is a contribution to the
ongoing study of the number of integer points in primal-dual pairs of reflexive polytopes
[23, 44]. In particular, for classes of graphs where one can give explicit expressions for the
number of facets (such as those studied in §4.1 and §4.4), this formula allows for explicit
computation of the number of integer points.

4.1 Even cycles

Let C2k be the even cycle on 2k vertices, k > 1. We will investigate the properties of
PC2k

. Let us fix a global orientation so that each edge {i (mod 2k), i + 1 (mod 2k)}
starts from i (mod 2k) and ends in i + 1 (mod 2k). Edges oriented according to this
orientation will be called positive and oriented differently negative. By Theorem 11 we
obtain the following corollary.

Corollary 28. The facets of PC2k
are in bijection with integer labelings of the vertices

f : V → Z such that:

• a fixed vertex is labeled by zero;

• consecutive vertices have labels that differ exactly by one.

The polytope PC2k
has

7
2k
k

8
facets. Each facet of PC2k

is (2k−2)-dimensional and contains
2k vertices, i.e. (oriented) edges of C2k.

Proof. The first statement is exactly the application of Theorem 11. To count the facets
we proceed as follows. We start by assigning 0 to the fixed vertex. We follow the cycle,
assigning values to vertices, each time either increasing or decreasing the value by exactly
one. We obtain a facet precisely when we make exactly k increases and k decreases. In
other words, any choice of k edges determines a facet of PC2k

and vice versa. The last
statement follows.
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Applying the unimodular triangulation induced by Theorem 20 one proves that each
facet of PC2k

has volume k.

Corollary 29 (cf. [47, Theorem 2.2]). The normalized volume of PC2k
equals k ·

7
2k
k

8
.

Our next goal is to describe the face structure of PC2k
.

Proposition 30. The poset of faces F (PC2k
) is isomorphic to the set of all ordered pairs

(A,B) of disjoint subsets of [2k] where either |A| = |B| = k or else |A|, |B| < k, with
partial order given by componentwise containment: (A,B) ! (A′, B′) if A ⊆ A′ and
B ⊆ B′.

In particular, the f -vector of the polytope PC2k
is given by:

fi(PC2k
) =

*
,

-

7
2k
k

8
i = 2k − 2

$
a+b=i+1
a<k,b<k

7
2k
a

87
2k−a

b

8
i < 2k − 2

.

Proof. The description of the facets was given in Corollary 28. Let us consider lower-
dimensional faces.

Fix i < 2k − 2. Every i-dimensional face H must be contained in some facet F
represented by k edges oriented in a positive way and k edges in the opposite direction.
The face H must contain at least i+1 lattice points corresponding to a edges oriented in
a positive way and b in the opposite way, where a+b = i+1. If either a = k or b = k then
F is the unique facet containing H and hence H = F , which is not possible. Thus we
may assume a, b < k. However, then H does not contain any other lattice points. Indeed,
consider any additional oriented edge e that corresponds to a point in F . To the chosen
edges representing lattice points of H we may add one more edge, that is e oriented in the
opposite direction, obtaining a set of edges G′. Then we may further extend G′ to a set of
k edges oriented in a positive way and k edges in the negative way. Thus, the initial set
of i + 1 points belongs to a facet that does not contain e. We may repeat the argument
for any other edge to see that H is a simplex with i + 1 points. Hence, for i < 2k − 2,
every i dimensional face is represented by a choice of a < k positive and b < k negative
edges, where a+ b = i+ 1.

Example 31 (cf. Example 2). Let G = C4 = K2,2. Then PG is a three-dimensional
polytope, with six facets that are squares, twelve edges and eight vertices. Its face poset
is isomorphic to that of a cube, but keep in mind that our polytope is reflexive.

4.2 Joining graphs

The question we address in this section is what can be said about the symmetric edge
polytope of a graph obtained by gluing together two connected graphs. Before getting into
this, we record here an easy but useful lemma about symmetric edge polytopes associated
with connected bipartite graphs.

Lemma 32. Let G be a connected bipartite graph. Then, any f : V → Z that defines a
facet of PG via Theorem 11 satisfies |f(v)− f(w)| = 1 for all adjacent v, w.

the electronic journal of combinatorics 29(3) (2022), #P3.24 19



Proof. If f(v)−f(w) = 0 for some adjacent v, w ∈ V , then in the spanning set supporting
the nonzero values of |f(v)−f(w)| there is a path π from v to w. Since G is bipartite, the
length of π is odd, but a sum of an odd number of ones and minus ones cannot be zero –
which it should be in order for the total variation |f(v)− f(w)| along π to be null.

Lemma 32 gives an immediate upper bound for the number of facets of PG when G is
bipartite and connected.

Corollary 33. Let G be a connected bipartite graph. Then f(PG) ! 2|V |−1.

Proof. Being connected, G contains a spanning tree. After fixing the value of a certain
vertex, by repeatedly applying Lemma 32 we have two possibilities for the value of any
other vertex in the spanning tree, and hence in G itself.

Remark 34. As follows from the proof, the upper bound in Corollary 33 is realized when
G is a tree. In that case, PG is combinatorially equivalent to a (|V | − 1)-dimensional
cross-polytope, cf. Example 4. The bound fails for graphs that are not bipartite: for
example, in the case of the complete graph G = Kn, the polytope PG has 2n − 2 facets.

Let now G1 and G2 be two connected graphs. We first recall what happens when G1

and G2 are joined by one vertex. Let G be a graph obtained by identifying a vertex v1
of G1 with a vertex v2 of G2. By [48, Proposition 4.2] PG = PG1 ⊕ PG2 is the direct
sum of the two polytopes and the h∗ polynomial for PG is the product of the respective
h∗-polynomials. In particular, the normalized volume is the product of the respective
normalized volumes.

Remark 35. We note that the polytope PG is exactly the same when G is a disjoint union
of G1 and G2.

Remark 36. Let P and Q be two polytopes with posets of faces F (P ) and F (Q). For

any poset O with a unique maximal element let O\1̂ be the restriction of O to elements
that are not maximal. The poset of faces of the direct sum P ⊕Q satisfies F (P ⊕Q)\1̂ ≃
F (P )\1̂ × F (Q)\1̂.

A more sophisticated case is when G1 and G2 are joined by an edge. We start with
an easy observation. From now on, let G be the graph obtained from G1 and G2 by
identifying an edge.

Proposition 37. Let G1 and G2 be two connected bipartite graphs. Then

f(PG) =
1

2
f(PG1)f(PG2).

Proof. Since any symmetric edge polytope P is centrally symmetric, its facets come in
antipodal pairs (F,−F ). Let B(P) be the set of such pairs.

We prove the claim by constructing a bijection between B(PG1)×B(PG2) and B(PG).
Let e1 = (v1, w1) (resp. e2 = (v2, w2)) be the edge of G1 (resp. G2) that will be identified.
Consider a facet F1 of PG1 . By Theorem 11 we know that such a facet is represented
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by a function g1 : VG1 → Z, where we may assume g1(v1) = 0. Further, as the graph G1

is bipartite, by Lemma 32 we must have g1(w1) ∕= 0. Thus g1(w1) = ±1. Analogously
for G2 we consider a facet F2 and a function g2 with g2(v2) = 0 and g2(w2) = ±1. By
exchanging g2 with −g2 without loss of generality we may assume g1(w1) = g2(w2). As
g1(v1) = 0 = g2(v2), we see that g1 and g2 induce a facet-defining function g on G, with
g|VGi

= gi. Indeed, on no two vertices joined by an edge the function differs by more
than one and the edges on which the function differs exactly by one contain a spanning
tree. We have thus defined an injective function from B(PG1)×B(PG2) to B(PG). Noting
that G is bipartite connected itself, one gets the inverse function simply by restricting the
defining function g (and −g) to G1 and G2.

Corollary 38. Let H be a graph obtained by joining k even cycles of lengths 2a1, . . . , 2ak,
consecutively by an edge. The number of facets of PH equals 1

2k−1

9k
i=1

7
2ai
ai

8
.

Proof. The proof is by induction on k. The case k = 1 follows from Corollary 28. The
inductive step is exactly Proposition 37.

The following proposition may be proved directly. However, we will derive it as an
easy corollary of Theorem 44 which describes the h∗-polynomial of PG. It may be also
derived from [48, Corollary 4.5].

Proposition 39. Let H be a graph obtained by joining k even cycles of lengths 2a1, . . . ,
2ak, consecutively by an edge. The normalized volume of PH equals 1

2k−1

9k
i=1 ai

7
2ai
ai

8
.

In order to determine the h∗-polynomial of PG we need a few preparatory lemmas.

Lemma 40. Let H be a bipartite graph and let e be one of its edges. Let ≺ be a degrevlex
order such that z ≺ xe ≺ ye ≺ v for each variable v /∈ {z, xe, ye}. Then

in≺IPH
= (xeye) + JH ,

where the generators of the ideal JH do not involve z, xe nor ye.

Proof. As H has no odd cycles, by Theorem 20 the generators of the initial ideal are
either xeye or do not involve xe, ye at all.

Proposition 41. Let G1 be a bipartite graph and let G2 be any graph. Let G be the graph
obtained from G1 and G2 by identifying one edge e. Then there exist degrevlex orders ≺1,
≺2 and ≺ such that

in≺IPG
= in≺1IPG1

+ in≺2IPG2
,

where the rings of IPG1
and IPG2

share the variables z, xe and ye.

Proof. Let G1 have edges e1 = e, e2, . . . , en and G2 have edges e
′
1 = e, e′2, . . . , e

′
m, where e1

and e′1 are the edges that will be identified in G. Let us fix total orders of the variables
on PG1 and PG2 so that z ≺ xe ≺ ye ≺ xe2 ≺ ye2 ≺ . . . ≺ xen ≺ yen and z ≺ xe ≺ ye ≺
xe′2

≺ ye′2 ≺ . . . ≺ xe′m ≺ ye′m . We let ≺1 and ≺2 be the degrevlex orders with respect to
the given orders of the variables. Pick as ≺ a degrevlex order with z ≺ xe ≺ ye ≺ v for
all variables v /∈ {z, xe, ye} which is also compatible with the variable orders in G1 and
G2. By Theorem 20 we know that any generator of the squarefree initial ideal of IPG

is
one of the following:
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• xẽyẽ for some edge ẽ in G;

• the product of the variables corresponding to any k + 1 edges inside an oriented
(2k + 1)-cycle;

• the product of the variables corresponding to any k edges inside an oriented 2k-cycle,
provided such edges do not contain the smallest one.

Let us fix a monomial of the second or third type and let C be the cycle in G from which it
arises. If C is entirely contained into G1 (respectively, G2), our monomial appears already
in in≺1IPG1

(respectively, in≺2IPG2
). If this is not the case, then C does not contain the

edge e. Note that, since G1 is bipartite, it contains no odd cycle: in particular, C ∩ G1

must consist of 2a− 1 edges.

• If C is a 2k-cycle, then it consists of 2a − 1 edges in G1 and 2b − 1 edges in G2,
where (2a− 1) + (2b− 1) = 2k. Since we need to pick k = a + b− 1 edges, by the
pigeonhole principle we are forced to select at least a edges from C ∩G1 or b edges
from C ∩G2. But since (C ∩G1) ∪ {e} (respectively, (C ∩G2) ∪ {e}) is a 2a-cycle
in G1 (respectively, a 2b-cycle in G2) where e is the smallest edge, the monomial we
chose is divisible by a monomial in in≺1IPG1

(respectively, in≺2IPG2
), as desired.

• If C is a (2k+1)-cycle, then C∩G2 consists of 2b edges, where (2a−1)+2b = 2k+1.
If we pick a + b edges, by the pigeonhole principle we must select at least a edges
from C ∩G1 or b+1 edges from C ∩G2. The conclusion follows in a similar fashion
as in the previous case.

The inclusion
in≺IPG

⊇ in≺1IPG1
+ in≺2IPG2

,

is obvious, which finishes the proof.

Remark 42. The proof of Proposition 41 fails if we join any two graphs, as new elements
may appear in the reduced Gröbner basis. See also Proposition 48.

Lemma 43. Let I be an ideal in the polynomial ring C[x] and denote by HS′ the Hilbert
series of the quotient C[x]/I. Denoting by HS the Hilbert series of C[x, y1, y2, z]/(I +
(y1y2)), the following equality holds:

HS =
1 + t

(1− t)2
HS′ .

Proof. By passing to the initial ideal one can assume that I is a monomial ideal. The
Hilbert function of C[x, y1, y2, z]/I equals 1

(1−t)3
HS′, where 1

(1−t)3
= (1 + t + t2 + . . . )3

counts the exponents of y1, y2 and z in the monomial. We now have to subtract the
monomials divisible by y1y2 obtaining:

HS =
1

(1− t)3
HS′ − t2

(1− t)3
HS′ =

1 + t

(1− t)2
HS′ .
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The following theorem extends [48, Corollary 4.5] from the case of two bipartite graphs
to the case of a bipartite graph and an arbitrary graph.

Theorem 44. Let G1 be a connected graph and G2 be a connected bipartite graph, and
denote by H1 and H2 the h∗-polynomials of the algebras associated with the respective
symmetric edge polytopes. Let G be a graph obtained by joining G1 and G2 by an edge e0.

Then the h∗-polynomial for G equals H1H2/(1 + t). In particular, this operation pre-
serves real-rootedness of the h∗-polynomial.

Proof. Given any graph G′, we will denote by HS(G′) the Hilbert series of the algebra
associated with PG′ , i.e. C[z, xe, ye | e ∈ E(G′)]/IPG′ . If G′ is connected, then HS(G′) =

H ′/(1− t)|V (G′)|, where H ′ is the h∗-polynomial.
Let ≺ be a term order as in Lemma 40. Then

in≺IPG2
= (xe0ye0) + JG2 ,

where the generators of the ideal JG2 do not involve z, xe0 nor ye0 .
Our goal is to compute HS(G). To do so, recall that the monomials not in in≺IPG

form a basis of T/IPG
, where T = C[z, xe, ye | e ∈ E(G)]. By combining Proposition 41

and Lemma 40 we have that

in≺IPG
= in≺IPG1

T + JG2T.

Since the generators of the monomial ideals in≺IPG1
and JG2 do not share any variable,

every monomial in T not in in≺IPG
may be uniquely represented as the product of a

monomial in C[z, xe, ye | e ∈ E(G1)] not in in≺IPG1
and a monomial in R := C[xe, ye |

e ∈ E(G2) \ {e0}] not in JG2 . This implies that HS(G) = HS(G1) HS(R/JG2). Since by
Lemma 43 HS(R/JG2) = HS(G2)(1− t)2/(1 + t), we have that

HS(G) = HS(G1) HS(G2)
(1− t)2

1 + t

=
H1H2

(1 + t)(1− t)|V (G1)|+|V (G2)|−2

=
H1H2

(1 + t)(1− t)|V (G)| .

Multiplying both sides by (1− t)|V (G)| yields the claim.

Let us recall that the γ-vector for a palindromic polynomial f of degree d is defined

by the formula f(x) =
$⌊ d

2
⌋

i=0 γit
i(1 + t)d−2i. For a graph G we denote by γG the γ-

vector associated with the h∗-polynomial for the toric algebra over the symmetric edge
polytope PG, in the sense of Section 3.2. Noting that the γ-vector remains invariant (up
to attaching zeros at the end) after multiplying the polynomial by (1 + t), we obtain the
following corollary.
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Corollary 45. Using the notation of Theorem 44, the γ-vector for G equals:

(γG)i =
#

a+b=i

(γG1)a(γG2)b.

As another corollary, we see that the joining of edges provides many examples satis-
fying the Nevo–Petersen conjecture.

Corollary 46. Let G1 be a connected graph and let G2 be a connected bipartite graph,
for which the respective symmetric edge polytopes have unimodular flag triangulations
satisfying the Nevo–Petersen conjecture. Let G be the graph obtained from joining G1 and
G2 by an edge. Then, any unimodular flag triangulation of the boundary of PG satisfies
the Nevo–Petersen conjecture.

Proof. By hypothesis there exist ∆1 and ∆2 balanced simplicial complexes with f -vectors
given respectively by γG1 and γG2 . Consider the simplicial join ∆1 ∗ ∆2, which is again
balanced (since we can pick the coloring induced by those of ∆1 and ∆2, assuming the two
sets of colors used are disjoint). The f -vector of ∆1∗∆2 is by construction the convolution
of the original f -vectors. Applying Corollary 45 completes the proof.

Corollary 47. Let G be a graph obtained by successively connecting complete bipartite
graphs by an edge. Then the γ-vector associated to PG satisfies the Nevo–Petersen con-
jecture.

Proof. The case of one complete bipartite graph is precisely [28, Theorem 4.2]. Induction
follows by Corollary 46.

When joining together two non-bipartite graphs by an edge, the situation is different.
We include here as a case study the computation of the normalized volume of the sym-
metric edge polytope associated with the graph obtained by joining two odd cycles by an
edge.

Proposition 48. Let G be the graph obtained by joining by an edge two odd cycles C and
C ′ of respective lengths 2i+ 1 and 2j + 1. Then vol(PG) = (i+ j + 2ij)

7
2i
i

87
2j
j

8
.

Proof. We follow the strategy outlined after Theorem 20.
Call e = {v1, v2} the common edge. Let F be the facet associated with the labeling

f as in Theorem 11. Without loss of generality, let f(v1) = 0. In what follows we will
say that a directed edge w1 → w2 is ascending (respectively descending, constant) when
f(w2) − f(w1) = 1 (respectively −1, 0). We choose directions for the edges of G as in
Figure 2 below.

Two possibilities can arise.

• Assume f(v2) = 0. Then there need to be as many ascending edges as descending
ones in C \ {e} (respectively, C ′ \ {e}). Moreover, the number of ascending edges
must be precisely i (respectively, j), as otherwise GF would either be disconnected
or not contain all the vertices. Since the choices on the two cycles are independent,

the electronic journal of combinatorics 29(3) (2022), #P3.24 24



C C'e

v1

v2

Figure 2: Two odd cycles joined by an edge.

there are
7
2i
i

87
2j
j

8
facets of this type. By Corollary 13, the simplices contained in

such a facet are obtained by taking out a single edge in C ∪ C ′ \ {e}. Since both
the edge sets of C \ {e} and of C ′ \ {e} are equally divided into the two possible
orientations, the odd cycles do not impose any condition on the triangulation (recall
Theorem 20). However, the existence of the even cycle C ∪ C ′ \ {e} dictates that
we cannot select at the same time all the i + j edges with orientation opposite to
the smallest. This means that the facet F is triangulated into the i+ j unimodular
simplices obtained by taking out one such edge at a time. Thus, the facets with
f(v2) = 0 contribute an overall volume equal to (i+ j)

7
2i
i

87
2j
j

8
.

• If f(v2) ∕= 0, then f(v2) ∈ {1,−1}. Reasoning in a similar fashion as in the previous
case, in order for GF to contain a spanning tree we need C (respectively, C ′) to
contain i (respectively, j) ascending edges, i (respectively, j) descending edges and a
constant edge c (respectively, c′), which cannot be the common edge e by hypothesis.
The number of possible facets is then 2i ·2j ·2

7
2i−1
i−1

87
2j−1
j−1

8
. The number 2

7
2i−1
i−1

87
2j−1
j−1

8

is found as follows: after choosing whether e is ascending or descending, we still have
to make i− 1 choices in C \ {c, e} and j − 1 independent ones in C ′ \ {c′, e}. Note
that in this case GF is actually a spanning tree and thus the facet F is a simplex.

The total volume is hence

(i+ j)

&
2i

i

'&
2j

j

'
+ 2 · 2i · 2j

&
2i− 1

i− 1

'&
2j − 1

j − 1

'
= (i+ j + 2ij)

&
2i

i

'&
2j

j

'
.

4.3 Wheel graphs

A wheel graph is obtained by connecting each vertex of the cycle graph on n vertices
(with n " 3) to a single extra vertex, which we will call cone vertex. Due to conflicting
conventions in the literature on whether the graph just described should be called Wn or
Wn+1, we will adopt the notation K1 ∗ Cn.

The goal of this subsection is to compute the number of facets and the normalized
volume of the associated symmetric edge polytope.
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Proposition 49. Denote by an the number of facets of PK1∗Cn. Then the rational gener-
ating function for (an)n!3 is

2z6 + 2z5 − 7z4 − 3z3 + z + 1

(1− z)(1− z − 2z2 − 2z3)
. (4.1)

In particular, the following recursion holds for n " 3:

an = 2an−1 + an−2 − 2an−4.

Proof. We use the notation of Theorem 11 to describe the facets via appropriate functions
f : V (G) → Z. Without loss of generality, we assign the value zero to the cone vertex.
By condition (i) of Theorem 11 it then follows that the external vertices can be labeled
only by −1, 0 or 1 (from now on, “−”, “0” and “+”). We claim that the facets of PK1∗Cn

are in bijection with the labelings of the external vertices by {+, 0,−} such that no two
consecutive vertices are marked with “+−” or “−+” (as this would violate condition (i)
in Theorem 11) and no three consecutive vertices are marked with “000” (which would go
against condition (ii) in Theorem 11). The rational generating function for this counting
problem was computed in the third part of Example 25 at the end of Section 3.

In order to compute the normalized volume we need more work. Let us fix some
notation.

When considering facets of the symmetric edge polytope associated with a wheel
graph, we will always label by zero the cone vertex. Then, after choosing a vertex on the
outer cycle and a direction, each facet is identified by an n-letter word w in the alphabet
{+, 0,−}. More precisely, given such a word w, the associated labeling fw gives value 1
(resp. −1) to the outer vertices indexed with “+” (resp. “−”) and value 0 to both the
cone vertex and those outer vertices that are indexed by “0”. If Fw is the facet associated
with the labeling fw, we will denote GFw by Gw.

Moreover, we will denote by c(w) the number of 4-cycles in Gw containing the cone
vertex.

Proposition 50. Let Fw be the facet of PK1∗Cn identified by the word w. Then

vol(Fw) =

.
2c(w) − 1 if n is even and w ∈ Excn

2c(w) otherwise,

where, if n is even, Excn is the set consisting of the four n-letter words +0+0 . . .+0,
0+0+ . . . 0+, −0−0 . . .−0 and 0−0− . . . 0−.

Proof. To compute the normalized volume of Fw we will use the strategy outlined at the
end of Section 3.2.

Fixing a total order on the edges of G induces a degrevlex term order as in Theorem
20. This gives rise to a regular unimodular triangulation ∆ of PG. Such a triangulation
always features the origin as a cone point, so we are equivalently triangulating (again
unimodularly) the boundary ∂PG.
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Consider now the Stanley–Reisner ideal I∆. The algebraic counterpart of restricting
∆ to a facet F consists of adding to I∆ all the variables corresponding to lattice points
not in F . Note further that F may contain the lattice point ei − ej or the lattice point
ej−ei, but never both: in algebraic terms, this corresponds to the fact that the monomial
xeye (where e is the edge {i, j}) lives inside I∆.

In light of all the above, when restricting ∆ to our facet Fw, we will consider the
Stanley–Reisner ring of the restriction to live in the polynomial ring in the variables
corresponding to edges of Gw (for any given edge e, we do not need to specify whether
to use xe or ye, as there is only one possible orientation of e inside Gw; for simplicity’s
sake, we will hence just use e to denote the correct variable). With this convention, by
Theorem 20 an edge e appears in the Stanley–Reisner ideal of the triangulation of Fw

only if it is contained in some (unoriented) cycle of Gw.
We also recall that, if a Stanley–Reisner ideal I decomposes as the sum of Stanley–

Reisner ideals I1 and I2 in disjoint sets of variables, then the number of facets of the
simplicial complex associated with I is the product of the number of facets of the simplicial
complexes associated with I1 and I2.

Now, when G = K1 ∗Cn, cycles of Gw arise only when we meet a subword of the form
{±, 0,±}, i.e. when the three outer vertices are labeled by two nonzero elements on the
sides and a zero in the middle. Alternating sequences of the form

w′ = w′
1 0w

′
2 0w

′
3 · · · 0w′

k+1, w′
i ∈ {+,−}, |w′| = 2k + 1 ! n (4.2)

will give rise to collections of 4-cycles where each cycle shares an edge with the previous
one, see Figure 4 below. If n is even, alternating words of the form

w = w1 0w2 0 . . . wk 0, wi ∈ {+,−}, |w| = n = 2k (4.3a)

w = 0w1 0w2 . . . 0wk, wi ∈ {+,−}, |w| = n = 2k (4.3b)

will give rise to the Gw drawn in Figures 5 and 6 below.
It is then enough to show that

(a) if we have a subword w′ of type (4.2), then the triangulation restricted to the
corresponding edges has 2k maximal simplices.

(b) if n = 2k and w is of type (4.3), then Fw is triangulated into 2k simplices unless
w ∈ Excn, in which case we get 2k − 1 simplices.

Indeed, for every facet that is not of type (b) the graph Gw is built from by joining at
the cone vertex several graphs of the form given in Figure 4 (say we have j such parts,
with k1, . . . , kj adjacent squares, respectively) and adding some dangling trees, so that
Gw has the form illustrated in Figure 3. Since all edges of the dangling trees must be in
every spanning tree of Gw, a choice of a spanning tree for Gw amounts to a choice of a
spanning tree in each of the j subgraphs of the form given in Figure 4. If Part (a) holds,
then, for all i = 1, . . . , j the i-th such subgraph has 2ki spanning trees of the desired type.
Therefore, Gw has 2k1 · 2k2 · · · 2kj = 2k1+···+kj = 2k such spanning trees. This proves that
it is in fact enough to prove (a) and (b) above.
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Figure 3: Example of a graph Gw without orientation. Edges in bold belong to every
spanning subtree.

Let us start with part (a). Consider the ordering of the edges of Gw′ given in Figure 4
below, where e1 is the smallest edge, e2 the second smallest and so on. Here and in what
follows, the unlabeled edges are bigger than all the labeled ones.

0

0 0

0

0

w'1

C1

e1

e2

e3

e4

ek

ek+1

C2

C3

Ck

w'2

w'3

w'4

w'k

w'k+1

Figure 4: The graph Gw′ (without orientation), with w′ as in (4.2).

Note that each Cj contains two edges oriented clockwise and two oriented counter-
clockwise. We claim that the Stanley–Reisner ideal associated with w′ is of the form

(ei1ei′1 , ei2ei′2 , . . . , eikei′k),

where eiℓ and ei′ℓ are the two distinct elements of Cℓ \ {eℓ} oriented in the same way. In
particular, the associated simplicial complex (which is the join of a simplex and a cross-
polytope) will have 2k maximal simplices, as desired. To prove the claim, first note that
each 4-cycle Cℓ contributes the quadratic monomial eiℓei′ℓ . What is left to show is that
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no other minimal generator is needed. To do so, consider a cycle C in Gw′ other than
C1, . . . , Ck. Then the length of C is greater than four and there exist distinct indices j, ℓ
in {1, . . . , k} such that j < ℓ and

C = (Cj \ {ej+1}) ∪ (Cj+1 \ {ej+1, ej+2}) ∪ . . . ∪ (Cℓ−1 \ {eℓ−1, eℓ}) ∪ (Cℓ \ {eℓ}).

Note also that C contains 2(ℓ− j+2) edges, of which half are oriented clockwise and half
counterclockwise; moreover, the smallest edge in C is ej. Hence, the cycle C contributes
a single monomial m to the generators of the Stanley–Reisner ideal, and this monomial is
obtained by taking the product of all the edges with the orientation opposite to ej. Now,
if w′

i = w′
j for every i ∈ {j + 1, j + 2, . . . , ℓ + 1}, then the edge eℓ+1 has the orientation

opposite to ej inside C. Since the edges in Cℓ \ {eℓ, eℓ+1} are both contained in C and
have opposite orientations, we get that m is divided by eiℓei′ℓ and is hence superfluous.
Otherwise, let h+1 ∈ {j+1, . . . , ℓ+1} be the smallest index such that w′

h+1 ∕= w′
j. Then

the two edges in Ch \ {eh, eh+1} have the same orientation, which is the one opposite to
ej. In particular, m is divided by eihei′h .

Let us now prove part (b). First consider the case when w /∈ Excn. This means that
both “+” and “−” appear in w. Without loss of generality, we may assume that w1 = +
and wk = −. Order the edges as in Figure 5 below.

0

0

0

0

ek

e1

e2

e3

ek+1

ek+2

Ck

C1

C2

w1=+

w2

w3

wk=--

Figure 5: The graph Gw with w as in (4.3), w /∈ Excn.

We claim that the Stanley–Reisner ideal associated with w is of the form

(ei1ei′1 , ei2ei′2 , . . . , eik−1
ei′k−1

, ek+1ek+2),

where eiℓ and ei′ℓ are distinct elements of Cℓ \ {eℓ} for ℓ ∈ {1, . . . , k − 1} oriented in the
same way. Due to our hypotheses, ek has the same orientation as e1 inside Ck, while ek+1
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and ek+2 have the opposite one: thus, by Theorem 20.(1), it follows that ek+1ek+2 lies in
the ideal. Now let C be a cycle different from C1, . . . , Ck.

• If C is the full outer cycle, then it contains n = 2k edges equally divided into the
two possible orientations. The only potential new monomial m in the Stanley–
Reisner ideal comes from the product of all the edges with orientation opposite to
ek+1. Since ek+1 and ek+2 have the same orientation, by the pigeonhole principle
there must be an index h ∈ {1, . . . , k − 1} such that the two edges eih and ei′h of
Ch \ {eh, eh+1} have the same orientation. Then eihei′h divides m.

• If C is not the full outer cycle, then there exist distinct indices j, ℓ such that the
cycle C starts with ej and follows clockwise the outer cycle until it ends with eℓ. If
ℓ > j, everything works as in case (a) above. Assume that ℓ < j. Then ek+1 and
ek+2 lie in C and have the same orientation; moreover, eℓ is the smallest edge in C.
As before, since the edges in C are equally divided into the two possible orientations,
there is at most one monomial m arising from C. If eℓ has the orientation opposite
to ek+1 and ek+2 inside C, then ek+1ek+2 divides m. If this is not the case, then it
must be that wℓ = − (and in particular ℓ > 1). Then there exists h ∈ {1, . . . , ℓ− 1}
such that wh = + and wh+1 = −. But then the edges ih and i′h in Ch \ {eh, eh+1}
have the same orientation, which is the one opposite to ej. Hence, eihei′h divides m.

Finally, let us consider the case when w ∈ Excn. Without loss of generality, we will
assume w = +0+0 . . .+0. In this case we order the edges as shown in Figure 6 below.

0

0

0

e3k

e2k+1

e2k+2

e2k+3

e2k-1

e2k

Ck

C1

C2

w1=+

w2=+

w3=+

wk=+
0

e1
e2

e3

e4

Figure 6: The graph Gw for w = +0+0 . . .+0 ∈ Excn.

We claim that the Stanley–Reisner ideal associated with w is

(e2e2k+1, e4e2k+2, e6e2k+3, . . . , e2ke3k, e2e4e6 . . . e2k),
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where e2e4e6 . . . e2k is the monomial associated with the outer cycle.
If this is the case, then the associated simplicial complex has 2k−1 maximal simplices,

being the join of a cross-polytope with a single facet removed and a simplex. Let us prove
the claim. If C is a cycle different from the outer one and m is the monomial arising
from it, then there exists h ∈ {1, . . . , k} such that {e2k+h, e2h−1, e2h} ⊆ C. In particular,
e2he2k+h divides m.

Theorem 51. Let n " 3 and denote by voln the normalized volume of PK1∗Cn. Then

voln =

.
(1−

√
3)n + (1 +

√
3)n if n is odd

(1−
√
3)n + (1 +

√
3)n − 2 if n is even.

Proof. By Proposition 50, every subsequence of the form (±, 0,±) in a word w defining
a facet contributes a factor 2 to the overall volume of the facet, unless we are in one of
the exceptional cases. Hence, we would like to assign weight two to each appearance of a
subword (±, 0,±). The trick is to enlarge our alphabet to four letters +, 0, 0̄,− and count
the cyclic words avoiding not just the subwords +−, −+ and 000 (as in Proposition 49),
but also 0̄0̄, 00̄ and 0̄0. We can then again apply the method of Edlin and Zeilberger to
get the rational generating function, that turns out to be

2s6 + 6s5 − 5s4 − 12s3 + 2s+ 1

2s4 + 2s3 − 3s2 − 2s+ 1
,

which equals

−3 + 2s+ s2 +
2s3 − 6s2 − 6s+ 4

2s4 + 2s3 − 3s2 − 2s+ 1
.

Since we are interested in the coefficients from s3 onwards, we can ignore the −3+2s+ s2

part. Since

2s3 − 6s2 − 6s+ 4

2s4 + 2s3 − 3s2 − 2s+ 1
=

1

1− (1−
√
3)s

+
1

1− (1 +
√
3)s

+
1

1− (−s)
+

1

1− s
,

expanding each geometric series we get that the coefficient of xn is given by

.
(1−

√
3)n + (1 +

√
3)n if n is odd

(1−
√
3)n + (1 +

√
3)n + 2 if n is even.

By Proposition 50, to get the actual volume we need to subtract four from the even case,
hence proving the claim.

Remark 52. After sending the first draft, we found out that an alternative approach to
computing the normalized volume of the wheel (and its h∗-vector) can be taken via [48,
Theorem 4.3].
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4.4 Fundamental polytopes of full planar splits networks

As explained in Section 2.3, the symmetric edge polytope of a simple graph G gives rise,
via linear sections, to Kantorovich–Rubinstein polytopes of the metric spaces defined by a
certain choice of a subset of the vertices of G. The “full” PG is, in fact, the Kantorovich–
Rubinstein polytope of the metric space corresponding to choosing the full set of vertices of
G. In [14] the authors computed the face numbers of Kantorovich–Rubinstein polytopes
of all admissible labelings when G is a tree, proving first that all these polytopes are
zonotopes and then exploiting a parallel-decomposition of the associated matroid. This
setting covers the class of all tree-like metric spaces, which are a subclass of the so-called
split-decomposable metric spaces [30]. In computational phylogenetics, different types
of split-decomposable metric spaces are studied, often in terms of the associated splits
network, i.e., a weighted graph that represents the given split-decomposable metric space.

Definition 53 ([30, §5.5]). A splits graph is represented by a finite, simple, connected,
bipartite graph together with an isometric coloring of its edges (i.e., every edge-length-
minimal path uses at most once every color and any two minimal paths with the same
endpoints use the same set of colors).

Given a subset X of the vertices of a splits graph, every color defines a bipartition
of X as follows (see [30, Theorem 5.5.2]): the two parts are the subsets of X on either
connected component of the graph obtained by removing all edges of the given color.

If we associate a positive real weight wc to every color c, given any two vertices x, y ∈ X
we can associate to every path π from x to y the sum W (π) of all wc where c ranges over
all colors of edges in the path π. Then, we obtain a metric on X by setting the distance
of any two x, y ∈ X to be the minimum of all W (π), where π ranges over all paths from
x to y. Every split-decomposable finite metric space can be represented in this way.

Definition 54. We call a split-decomposable metric elemental, resp. full if it can be
represented as above on a splits graph by taking every color to have weight 1, resp. by
labeling every vertex of the graph, i.e. taking X to be the set of all vertices. For full,
elemental split-decomposable metrics we have KG,V = PG.

Definition 55 ([30, §5.7]). A split-decomposable metric is called circular if it can be
represented on a splits network that admits a planar drawing where all labeled nodes are
in the boundary of the unbounded region.

Recall that an outerplanar graph is a planar graph that has a drawing where every
vertex is in the boundary of the unbounded face. Then, a full circular split-decomposable
metric is one that can be represented by a fully labeled outerplanar splits network. If in
addition such a metric is elemental, we can study the associated Kantorovich–Rubinstein
polytope by looking at the symmetric edge polytope of the network graph.

Proposition 56. Let G be a bipartite, connected, outerplanar graph. Then, the number
of facets of PG and its normalized volume are

f(PG) = 2t−s

k%

i=1

&
2ai
ai

'
, vol(PG) = 2t−s

k%

i=1

ai

&
2ai
ai

'
,
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Figure 7: (a) A bipartite outerplanar graph. (b) Its block graph. (c) The cycle graph of
the block B3.

where a1, . . . , ak are the half-lengths of the boundaries of the bounded regions, s is the
number of edges separating two bounded regions and t is the number of bridges of G.

Example 57. In the graph of Figure 7.(a) we have k = 5 with a1 = a2 = a3 = a4 = 2,
a5 = 3, s = 3 and t = 3. Thus, the symmetric edge polytope of this graph has 6420 =
25920 facets and a normalized volume of 1244160.

Proof. The blocks [15, §3.1] of an outerplanar graph are either single edges or biconnected
(outerplanar) graphs. The block graph (i.e., the intersection graph of the blocks) is a tree
[15, Lemma 3.1.4], so we can enumerate the blocks B1, . . . , Bn according to a “reverse
pruning order” of this tree, i.e., an ordering of the vertices such that the vertex-induced
subgraph on the first i vertices is connected, for every i (see Figure 7.(b)).

Moreover, by [53], the cycle graph of every biconnected block Bi with respect to
the cycle basis given by the bounded faces is a tree, and hence we can enumerate the
boundary cycles of bounded regions of Bi, say Ri

1, . . . , R
i
ji
, again according to a reverse

pruning order. Notice that, without loss of generality, we can assume that the cycle Ri
1

has nonempty intersection with the union of the blocks B1, . . . , Bi−1 (every vertex of a
tree can be chosen as the start of a reverse pruning order). If Bi is not biconnected, i.e.,
it is a single edge, we let Ri

1 = Bi and ji = 1 (see Figure 7.(c)). The ordering

R1
1, . . . , R

1
j1
, R2

1, . . . , R
2
j2
, . . . , Rn

jn (4.4)

exhibits G as a sequence of elementary joins. Notice that every Ri
h, h > 1 is an even cycle

– call 2a its length – joined along an edge to the part of the graph constructed earlier; thus
it contributes a factor 1

2

7
2a
a

8
to the number of facets and a factor 1

2
a
7
2a
a

8
to the normalized

volume of the symmetric edge polytope. On the other hand, every Ri
1, i > 1 is joined

to the previous part by identifying a vertex. Thus, if Ri
1 is an even cycle of length 2a it

will contribute a factor
7
2a
a

8
to the number of facets and a factor a

7
2a
a

8
to the normalized

volume. Otherwise, if Ri
1 is a single edge it will contribute a factor 2 to the facets and 2

to the normalized volume. In the sequence (4.4) every boundary of a bounded region and
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Figure 8: The full splits network appearing in Example 59.

every bridge of G appears exactly once, and the number of attachments along an edge is
exactly s.

We obtain immediately the following corollary.

Corollary 58. Let (X, d) be a full, elemental and circularly split-decomposable metric
space. Then the number of facets and the normalized volume of the associated Kantoro-
vich–Rubinstein polytope can be computed as in Proposition 56 from any drawing of a
(outerplanar, full) splits network representing (X, d).

Moreover, if all biconnected blocks of the splits network are cycles, then the polytope
is the direct sum of the polytopes of the cycles and the bridges.

Example 59. Consider the full splits network of Figure 8. It is one of the basic examples
of non-compatible split metric spaces. The associated fundamental polytope has the
combinatorial type of the direct sum of a 4-dimensional crosspolytope (i.e., the direct
sum of the 4 edges) and a cube (i.e., the polytope of the 4-cycle, see Example 31). It has
therefore 16 · 6 = 96 facets and normalized volume equal to 16 · 12 = 192.

4.5 Bipartite planar graphs, flows and polar duals of symmetric edge poly-
topes

In this section we focus on bipartite planar graphs and connect the combinatorics of their
symmetric edge polytopes to the theory of integral flows. This allows us to derive a general
bound on the number of faces and a result on polar duals of symmetric edge polytopes.

As is usual when talking about flows in graphs, we will need to arbitrarily specify
a tail and a head of every edge of a graph G = (V,E). Formally, we will consider two
functions h, t : E → V such that {t(e), h(e)} is the set of vertices incident to e, for every
e ∈ E. For any two given edges e, f ∈ E we say that e and f are parallel, written e‖f , if
they have the same endpoints, i.e., {t(e), h(e)} = {t(f), h(f)}. Notice that parallelism is
an equivalence relation on E.
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A flow on G with values in an Abelian group A is any x ∈ AE that satisfies the
conservation condition:

$
e∈h−1(v) xe =

$
e∈t−1(v) xe. Such a flow is called nowhere-zero if

no component of x is the identity of A. Given k ∈ Z, a Zk-flow is any flow with values in
the cyclic group Zk = {0, . . . , k − 1}. A k-flow is a flow with values in the group Z and
such that |xe| < k for all e ∈ E.

It is classically known that the number of nowhere-zero Zk-flows is expressed by a
polynomial in k, the flow polynomial ϕG(k) of G. In particular, when G is a planar
graph the flow polynomial is related to the chromatic polynomial of the dual graph G∗:
ϕG(k) = k−1χG∗(k).

A result by Kochol [36] states that also the number of nowhere-zero k-flows is expressed
by a polynomial, which we will denote by ϕG(k).

Remark 60 (Symmetric edge polytopes of non-simple graphs). Planar duality of graphs
can produce graphs with parallel edges or loops (edges e with h(e) = t(e)). Graphs
with no loops and no parallel edges are called simple. To any graph G we can associate
its simplification as the simple graph G obtained from G by removing all loops and all
but one of the elements in any parallelism class of edges. Notice that the choice of this
representative does not affect the number of flows on G.

We extend the definition of symmetric edge polytopes to arbitrary graphs by setting

PG := PG = conv {ev − ew, ew − ev : v, w are adjacent in G} ⊂ RV .

Again, notice that the choice of representative of every parallel class does not affect PG.

Proposition 61. Let G be a bipartite, planar, connected graph. Then the number of
facets of PG is the number ϕG∗(2) of nowhere-zero 2-flows on the dual graph G∗.

Proof. Notice that, since G is bipartite, it cannot have loops and so G differs from G at
most by removal of some parallel edges. Accordingly, (G)∗ differs from G∗ at most by
removing some vertices of degree 2 and joining the two neighbors of each such removed
vertex by an edge – in particular, flows on (G)∗ correspond bijectively to flows on G∗.
Since such a bijection restricts to nowhere-zero k-flows, it follows that ϕG∗ = ϕG

∗ . We
can thus assume without loss of generality that G is a simple graph, and apply the theory
of the previous sections.

Facets of PG correspond bijectively to edge-labelings λ : E → {±1, 0} that are nonzero
on some connected spanning set of edges and that “sum to 0 on every oriented circuit
of G” (formally:

$
i εiλ(ei) = 0 whenever v0, e1, v1, e2, . . . , el is a circuit of G – i.e.,

{vi, vi+1} = {t(ei), h(ei)} –, with εi = 1 if vi = t(ei) and εi = −1 otherwise). In fact,
functions f satisfying the conditions in Theorem 11 define labelings λ as above by setting
λ(e) := f(h(e))− f(t(e)) for all e ∈ E, and this correspondence is one-to-one. Now, if G
is bipartite, such λ can never assume the value zero by Lemma 32.

If G is planar, then the edges of G correspond bijectively to the edges of the dual
graph G∗ = (V ∗, E∗): call e +→ e∗ this bijection. Now any labeling λ of the edges of G
induces a labeling λ∗ of the edges of G∗ via λ∗(e∗) := λ(e). Recall also, e.g., from [15,
Lemma 6.5.2] that there is a (canonical) choice of h(e∗) and t(e∗) such that λ∗ is a flow if
and only if λ “sums to 0 on every oriented circuit of G” in the sense above.
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If G is planar and bipartite, then, valid facet-defining labelings λ correspond bijectively
to nowhere-zero 2-flows λ∗ ∈ {±1}E on G∗.

Remark 62. Via [36, Remark 1] we immediately recover that when joining two bipartite
(planar, connected) graphs by at most one vertex the number of facets of the symmetric
edge polytope of the resulting graph is the product of the numbers of facets of the two
joined graphs (cf. Remark 36).

If G = (V,E) is a graph, let AG denote the signed incidence matrix of G. This is
a unimodular |V | × |E| matrix whose entry in row v of the column corresponding to a
non-loop e is 1 if h(e) = v, −1 if t(e) = v and 0 otherwise. Columns indexed by loops
have all entries equal to zero. We let EG(t) denote the Ehrhart polynomial of the lattice
polytope

QG := [−1, 1]E ∩ ker(AG) ⊆ RE.

Lemma 63. Let G be a planar graph. Then,

EG(t) = EP△
G∗
(t),

where △ denotes polar duality of polytopes and ∗ planar duality of graphs.

Proof. First we reduce to the case when G∗ has no loops, i.e. G has no bridges. In fact,
every k ∈ ker(AG) defines a flow on G and so, if ẽ is any bridge of G, we must have k(ẽ) = 0
(e.g., by [15, Corollary 6.1.2]). Now let G̃ be obtained by contracting the edge ẽ in G. By
the above argument we may identify ker(AG) with ker(AG̃), simply by assigning 0 to every
entry in the column associated with the edge ẽ. Hence, the contraction does not change
the l.-h.s. of the equality we want to prove. As G̃∗ is G∗ with a loop removed, we also
do not change PG∗ and hence, the r.-h.s. remains unchanged. Performing this contraction
procedure for all bridges, it is enough to consider the case when G is bridgeless.

Consider the signed incidence matrix AG∗ of the dual of G with the canonical ori-
entation [15, Lemma 6.5.2]. It is well known that ker(AG) equals the rowspace of AG∗

[24, Corollary 14.3.2]. Let us call W this linear subspace of RE. Writing w0, . . . , ws for
the rows of AG∗ , we may suppose that w1, . . . , ws correspond to vertices of G∗ associated
to bounded faces of G. Then, w1, . . . , ws give a unimodular basis of W [24, §14.7]: this
means that

W ∩ Zd = 〈w1, . . . , ws〉Z.

In particular, any x ∈ ker(AG) has a unique expansion

x =
s#

i=1

riwi, ri ∈ R. (4.5)

As is customary, we label the columns of AG∗ by the edge set E of G in the natural way,
and we write AG∗(e, i) for the entry in the e-th column and i-th row. Let

Z := {i ∈ [s] | for some e ∈ E one has that AG∗(e, j) = 0 iff j ∈ [s] \ i},
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i.e., the indices of all vertices of G∗ that are adjacent to the vertex associated to the
unbounded face of G. Now, for every e ∈ E the e-coordinate of the point x as in (4.5) is

xe =

!
AG∗(e, i)ri if e is incident to w0, wi in G∗

AG∗(e, i)(ri − rj) if e is incident to wi, wj in G∗, i, j ∕= 0

Since the nonzero entries of AG∗ are +1 or −1, we see that

QG =

!
x ∈ ker(AG)

::::
|ri| ! 1 for i ∈ Z,
|ri − rj| ! 1 for every e ∈ E with {h(e), t(e)} = {i, j} ⊆ [s]

"
.

(4.6)
Now consider the sublattice U defined in Z(V ∗) as the set of all points whose coordinates
sum to zero and in it, for every edge e = {i, j} of G∗ (with i < j), consider the element
ue := εi−εj. Any spanning tree T of G∗ gives a unimodular basis {ue}e∈E(T ) of U . Without
loss of generality we can assume that the vertex of G∗ that corresponds to the unbounded
region of G is a leaf of T . (If this is not the case, we can reverse-stereographically project
the embeddings of G and G∗ on the 2-sphere, declaring the North pole to be in the
region containing a leaf of T and then stereographically project on to the plane. The
new embeddings give isomorphic graphs, hence our previous considerations still apply.)
Consider the linear transformation Λ : U → W defined by setting, for all e ∈ E(T ),

ue +→
!

−wi if e is incident to w0, wi in G∗

wi − wj if e is incident to wi, wj in G∗, 0 < i < j.

The matrix of Λ with respect to the unimodular basis {ue}e∈E(T ) of U and the unimodular
basis {wi}i∈[s] of W is (up to reordering of the wis

1) upper diagonal, with diagonal entries
±1. Hence Λ is a lattice isomorphism.

Now it is enough to show that Λ(P△
G∗) = QG. In fact, P△

G∗ is defined inside U ⊗ R by
the conditions

|yi − yj| ! 1 whenever i, j are adjacent in G∗. (4.7)

Write ye for the e-coordinate of the point y in the basis {ue}e∈T , P (i, j) for the unique
path in T connecting vertex i to vertex j, and for e ∈ P (i, j) let ηe be 1 or −1 according
to whether the vertex of e closer to i is smaller or greater than the other vertex of e. Now
the conditions in Equation (4.7) become

|
#

e∈P (i,j)

ηeye| ! 1 whenever i, j are adjacent in G∗

and these map under Λ to

|wi − wj| ! 1 if i, j ∕= 0
|wi| ! 1, resp. |wj| ! 1 if j = 0, resp. i = 0

"
whenever i, j are adjacent in G∗

This is exactly the description of QG given above.

1e.g., according to depth-first search of T starting at the vertex associated to the unbounded region.
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The “inside-out” approach to Ehrhart theory by Beck and Zaslavsky [2] leads to an
explicit expression for the integer flow polynomial which, in our situation, becomes the
following.

Proposition 64. Let G be a planar bipartite graph. Then,

f(PG) =
#

H∈L(G)

µL(G)(H)EP△
G/H

(1)

where µL(G) is the Möbius function of L(G), the poset of all subsets H ⊆ E that are closed
in the graphic matroid of G, and where we identify the set of edges of G and of its planar
dual G∗.

Proof. Beck and Zaslavsky prove, for every graph G and every k, the identity2

ϕG(k) =
#

T∈L∗(G)

µ(0̂, T )EG[T c](k − 1) (4.8)

where L∗(G) is the lattice of flats of the dual matroid to the cycle matroid of G – which is
isomorphic to the lattice of flats L(G∗) of the cycle matroid of G∗ – and µ is the associated
Möbius function. The claim follows by duality with Proposition 61 and Lemma 63.

Proposition 65. Let G be a planar connected graph. Then, the number of integer points
contained in the polar dual of the symmetric edge polytope of G is

EP△
G
(1) =

#

S∈L(G)
G/S bipartite

f(PG/S).

Proof. Let E denote the full edge set of G. Recall that for every S ∈ L(G) the contraction
G/S is dual to the restriction G∗[Sc], and the lattice of flats satisfies L(G/S) ≃ L(G)!S.
Equation (4.8) implies that

ϕG∗(2) =
#

H∈L(G)op

µL(G)op(H, 0̂)EG∗[Hc](1)

where 0̂ denotes the minimal element of L(G), i.e., the set of all loops of G. Passing to
the contraction,

ϕ(G/S)∗(2) =
#

H∈L(G)op

H"S

µL(G)op(H,S)EG∗[Hc](1)

(where we used that Sc ∩Hc = Hc as S ⊆ H). Now Möbius inversion on L(G)op gives

EG∗[Hc](1) =
#

S∈L(G)op

S"H

ϕ(G/S)∗(2) .

2We point out a typo in [2, Theorem 4.15]: on the right-hand side of Formula (4.4) the polynomial
should be evaluated at k instead of k + 1.
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Now, if G/S is not bipartite it contains an odd cycle, and thus (G/S)∗ contains an odd
cut D. Since our flows are “circulations” in the sense of [15, §6.1], the net flow across any
cut is 0. Since the net flow of any nowhere-zero 2-flow on (G/S)∗ across the odd cut D is
a sum of an odd number of terms ±1, such a flow cannot exist, so ϕ(G/S)∗(2) = 0 if G/S

is not bipartite. Thus, setting H = 0̂, with Lemma 63 and Proposition 61 we obtain the
claim.

Example 66. Let G = Cn be an n-cycle and label its edges with the set [n]. Then the
elements of L(G) are [n] itself and all subsets S ⊂ [n], |S| < n − 1. Accordingly, G/S
is either the graph with one vertex and no edges (whose symmetric edge polytope has 1
facet) or an (n− |S|)-cycle. We obtain

#(P△
Cn

∩ Zd) = 1 +
#

0"i<n−1
n−i even

&
n

i

'&
n− i

(n− i)/2

'
.
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[20] Ś. R. Gal, Real root conjecture fails for five- and higher-dimensional spheres, Dis-
crete Comput. Geom., 34 (2005), pp. 269–284.
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[35] P. Kirschenhofer, A. Pethő, and R. F. Tichy, On analytical and Diophantine
properties of a family of counting polynomials, Acta Sci. Math. (Szeged), 65 (1999),
pp. 47–59.

[36] M. Kochol, Polynomials associated with nowhere-zero flows, J. Combin. Theory
Ser. B, 84 (2002), pp. 260–269.

[37] Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, in
International Symposium on Mathematical Problems in Theoretical Physics (Kyoto
Univ., Kyoto, 1975), 1975, pp. 420–422. Lecture Notes in Phys., 39.

[38] A. G. Kushnirenko, Newton polytopes and the Bezout theorem, Functional Anal-
ysis and its Applications, 10 (1976), pp. 233–235. Translated from Funktsional’nyi
Analiz i Ego Prilozheniya, pp. 82–83, vol. 10, no. 3, July–September, 1976.

[39] T. Matsui, A. Higashitani, Y. Nagazawa, H. Ohsugi, and T. Hibi, Roots of
Ehrhart polynomials arising from graphs, J. Algebraic Combin., 34 (2011), pp. 721–
749.

[40] J. Melleray, F. V. Petrov, and A. M. Vershik, Linearly rigid metric spaces
and the embedding problem, Fund. Math., 199 (2008), pp. 177–194.

[41] M. Micha!lek, Selected topics on toric varieties, in The 50th anniversary of Gröbner
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